Je m'intéresse notamment aux équations aux dérivées partielles, à la modélisation en physique et biologie. Mes recherches se concentrent sur l'étude de phénomènes d'invasion, pour lesquels la propagation macroscopique est fortement influencée par une structure microscopique des populations considérées. Des modèles structurés sont alors nécessaires et apportent des questions mathématiques qui m'intéressent.
-
E. Bouin, L. Kanzler, C. Mouhot, Quantitative fluid approximation in fractional regimes of transport equations with more invariants, 2024, (www),
-
E. Bouin, J. Coville, X. Zhang, Acceleration or finite speed propagation in weakly monostable reaction-diffusion equations, accepted for publication at Nonlinear Analysis, 2024, (www),
-
E. Bouin, J. Dolbeault, L. Ziviani, L^2 - Hypocoercivity methods for kinetic Fokker-Planck equations with factorised Gibbs states, Kolmogorov Operators and Their Applications, Springer, 2024, (www),
-
E. Bouin, J. Coville, G. Legendre, A simple flattening lower bound for solutions to some linear integrodifferential equations, Z. Angew. Math. Phys., 74, 2023, (www),
-
A. Blaustein, E. Bouin, Concentration profiles in
FitzHugh-Nagumo neural networks: A Hopf-Cole approach, Discrete and Continuous Dynamical Systems - B, 2023, (www),
-
J. Garnier, O. Cotto, T. Bourgeron, E. Bouin, T. Lepoutre, O. Ronce and V. Calvez, Adaptation of a quantitative trait to a changing environment: New analytical insights on the asexual and infinitesimal sexual models. Theoretical Population Biology
(www), 2023,
-
E. Bouin, J. Coville, G. Legendre, Acceleration in integro-differential combustion equations, submitted, 2021, (www),
-
E. Bouin, J. Coville, G. Legendre, Sharp exponent of acceleration in integro-differential equations with weak a Allee effect, submitted, 2022, (www),
-
E. Bouin, V. Calvez, E. Grenier, G. Nadin, Large-scale asymptotics of velocity-jump processes and nonlocal Hamilton–Jacobi equations, J. London Math. Soc., 108: 141-189, 2023, (www),
-
E. Bouin, C. Mouhot, Quantitative fluid approximation in transport
theory: a unified approach, Probability and Mathematical Physics, 3(3), 491-542, 2022, (www),
-
E. Bouin, C. Henderson, The Bramson delay in a Fisher-KPP equation with log-singular non-linearity, Nonlinear Anal., 213:Paper No. 112508, 30, 2021, (www),
-
E. Bouin, G. Legendre, Y. Lou, N. Slover, Evolution of anisotropic diffusion in two-dimensional heterogeneous environments, J. Math. Biol. 82, 36 (2021). (www),
-
E. Bouin, J. Dolbeault, L. Lafleche, Fractional
hypocoercivity, Commun. Math. Phys. 390, 1369–1411 (2022). (www),
-
E. Bouin, J. Dolbeault, L. Lafleche, C. Schmeiser, Hypocoercivity and sub-exponential local equilibria, Monatsh Math 194, 41–65 (2021). (www),
-
E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, C. Schmeiser, Hypocoercivity without confinement, Pure and Applied Analysis, Mathematical Sciences Publishers, In press, 2 (2), pp.203-232 (2020). (www),
-
E. Bouin, J. Dolbeault, C. Schmeiser, Diffusion and kinetic transport with very weak confinement, Kinetic & Related Models, 13(2), 345-371, 2020, (www),
-
E. Bouin, J. Dolbeault, C. Schmeiser, A variational proof of Nash's inequality, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. 31 (2020), 211-223. (www),
- E. Bouin, C. Henderson, L. Ryzhik, The Bramson delay in the non-local Fisher-KPP equation, Annales de l’Institut Henri Poincaré C, Analyse Non Linéaire, 37(1), 51–77.(www),
-
E. Bouin, J. Garnier, C. Henderson, F. Patout,Thin front limit of an integro-differential Fisher-KPP equation with fat-tailed kernels, SIAM J. Math. Analysis 50(3): 3365-3394, 2018, (www),
-
E. Bouin, N. Caillerie, Spreading in kinetic reaction-transport equations in higher velocity dimensions, European Journal of Applied Mathematics, 30(2), 219-247. (www),
-
E. Bouin, M. Chan, C. Henderson, P. Kim Influence of a mortality trade-off on the spreading rate of cane toads fronts, Communications in Partial Differential Equations, 43:11, 1627-1671, 2018, (www),
- E. Bouin, C. Henderson, L. Ryzhik, The Bramson logarithmic delay in the cane toads equations, Quart. Appl. Math. 75 (2017), 599-634. (pdf), 2016,
-
E. Bouin, F. Hoffmann, C. Mouhot Exponential decay to equilibrium for a fibre lay-down process on a moving conveyor belt, SIAM J. Math. Anal., 49(4), 3233–3251. (www),
- E. Bouin, C. Henderson, Super-linear spreading in local bistable cane toads equations, Nonlinearity 30:4, 1356-1375. (2017) (pdf)
- E. Bouin, C. Henderson, L. Ryzhik, Superlinear spreading in local and nonlocal cane toads equations, Journal de Mathématiques Pures et Appliquées 108 (5) 724 (2017), (pdf), 2015,
-
E. Bouin, A Hamilton-Jacobi approach for front propagation in kinetic equations, Kinetic & Related Models, Vol. 8 Issue 2, p255-280. (2015), (pdf), (www),
-
E. Bouin, V. Calvez, G. Nadin, Propagation in a kinetic reaction-transport equation: travelling waves and accelerating fronts, Archive for Rational Mechanics and Analysis 217:2, 571-617, (2015), (pdf), (www),
-
E. Bouin, V. Calvez, A kinetic eikonal equation, Comptes rendus - Mathématique 350 (2012) pp. 243-248, (pdf), (www),
-
E. Bouin, V. Calvez, G. Nadin, Hyperbolic traveling waves driven by growth, Math. Models Methods Appl. Sci. 24, 1165 (2014), (pdf), (www),
- E. Bouin, V. Calvez, Travelling waves for the cane toads equation with bounded traits, Nonlinearity 27 (2014) 2233-2253, (pdf), (www),
- E. Bouin, S. Mirrahimi, A Hamilton-Jacobi limit for a model of population stuctured by space and trait, Commun. Math. Sci., 13(6):1431--1452, (2015). (pdf),
-
E. Bouin, V. Calvez, N. Meunier, S. Mirrahimi, B. Perthame, G. Raoul, and R. Voituriez, Invasion fronts with variable motility: phenotype selection, spatial sorting and wave acceleration, Comptes rendus - Mathématique 350 (2012) pp. 761-766, (pdf), (www),
-
S. Mirrahimi, B. Perthame, E. Bouin and P. Millien, Population formulation of adaptative evolution; theory and numerics,
Book chapter: The Mathematics of Darwin's Legacy, Mathematics and Biosciences in Interaction, Birkhäuser Basel, 2011. (pdf),
|