Domaines/Fields:
Probability Theory,
Statistical Mechanics
Intérêts/Interests:
Disordered systems,
Disorder relevance,
Polymers,
Localization (Copolymers, Pinning, Trapping phenomena),
Folding/Unfolding (Charged Polymers),
Percolation (Polymer melts),
Random Walks and Wiener sausages,
Renewal theory,
Potential theory and Capacity,
Large Deviations.
Co-auteurs/Coauthors:
Q. Berger,
F. Caravenna,
D. Cheliotis,
Y. Chino,
D. Erhard,
N. Guillotin-Plantard,
F. den Hollander,
J. Martínez,
N. Pétrélis,
R. Soares dos Santos,
F. Simenhaus,
R. Sun,
N. Zygouras.
Financements/Grants:
ANR LOCAL Localization for polymers and random walks, 2022-2027
Etudiants en thèse/PhD Students:
- Nicolas Bouchot, 2021 -. (en co-direction avec Q. Berger).
- Elric Angot, 2022 -. (en co-direction avec N. Pétrélis).
--Articles/Papers>
Articles/Papers.
-
J. Poisat.
A connection between the random pinning model and
random walks in sparse random environments.
Preprint (2024). [hal][arxiv]
-
D. Erhard, J. Poisat.
Uniqueness and tube property for the Swiss cheese large deviations.
Preprint (2023). [hal][arxiv]
-
D. Erhard, J. Poisat.
Strong large deviation principles for pair empirical measures of random walks in the Mukherjee-Varadhan topology.
Preprint (2023). [hal][arxiv]
-
J. Poisat, F. Simenhaus.
Localization of a one-dimensional simple random walk among power-law renewal obstacles.
Annals of Applied Probability (2024) Vol. 34, No. 4, 4137-4192 [arxiv] [hal] [journal]
-
J. Poisat, F. Simenhaus.
A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles.
Annals of Applied Probability (2020) Vol. 30, No. 5, 2030-2068 [arxiv] [hal (latest version)] [journal].
-
D. Cheliotis, Y. Chino, J. Poisat.
The random pinning model with correlated disorder given by a renewal set.
Annales Henri Lebesgue 2 (2019) 281-329 [journal].
-
Q. Berger, F. den Hollander, J. Poisat.
Annealed scaling for a charged polymer in dimensions two and higher
J. Phys. A: Math. Theor. 51, 2018 (special issue in honour of Stuart Whittington’s 75th birthday) [arxiv][journal].
-
F. Caravenna, F. den Hollander, N. Pétrélis, J. Poisat.
Annealed scaling for a charged polymer
Math. Phys. Anal. Geom. Vol. 19 (1), 2016, [arxiv].
-
D. Erhard, J. Poisat.
Asymptotics of the critical time in Wiener sausage percolation with a small radius
ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 1, 417–445 [arxiv].
-
Q. Berger, J. Poisat.
On the critical curve of the pinning and copolymer models in correlated Gaussian environment
Electronic Journal of Probability, Vol. 20, no. 71, 2015 [arxiv]
-
D. Erhard, J. Martínez, J. Poisat
Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
Journal of Theoretical Probability (2017) 30 :784-812. [arxiv]
-
N. Guillotin-Plantard, J. Poisat, R. Soares dos Santos
A Quenched Functional Central Limit Theorem for Planar Random Walks in Random Sceneries
Electronic Communications in Probability, Vol. 19, 2014, [arxiv][journal]
-
F. den Hollander, J. Poisat.
Large deviation principles for words drawn from correlated letter sequences
Electronic Communications in Probability, Vol. 19, 2014 [arxiv][journal]
-
Q. Berger, F. Caravenna, J. Poisat, R. Sun, N. Zygouras.
The Critical Curve of the Random Pinning and Copolymer Models at Weak Coupling
Communications in Mathematical Physics, 326, no. 2, 507-530. (2014) [arxiv]
-
N. Guillotin-Plantard, J. Poisat.
Quenched Central Limit Theorems for Random Walks in Random Scenery
Stochastic Process. Appl. 123, no. 4, 1348-1367 (2013) [arxiv]
-
J. Poisat.
Ruelle-Perron-Frobenius operator approach to the annealed pinning model with Gaussian long-range correlated disorder.
Markov Process. Related Fields 19 (2013), no. 3, 577–606. [arxiv]
-
J. Poisat.
Random pinning model with finite range correlations: disorder relevant regime.
Stochastic Process. Appl. 122, no. 10, 3560-3579 (2012) [arxiv] [journal]
-
J. Poisat.
On quenched and annealed critical curves of random pinning model with finite range correlations.
Ann. Inst. Henri Poincaré. Volume 49, Number 2 (2013) [arxiv]
Thèse de doctorat / PhD thesis
Modèle d'accrochage de polymères en environnement aléatoire faiblement corrélé.
Soutenue le / Defended on : 16/05/2012.
Directrice / Supervisor : Nadine Guillotin-Plantard (Institut Camille Jordan, Université Lyon 1).
[pdf]
Habilitation à diriger des recherches
Random walks, polymers and phase transitions.
Soutenue le / Defended on : 29/09/2020.
Coordinatrice / Coordinator : Béatrice de Tilière (CEREMADE, Université Paris-Dauphine).
[pdf]