I am interested in partial differential equations and its applications to physics and biology.
-
E. Bouin, L. Kanzler, C. Mouhot, Quantitative fluid approximation in fractional regimes of transport equations with more invariants, 2024, (www),
-
E. Bouin, J. Coville, X. Zhang, Acceleration or finite speed propagation in weakly monostable reaction-diffusion equations, accepted for publication at Nonlinear Analysis, 2024, (www),
-
E. Bouin, J. Dolbeault, L. Ziviani, L^2 - Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states, Kolmogorov Operators and Their Applications, Springer, 2024, (www),
-
E. Bouin, J. Coville, G. Legendre, A simple flattening lower bound for solutions to some linear integrodifferential equations, Z. Angew. Math. Phys., 74, 2023, (www),
-
A. Blaustein, E. Bouin, Concentration profiles in
FitzHugh-Nagumo neural networks: A Hopf-Cole approach, Discrete and Continuous Dynamical Systems - B, 2023, (www),
-
J. Garnier, O. Cotto, T. Bourgeron, E. Bouin, T. Lepoutre, O. Ronce and V. Calvez, Adaptation of a quantitative trait to a changing environment: New analytical insights on the asexual and infinitesimal sexual models. Theoretical Population Biology
(www), 2023,
-
E. Bouin, J. Coville, G. Legendre, Acceleration in integro-differential combustion equations, submitted, 2021, (www),
-
E. Bouin, J. Coville, G. Legendre, Sharp exponent of acceleration in integro-differential equations with weak a Allee effect, submitted, 2022, (www),
-
E. Bouin, V. Calvez, E. Grenier, G. Nadin, Large-scale asymptotics of velocity-jump processes and nonlocal Hamilton–Jacobi equations, J. London Math. Soc., 108: 141-189, 2023, (www),
-
E. Bouin, C. Mouhot, Quantitative fluid approximation in transport
theory: a unified approach, Probability and Mathematical Physics, 3(3), 491-542, 2022, (www),
-
E. Bouin, C. Henderson, The Bramson delay in a Fisher-KPP equation with log-singular non-linearity, Nonlinear Anal., 213:Paper No. 112508, 30, 2021, (www),
-
E. Bouin, G. Legendre, Y. Lou, N. Slover, Evolution of anisotropic diffusion in two-dimensional heterogeneous environments, J. Math. Biol. 82, 36 (2021). (www),
-
E. Bouin, J. Dolbeault, L. Lafleche, Fractional
hypocoercivity, Commun. Math. Phys. 390, 1369–1411 (2022). (www),
-
E. Bouin, J. Dolbeault, L. Lafleche, C. Schmeiser, Hypocoercivity and sub-exponential local equilibria, Monatsh Math 194, 41–65 (2021). (www),
-
E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, C. Schmeiser, Hypocoercivity without confinement, Pure and Applied Analysis, Mathematical Sciences Publishers, In press, 2 (2), pp.203-232 (2020). (www),
-
E. Bouin, J. Dolbeault, C. Schmeiser, Diffusion and kinetic transport with very weak confinement, Kinetic & Related Models, 13(2), 345-371, 2020, (www),
-
E. Bouin, J. Dolbeault, C. Schmeiser, A variational proof of Nash's inequality, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), 211-223. (www),
- E. Bouin, C. Henderson, L. Ryzhik, The Bramson delay in the non-local Fisher-KPP equation, Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 37(1), 51–77.(www),
-
E. Bouin, J. Garnier, C. Henderson, F. Patout,Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels, SIAM J. Math. Analysis 50(3): 3365-3394, 2018, (www),
-
E. Bouin, N. Caillerie, Spreading in kinetic reaction-transport equations in higher velocity dimensions, European Journal of Applied Mathematics, 30(2), 219-247. (www),
-
E. Bouin, M. Chan, C. Henderson, P. Kim Influence of a mortality trade-off on the spreading rate of cane toads fronts, Communications in Partial Differential Equations, 43:11, 1627-1671, 2018, (www),
- E. Bouin, C. Henderson, L. Ryzhik, The Bramson logarithmic delay in the cane toads equations, Quart. Appl. Math. 75 (2017), 599-634. (pdf), 2016,
-
E. Bouin, F. Hoffmann, C. Mouhot Exponential decay to equilibrium for a fibre lay-down process on a moving conveyor belt, SIAM J. Math. Anal., 49(4), 3233–3251. (www),
- E. Bouin, C. Henderson, Super-linear spreading in local bistable cane toads equations, Nonlinearity 30:4, 1356-1375. (2017) (pdf)
- E. Bouin, C. Henderson, L. Ryzhik, Superlinear spreading in local and nonlocal cane toads equations, Journal de Mathématiques Pures et Appliquées 108 (5) 724 (2017), (pdf), 2015,
-
E. Bouin, A Hamilton-Jacobi approach for front propagation in kinetic equations, Kinetic & Related Models, Vol. 8 Issue 2, p255-280. (2015), (pdf), (www),
-
E. Bouin, V. Calvez, G. Nadin, Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts, Archive for Rational Mechanics and Analysis 217:2, 571-617, (2015), (pdf), (www),
-
E. Bouin, V. Calvez, A kinetic eikonal equation, Comptes rendus - Mathématique 350 (2012) pp. 243-248, (pdf), (www),
-
E. Bouin, V. Calvez, G. Nadin, Hyperbolic traveling waves driven by growth, Math. Models Methods Appl. Sci. 24, 1165 (2014), (pdf), (www),
- E. Bouin, V. Calvez, Travelling waves for the cane toads equation with bounded traits, Nonlinearity 27 (2014) 2233-2253, (pdf), (www),
- E. Bouin, S. Mirrahimi, A Hamilton-Jacobi limit for a model of population stuctured by space and trait, Commun. Math. Sci., 13(6):1431--1452, (2015). (pdf),
-
E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, and R. Voituriez, Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, Comptes rendus - Mathématique 350 (2012) pp. 761-766, (pdf), (www),
-
S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative evolution; theory and numerics,
Book chapter: The Mathematics of Darwin's Legacy, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 2011. (pdf),
|