Julien Poisat


Maître de conférences / ~Assistant professor
Mathématiques / Mathematics
Section CNU : 26

Domaines/Fields:

Probability Theory, Statistical Mechanics

Intérêts/Interests:

Disordered systems, Disorder relevance, Polymers, Localization (Copolymers, Pinning, Trapping phenomena), Folding/Unfolding (Charged Polymers), Percolation (Polymer melts), Random Walks and Wiener sausages, Renewal theory, Potential theory and Capacity, Large Deviations.

Co-auteurs/Coauthors:

Q. Berger, F. Caravenna, D. Cheliotis, Y. Chino, D. Erhard, N. Guillotin-Plantard, F. den Hollander, J. Martínez, N. Pétrélis, R. Soares dos Santos, F. Simenhaus, R. Sun, N. Zygouras.

Financements/Grants:

ANR LOCAL Localization for polymers and random walks, 2022-2027

Etudiants en thèse/PhD Students:

  1. Nicolas Bouchot, 2021 -. (en co-direction avec Q. Berger).
  2. Elric Angot, 2022 -. (en co-direction avec N. Pétrélis).

Articles/Papers.

  1. J. Poisat.
    A connection between the random pinning model and random walks in sparse random environments.
    Preprint (2024). [hal][arxiv]
  2. D. Erhard, J. Poisat.
    Uniqueness and tube property for the Swiss cheese large deviations.
    Preprint (2023). [hal][arxiv]
  3. D. Erhard, J. Poisat.
    Strong large deviation principles for pair empirical measures of random walks in the Mukherjee-Varadhan topology.
    Preprint (2023). [hal][arxiv]
  4. J. Poisat, F. Simenhaus.
    Localization of a one-dimensional simple random walk among power-law renewal obstacles.
    Annals of Applied Probability (2024) Vol. 34, No. 4, 4137-4192 [arxiv] [hal] [journal]
  5. J. Poisat, F. Simenhaus.
    A limit theorem for the survival probability of a simple random walk among power-law renewal obstacles.
    Annals of Applied Probability (2020) Vol. 30, No. 5, 2030-2068 [arxiv] [hal (latest version)] [journal].
  6. D. Cheliotis, Y. Chino, J. Poisat.
    The random pinning model with correlated disorder given by a renewal set.
    Annales Henri Lebesgue 2 (2019) 281-329 [journal].
  7. Q. Berger, F. den Hollander, J. Poisat.
    Annealed scaling for a charged polymer in dimensions two and higher
    J. Phys. A: Math. Theor. 51, 2018 (special issue in honour of Stuart Whittington’s 75th birthday) [arxiv][journal].
  8. F. Caravenna, F. den Hollander, N. Pétrélis, J. Poisat.
    Annealed scaling for a charged polymer
    Math. Phys. Anal. Geom. Vol. 19 (1), 2016, [arxiv].
  9. D. Erhard, J. Poisat.
    Asymptotics of the critical time in Wiener sausage percolation with a small radius
    ALEA Lat. Am. J. Probab. Math. Stat. 13 (2016), no. 1, 417–445 [arxiv].
  10. Q. Berger, J. Poisat.
    On the critical curve of the pinning and copolymer models in correlated Gaussian environment
    Electronic Journal of Probability, Vol. 20, no. 71, 2015 [arxiv]
  11. D. Erhard, J. Martínez, J. Poisat
    Brownian Paths Homogeneously Distributed in Space: Percolation Phase Transition and Uniqueness of the Unbounded Cluster
    Journal of Theoretical Probability (2017) 30 :784-812. [arxiv]
  12. N. Guillotin-Plantard, J. Poisat, R. Soares dos Santos
    A Quenched Functional Central Limit Theorem for Planar Random Walks in Random Sceneries
    Electronic Communications in Probability, Vol. 19, 2014, [arxiv][journal]
  13. F. den Hollander, J. Poisat.
    Large deviation principles for words drawn from correlated letter sequences
    Electronic Communications in Probability, Vol. 19, 2014 [arxiv][journal]
  14. Q. Berger, F. Caravenna, J. Poisat, R. Sun, N. Zygouras.
    The Critical Curve of the Random Pinning and Copolymer Models at Weak Coupling
    Communications in Mathematical Physics, 326, no. 2, 507-530. (2014) [arxiv]
  15. N. Guillotin-Plantard, J. Poisat.
    Quenched Central Limit Theorems for Random Walks in Random Scenery
    Stochastic Process. Appl. 123, no. 4, 1348-1367 (2013) [arxiv]
  16. J. Poisat.
    Ruelle-Perron-Frobenius operator approach to the annealed pinning model with Gaussian long-range correlated disorder.
    Markov Process. Related Fields 19 (2013), no. 3, 577–606. [arxiv]
  17. J. Poisat.
    Random pinning model with finite range correlations: disorder relevant regime.
    Stochastic Process. Appl. 122, no. 10, 3560-3579 (2012) [arxiv] [journal]
  18. J. Poisat.
    On quenched and annealed critical curves of random pinning model with finite range correlations.
    Ann. Inst. Henri Poincaré. Volume 49, Number 2 (2013) [arxiv]

Thèse de doctorat / PhD thesis

Modèle d'accrochage de polymères en environnement aléatoire faiblement corrélé.
Soutenue le / Defended on : 16/05/2012.
Directrice / Supervisor : Nadine Guillotin-Plantard (Institut Camille Jordan, Université Lyon 1).
[pdf]

Habilitation à diriger des recherches

Random walks, polymers and phase transitions.
Soutenue le / Defended on : 29/09/2020.
Coordinatrice / Coordinator : Béatrice de Tilière (CEREMADE, Université Paris-Dauphine).
[pdf]