


Chapter 1

Reminder on differential calculus

What you should know or be able to do after this chapter

1.1

Know the definition of the differential, and be able to use it.
Be able to compute the differential or partial derivatives of a function, when given an explicit expression.

Be able to convert between the different expressions of the differential (linear map <« Jacobian matrix <«
partial derivatives).

Know that a differentiable map has partial derivatives, but be able to give an example of a map which has
partial derivatives, and no differential.

Prove the classical result on the differentiability of a composition of differentiable functions.

Be able to apply this result to an explicit example (with no error on the point at which each differential
must be computed!).

Know the definition of the gradient and Hessian.
Know the definitions of homeomorphism and diffeomorphism.

When you want to prove that a function is locally invertible, think to the local inversion theorem, and be
able to apply it correctly.

When you want to parametrize a set defined by an equation, think to the implicit function theorem, and
be able to apply it correctly.

Propose examples which show that the assumption “0, f(zo,yo) is bijective” is necessary.

Know the definition of an immersion and a submersion.

Be able to apply the normal form theorems on explicit examples.

When you want to upper bound the values of a differentiable function, or the difference between its values,

think to the mean value inequality, and be able to apply it.

Definition of differentiability

Let (E,||.||g), (F,||.||F), and (G, ||.||c) be normed vector spaces. We denote the set of continuous linear mappings
from E to F by L(E, F) L.

'Recall that when E is of finite dimension, all linear mappings from E to F are continuous. This is no longer true if E is of
infinite dimension.
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Definition 1.1 : differentiability at a point

Let U C E be an open set, and f : U — F be a function.
If x is a point in U, we say that f is differentiable at x if there exists L € L(E, F') such that

f(z+h) = f(z) = L(A)||F
Ihll&

(or, equivalently, f(z + h) = f(x) + L(h) + o(||h||E)).
We then call L the differential of f at x and denote it df (x).

If (E,]|.llg) = (R,][.]), then the differential, when it exists, takes the form

— 0 as||hllg — 0,

heR — hzcF,

for a certain element z; in F. In this case, we write

/ /(f) = Zg-
We then recover the well-known formula:

f(x+h)= f(z)+ f(x)h+o(h) ash —0.

Definition 1.2: functions of class C"

Let U C E be an open set, and f: U — F a function.

The function f is said to be differentiable on U if it is differentiable at every point of U.

It is of class C1 if it is differentiable and df : U — L(E, F) is a continuous mapping.

More generally, for any n > 1, it is of class C™ if it is differentiable and df is of class C™ 1.
It is of class C'*° if it is of class C™ for every n > 1.

J

We won’t revisit the basic properties related to differentiability (e.g., the sum of differentiable functions is
differentiable, etc.), except for the one on functions defined by composition.

Theorem 1.3 : composition of differentiable functions

Let U C E,V C F beopen sets. Let f:U — V and g: V — G be two functions. Let z € U.
If f is differentiable at x and g is differentiable at f(z), then

e go f is differentiable at z;

o d(go f)(z) = dg(f(z)) o df (x).

1.2 Partial derivatives

In differential geometry, it is common to perform explicit calculations involving differentials of functions from
R™ to R™. For this purpose, it is useful to represent differentials as matrices of size m x n (or vectors if m = 1)
whose coordinates can be computed. The concept of partial derivatives allows us to achieve this.

Definition 1.4 : partial derivative

Let n € N*. Let U be an open subset of R™ and f: U — R a function.




J

1.2. PARTIAL DERIVATIVES

Let x = (x1,...,2,) € U. For any i = 1,...,n, we say that f is differentiable with respect to its i-th
variable at x if the function
Yy — f(xla"wxi—lvyaxi-f-l?'")

is differentiable at z;. We then denote the derivative as 0; f(x), 0y, f(x), or g—ai(x)

Remark

If f is differentiable at x, then it is also differentiable at = with respect to each of its variables. The
converse is not necessarily true.

Remark

More generally, if Fy,..., E,, F are normed vector spaces, U is an open subset of £y x --- X E,, and
f U — Fis a function, we can define, for all x = (z1,...,2,) € U and i = 1,...,n, the partial derivative
of f with respect to x;,

O, f(x) € L(E;, F).

J

Now let n,m € N* be integers, U an open subset of R", and f : U — R™ a differentiable function. For any
x, df (x) is a linear mapping from R™ — R™; we denote J f(z) its matrix representation in the canonical bases.
If we identify R™ (respectively R™) with the set of column vectors of size n (respectively m), then

Vu e R",  df(z)(u) = Jf(z) X u.

The matrix J f(x) is called the Jacobian matriz of f at the point x.

Proposition 1.5

Let fi,..., fm : U — R be the components of f. Then, for any =z,
) ) L )
T (@) = L(z) SL(z) ... SL(a)
Yow) Yo .. Yo
Proof. Fix v = (z1,...,2,) € U. Let v € 1,...,n. Denote e, as the v-th vector of the canonical basis of R”

(i.e., the vector whose coordinates are all 0 except the v-th one, which is 1).
According to the definition of the differential,

f1, . 1,y Ty, ) = fz 4+ (y —x0)en)
= f(z) + (y — z)df (z)(er) + o(y — 7)
asy — T,.

For any p € 1,...,m, we have

f,u(xly sy Ty—1,Y, Ty, - - ) = fu(x) + (y - $y)(df($)(€1/))u =+ O(y - xl/)
as y — T,.

Thus, according to the definition of the partial derivative,

ful@i, o 1,9, Tug1, .- ) — fu(@)
Y—Ty Yy—Ty
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By the definition of the Jacobian matrix, (Jf(x))u., = (df (x)(ev))u, so

(Jf(l‘))u,u = &Jf,u(l')'
O

Example 1.6

Let f:R? — R? be such that, for every (z1,z2) € R?
f(z1,22) = (w122, 71 + 72).

It is differentiable. Its Jacobian matrix is

Y(z1,72) € R?,  Jf(x1,22) = <$12 3611>

and its differential is

V(Cﬂl, 562), (hl, hz) S R2, df(l‘l, .Tg)(hl, hg) = (hlIQ + hQIl, hi + hg)

In the particular case where m = 1, the Jacobian matrix has a single row:

Ve e U, Jf(x)z(a‘%(:n) a‘%(m) %(m))

Its transpose is then called the gradient:
VeeU, Vf(x)= 8932.

For all x € U,h = (h1,...,h,) € R™,

h1 n
df (z)(h) = J f (x) ( : ) -y Y (@)hi = (Vf(z),h),

T
hn i=1 O

where the notation “(.,.)” denotes the usual scalar product in R,
Still assuming m = 1, let us consider the case where f is twice differentiable. Its second differential can also
be represented by a matrix. Indeed, for any x, d?f(z) = d(df)(z) belongs to L(R™, £L(R™, R)). The map

(R, 1) €eR" xR™  — d*f(x)(h)(1) (1.1)

is therefore bilinear. As stated in the following property, it is even a quadratic form (i.e., it is symmetric), and
the matrix associated with it in the canonical basis has a simple expression in terms of the partial derivatives of

7l

Proposition 1.7: Hessian matrix

Let x € U. The map defined in (1.1) is a symmetric bilinear form. The matrix representing it in the
canonical basis is

92f 2% f 0% f
871-%('1:) 0x101T2 ((L.) et 0x10Tn (CL‘)
o°f a2f o7
H(f)(I) _ 8%‘26%1 (l’) Bac%(:v) e 695283'% (:C) (12)

82 ' 82 . 82 )
aznafxl (33‘) angxg (l‘) ce 7%('7")
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It is called the Hessian matriz of f at point x.

Exercise 1: Proof of Proposition 1.7

1. Prove Equation (1.2).

In the rest of the exercise, we show that H(f)(z) is symmetric. For this, we fix i, 5 € {1,...,n} such that
1 # 7 and show

0 0f .\ _ 201
8%- (9.723' N 6.1']' 8:61
We denote e;, e; the i-th and j-th vectors of the canonical basis. For any ¢, u € R such that z+te;+ue; € U,
we define

().

o(t,u) = f(z +te; + uej) — f(x + te;) — f(x + uej) + f(x).

2. a) Show that, for all ¢, u close enough to 0,

o(t,u) = /Ou [%(x +te; + sej) — aa—f(x + sej)} ds.

Lj

b) Let € > 0 be any positive number. Show that, for all ¢, s close enough to 0,

o ey 2 y_4 9 9f
oz; (x + te; + sej) oz; (x + sej) tam oz, (z)

< e([t]+s]) -

c¢) Deduce from the previous question that, for all ¢,u close enough to 0,

0 o
afL’i 8:Ej

'¢<t, u) — tu <x>\ < e[t/ ful + uf?).

d) Show that, for all ¢,u close enough to 0,

‘ﬁb(tau) . tui—xi@)\ < €|t/ ful + 412).

e) Conclude.

1.3 Local inversion

Definition 1.8 : homeomorphism

Let U,V be two topological spaces®. A map ¢ : U — V is a homeomorphism from U to V if it satisfies
the following three properties:

1. ¢ is a bijection from U to V;
2. ¢ is continuous on U,

3. ¢~ !is continuous on V.

“Readers not familiar with the concept of "topological space" can limit themselves to the case where U and V' are two
metric spaces, or even to the case where U and V' are subsets, respectively, of R"! and R"? for ni,ne € N.
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Definition 1.9: diffeomorphism

Let n € N* be an integer, U,V C R" be two open sets. A map ¢ : U — V is a diffeomorphism if it
satisfies the following three properties:

1. ¢ is a bijection from U to V;
2. ¢is C! on U;
3. ¢ lisClon V.

If, moreover, ¢ and ¢! are C* for an integer k € N*, we say that ¢ is a C*-diffeomorphism.

Theorem 1.10: local inversion

Let n, k € N* be integers, U,V C R" be two open sets, and zg € U. Let ¢ : U — V be a C*¥ map.
If d¢(wo) € L(R",R™) is bijective, then there exist Uy, C U an open neighborhood of zo and Vj,,) C V

an open neighborhood of ¢(zg) such that ¢ is a C*-diffeomorphism from Uy 0 V()

For the proof of this result, one can refer to [Paulin, 2009, p. 250].
An important consequence of the local inversion theorem is the implicit functions theorem, which allows to
parameterize the set of solutions of an equation.

Theorem 1.11 : implicit functions

Let n,m € N*. Let U C R™ x R™ be an open set, f : U = R™ be a C* map for an integer k € N*, and
(0,y0) be a point in U such that

f(®o0,y0) = 0.
If 9y f(x0,y0) € L(R™,R™) is bijective, then there exist

e an open neighborhood Uy, .y C U of (z0,%0),
e an open neighborhood V,, C R" of xg,
e amap g: Vg — R™ of class C*

such that, for all (z,y) € R® x R™,

((:v,y) € Ulzy,yo) and flz,y) = 0) — (xe€Vy andy=g(z)).

To get an intuitive feeling on this theorem, the condition " f(x,y) = 0" should be interpreted as an equation
depending on a parameter z, whose unknown is . The theorem states that, in the neighborhood of (xg,yo), the
equation has, for each value of the parameter x, a unique solution (which is g(x)) and that this solution is Ck
relatively to x.

Example 1.12

There exists an open neighborhood Uy 1/9) C R? of (1,1/2) and an open neighborhood U; C R of 1 such
that the solutions of the equation

4
cos(mz) — cos(my) + 3z%y? + % =0

for (z,y) € U(1,1/2) are exactly the points of the set {(z,g(z))} for a certain function g : U3 — R of class
C.
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0.5 1

0.5+

Figure 1.1: In blue, {(z,y) € R?, cos(mz) — cos(my) + 322y? + %4 = 0}. This set is not the graph of a function.
However, the part of the set inside Uy 1/9) coincides with the graph of a function g : V4 — R.

This is proven by applying the implicit functions theorem to

4
f:(z,y) eRxR — cos(mz) — cos(my) + 3z%y? + xz cR.

The bijectivity assumption of d, f(1,1/2) is indeed satisfied:
8,f(1,1/2) = m+3 #0.

The set of solutions to the equation is represented in Figure 1.1.

Proof of the implicit function theorem. Let us define

¢ : U — R'xR™
(z,y) — (z,f(z,y)).

This is a C* function, and for all (h,1) € R" x R™,

do(xo, yo)(h, 1) = (h, df (z0,y0)(h,1))
= (h, 0x.f (0, y0)(h) + Oy f (z0,90) (1))

The map d¢(xg,yp) is injective. Indeed, for all (h,1) € R™ x R™ such that d¢(zo,yo)(h,l) =0,
h =0 and 0y f(zo,v0)(l) = 0.

Since 9y f(xo,yo) is bijective, this implies I = 0. Thus, d¢(xo, yo) is an injective map from R™ x R™ to R™ x R™.
Therefore, it is bijective (its domain and codomain have the same dimension).

We apply the local inversion theorem at (xo,y0). There exists an open neighborhood U, 4, of (z0,%0), an
open neighborhood V' of ¢(xg, 10) = (20,0) such that ¢ is a C*-diffomorphism from Ulzo,yo) to V. Let

z0,Y0

YV = Ulgg,yo)

be its inverse.
For all (z,y) € V, we write ¢ (z,y) = (¢1(z,y), Y2(x,y)) € R™ x R™. For all (z,y) € V,

(CE,y) = ¢07!}(33,?J)
= ¢(¢1($»?/)a¢2($»?/))
= Wﬂ%?/)a (¢1($,y),¢2($,y))).
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Therefore,

¢1 (.CL', y) =T
We set

Vay ={z € R", (2,0) € V};
g:x € Vg — ha(z,0) € R™.

As required, Vj, is an open neighborhood of xg and g is C*. For all (z,y) € R® x R™,

((2,9) € Utagyy) and f(z,y) =0)

Y) € Ulagyo) and ¢(z,y) = (2,0))

x,y) € Ulzo,yo) and (x,0) e Vet (z,y) = ¢(w,0))
(2,0) € V and (z,y) = ¢(,0) = (z,¢2(,0)))

Vi and y = g(x)) .

1117

O

1.4 Immersions and submersions

We now introduce two particular categories of differentiable functions: immersions and submersions. These
functions will have an important role in the remainder of the course because they represent two of the main
ways of showing that a given set is a submanifold.

Let n,m € N* be integers. Let f: U C R® — R™ be a C* map (for some k > 1), with U an open set.

Definition 1.13: immersions and submersions

For any point « € U, we say that f is an immersion at x if df (z) : R™ — R™ is injective. We say that f
is an immersion if it is an immersion at every point x € U.

For any point « € U, we say that f is a submersion at z if df (z) : R™ — R™ is surjective. We say that f
is a submersion if it is a submersion at every point € U.

Remark

The function f can only be an immersion if n < m and a submersion if n > m.

If f is an immersion at a point z, it is injective in a neighborhood of = (a consequence of Theorem 1.14).
However, being an immersion is a significantly stronger property than local injectivity. Similarly, a submersion
is locally surjective, but not all locally surjective functions are submersions.

When n < m, the simplest immersion from R" to R™ is the function

(1,...,2p) €ER"  —  (21,...,2,0,...,0) € R™.

The following theorem asserts that, in the neighborhood of every point, up to a change of coordinates in the
codomain (i.e., a transformation of the codomain by a diffeomorphism), all immersions are equal to this one.

Theorem 1.14: normal form of immersions

Suppose that Ogn € U and f(Ogn) = Ogm.
If f is an immersion at Ogn, there exists a neighborhood U’ of Og» and a C*-diffeomorphism 1 from a
neighborhood of Ogm to a neighborhood of Ogm such that

V(z1,...,2p) €U, o f(x1,...,24) = (T1,...,%p,0,...,0).
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Proof. Suppose that f is an immersion at Ogn.
Let eq,..., e, be the vectors of the canonical basis of R", and ¢1,..., ¢, be those of the canonical basis of
R"™. Let us first prove the result under the assumption that

Vre{l,...,n}, df(Orn)(e,) = €.

Define
o R™ = R™
(X1, yxm) = f(x1,. o x0) + (0,000, Zpg1y v oy ).

We have ¢(0) = 0. Moreover, ¢ is a C* map, and for any h = (hy,...,hy) € R™,
¢(0Rm)(h) = df(O]Rn)(h,l, RN hn) + (0, v 05 hpgr, ey hm)

From this formula, it can be verified that d¢(0)(e,) = €, for all » = 1,...,m, meaning that d¢(0) = Idgm. In
particular, d¢(0) is bijective.
According to the inverse function theorem, there exist open neighborhoods Vi, Vo of Ogrm such that ¢ is a

C*-diffeomorphism between them. Let v : V5 — Vj be its inverse. For any = = (z1,...,2,) € U’ = (W),

f(z1,...,20n) = &(z1,...,20,0,...,0),

S10)
Yo f(x,...,xn) = (1,...,20,0,...,0).

This completes the proof of the theorem under the assumption that df(0)(e,) =€, for all r =1,... n.

Now, let’s drop this assumption. For any r € {1,...,n}, denote v, = df (Orn)(e;). As df(Orn) is injective,
the family (vi,...,v,) is linearly independent; it can be completed to a basis of R™, denoted by (v1,...,vm).
Let L € L(R™,R™) be such that

Vre{l,...,m}, L(v,)=e¢.

It is a bijection since it sends a basis to a basis.
Let f = Lo f. We have f(Ogn) = Ogm and df(Ogn) = L o df (Og»). In particular, f(Ogn) is an immersion at
0. For any r € {1,...,n}, .
df (Orn)(er) = L(df (Orn)(er)) = L(v;) = €.

Thus, the function f satisfies our previous assumption. Consequently, there exist U’ an open neighborhood of
Ogn and ¢ a diffeomorphism between two neighborhoods of Ogm such that, for all (z1,...,2,) € U’,

zﬁof(:pl,...,xn) = (z1,...,2,,0,...,0),
meaning (Q;OL)Of(l'l,...,ﬂSn) = (z1,...,2,0,...,0).

We set ¢ = 1 o L to conclude. O

A similar result holds for submersions and has a similar proof. When n > m, the simplest submersion from
R™ to R™ is the projection onto the first m coordinates:

(x1,...,2) €ER"  —  (21,...,2m) € R™.

Subject to a change of coordinates in the domain, all submersions are locally equal to this one.

Theorem 1.15: normal form of submersions

Suppose that Ogn € U and f(Ogn) = Ogm.
If f is a submersion at Ogn, there exist U, Us open neighborhoods of Og» and a C* diffeomorphism
¢ : Uy — Uy such that

V(x1,...,2n) €U, fod(x1,...,2n) = (T1,...,Tm).




14 CHAPTER 1. REMINDER ON DIFFERENTIAL CALCULUS

1.5 Mean value inequality

Let’s conclude this chapter with a useful inequality, the mean value inequality.
Let (E,||.||g) and (F,||.||r) be normed vector spaces. We equip L£(F, F') with the uniform norm: for any
ue L(EF),

_ |[u(z)||F
lJullg(g,py = sup .
cepNfo} ||TllE

Theorem 1.16 : mean value inequality

Let U C E be a convex open set, and f: U — F a differentiable function.
Suppose there exists M € R such that

Ve eU, |ldf(@)|leer <M.

Then,

Ve,y €U, ||f(z) = fW)llr < M|z —ylle-

For the proof of this result, one can refer to [Paulin, 2009, p. 237|.

Remark

Be careful not to forget the convexity assumption. The theorem may be false if it is not satisfied.
For example, the function f: R\ {0} — R defined by f(x) = —1 for all z < 0 and f(z) =1 for all z > 0

satisfies
|f(z)] <0 forall z€ R\ {0}

(as its derivative is zero).
However, it is not true that |f(x) — f(y)| =0 for all z,y € R\ {0}.

H \

Exercise 2: classical application of the mean value inequality
Let n,m € N* be integers. Let f : R™ — R" be a differentiable function such that, for any = € R™,
|ldf ()| crn gy < 1.

Show that, for any x € R",

L@ < NLf O] + |-




Chapter 2

Submanifolds of R"

What you should know or be able to do after this chapter

Have an intuition of what is a submanifold of R™. In particular, from a drawing of a subset of R? or R3,
be able to guess with confidence whether it represents a submanifold or not.

Know the four definitions of a submanifold of R".

When given the explicit expression of a set, be able to prove that it is a submanifold of R”, choosing the
most appropriate of the four definitions.

Know the definition of S*1.
Be able to prove that a set is a submanifold using the fact that it is a product of submanifolds.

Understand the proof that O, (R) is a submanifold (i.e. be able to do it again alone, given only the
definition of g).

Be able to use the submersion definition of submanifolds to prove that sets are not submanifolds.
Propose a definition of the tangent space to a submanifold, then remember the “true” one.

Given a picture of a submanifold of R? or R3, be able to draw (a plausible version of) the tangent space
at any point.

Given the explicit expression of a submanifold, be able to compute its tangent space, choosing the most
appropriate of the four formulas.

Know the tangent space to the sphere.
Know that the tangent space of a product submanifold is the product of the tangent spaces.
Be able to use the tangent space to prove that sets are not submanifolds (when possible).

Be able to show that a map between submanifolds is C", using the facts that compositions of C™ maps are
C" and that, on a C*-submanifold, projections onto a coordinate are C*.

In the whole chapter, let k,n € N* be fixed integers.

2.1

Definition

The simplest example of a submanifold of R™ is

R% x {0}""4 = {(x1,...,24,0,...,0)|z1,...,2q € R},

where d is any integer between 0 and n. The concept of a submanifold of R™ generalizes this example: a set is
a submanifold if it is locally the image of R? x {0}~ under a diffeomorphism from R™ to R™. Let’s formalize
this definition and provide other equivalent definitions.

15
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Figure 2.1: Illustration of property 1 in definition 2.1: there exists a local diffeomorphism from R? to R? that

maps the set M onto R x {0}.
Definition 2.1: submanifolds

Let d € {0,1...,n}.

Let M C R™. We say that the set M is a submanifold of R™ of dimension d and class C* if it satisfies

one of the following properties.

1. (Definition by diffeomorphism)
For every x € M, there exists a neighborhood U C R" of z, a neighborhood V C R" of 0, and a

C*k-diffeomorphism ¢ : U — V such that
(M NU) = (R x {0} HNV.

2. (Definition by immersion)
For every x € M, there exists a neighborhood U C R™ of z, an open set V in R% a C* function

f:V — R™ such that f is a homeomorphism between V and f(V),
MnU=f(V)

and, denoting a as the unique pre-image of x under f, f is an immersion at a.

3. (Definition by submersion)
For every x € M, there exists a neighborhood U C R” of x, a C* function ¢ : U — R™ ¢ that is a

submersion at x such that
MNU =g'({0})
4. (Definition by graph)
For every x € M, there exists a neighborhood U C R™ of z, an open set V in R% a C* function
h:V — R"? and a coordinate system® in which

M NU = graph(h)
de,
Y (.%‘1,...,:1,‘d,h(x1,...

,Z4)), (T1,...,2q4) € V}.

., Tn) denotes

®A coordinate system is the specification of a basis (e1,...,e,) for R™. In this system, the notation (z1,

the point x1e1 + - -+ + Tnen.
Theorem 2.2

The four properties in Definition 2.1 are equivalent.

Among the four equivalent definitions in the theorem, the definition by diffeomorphism (property 1, illustrated
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in figure 2.1) is the one that most clearly reveals the connection between a general submanifold and the "model"
submanifold R¢ x {O}"*d. However, it is not the most convenient to manipulate: when proving that a given set
is a submanifold, the definitions by immersion, submersion, or graph are generally more convenient, as we will
see in Section 2.2.

Pay attention to the fact that, in the definition by submersion (property 3), the function g maps into
R”~% and not into R?.
In a very informal way, in this definition, a submanifold is defined as the set of points in R™ that satisfy
a set of scalar equations

9(x)1 =0,9(x)2 =0, ...

Intuitively, we expect the set of solutions to have n — e "degrees of freedom", where e is the number of
equations. For the submanifold defined in this way to be of dimension d, we need to have e = n — d,
meaning that g maps into R?~¢.

We advise the reader to study the examples in Section 2.2 before reading the proof of Theorem 2.2.

Proof of Theorem 2.2.
: Assume that M satisfies Property 1. We show that it satisfies Property 3.
Let x € M. Consider U a neighborhood of z in R™, V a neighborhood of 0 in R™, and ¢ : U — V a
C*-diffeomorphism such that
(M NU) = (R x {0} NV.

Denote pry : R® — R®~? the projection onto the last n — d coordinates and define
g=pryo¢:U — R

It is a submersion at 2 because dg(z)(R™) = pry(de(x)(R")) = pry(R™) = R (recall that ¢ is a diffeomor-
phism, and thus, d¢(x) is bijective, meaning d¢(x)(R™) = R™).

We verify that M NU = g~1({0}).

For every o' € M NU, ¢(z') € p(MNU) = (R x {0} H NV c RY x {0}"¢, so pry o () = 0, ie.,
g(@) =0.

On the other hand, if 2’ € g~1({0}), then pry(é(z)) = 0, so ¢(z') € RY x {0}"~%. Since 2’ € U, ¢(a') € V,
and thus, ¢(z') € (R? x {0}~ NV = ¢(M NU), implying 2’ € M NU.

: Assume that M satisfies Property 3. We show that it satisfies Property 4.

Let © € M. Consider U a neighborhood of  in R”, and g : U — R"~% a C* map, submersive at z, such that

MU =g '({0}).
Let (e1,...,e,) be an orthonormal basis of R™ such that

Vect{dg(z)(eqs1),...,dg(x)(e,)} = R*™< (2.1)

(Such a basis exists because dg(r) : R” — R"™? is surjective.) We now use the coordinate system defined by
this basis. In this system, we denote

x=(T1,...,%).

According to Equation (2.1), the derivative of g with respect to (24i1,...,2,) is surjective from R"~% to
R"~4 hence bijective. Thus, by the implicit function theorem (Theorem 1.11), there exist U’ C U a neighborhood
of 2, V a neighborhood of (z1,...,24), and h: V — R % of class C* such that

U'ng= ({0}) = {(t,h(t),t € V}.

Hence we have M N U’ = U’ N g1 ({0}) = graph(h).
: Let’s assume that M satisfies Property 4, and show that it satisfies Property 2.
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(f(V)NnA)

Figure 2.2: Illustration of the objects used in the proof of the implication of Theorem 2.2

Let z € M. Without loss of generality, we can assume x = 0 to simplify notation. Let U be a neighborhood
of z = 0 in R™, V an open set in R% and h : V — R" % be a C* function such that, in a suitably chosen
coordinate system,

M NU = graph(h) = {(t,h(t)) | t € V'}.

Note that 0 € V' and h(0) = 0, since x = 0 belongs to M NU.

Define
f Vv — R™
t — (t,h(t)).

This is a C* map. It is an immersion at 0 because, for any ¢t € R, df(0)(t) is given by

(t1,...,tq,dh(0)(1)),

which can only be zero if t = 0.
We have f(0) = 0 = z and f is a homeomorphism between V' and f(V') (its inverse is the projection onto
the first d coordinates, which is continuous). Furthermore,

M NU = graph(h) = f(V).

: Let’s assume that M satisfies Property 2, and show that it satisfies Property 1.
Let & € M. Let U,V be neighborhoods of z and 0 in R” and R¢ respectively, and let f : V — R™ be a C*
map, which is a homeomorphism from V' to f(V'), such that

MU= f(V)

and f is immersive at a, where a is the unique preimage of z under f. Without loss of generality, we can assume,
for simplicity, that a = 0, i.e., f(0) = z.

According to the normal form theorem for immersions (Theorem 1.14), there exist a neighborhood V' C V/
of Oga and a C* diffeomorphism ¢ : A — B between a neighborhood A of x and a neighborhood B of Ogn such
that

V(t1,...,tq) €V, o f(ts,...,tq) = (t1,...,t4,0,...,0). (2.2)

An illustration of the various definitions in this proof is given in Figure 2.2.
Let E C ANU be a neighborhood of x such that

e f7Y(f(V)NE) C V' (such a neighborhood exists because f is a homeomorphism onto its image, so f~! is
well-defined and continuous on f(V));

e ¢(E) C V' x R" (it also exists because ¢ is continuous, V’ x R"~? is open and ¢(z) = ¢ o f(0) =0 €
V' x R4,

Let F' = ¢(E).
The map ¢ is a C*-diffeomorphism from E to F. Let’s show that

p(MNE)= (R % {0} NF. (2.3)
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For any 2’ € M N E, we have 2’ € M NU = f(V), so 2’ = f(t) for some t € V. As 2’ € f(V)NE, tis
an element of V' according to the definition of E. Thus, by Equation (2.2), ¢(z') = ¢(f(t)) € R? x {0}~
Moreover, ¢(z') € ¢(E) = F. Therefore, ¢(z') € (R? x {0}"~¢) N F, which shows

(M NE)C (RYx {0} NF.

Conversely, if (t1,...,tq,0,...,0) € (R? x {0}"~4) N F, then t = (ty,...,14) is an element of V' (because
F = ¢(E) c V' x R"=%). Therefore, according to Equation (2.2),

(t1y..yta,0,...,0) = &(f(1)).
As f(t) € f(V) C M and f(t) € ¢~ 1(F) = E, this shows that

(t1,...,t4,0,...,0) € ¢(M N E).

O

Hence the inclusion ¢(M N E) D (R? x {0}"~4) N F, which completes the proof of Equation (2.3).

2.2 Examples and counterexamples
As seen in the previous section, for any d € 0, ...,n,
Rd % {O}n—d

is a submanifold of R™ (of class C* and of dimension d).
Open sets provide another simple example of submanifolds: any non-empty open set in R™ is a submanifold
of dimension n of R™.

2.2.1 Sphere

Definition 2.3

The unit sphere in R™ is the set

S = {(21,...,%,) ER™z? +--- + 22 =1}.

Proposition 2.4

The set S*! is a submanifold of R”, of class C*, and of dimension n — 1%

Tt is precisely denoted S™~ ! instead of S® because its dimension is n — 1.

Proof. We will use the definition by submersion (Property 3 of Definition 2.1).

Let x € S*~!. Consider g : (t1,...,t,) € R® = 2 + ... +t2 —1 € R. This is a C* function. It is a
submersion at z. Indeed, dg(x) is a linear map from R™ to R, so it is either the zero map or a surjective map.
Now,

Vt=(t1,...,tn) €R™ dg(x)(t1,...,tn) = 2(x1t1 + - + zpty).

Since x% + -4 x% = 1, = is not the zero vector, so dg(z) is not the zero map; it is surjective.
Moreover, the definition of g implies that

st =g~ ({o}).

Property 3 of Definition 2.1 is therefore satisfied (with U = R").

O

2.2.2 Product of submanifolds
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Proposition 2.5

Let ni,ny € N*.d; € {0,...,n1},do € {0,...,np}. If M; is a submanifold of R™ of class C* and
dimension d;, and M, is a submanifold of R™ of class C* and dimension ds, then

de
My x My ¥ {(z1,22),21 € My, 29 € Ms}

is a submanifold of R™*"2 of dimension d; + ds.

Proof. We use the definition by immersion (Property 2 of Definition 2.1). Let = (x1,x2) € M.
As M, is a submanifold, there exists a neighborhood Uy of x1, an open set Vi in R%, and f; : Vi — R™ of
class C*, which is a homeomorphism onto its image, such that

MynU = fi(\1)

and f is immersive at f;*(x1).

Define similarly Us, Vo, and fo : Vo — R™2.

The function f : (t1,t2) € Vi x Vo — (f1(t1), fa(t2)) € R™+72 is of class CF. It is a homeomorphism onto
its image. Indeed, it is continuous (as each of its components is continuous, since fi and fo are continuous). It
is surjective onto its image (from the definition of the image), and also injective (this can be checked from the
injectivity of fi and fs). Therefore, it is a bijection. Denoting f; L and fa ! the respective inverses of f; and
f2), the inverse of f is

7L fix V) = Vi x Vy
(21,22) = (fi'(=21), fy ' (22)),

which is continuous because f; L and foy L are continuous.
Furthermore,

(Ml X Mg) N (Ul X UQ) = (Ml N Ul) X (M2 N Ug)

= f1(V1) x f2(V2)
= f(Vi X Vg)

Finally, f is immersive at f~1(x) = (f; *(21), f5 *(x2)). Indeed, for any t = (t1,13) € R™M*"2,
df (f~ (1), [~ (w2)) (b1, t2) = (dfi(fy (@) (01), dfa(fy ' (22)) (B2)),

which equals 0 only if t; = 0 and ¢ = 0, since df; (f; * (1)) and dfa(f; *(22)) are injective.
Thus, the set M1 x M, satisfies Property 2 of Definition 2.1. O

Example 2.6: torus

The set T2 = S x S! is a submanifold of R*, of dimension 2. It is called a torus of dimension 2.

2.2.3  O,(R)

Let R™ ™ denote the set of n x n matrices with real coefficients. If we reindex the coordinates, this set can
. 2 . .

also be viewed as R™ . Several important subsets of R"*™ have a submanifold structure. Here, we focus on the

orthogonal group.

Definition 2.7 : orthogonal group

The orthogonal group is defined as

On(R) = {A e R™*™ I, = 'AA}.
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Proposition 2.8

The set O, (R) is a submanifold of R™*™, of class C*° and of dimension n(nQ—l)'

Proof. We will use the definition by submersion. Let G € O, (R). We must express O, (R) as g~1({0}), where
g is a C'*° function, submersive at G.
A first idea is to define
g: AR 5 TAA — [, € R,
The definition of the orthogonal group implies that O, (R) = g~1({0}). However, this function is not a submersion
at GG. Indeed,
VA € R™"  dg(G)(A) ='GA+'AG,

so dg(G)(R™ ™) is contained in Sym,,, the set of symmetric matrices of size n x n. We even have dg(G)(R"™) =
Sym,, because, for any S € Sym,,,

S.

GS\ 'GGS+'SIGG  S+'S
d9(C) (2): 2 T2 T

In particular, dg(G)(R"*"™) # R™*"™.
Therefore, we define instead
5 . “n n(nt1)
g=Triog:R"™" R 2 |
where Tri is the function that extracts the upper triangular part of an n X n matrix:

n(n+1)

VA e Ran’ Tri(A) = (Aij)igj eR
The function g is C*°. It is a submersion at G:
dg(G)(R™") = (Trio dg(G)) (R™")
= Tri(dg(G)(R™*"))
= Tri(Sym,,)

n(n+1)
= 2

Furthermore, for any matrix A € R"¥", tAA = I, if and only if AA — I, = 0, which is equivalent to
Tri(*AA — I,,) = 0, since AA — I,, is a symmetric matrix. Thus,

On(R) = g ({0}),
s0 Oy, (R) indeed satisfies Property 3, with U = R™*™ and d = n — n(n;l) = "(n;l). O

2.2.4 Equation solutions and images of maps

Proposition 2.9

Let d € {0,...,n}. Let U be an open subset of R", and
g:U—R"
a C* function. Assume that g is a submersion over g~!({0}) (meaning that g is a submersion at x for all

z € g7 ({0})).
Then g~1({0}) is a submanifold of R", of class C* and dimension d.

Proof. This is a direct application of Definition 2.1, "submersion" version. O

We have already seen two examples of submanifolds defined as in Proposition 2.9:

e the sphere S"~! is equal to g~!({0}) for the function g : # € R" — ||z||? — 1 € R;

n(n+1)
2

e the orthogonal group O, (R) is equal to g~!({0}) for the function g : A € R™*" — Tri(*AA—1,) € R
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Figure 2.3: Image of the map f defined in Example 2.11

Proposition 2.10

Let d € {0,...,n}. Let U be an open subset of R?, and f : U — R" be C*. Assume that f is an
immersion, and is a homeomorphism from U to f(U).
Then f(U) is a submanifold of R™, of class C* and dimension d.

Proof. This is a direct application of Definition 2.1, "immersion" version. O

Example 2.11 : spiral

Let’s define
f: R — R?
0 — (e’cos(2m), e’ sin(2m0)) .

Its image f(R) is a submanifold. It is represented in Figure 2.3.
Indeed, for any 6 € R,

£(8) = € ((cos(278), sin(270)) + 27 (— sin(270), cos(276))) ,

which never vanishes (we observe, for example, that (f'(), (cos(270),sin(276))) = ¢’ # 0 for any § € R).
Thus, the map f is an immersion. Moreover, it is a homeomorphism from R to f(R). Indeed, it is
continuous, injective® and therefore bijective onto f(R). For any 6 € R,

0
e = |lF @)1,
so 0 = %log (|| f (9)||2) As a consequence, the inverse of f is given by the following explicit expression:

R
% log(z2 + 32).

7t f(R)

—
%

From this expression, we see that f~! is the restriction to f(R) of a continuous function on R?\ (0, 0), so
f~1is continuous.

“For any 01,02, if f(61) = f(62), then e** = ||£(61)||* = ||f(62)[|> = €°*, s0 61 = 62.
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2.2.5 Submanifolds of dimension 0 and n

Proposition 2.12

Let M be any subset of R™. The following properties are equivalent:
1. M is a C*-submanifold of R” with dimension n ;

2. M is an open subset of R".

Proof. : We assume that M is a C*-submanifold with dimension n, and show that it is an open set.
Let  be any point of M. We use the “diffeomorphism” definition of submanifolds: let U C R™ be a
neighborhood of z, V' C R™ a neighborhood of 0, and ¢ : U — V a C*-diffeomorphism such that

H(MNU) =R x {0}"™) NV =V.

Since ¢ is a bijection from U to V, this equality implies that M N U = U. Therefore, M contains U, a
neighborhood of x. Since this property is true at any point z, M is an open set.

: We assume that M is an open set, and show that it is a submanifold with dimension n.

Let = be a point in M. We show that M satisfies the “diffeomorphism” definition of submanifolds. We set
U = B(z,r), for r > 0 small enough so that U C M. We also set V.= B(0,r) and ¢ : y € U =y —x € V. This
map is a diffeomorphism (with reciprocal (y € V. — y +x € U)). It holds

S(MNU) = $(U) =V = (R" x {0} ™) N V.
O]

Proposition 2.13

Let M be any subset of R™. The following properties are equivalent:
1. M is a C*-submanifold of R™ with dimension 0 ;

2. M is a discrete set.?

“The set M is discrete if, for any x € M, there exists U C R™ a neighborhood of x such that M NU = {z}.

Proof. : We assume that M is a C*-submanifold with dimension 0, and show that it is a discrete set.
Let x be any point of M. Let us show that there exists U a neighborhood of x such that M NU = {x}.
We use the “diffeomorphism” definition of submanifolds: let U C R™ be a neighborhood of x, V C R" a

neighborhood of (0,...,0) and ¢ : U — V a C*-diffeomorphism such that

(M NU) =R x {0}")NnV ={(0,...,0)}.

As ¢ is injective and ¢(M N U) contains only one point, M N U itself must be a singleton. Since it contains z,
MNU = {z}.

: We assume that M is a discrete set, and show that it is a submanifold of R™, of dimension O.

Let x be any point in M. We show that M satisfies the “diffeomorphism” definition of submanifolds in the
neighborhood of x.

Let U C R™ be a neighborhood of = such that M NU = {z}. Let us set V. = {u—x,u € U} (the translation
of Uby —z) and ¢ : y € U - y —x € V. This is a C*°-diffeomorphism (with reciprocal (y € V — y+x € U)).
It holds

(M NU) = ¢({z}) = {¢(x)} = {(0,...,0)} = (R” x {0}") N V.
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Figure 2.4: The graph of the absolute value is not a submanifold of R2.

0.5 |
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Figure 2.5: The "eight" is not a submanifold of R?.

2.2.6 Two counterexamples

The graph of the absolute value (Figure 2.4) is not a submanifold of R?. Intuitively, the reason is that this graph
has a “non-regular” point at (0, 0).

To prove this rigorously, the simplest way is to proceed by contradiction. Assume that it is a submanifold
and denote its dimension by d. Then, according to the "submersion" definition of submanifolds (Property 3
of Definition 2.1), there exists U C R? a neighborhood of (0,0) and g : U — R?*~? a function, at least C,
submersive at (0,0), such that

[t 1)t € RYN U = g~ ({0}). (2.4)

Such a map g must satisfy, for all ¢ close enough to 0,

ift <0, 0=g(t|t]) =g(t,—1),
ift>0, 0=g(tt]) =g(tt).

Differentiating these two equalities, we get:

019(0,0) — 929(0,0) = 0;
019(0,0) + 029(0,0) = 0.

This implies that 01¢(0,0) = 02¢9(0,0) = 0, i.e., dg(0,0) = 0. As dg(0,0) is surjective, this is impossible, unless
R2=4 = {0}, i.e., d = 2. But if d = 2, then ¢g7'({0}) = U, so Equality (2.4) implies that the graph of the
absolute value contalns a neighborhood of (0, 0) in R?, which is not true. Thus, we reach a contradiction.

The "eight" (Figure 2.5) is also not a submanifold of R, Here, the reason is that the eight is a regular curve
but with a point of "self-intersection" at zero. This can be rigorously demonstrated using the same method as
before.
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Remark

This example highlights the importance of the property " f is a homeomorphism onto its image" in the
"immersion" definition of submanifolds (Property 2 of Definition 2.1), as well as in Proposition 2.10.
Indeed, the eight is equal to f(] — m;7[), where f is the map

f o ]-mn - R?
0 —  (sin(@) cos(0), sin(h)),

which is an immersion, and a bijection between | — m; [ and f(] — 7;7[), but not a homeomorphism (its
inverse is not continuous).

2.3 Tangent spaces

2.3.1 Definition

Intuitively, the tangent space to a submanifold M at a point x is the set of directions an ant could take while
moving on the surface of M starting from the point . More formally, the definition is as follows.

Definition 2.14: tangent space

Let M be a submanifold of R", and x a point on M.
The tangent space to M at x, denoted T, M, is the set of vectors v € R™ such that there exists an open
interval I containing 0 and ¢ : I — R" a C! function satisfying

o ¢(t) e M for all t € I;

Proposition 2.15

e o
A o
= =
8 &
N—

I 1
< B

Keeping the notation from the previous definition, the set T, M is a vector subspace of R”, with the same
dimension as M.

J

Proof. This is a consequence of the following theorem. O

The four equivalent definitions of submanifolds (Definition 2.1) each provide a way to explicitly compute the
tangent space.

Theorem 2.16: computing the tangent space

Let M be a submanifold of R™, and x a point on M. Let d be the dimension of M.

1. (Computation by diffeomorphism)
If U and V are neighborhoods of z and 0 in R”, respectively, and ¢ : U — V is a C*-diffeomorphism
such that ¢(z) = 0 and ¢(M NU) = (R% x {0}*~9) NV, then

T M = de(x) L (R x {0}779).

2. (Computation by immersion)

If U is a neighborhood of z in R”, V an open set in R%, and f : V — R™ a C* map, which
is a homeomorphism between V' and f(V), such that M NU = f(V) and f is an immersion at

20 = ~1(x), then

T M = df (z0) (R?)(= Im(df (20)))
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3. (Computation by submersion)

If U is a neighborhood of z and ¢ : U — R"~% a C* map surjective at = such that MNU = g~ ({0}),
then
T, M = Ker(dg(x)).

4. (Computation by graph)

If U is a neighborhood of x, V an open set in R%, and h : V — R" % is a C* map such that, in a
well-chosen coordinate system, M N U = graph(h), then

T.M = {(tl,. . .,td,dh(flfl,. c .,xd)(tl,.. c ,td)),tl,...,td S R}

. J

Proof. Let’s begin with Property 1. Let U, V, and ¢ be as stated in the property.

First, let’s prove the inclusion T, M C dé(x)~ (R? x {0}"~9). Let v be an arbitrary element in T}, M; we will
show that it belongs to dé(x)~1(R? x {0}"~9).

Let ¢ be as in the definition of the tangent space, i.e. a C' map from an open interval I containing 0 to R”,
with images in M, such that ¢(0) = z and ¢/(0) = v.

For any t¢ close enough to 0, c(t) belongs to U, so ¢(c(t)) is well-defined. Moreover, since ¢(M NU) C
R? x {0}"~%, we must have

0= $(e(t)ass =+ = H(c(t)n.

Differentiating these equalities at ¢t = 0 gives:

0= de(c(0))(c'(0))ar+1 = do(2)(v)a+1,

0 =do(z)(v)n.

Therefore, dé(x)(v) € R? x {0}"7% ie., v € dp(x) 1 (R? x {0}"9).
Now, let’s prove the other inclusion: dg(x) ™1 (R? x {0}"~%) € T, M. Let v € do(x) " (R? x {0}"~9); we will
show that v € T, M.

Denote
w = do(z)(v) € R? x {0}~

We must find a function ¢ as in the definition of the tangent space. We will define it as the preimage by ¢ of a
function v with images in R™ such that v(0) = 0 and +/(0) = w.
Choose an open interval I containing 0 small enough, and define

v I — R”
t — tw.

This is a C*° function satisfying
¥(0) =0 and ~'(0)=w.

If I is small enough, v(I) C V. Thus, we can define
c=¢ lony: I —R"

This is a C* function. It takes values in M because y(t) € R? x {0}"~¢ for all t € I (since w € R% x {0}"~%).
Therefore,

c(t) € o1 ((Rd X {0}”‘d> N V) =MnNU.

Moreover,

and
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Therefore,

the map c satisfies the properties required in the definition of the tangent space. Therefore,
ve T, M.
This completes the proof of the equality
T, M = dp(z) L (R? x {0}*~9).

Before proving the remaining three properties of the theorem, let’s observe that the equality we have just
obtained already shows that T, M is a vector subspace of R" of dimension d. Indeed, it is the image of a vector
subspace of dimension d of R” (R% x {0}"~¢) under a linear isomorphism (d¢(z)™!).

This observation simplifies the proof of properties 2, 3, and 4. Indeed, the sets

df (20)(R7), Ker(dg(z))
and {(tl, o tg, dh($1, . ,xd)(tl, ce ,td)),tl, ot € R},

which appear in these properties, are vector subspaces of R™ of dimension d (the first is the image of R? by
an injective linear map, the second is the kernel of a surjective linear map from R to R”~%, and the third is
generated by the following free family of d elements:

(1,0,...,0,dh(z1,. .., 24)(1,0,...,0)),

ey

0,...,0,1,dh(z1,...,24)(0,...,0,1))).
To show that they are equal to T, M, it is therefore sufficient to prove either
e that they contain T, M,
e or that they are included in T, M.

Let’s prove Property 2. Let U, V, and f be as in the statement of the property. We will show that
df (20)(RY) € Ty M. (2.5)

Let v € df (20)(R?) be arbitrary; let’s show that v € T, M. Let a € R? be such that df(z9)(a) = v. Choose
an interval I C R containing 0, small enough, and define

c I — R"™
t —  f(z0+ta).

the map c is well-defined if I is small enough, as zg +ta € V for all t € I. Tt is a C*¥ (thus C') function. For all
tel, c(t)e f(V)C M. Moreover,

c(0) = f(z0) ==
and
d(0) = df (20)(a) = v.
This shows that v € T, M. Thus, Equation (2.5) is true.
Now let’s prove Property 3. Let U and g be as in the statement of the property. We will show that

T, M C Ker(dg(x)).



28 CHAPTER 2. SUBMANIFOLDS OF R"

Let v € T, M be arbitrary. Let us show that v is in Ker(dg(z)). Let I be an interval in R containing 0, and
¢ : I — R™ as in the definition of the tangent space.
For any ¢ close enough to 0, c(t) is an element of U; it is also an element of M. Since M NU = ¢g~({0}),

0= g(c(t)).
Differentiating this equality at 0,
0 = dg(c(0))(c'(0)) = dg(z)(v).
Therefore, v € Ker(dg(z)).
Finally, let’s prove Property 4. Let U, V, and h be as in the statement of this property. Let

E = {(tl,...,td,dh(l‘l,...,$d)(t1,...,td>),t1,...,td GR}

We show that
EcCT,M.

Let (t,dh(z1,...,24)(t)) € E, with t € R%. Let us show that this is an element of T}, M.
Choose an interval I in R containing 0 small enough, and define

c I — R™
s = ((x1,...,2q) + st,h((x1,...,24) + st)).

This function is well-defined if I is small enough, as (x1,...,x4) + st belongs to V for all s € I (since V' contains
(z1,...,24) and is open). It is of class C* (thus C'). It is in the graph of h, and therefore in M. Moreover,

c(0) = (x1,...,xq,h(x1,...,24)) = x
and
d(0) = (t,dh(xq,...,24)(t)).

This shows that (¢,dh(z1,...,24)(t)) € TxM.
O

To finish with the definitions, let’s introduce the affine tangent space, which is simply the tangent space,
translated so that it goes through the point z. This is not a notion that we will particularly use in the rest of the
course, except in the figures: it is much more natural to draw tangent spaces that really touch! the submanifold
they are associated with than tangent spaces which all contain 0.

Definition 2.17

If M is a submanifold of R™ and x € M, the affine tangent space to M at x is the set

x+ T, M.

2.3.2 Examples

In this paragraph, we go back to the examples of submanifolds from Section 2.2 and compute their tangent
spaces.

Proposition 2.18: tangent space of the sphere

For any = € S* 1,
T,S" 1 = {2} = {t e R", (t, ) = 0}.

!The word "tangent" comes from the Latin verb tangere, which means "to touch".
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Figure 2.6: The sphere S? and its affine tangent space at a few points.

Proof. Let’s define, as in Subsection 2.2.1,
g R” — R
(t1,.ooty) — 4+ 12— 1.

It satisfies S*~! = g~1({0}) and is a submersion at z. According to Property 3 of Theorem 2.16,
T,S" ! = Ker(dg(z)).
Now, for any ¢t € R", dg(z)(t) = 2 (x,t). Therefore,
T,S" ! = {z}+.

Proposition 2.19: tangent space of a product submanifold

Let ni,ny € N*. Assume M; is a submanifold of R™ and Ms is a submanifold of R"2. For any z =
(Il,ﬁg) € Ml X MQ,

Tx(Ml X MQ) = Tlel X Tm2M2
=5 {(tl,tg),tl S Tlel,tQ S TmMQ}.

Proof. Let x = (x1,22) € My X Mos.

We will use the expression for the tangent space associated with the "immersion" definition of submanifolds
(Property 2 of Theorem 2.16).

Let d; be the dimension of M;. Assume U; is a neighborhood of z; in R™, V; a neighborhood of 0 in R%
and f1 : V1 — R™ a map which is a homeomorphism onto its image, such that

My nU = f1(\1)

and f; is immersive at z; = f~1(z1).
Define similarly ds, Us, Va, fo : Vo — R™ and z».
According to Property 2 of Theorem 2.16, we have

T, My = df1(z1)(RY)  and Ty, My = dfa(z2)(R%).

Moreover, as shown in the proof of Proposition 2.5, the map f : (t1,t2) € Vi x Vo — (f1(t1), fa(t2)) € RMTn2
is a homeomorphism onto its image, satisfies

f(Vi x Vo) = (M1 x Ma) N (Up x Us)
and is immersive at (21, 22) = f~(z). From Property 2 of Theorem 2.16, we have
To(My x My) = df (21, z2) (RT %)
= {df (21, 22)(t1,t2),t1 € Rty € R%2}
= {(df1(21)(t1), df2(22)(t2)), t1 € RY 5 € R%2}

= df1(21)(R™) x dfa(22)(R?)
= Tlel X TQ;QMQ.
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Example 2.20: tangent space of the torus

For any (x1,z2) € T2 = S! x S,

Tar o) T? = Ty St x Ty, S' = {@1} x {22}t

z1,%2)

If we fix 61, 6 such that x1 = (cos(61),sin(0;)), z2 = (cos(62),sin(f2)), we have

{1} = (sin(81), — cos(61))R
= {(t1 sin(61), —t1 cos(01)),t1 € R}

and similarly for xo. This allows us to write the previous expression for the tangent to the torus in a
slightly more explicit way:

T(xl,:cg)T2 = {(tl Sin(01), —1 COS(91), to sin(02), —to COS(92)), t1,t9 € R}.

Proposition 2.21 : tangent space of the orthogonal group

For any G € O,(R),

TcO,(R) = {GR, R € R™" is antisymmetric}.

Proof. Let G € O,(R).
As shown in the proof of Proposition 2.8, O, (R) is equal to §~*({0}), where § is defined as

g : RTLXTL % w
A = Tr(*AA-I,).

The map ¢ is a submersion at G, with differential

n(n+1)

dj(G) : Ac R™"™ —» Tri({GA+'AG) e R 2 .
According to Property 3 of Theorem 2.16,
TcOn(R) = Ker(dg(G)) = {A € R Tri('GA + "AG) = 0} .
Now, for any A,

Tri(GA +'AG) =0 <= '‘GA+'AG =0
(because ‘GA +'AG is symmetric)
— ('GA)+'(*'GA) =0
<= 'GA = R for some antisymmetric R
<= A = GR for some antisymmetric R
(because G'G = I,,).

Therefore,
TcOn(R) = {GR, R € R™" is antisymmetric}.

Proposition 2.22

Let d € {0,...,n}. Let U be an open set in R", and g : U — R"~% be a C* function. Assume that g is a
submersion on g~*({0}).
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Figure 2.7: The spiral from Example 2.24 and its affine tangent space at a few points.

For any z € g~1({0}),
Ta(9~({0})) = Ker(dg(x)).

Proof. This is a direct application of Property 3 of Theorem 2.16. O
Proposition 2.23
Let d € {0,...,n}. Let U be an open set in R? and f : U — R” be an immersion, which is a homeomor-
phism from U to f(U).
For any z € f(U),
T f(U) = df ()R,
where z is the element of U such that z = f(z).
Proof. This is a direct application of Property 2 of Theorem 2.16. [

Example 2.24 : tangent space of the spiral
Consider the map from Example 2.11:

f: R — R2
0 — (e?cos(2r), e’ sin(270)) .

Let (z,y) € f(R). Denote 6 € R the real number such that (z,y) = f(6). According to Proposition 2.23:

= €’((cos(2n0), sin(270)) + 27 (— sin(276), cos(276)))R
= (z — 21y, y + 27x)R
= {((z — 2my)t, (y + 2mx)t),t € R}.

An illustration is shown on Figure 2.7.

2.3.3 Application: proof that a set is not a submanifold

Let us go back to the second set considered in Subsection 2.2.6, the “eight”, represented on Figure 2.5. This set
is

MY (16),0 €] - w57}
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where f is defined as
f o ]-ma - R?
0 —  (sin(0) cos(0), sin(h)).

Here, we prove that M is not a submanifold of R? using a different technique from Subsection 2.2.6.
By contradiction, let us assume that it is a submanifold. We compute its tangent space at (0,0).
First, we define

e = f:]—ma[— R

It holds ¢ (t) € M for all t €] — 7; w[, ¢1(0) = (0,0) and ¢; is C!. Therefore,
(1,1) = ¢1(0) € Tip,0)M. (2.6)

Second, we define
co  |—mmn[ — R?
0 —  (sin(@) cos(f), —sin()).

It holds c(t) € M for all ¢t €] — m;7[. Indeed, for any t €] — m;0[, c2(t) = f(t +7) € M; c2(0) = f(0) € M and,
for any t €]0; 7, c2(t) = f(t — m) € M. In addition, c2(0) = (0,0) and ¢y is C'. Therefore,
(1,-1) = &(0) € To,0) M. (2.7)
As To0)M is a vector subspace of R?, Equations (2.6) and (2.7) together imply that
TopM =R?.

In particular, since the dimension of the tangent space is the same as the dimension of the submanifold, dim M =
2. In virtue of Proposition 2.12, M must thus be an open set of R?. As this is not true (because, for instance,
M contains no element of the form (¢,0), except (0, 0) itself, so it does not contain a neighborhood of (0,0)), we
have reached a contradiction.

2.4 Maps between submanifolds

2.4.1 Definition of C' maps

In this section, we consider functions between two submanifolds M C R™ and N C R™2:
f:M — N.

If M =R% x {0}m~% and N = R?% x {0}"27% f is essentially a function from R% to R92. The notions of
"differentiability" and "differential" are then well-defined for f, in accordance with Chapter 1.

However, if M is not a vector subspace of R™ , this is no longer the case: Definition 1.1 involves linear maps
between the domain and codomain, which do not exist if the sets are not vector spaces.

To give a meaning to the notion of “differentiability” for f, one can use the fact that M and N are identifiable
with open sets in R and R% through diffeomorphisms. We say that f is differentiable if, when composed with
these diffeomorphisms, it is a differentiable map from an open set in R% to R%. This is, in a slightly different
form, the content of the following definition.

Definition 2.25: C' map from a submanifold to R™

Let m € N.
Consider M a C* submanifold of R", and a function

f: M —R™.

We say that f is of class C! if, for any integer s € N*, any open set V in R®, and any C' function
¢ : V — R" such that ¢(V) C M, the map

fod:V - R™
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w

is of class C1.

| \

Remark

Similarly, one can define the notion of function of class C™ from M to R™, for any r = 1,..., k. Simply
replace “C" with “C" in the above definition.
It can be shown that a function of class C is necessarily of class C" for any 7/ < r.

H \

Example 2.26: projection onto a coordinate
Let M C R™ be a C*-submanifold. For any r = 1,...,n, we define the projection onto the r-th coordinate

T M - R
(T1y.voyn) — Ty

This is a C* map.

Proof. Let r € {1,...,n}. Let us fix s € N*, V an open set in R®, and ¢ : V — R" of class C* such that
#(V) C M. For any = € R®, denote ¢(z) = (¢1(x),...,¢n(x)). The components ¢y, ..., ¢, are C*. Hence,
T 0¢ = ¢ is CF. ]

Definition 2.27: C' function between two submanifolds
Let M, N be two C* submanifolds, respectively of R™ and R™2. Consider a function
f: M — N.

Since N C R™, we can view f as a map from M to R™ rather than from M to N. We say that f is of
class C' (more generally, C", for r € {1,...,k}) between M and N if it is of class C! (more generally,
C") when viewed as a map from M to R"2.

| \

Example 2.28: projection on a product submanifold

Let A, B be two C*-submanifolds, respectively of R* and R?. Recall that A x B is a submanifold of R%*?
(Proposition 2.5).
We define the projection onto A as

T4 : AxDB — A
(xa,zB) — TA.

This is a C* function.
Similarly, the projection onto B is C*.

J

Proof. Consider 74 as a function from A x B to R* and show that this function is C*. Take s € N*, V an open
set in R®, and ¢ : V — R*** a C*¥ map such that ¢(V) C A x B.

For any = € R®, denote ¢(x) = (¢1(), ..., darp(z)). The functions ¢y, ..., dq1p are CF. The function 740 ¢
is given by

Ve e R*, myop(x) =ma(d1(2),..., 0a(x), bat1(T),s ..., Parp(T))

/ /

element of A element of B

= (le(x)’ ERE ¢a($))

O

Thus, 74 0 ¢ is equal to (¢1,...,ds), which is C¥, and consequently, w4 o ¢ is CF.
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Definitions 2.25 and 2.27 are more abstract than the definition of differentiability for a function from R" to
R™. However, one must not be intimidated. In practice, one rarely needs to resort to these definitions to show
that a map is C' (or, more generally, C"). Indeed, as is the case for maps from R™ — R™, basic operations
preserve differentiability. For instance, if M is a submanifold and m an integer, the sum of two C” functions
from M to R™ is also C". Similarly, the product of two C" functions from M to R is C". We will not state each
of these properties here, only the one related to composition.

Proposition 2.29 : composition of C'!' functions

Let M, N, P be three C* submanifolds of, respectively, R"*  R™  and R"?. Consider two functions
fi:M— N and fo: N — P.
If f1 and fy are of class C", for some r € {1,...,k}, then
faofi:M— P

is also of class C".

J

Proof. We view fyo fi as a function from M to R™P and show that this function is C". Let s € N* be an integer,
V an open set in R® and ¢ : V — R™™ a C" function such that ¢(V') C M. We must show that fs o fj o ¢ is of
class C" on V.

Since f1 : M — N is of class C", it is also C" when viewed as a function from M to R™V. From Definition 2.25,
fiogp : V. — R™ is C". Moreover, (fio¢)(V) C fi(M) C N. As fo : N — P C R" is C", the function
fao(fio¢)is C", also from Definition 2.25.

Since fo 0 fi 0 ¢ = fa o (f1 0 ¢), this proves that foo fio¢is C". O

Show that the map

(ﬁ%"r? V 1+ 33%)

(z1,Z2)

is well-defined and C*°.

Definition 2.30: diffeomorphism between manifolds

Let M, N be two C* submanifolds of R™ and R"2, respectively. Consider a map

¢: M — N.

For any r € {1,...,k}, we say that ¢ is a C"-diffeomorphism between M and N if it satisfies the following
three properties:

1. ¢ is a bijection from M to N;
2. ¢ is of class C" on M;

3. ¢~ !is of class C" on N.

2.4.2 [More advanced] Differentials

Note that, contrarily to what we did for maps from R"™ to R™, we have defined the notion of differentiable
function between manifolds without introducing the notion of differential. Nevertheless, one can still define this
notion; this is the aim of the following definition.
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Definition 2.31: differential on manifolds

Let M, N be two C* submanifolds of, respectively, R™ and R™2. Let
f:M—N

be a C" function, where r € {1,...,k}.

Let € M. For any v € T, M, fix I, an open interval in R containing 0 and ¢, : I — R™ as in the
definition of the tangent space (2.14), i.e., a C! function with values in M such that ¢,(0) = = and
/

c,(0) = v.

The differential of f at x, denoted df (z), is the following map:

df(:C) : ToyM — Tf(m)N
v = (foe)(0).

The map df (x) is well-defined: foc, : I, — R is a C'! function, with values in N, such that foc,(0) = f(z),
so (f ocy)'(0) is indeed an element of Ty, N.

If M is an open subset of R™, then f, viewed as a function from this open subset of R™ to R™2, is
differentiable in the usual sense, and the differentials defined in Definitions 1.1 and 2.31 coincide, as in
that case, denoting df (z) the usual differential,

(f 0c0)'(0) = df (cv(0))(¢,,(0)) = df (x)(v).

We keep the notation from Definition 2.31.
The map df (z) does not depend on the choice of intervals I, and functions c,.
Moreover, it is linear.

Proof. Let v € T, M. Show that df (z)(v) = (f o ¢,)(0) does not depend on the choice of I,, and ¢,. To do this,
we will give an alternative expression for df (z)(v) that does not involve I, or ¢,.

Let di and dy be the dimensions of M and N. We use the “diffeomorphism” definition of submanifolds
(Property 1 of Definition 2.1). Let Uz, V3 C R™ be neighborhoods of  and 0, respectively, and ¢pr : Upr — Vi
be a C*-diffeomorphism such that ¢,/ (z) = 0 and

dar(M N Uyp) = (RE x {0}~ 4) N1y,
Denote ‘ﬁﬁ,o the restriction of ¢3; to (R% x {0}™~%) NV}, We have
df (x)(v) = (f © ¢)'(0)

— (f o 630 0 61 0 (0)
— (o d3te) © dar 0 )/ (0).

The map f o (]5]74170 is defined on an open subset of R% (actually, on (R% x {0} =%) N Vy, but this is exactly

an open set of R if one ignores the (n; — dy) zeros). It is of class C™ on this subset, since it is the composition
of two C" maps. Thus, the maps f o ¢]T/[10, ¢nm and ¢, are defined on open subsets of R™ (for different values of
n) and differentiable in the usual sense. The usual theorem on the composition of differentials then gives

df (x)(v) = (d(f © Pro) ($ar © €o(0)) 0 dppr(cs(0)))(€,(0))
= d(f © $10)(0) 0 dar () (v).

As announced, this expression does not depend on ¢, or I, which completes the first part of the proof.
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The linearity of df (x) follows from the same argument. Indeed, our reasoning shows that
df (x) = d(f © ¢1)(0) 0 dpns (),
i.e., df(z) is the composition of two linear maps. Therefore, it is linear. O

As the notion of differentiability, the notion of differential for maps between manifolds is governed by almost
the same rules as for maps between R and R”. Let’s state, for example, the rule of composition of differentials.

Proposition 2.33

Let M, N, P be three C* submanifolds of R™, R™~ and R™?, respectively. Consider two C'' maps,
fi:M—N and fo:N — P.

For any x € M,
d(f2 o f1)(z) = df2(f1(x)) o df1 ().

Proof. Let v € T, M. Show that
d(fz2 0 f1)(2)(v) = df2(f1(x)) o df1(z)(v).

Let I, be an open interval in R containing 0, and let ¢, : I, — R™ be a C' function such that ev(Iy) € M,
¢y(0) = z, and ¢,,(0) = v. The definition of the differential gives

d(f2 0 f1)(x)(v) = (fa o f1 o) (0).

Let w = (f1 0¢,)'(0) = dfi(z)(v) € R™. The function f; oc, : I, — R™ is C' and fi oc,(I,) C N. It
satisfies fi0¢,(0) = fi(x) and, by definition of w, (f1 0¢,)’(0) = w. The definition of the differential for fo then
gives

dfa(f1(2))(w) = (f20 f10¢,)'(0).
Thus,

d(f2 0 f1)(2)(v) = df2(f1(x))(w)
= dfa2(f1(x))(df1(z)(v))
= [df2(f1(z)) o df1(2)] (v).

O

To give one more example of a standard result from differential calculus which straightforwardly generalizes
to differential calculus on submanifolds, let us state the submanifold version of the local inversion theorem.

Theorem 2.34 : local inversion on submanifolds

Let M, N be two C* submanifolds of R™ and R"2, respectively. Let g € M. For r € {1,...,k}, consider
a C" map,
f:M — N.

If df (o) : TiwgM — T(5,) N is bijective, then there exist Uy, an open neighborhood of zg in M and V(4
an open neighborhood of f(xg) in N such that f is a C"-diffeomorphism from Uy, to Vy

x0)*

\

Proof. Let d be the dimension of M. Note that N has the same dimension as M: df(zp) is a bijective linear
map between Ty, M and Tt N, so

dim Ty N = dim T, M = d.

Let Uy, Var C R™ be open neighborhoods of g and 0, respectively, and ¢y : Unr — Var a CF-diffeomorphism
such that
o (M NUy) = (R x {0}~ N Vay,
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and ¢pr(xo) = 0.
Similarly, let Uy, Viy C R™ be open neighborhoods of f(xg) and 0, and ¢ : Uy — Vi a C*-diffeomorphism
such that
dn(N NUxN) = (R x {0} N Vy,

and ¢y (f (o)) = 0.
The idea of the proof is to go back to the case where f is defined on an open subset of R? and then apply

the classical local inversion theorem. To do this, we "transfer" f to a map from R? x {0}~ to R? x {0}"2—¢
by composing it with the diffeomorphisms ¢ and ¢p.

More precisely, let ¢/, be the restriction of ¢, to (R? x {0}™7¢) N V). Define

g™ snofo drto : R x {0}~ NV — (R x {0379 N V.

This definition is valid if we reduce Uy, Vs so that f(Up) C Uy. The map g is C" and its differential at 0
is injective: it is the composition of dén(f(20)), df(z0), and d¢,; (0), all of which are injective. Since it goes
from R? to RY, it is bijective.

According to the classical local inversion theorem (Theorem 1.10), there exist Fy;, En open neighborhoods of
0 in RY such that g is a C"-diffeomorphism from Ej; x {0}"1~% to Ex x {0}"27¢. Then f is a C"-diffeomorphism
from Uy, = oyt (Bar x {0379 to V(o) = N (En x {0}727%): on these sets,

f=0¢y ogodum.

Since ¢y is a diffeomorphism (of class C* hence also of class C7) from Uy, to Ep x {0}"~¢ g is a C'-
diffeomorphism from Ej x {0}7¢ to Ey x {0}, and ¢ is a diffeomorphism (C* hence also C") from
En x {0} to Vi(ao), the map f is a composition of C"-diffeomorphisms, hence a C"-diffeomorphism. O

2We can see ¢y o f o ¢’J_v11,0 as a map between two open subsets of R%.
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Chapter 3

Solutions of some exercises

3.1 Exercise 1
1. Leti,j € {1,...,n} be fixed. From the definition of the differential,

d(df) () (ex) = lim L EHte0) = dF (@)

lim : (€ L(R™,R)).

Since the map (L € L(R™,R) — L(e;) € R) is continuous,

da)(oeiey) = (fig TEELIZAED) (o)
L df (z + te;) — df (x)
(1) )
— lim df (x + te;)(ej) — df (x)(e;)

t—0 t
. (@ + te)) — 5L (2)
t—0 t
a of
8561 8%( 7).

a) Let r > 0 be such that B(x,2r) C U. For any t,u €] —r;r[, f(x + te; + ue;) is well-defined.
For any ¢ €] — r;r[, the map

g J—mr[ — R
s —  f(x+te; + sej)

is differentiable. For each s, gj(s) = %(1‘ + te; + se;). Therefore,
J

o
)

f(x + te; +uej) — f(z + te;) 9+(0)

8—f (@ + te; + sej)ds.

The same reasoning, but replacing ¢ with 0, shows that

T+ ue; (z + sej)ds.
f( J / ax] J
If we substract this equality from the previous one, we obtain the result.

39
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b) The map 8 - is differentiable at x (since df is differentiable). Therefore, for ¢, s going to 0,

of of

oz, ——(x +te; +se;) =d <8ajj> (x)(te; + sej) + o(]s| + [t])
of of

and 87:]-(96 +sej) =d <&E]) (z)(se;) + o(s),

so that
aof f
oz ——(x + te; + sej) — oz, ——(x + sej)
_a(9f ysey—al 2L |
= (5 ) @httes )= (5L @)ses) + ol + 1)
of
= d (32 @)te + ofll + 1)
(by linearity of the differential)
0 of
=t @) + ol + ).
Consequently,
of ysen 0 9f | _
oot tes ) = 9% (@t sey) — 15728 @) = ofls|+ )

<e(ft]+sl)

for all ¢, s close enough to zero.

c¢) Let 7 > 0 be such that the inequality from the previous question holds for all ¢, s €] — r;r[. We combine
Questions a) and b): for all t,u €] — r; 7],

v o9 of
‘aﬁ(t,U)— o s
of 0 o of
< .
/[Ou] oz, ——(z + te; + sej) — axj(x—i-se]) t(‘):c, axj( x)|ds

(by triangular inequality)

< [ el +lshs
[054]

CIE=S

< e (ltlful + [ul?) .
We obtain the result by noting that

", 0 of
81‘@- 8.1?]'

8$i 8xj '

(x)ds = tu

d) The definition of ¢ is invariant to exchanging ¢ with u and ¢ with j, so the same reasoning as before gives
the same inequality as in the previous question, with ¢ replaced by w and 7 by j.
e) Using the triangular inequality and the previous two questions, we get that, for all ¢, u close enough to 0,

't(‘)af o of

_ < 2 ) 2
5 8y )~ 5 iy @) < el + 20t ful + %)

In particular, for all ¢ close enough to zero, setting u = ¢ and dividing by |¢|?,

0 ﬁ o of
Ox; Ox; o 8.%'] ox;

(z )‘ < de.
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Since € > 0 is arbitrary, this shows that

0 0f 0 Of
8.%‘ 8a:j a:L'j 8951

x)| =0,

0 0,
hence %8712(:6) = a%j f (x).

T

Q|

3.2 Exercise 2

We apply the mean value inequality to U = R™ and M = 1:

v,y € R, |[f(z) = fW)ll < lz —yll.

In particular, for y = 0:
Ve e R"||f(z) = FO)I < |l

Using the triangular value inequality, it holds for all x € R™ that

F @I < £ O]+ (1 (=) = F(0)]]
< £ O]+ ]

3.3 Exercise 3

Showing that f is well-defined consists in showing that f(z1,22) indeed belongs to S! for all (x1,z2) € S!. Let
us consider any (z1,72) € S'. It holds

2
(@) + (say/10) =t + 30140

= x%(x% + m%) + x%
2 2

=T + Ty

=1.

Therefore, f(x1,z2) € St
Let us now show that f is C'°°. From Definition 2.27, we must show that

f: St — R2
(x1,22) — (x%,xgx/l—ka:%)

is C'°. From Example 2.26, we know that

T X Ty St — R?
(351,%2) — (33175152)

is C°. As f is the composition of m X 7o with the map

g: R2 — R2

(z1,22) — (x%,xgx/ 1+ m%),

which is C*° (it is a composition of /- : R} — R, which is C® on this domain, and polynomial functions). From
Proposition 2.29, f is C°°.
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