
Non-convex inverse problems

Irène Waldspurger

waldspurger@ceremade.dauphine.fr

Initial version: January to March 2023
This version: January to February 2025

waldspurger@ceremade.dauphine.fr

2

Contents

1 Introduction 5
1.1 Inverse problems . 6

1.1.1 Definition . 6
1.1.2 Theoretical aspects . 6
1.1.3 Our focus: algorithms 9

1.2 Convex vs non-convex . 10
1.3 Non-convex inverse problems: examples 11

1.3.1 Sparse recovery - compressed sensing 11
1.3.2 Low rank matrix recovery 14
1.3.3 Other examples . 19

2 Convexification 23
2.1 The basis: compressed sensing 25

2.1.1 Convexification: principle 25
2.1.2 Intuition . 25
2.1.3 Tightness guarantees under restricted isometry 29

A Reminders on symmetric and Hermitian matrices 31

Acknowledgements

Many thanks to Claire Boyer and Vincent Duval for sharing their lecture
notes with me.

3

4 CONTENTS

Chapter 1

Introduction

What you should know / be able to do after this chapter

• Know the definition of “inverse problem”, and a few examples.

• Understand what we call (in the context of this course) theoretical as-
pects and algorithmic aspects of an inverse problem. Know that the
class will be about algorithmic aspects.

• Know the definition of “uniqueness” and “stability” in the context of
inverse problems.

• For a linear problem, determine whether it is stable or not by looking
at the singular values.

• With some guidance, be able to prove that a given inverse problem
satisfies the uniqueness and stability properties (or not).

• Know our evaluation criteria for algorithms.

• Identify the main differences between convex and non-convex inverse
problems.

• Be able to determine whether a given problem is convex or not.

• Identify the main common points and differences between sparse and
low-rank recovery.

• Understand the change of variable which turns phase retrieval into a
low-rank matrix recovery problem.

5

6 CHAPTER 1. INTRODUCTION

1.1 Inverse problems

1.1.1 Definition

An inverse problem consists in identifying a (possibly complicated) object
from a set of observations1. For instance, if we are given (two-dimensional)
photographs of a building, viewed from different angles, reconstructing a
three-dimensional model of the building is an inverse problem. Here, the
“object” is the 3D shape of the building and the set of observations is the set
of photographs.

Mathematically, these problems are formalized as follows. Let E be the
set of possible objects, and F the set of possible observations. The observation
procedure is described by a function M : E → F . An inverse problem is, given
some observation y ∈ F ,

find x ∈ E such that M(x) = y. (Inverse)

Remark

The notion of inverse problem is often opposed to the notion of direct
problem. A direct problem is the converse of an inverse problem: as-
suming the object and the observation procedure are known, compute
the observations. For instance, if we are given a description of a fluid
at some instant (viscosity, density, velocity at each point...), predict-
ing how the fluid will be one minute later is a direct problem, which
amounts to solving a specific partial differential equation. Here, the
object is the fluid, and the observation procedure is “let it flow for one
minute, then look at it”.

1.1.2 Theoretical aspects

Problems of the form (Inverse) can be approached from two main angles.

• One can try to describe the properties of the solutions, without ex-
plicitely computing them. I will call this the theoretical aspects.

1Here, we will call observation any procedure which, from the object, produces an
outcome.

1.1. INVERSE PROBLEMS 7

• One can design algorithms to numerically solve the problem. I will call
this the algorithmic aspects. 2

This class is about algorithmic aspects. However, it is difficult to design a
sensible algorithm if one has no idea at all of the properties of the solution.
Therefore, in this section, we give a very brief overview of the theoretical
aspects.

When given a specific instance of Problem (Inverse), a first question that
arises is the existence of solutions: for an arbitrary y, does there always exist
a solution x to Problem (Inverse)? If we restrict ourselves to vectors y which
are the outcome of a real measurement process (that is, of the form y = M(x)
for some x), the answer is obviously yes. But if some errors have occured in
the process, the answer may not be obvious anymore. For the problems we
will consider in this class, existence will rarely be a problem, so we leave this
question aside.

Assuming a solution exists, the other main two questions are uniqueness
and stability.

• Uniqueness: Is the solution of Problem (Inverse) unique? This question
is crucial, since, if the solution is not unique, it is impossible to recover
the true object of interest with certainty.
More formally, we say that Problem (Inverse) satisfies the uniqueness
property if and only if

∀x1, x2 ∈ E such that x1 ̸= x2, M(x1) ̸= M(x2).

• Stability: If y is not exactly known, but only available up to some
error, what will the solution(s) of Problem (Inverse) look like? Will
it be close to the “true” solution, the one we would have obtained if
there had been no error on y? This is also crucial: in real life, exact
measurements are never available.
There are several sensible, but not equivalent, ways to translate this
informal property to a formal one. A standard one is to say that Prob-
lem (Inverse) is stable if there exists a constant C > 0 “not too large”
(say C ≤ 10) such that

∀x1, x2 ∈ E such that x1 ̸= 0,

2This choice of names does not mean that there is no “theory” behind algorithms.
Actually, this class is about algorithmic aspects, but it will be mostly theoretical and
rigorous.

8 CHAPTER 1. INTRODUCTION

||x1 − x2||E
||x1||E

≤ C
||M(x1) − M(x2)||F

||M(x1)||F
. (1.1)

Here, ||.||E and ||.||F are norms on E and F .3

Example 1.1 : finite-dimensional linear inverse problem

Let us assume that

• E, F are real finite-dimensional vector spaces: E = Rd and F =
Rm for some d, m ∈ N∗;

• M : E → F is linear, represented by some matrix A ∈ Rm×d.

Under these assumptions, Problem (Inverse) rewrites as

find x ∈ Rd such that Ax = y.

For a given y, assuming a solution x∗ exists, it is unique if

{x ∈ Rd, Ax = y} = {x∗},

that is if and only if Ker(A) = {0} (A is an injective matrix).
We now assume that the solution is unique. Is it stable? If the norms
||.||E and ||.||F in Equation (1.1) are the standard ℓ2-norms, then it is
possible to show that the problem is stable if and only if the smallest
and largest singular values of A satisfy

λmax(A)

λmin(A)
≲ 10.

The ratio λmax(A)
λmin(A)

is called condition number of A.
For more details, see the exercises.

As said before, these questions will not be the subject of the class. For
each newly encountered problem, we will try to give conditions under which

3These norms must in principle be carefully chosen according to the physical structure
of the concrete underlying problem. Some choices may reflect better than others the
desired properties of the solutions.

1.1. INVERSE PROBLEMS 9

the solution is unique and stable but we will not spend much time on it.
When these questions are not mentionned, the reader can simply assume
that the considered problem satisfies uniqueness and stability properties.
However, in principle, when facing a new problem, these questions must be
the starting point, otherwise we are at risk of working towards the conception
of algorithms for solving problems which can actually not be solved.

1.1.3 Our focus: algorithms

In this class, we will be interested in algorithms which allow to solve inverse
problems. Cambridge dictionary defines the word algorithm as

“a set of mathematical instructions or rules that, especially if given to a
computer, will help to calculate an answer to a problem.”

Following this definition, an algorithm can take many forms. In particular,
although the class of iterative algorithms (that is, those that repeat a set
of instructions until some stopping criterion is met) will be of particular
importance to us, one must not imagine that all algorithms are iterative.

In applications, a “good” algorithm is an algorithm which

• works: given a problem, it must output a correct solution; we can
tolerate the algorithm failing once in a while, but the failure rate must
be as small as possible;

• uses as few computational resources as possible: it must be fast (not
too many operations) and have a moderate memory footprint.

Here, we will be interested in algorithms for which, moreover,

• these good properties (especially the first one) can be rigorously proved.

This additional requirement tends to be in contradiction with the compu-
tational efficiency, in the sense that, oftentimes, the algorithms which work
best in practice are difficult to study rigorously. As a consequence, the algo-
rithms we will present in this class will in most cases not be the best ones for
real applications. They must be considered as toy models for “really usable”
algorithms, should ideally retain as many specificities of their “really usable”
counterparts as possible, but will inevitably miss some.

Similarly, the hypotheses under which we will establish correctness guar-
antees for the algorithms will often be much stronger than what holds in real

10 CHAPTER 1. INTRODUCTION

applications. It is an important but difficult research direction to weaken
these hypotheses.

1.2 Convex vs non-convex
All inverse problems can be reformulated as optimization problems, that is
problems of the following form:

minimize f(x)

over all x ∈ H

such that x ∈ C1, (Opt)
. . .

x ∈ CS.

Here, f : H → R ∪ {+∞} can be any objective function, over a real or
complex vector space H, and C1, . . . , CS are subsets of H which model the
constraints imposed on the unknown x.

An optimization problem is called convex if f is a convex function and
C1, . . . , CS are convex sets. By extension, we say that an inverse problem is
convex if it can be reformulated as a convex optimization problem.

Definition 1.2 : convexity

A function f : H → R ∪ {+∞} is convex if, for any x1, x2 ∈ H and
any s ∈ [0; 1],

f((1 − s)x1 + sx2) ≤ (1 − s)f(x1) + sf(x2). (1.2)

A set C ⊂ H is convex if, for any x1, x2 ∈ C and any s ∈ [0; 1], the
vector

(1 − s)x1 + sx2

is also an element of C.

In first approximation, we can say that convex problems admit efficient
algorithms. This is not an absolute rule, since some convex sets or functions
are quite difficult to manipulate. However, it is true that many algorithms
exist for convex problems, with a behavior which is quite well understood.
The situation is very different for the problems we will consider in this class,

1.3. NON-CONVEX INVERSE PROBLEMS: EXAMPLES 11

which are non-convex. For non-convex problems, the existence of algorithms
both guaranteed to succeed and running in an reasonable amount of time is
an exception.

Intuitively, convexity allows to deduce global information from local one.
For instance, if one knows the values at a few points of a convex function
f and its gradient, Inequality (1.2) makes it possible to compute upper and
lower bounds on f , and hence obtain an approximation of its minimum. One
can then query the values at other points to refine the approximation. This
is illustrated on Figures 1.1a and 1.1b. But if the function is not convex,
the knowledge of its values at a few points provides no information about
the values at other points and, in particular, provides no information on its
minimum. This is illustrated on Figures 1.1c and 1.1d. This is what makes
non-convex optimization much more difficult than convex optimization.

This difficulty is a fundamental property of non-convex problems: if we
do not have good algorithms able to solve any non-convex problem, it is not
because we have not discovered these good algorithms yet. It is because good
algorithms do not exist.4 As a consequence, in this class, we will not try to
propose algorithms able to solve all problems of a given non-convex family:
this is hopeless. At best, our algorithms will be able to solve “a large part”
of problems of the family.

1.3 Non-convex inverse problems: examples

Let us now present a few examples of non-convex inverse problems.

1.3.1 Sparse recovery - compressed sensing

Our first example is called sparse recovery or compressed sensing. It consists
in recovering a vector x ∈ Rd from linear measurements

y
def
= Ax ∈ Rm,

where A ∈ Rm×d is a known matrix, under the assumption that x is sparse.
The word sparse means that x has a small number of non-zero coordinates:

4In particular, many families of non-convex problems have been proved to be NP-
difficult. This means that, unless P=NP, there exists no algorithm able to solve all prob-
lems in the family with a time complexity at most polynomial in their dimension.

12 CHAPTER 1. INTRODUCTION

−4 −2 0 2 4

0

2

4

6

8

(a)

−4 −2 0 2 4

0

2

4

6

8

(b)

−4 −2 0 2 4

0

2

4

6

8

(c)

−4 −2 0 2 4

0

2

4

6

8

(d)

Figure 1.1: (a) Representation of the values and derivatives of a function
f : R → R at a few points. (b) Upper and lower bounds on f (respectively
orange and red lines) one can deduce from the knowledge of these values
and derivatives if f is convex. Observe that it gives a reasonably tight ap-
proximation of f , its minimum and minimizer. (c) A non-convex function
compatible with these values and derivatives. (d) Another non-convex func-
tion compatible with these values and derivatives. Observe that the minimum
and minimizer are significantly different from 1.1c.

1.3. NON-CONVEX INVERSE PROBLEMS: EXAMPLES 13

for some k ∈ N∗ much smaller than d,

||x||0 ≤ k,

where ||x||0 = Card{i ≤ d, xi ̸= 0}. (This quantity is often called the ℓ0-
norm, although it is not a norm, since it is not homogeneous.)

Note that, if m ≥ d and A is injective, then this problem can be solved
by inverting A; it is not necessary to use the sparsity assumption. This
problem is only interesting when m is much smaller than d, in which case A
is not injective and, if we were to ignore the sparsity assumption, y would
not uniquely determine x.

Assuming that k is known, the problem can be written as

recover x ∈ Rd

such that Ax = y,

and ||x||0 ≤ k.

(CS)

It is non-convex because the set {x, ||x||0 ≤ k} is non-convex.
Sometimes, the unknown x is not directly sparse, but only sparse when

represented in some adequate basis, or after some adequate linear trans-
formation. In this case, the condition “||x||0 ≤ k” must be replaced with
“||Φx||0 ≤ k”, where Φ encodes the basis or linear transformation.

This problem is notably natural in image processing, since many natural
images enjoy a sparsity structure. Photos, for instance, are well-known to be
approximately sparse when represented in a wavelet basis.

For compressed sensing, uniqueness of the reconstruction can be guaran-
teed through a condition on the kernel of A.

Proposition 1.3 : unique recovery for compressed sensing

We assume that Ker(A) does not contain a vector X such that ||X||0 ≤
2k. Then, if Problem (CS) has a solution, this solution is unique.

Proof. Let us assume, by contradiction, that Problem (CS) has two distinct
solutions X1, X2 ∈ Rd. Then

A(X1 − X2) = AX1 − AX2 = y − y = 0,

14 CHAPTER 1. INTRODUCTION

so X1 − X2 belongs to Ker(A). And

||X1 − X2||0 ≤ ||X1||0 + ||X2||0 ≤ 2k,

which contradicts the assumption.

From this proposition, one can show that, if m ≥ 2k, then almost all
matrices A guarantee unique recovery of the underlying sparse vector. Under
a stronger condition on A, one can also establish stability recovery guarantees
(see for instance the introductory article [Candès and Wakin, 2008]).

1.3.2 Low rank matrix recovery

In low-rank matrix recovery, the goal is also to recover an object from linear
measurements. This time, the “object” is a matrix X ∈ Rd1×d2 (or X ∈
Cd1×d2). As in the case of compressed sensing, there are not enough linear
measurements to uniquely determine X without additinal information, but
we do have some additional information on X: it is low-rank. This yields
the problem

recover X ∈ Rd1×d2

such that L(X) = y,

and rank(X) ≤ r.

(Low rank)

Here, L : Rd1×d2 → Rm is the linear measurement operator and r is a given
upper bound on the rank of the matrix. Given that any d1 × d2 matrix has
rank at most min(d1, d2), the rank constraint is only useful if r < min(d1, d2).
In some applications, it is relevant to assume that d1 = d2 and X is semidef-
inite positive: X ⪰ 0.

This problem is sometimes called matrix sensing, especially when L is a
random operator. A uniqueness result similar to Proposition (1.3) holds.

Proposition 1.4 : uniqueness for low-rank matrix recovery

We assume that Ker(L) does not contain a matrix X such that

rank(X) ≤ 2r.

Then, if Problem (Low rank) has a solution, this solution is unique.

1.3. NON-CONVEX INVERSE PROBLEMS: EXAMPLES 15

The proof of the proposition is identical to Proposition 1.3. From this
proposition, one can show (but it is not easy) that the solution of Problem
(Low rank), when it exists, is unique, for almost all operators L, provided
that

m ≥ 2r(d1 + d2 − 2r) if 2r ≤ min(d1, d2),

≥ d1d2 if min(d1, d2) < 2r < 2min(d1, d2).

When r is small (of order 1, for instance), this shows that we can hope to
recover the “true” matrix X with a number of linear measurements much
smaller than what we would need if we did not know X to be low-rank (in
this case, we would need m ≥ dim(Rd1×d2) = d1d2, which is much larger than
2r(d1 + d2 − 2r) if r ≪ min(d1, d2)).

Matrix completion Several special cases of Problem (Low rank) are of
particular interest, and form subfamilies of inverse problems with their own
applications and theoretical characteristics. The first one is matrix comple-
tion. In this case, the linear measurements available on X are a subset of
coefficients:

recover X ∈ Rd1×d2

such that Xij = yij, ∀(i, j) ∈ Ω

and rank(X) ≤ r.

(Matrix completion)

Here, Ω ⊂ {1, . . . , d1} × {1, . . . , d2} contains the indices of available coeffi-
cients.

The most popular application is the so-called “Netflix problem”.5 In this
application, X represents the opinion of users on films: the coefficient Xij is
an “affinity score” between User i and Film j (it represents how much User
i would like Film j). It is reasonable to assume that X is low-rank:6 this
models the similarities between the users, and between the films (e.g. if User
1 and 2 have the same opinion on Films 1, 2, 3, 4, it is plausible that they also
have essentially the same opinion on Film 5). The available coefficients Xij

5asked by Netflix in 2006, with a 1, 000, 000$ prize, and declared solved in 2009
6Keep however in mind that this assumption is only approximately satisfied by the

“true” Netflix affinity scores matrix. On the other hand, the true matrix has additional
structure that can be exploited to solve the problem.

16 CHAPTER 1. INTRODUCTION

correspond to pairs (i, j) for which User i has watched Film j and sent the
corresponding score to the film distribution platform. The other coefficients
are not available, but the platform would like to guess them, so as to be able
to propose relevant film suggestions to their users. Guessing the non-available
coefficients exactly amounts to solving Problem (Matrix completion).

Phase retrieval Another special case of Problem (Low rank) which we
will discuss in length in this course is phase retrieval.

At first sight, phase retrieval problems have nothing to do with matrices
and low-rankness. They are problems of the following general form

recover x ∈ Cd

such that |Lj(x)| = yj, ∀j ≤ m.
(Phase retrieval)

Here, L1, . . . , Lm : Cd → C are known linear operators, the notation “|.|”
stands for the usual complex modulus, and y1, . . . , ym are given.

The main motivations for studying phase retrieval come from the field
of imaging. Indeed, it is much easier to record the intensity (that is, the
modulus, in an adequate mathematical model) of an electromagnetic wave
than its phase. It is therefore frequent to have to recover an object from
modulus-only measurements. Oftentimes, these measurements can specifi-
cally be described by a Fourier transform (because, under some assumptions,
the diffraction pattern of an object is the Fourier transform of its character-
istic function), but not always. Phase retrieval is also of interest for audio
processing.

Remark

For any x ∈ Cd and u ∈ C such that |u| = 1, it holds

|Lj(ux)| = |uLj(x)| = |u| |Lj(x)| = |Lj(x)|, ∀j ≤ m.

Therefore, the sole knowledge of (yj = |Lj(x)|)j≤m can never allow to
exactly recover x. There is always a global phase ambiguity : x cannot
be distinguished from ux.
This is in general not harmful in applications, and we will be satisfied
if we can recover x up to a global phase.

1.3. NON-CONVEX INVERSE PROBLEMS: EXAMPLES 17

Given specific linear forms Lj, it is in general difficult to determine if the
(Phase retrieval) problem satisfies the uniqueness and stability properties.
However, it is known that uniqueness holds “in principle” as soon as m is
larger than (roughly) 4d.

Proposition 1.5 : [Conca, Edidin, Hering, and Vinzant, 2015]

Let us assume that m ≥ 4d − 4. Then, for almost all linear maps
L1, . . . , Lm : Cd → C, it holds that, for all x, x′ ∈ Cd,(

|Lj(x)| = |Lj(x
′)|, ∀j ≤ m

)
⇒

(
∃u ∈ C, |u| = 1, x = ux′).

With a slightly larger m, stability also “generically” holds.
Let us now explain why phase retrieval is a special case of low-rank matrix

recovery. Readers which are not perfectly comfortable with the notions of
Hermitian matrices and of semidefinite positive matrices should first read
Appendix A.

The crucial ingredient is an adequate change of variable: instead of re-
covering x ∈ Cd up to a global phase, let us try to recover

X
def
= xx∗ =

Ñ |x1|2 x1x2 ... x1xd

x2x1 |x2|2 ... x2xd

...
xdx1 ... |xd|2

é
.

Remark

A matrix X ∈ Cd×d can be written as X = xx∗ for some x ∈ Cd if and
only if

X ⪰ 0 and rank(X) ≤ 1.

When these conditions hold, x is equal, up to a global phase, to√
λ1z1,

where λ1 is the largest eigenvalue of X, and z1 any unit-normed eigen-
vector for this eigenvalue.

Proof. For any x ∈ Cd, the matrix xx∗ is Hermitian, and semidefinite posi-
tive:

∀z ∈ Cd, ⟨z, xx∗z⟩ = z∗(xx∗)z = |z∗x|2 ≥ 0.

18 CHAPTER 1. INTRODUCTION

It has rank at most 1 because Range(xx∗) = Vect{x}.
Conversely, if X ⪰ 0 and rank(X) ≤ 1, then X can be diagonalized in an

orthogonal basis (z1, . . . , zd):

X =
d∑

k=1

λkzkz∗
k with λ1 ≥ · · · ≥ λd the eigenvalues.

All the eigenvalues are nonnegative, since X ⪰ 0. Since rank(X) ≤ 1, they
are all 0, except possibly the first one, so

X = λ1z1z
∗
1 = (

√
λ1z1)(

√
λ1z1)

∗,

so it can be written as X = xx∗ with x =
√

λ1z1. This proves the first part
of the remark.

For the second part, let us assume that X = xx∗ for some x ∈ Cd. We
have just seen that X is also equal to x̃x̃∗ for x̃ =

√
λ1z1. We must simply

show that x and x̃ are equal up to a global phase. As

Vect{x} = Range(X) = Vect{x̃},

it holds that x and x̃ are colinear: there exists u ∈ C such that x = ux̃. In
addition,

||x||2 = Tr(X) = ||x̃||2,

hence x and x̃ have the same norm. As ||x|| = |u| ||x̃||, this implies that
|u| = 1: x and x̃ are equal up to a global phase.

From the previous remark, it is equivalent to recover x up to a global
phase or X. Indeed, X can be computed from x (even up to a global phase:
(ux)(ux)∗ = uuxx∗ = xx∗ if |u| = 1) and x can be computed up to a
global phase from X by extracting the only eigenvector of X with non-zero
eigenvalue.

In addition, for any j, knowing |Lj(x)| is equivalent to knowing |Lj(x)|2.
Denoting vj the vector such that Lj = ⟨vj, .⟩, we have

|Lj(x)|2 = ⟨vj, x⟩ ⟨vj, x⟩
= (v∗

j x)(x∗vj)

= v∗
j Xvj.

1.3. NON-CONVEX INVERSE PROBLEMS: EXAMPLES 19

Consequently, Problem (Phase retrieval) is equivalent to

recover X ∈ Cd×d

such that v∗
j Xvj = y2

j , ∀j ≤ m,

X ⪰ 0,

rank(X) ≤ 1.

(Matrix PR)

This is, as announced, a low rank matrix recovery problem.

1.3.3 Other examples

These examples will not be covered in class (except for super-resolution, but
later); they are provided for curious readers only.

Machine learning In a machine learning task, the goal is to predict some
output y given some input x. For instance, the input can be a photograph,
and the output the name of the objects represented on the photograph, or
the input can be a low-quality audio signal and the output the corresponding
high-quality signal. We denote P the “perfect” prediction function, which to
an input x maps the correct

y = P (x).

The predictor P is unknown and must be learned from the available input-
output examples (x1, y1), . . . , (xn, yn). This leads to the problem

find P ∈ H
such that P (xk) = yk, ∀k ≤ n,

(ML)

where H is a well-chosen class of functions (H can for instance be the set of
linear maps, or the set of neural networks with a given architecture).

The questions raised by Problem (ML) are quite different from the ones
raised by the other inverse problems we have seen. Indeed, it often hap-
pens that the perfect predictor P is not in the chosen set H, in which case
the problem may not have an exact solution, only an approximate one. In
addition, if H is a bit sophisticated, there are typically several (and even
many) elements P ∈ H such that P (xk) = yk for all k (in other words, the

20 CHAPTER 1. INTRODUCTION

uniqueness property does not hold). All these elements P yield the same
predictions for the available inputs x1, . . . , xn, but may differ significantly
on unseen examples. It is therefore important to choose, among these P ,
the one which has the best chances to perform well on unseen examples (i.e.
which generalizes best)

Dictionary learning In this problem, one is given a set of “interesting”
signals y1, . . . , ym ∈ Rd (e.g. patches of natural photographs or of medical
images), and the goal is to learn a good “representation” for them, under
the form of a dictionary. A dictionary is a set of elements a1, . . . , aM ∈ Rd,
usually called atoms, such that any signal yk can be written as a linear
combination of a small number of atoms:

yk =
M∑
l=1

λ
(k)
l al such that ||λ(k)||0 is small.

We write the dictionary in matricial form by concatenating the atoms
into a single matrix:

A =
(
a1 a2 . . . aM

)
Finding the dictionary A consists in solving the following problem

find A ∈ Rd×M , λ(1), . . . , λ(m) ∈ RM

such that Aλ(k) = yk, ∀k ≤ m,

||λ(k)||0 ≤ S,

(Dictionary learning)

where S is an a priori bound on the number of atoms involved in the decom-
position of each signal yk.

Super-resolution Super-resolution is a general term which covers all prob-
lems where one tries to recover a “sharp” signal from a “blurred” version. In
this paragraph, we present the simplest possible model for such a problem.

The signal we aim at identifying is a collection of point masses in [0; 1[.
The positions of the masses are τ1, . . . , τS and their weights are a1, . . . , aS.
This signal can be represented by a measure

µ =
S∑

s=1

asδτs ∈ M([0; 1[),

1.3. NON-CONVEX INVERSE PROBLEMS: EXAMPLES 21

where M([0; 1[) is the set of signed (or even complex-valued, if a1, . . . , aS are
complex) finite Borel measures on [0; 1[and, for any s, δτs is the dirac at
position τs.7

The “blurred” version of the signal is modelled as the set of low-frequency
coefficients of the Fourier transform of µ: for all k = −N, . . . , N , we have
access to

µ̂[k] =

∫ 1

0

e−2πiktdµ(t)

(
=

S∑
s=1

ase
−2πikτs

)
.

If we call y−N , . . . , yN the known Fourier coefficients, the problem can be
written as

find µ ∈ M([0; 1[)

such that µ̂[k] = yk, ∀k = −N, . . . , N,

and µ is a sum of S diracs.
(Super-resolution)

This problem can be seen as a continuous version of compressed sensing
(Problem (CS)). The unknown, instead of a finite-dimensional vector, is a
measure on [0; 1[, but it must still be recovered from linear measurements,
and satisfies a sparsity constaint (it is the sum of at most S diracs).

7that is to say, δτs is the measure such that, for any measurable E ⊂ [0; 1[, µ(E) = 1
if τs ∈ E and µ(E) = 0 otherwise.

22 CHAPTER 1. INTRODUCTION

Chapter 2

Convexification

What you should know / be able to do after this chapter

• Understand the general principle of convexification, and what “tight-
ness” means.

• Be able to suggest convex relaxations of non-convex problems, based
notably on the « convex hull » reasoning which provides intuition in
the cases of compressed sensing and low-rank recovery.

• Using a 2-dimensional picture, explain why (Basis Pursuit) can be ex-
pected to be a tight relaxation of compressed sensing.

• Know the definition of « restricted isometry ».

• Know the proof technique for establishing tightness guarantees which
relies on restricted isometry (in particular, know the statements of The-
orems 2.4 and ??).

• Know that restricted isometry holds true for the simplest cases of ran-
dom linear operators.

• Explain the limitations of this technique: restricted isometry does not
hold for some more “structured” operators.

• Prove that it does not hold in the example of super-resolution for
Fourier measurements.

23

24 CHAPTER 2. CONVEXIFICATION

Original
non-convex

problem
→ Convex

approximation
→

Find the
solution of the

convex
problem

↓

Deduce the
solution of the

non-convex
problem

Figure 2.1: Principle of convexified algorithms, when relaxation is tight.

• Sketch the proof technique for establishing tightness guarantees using
dual certificates.

• Understand (i.e. be able to do it again alone, with minimal help) the
derivation of the dual problem of TV minimization.

As discussed in the introduction, non-convexity is a major hurdle for nu-
merically solving inverse problems. Simple local search algorithms are at risk
of getting stuck in poor local optima. A possible strategy to overcome this
difficulty is to approximate the non-convex problem with a convex one. This
convex approximation is called a convex relaxation. Since numerically solving
a convex problem is in general doable, we can in general solve the approxima-
tion. At first sight, there is no reason why solving this approximation would
provide useful information towards solving the non-convex problem. But sur-
prisingly, it turns out that, in many situations, the convex approximation has
the same solution as the original non-convex problem! One then says that
relaxation is tight. When this happens, it yields a convenient method for
solving the non-convex problem. This general scheme is depicted on Figure
2.1.

2.1. THE BASIS: COMPRESSED SENSING 25

2.1 The basis: compressed sensing

2.1.1 Convexification: principle

The model example for this chapter, which serves as a basis for other prob-
lems, is compressed sensing.

recover x ∈ Rd

such that Ax = y,

and ||x||0 ≤ k.

(CS)

When the problem has a unique solution, it is the vector with minimal ℓ0-
norm among all vectors x such that Ax = y. This allows to reformulate the
problem as

minimize ||x||0
for x ∈ Rd

such that Ax = y.

(ℓ0-min)

The set {x ∈ Rd, Ax = y} is convex. The non-convex part of the problem
is the objective function ||.||0. To make the problem convex, we replace the
ℓ0-norm with the ℓ1-norm:

||x||1 =
d∑

i=1

|xi|,

which leads to the following convex problem:

minimize ||x||1
for x ∈ Rd

such that Ax = y.

(Basis Pursuit)

2.1.2 Intuition

An intuitive reason for using the ℓ1-norm as a convex approximation of the
ℓ0-norm is that the unit ℓ1-ball is the smallest convex set which contains the
“maximally sparse” vectors of norm 1.

26 CHAPTER 2. CONVEXIFICATION

Proposition 2.1 : ℓ1-ball as a convex hull

Let S be the set of vectors with exactly one non-zero coordinate, equal
to −1 or 1.
The unit ℓ1-ball {x ∈ Rd, ||x||1 ≤ 1} is the convex hull of S.

Proof. This proposition is a consequence of Proposition 2.2. Indeed, the unit
ℓ1-ball is a closed compact subset of Rd. It is therefore the convex hull of its
extremal points (from the Krein-Milman theorem, see for instance [Barvinok,
2002, Chapter II, thm 3.3]), that it is the convex hull of S.

The next proposition states a stronger, but similar, result, which is crucial
in explaining the success of (Basis Pursuit) (i.e. why it is oftentimes a tight
convex relaxation).

Proposition 2.2 : extremal points of the ℓ1-ball

The extremal pointsa of the unit ℓ1-ball {x ∈ Rd, ||x||1 ≤ 1} are the
vectors with exactly one non-zero coordinate, equal to −1 or 1.

aAn extremal point of a convex set C is a point y which cannot be written as

y = (1 − θ)z1 + θz2

for z1, z2 ∈ C different from y and θ ∈ [0; 1].

Proof. Let S be the set of vectors with exactly one non-zero coordinate, equal
to −1 or 1. Let Bℓ1 be the unit ℓ1-ball.

First, we show that the elements of S are extremal points of Bℓ1 . Let
y ∈ S be fixed. Let i be its unique non-zero coordinate. Let us assume
for simplicity that yi = 1 (the reasoning can be adapted for yi = −1). Let
z1, z2 ∈ Bℓ1 , θ ∈ [0; 1] be such that

y = (1 − θ)z1 + θz2.

We must show that z1 = y or z2 = y. If θ = 0, then z1 = y, and if θ = 1,
then z2 = y, so we can assume θ ̸= 0, 1.

We have
1 = yi = (1 − θ)(z1)i + θ(z2)i.

2.1. THE BASIS: COMPRESSED SENSING 27

Observe that (z1)i ≤ |(z1)i| ≤ ||z1||1 ≤ 1 and, similarly, (z2)i ≤ 1. These
two inequalities must be equalities, otherwise 1 = (1 − θ)(z1)i + θ(z2)i <
(1 − θ) + θ = 1.

Now that we know that (z1)i = 1, we can say that∑
j ̸=i

|(z1)j| = ||z1||1 − |(z1)i| = ||z1||1 − 1 ≤ 0,

hence (z1)j = 0 for all j ̸= i. This shows z1 = y, and concludes the proof
that y is an extremal point of Bℓ1 .

Conversely, we show that every extremal point of Bℓ1 is in S. Let y ∈ Bℓ1

be extremal.
First, we note that ||y||1 = 1. Indeed, if ||y||1 < 1, we can write, for any

vector ϵ ∈ Rd \ {0},

y =
1

2
(y + ϵ) +

1

2
(y − ϵ).

When ϵ is close enough to zero, it holds ||y+ϵ||1, ||y −ϵ||1 ≤ ||y||1+ ||ϵ||1 ≤ 1,
so y + ϵ, y − ϵ belong to Bℓ1 and are different from y, which contradicts the
extremality of y.

Now, we show that y has only one non-zero coordinate. Let i be such
that yi ̸= 0. By contradiction, we assume that not all other coordinates are
zero. Let ỹ be the vector which is equal to y, except that the i-th coordinate
yi has been replaced with 0; it is not the null vector. Let e ∈ Rd be the
vector such that

ei = sign(yi),

ej = 0, ∀j ̸= i.

Then
y = |yi|e + ||ỹ||1

ỹ

||ỹ||1
= |yi|e + (1 − |yi|)

ỹ

||ỹ||1
,

which contradicts the extremality. (The last equality is true because ||ỹ||1 =∑
j ̸=i |yj| = ||y||1 − |yi| = 1 − |yi|.)

Let us give an intuitive explanation, based on the previous proposition, of
why we can expect (Basis Pursuit) to be a tight relaxation of Problem (CS),
at least in some situations.

If the vector x∗ we are trying to recover through Problem (CS) is sparse,
then it is a linear combination of a small number of “maximally sparse” non-
zero vectors. From Proposition 2.2, it is therefore a linear combination of a

28 CHAPTER 2. CONVEXIFICATION

x∗ = (0, 1)

1

−1 1

−1

{x, Ax = Ax∗}

Bℓ1,x∗

(a)

x∗ =
(
1
4
, 3
4

)
1

−1 1

−1

{x, Ax = Ax∗}

Bℓ1,x∗

(b)

Figure 2.2: Representation of Bℓ1,x∗ and {x ∈ R2, Ax = Ax∗} for A = (1 −3)
in two situations: (a) when x∗ = (0, 1) is sparse ; (b) when x∗ =

(
1
4
, 3
4

)
is not

sparse. Observe that Bℓ1,x∗ ∩ {x, Ax = Ax∗} is a singleton in the first case,
but not in the second one.

small number of extremal points of the ℓ1-ball. This can be geometrically
interpreted as the fact that x∗ belongs to a "corner" of the ℓ1-ball

Bℓ1,x∗
def
= {x ∈ Rd, ||x||1 ≤ ||x∗||1}.

The convex approximation (Basis Pursuit) has a unique minimizer equal
to x∗ if and only if

∄x ∈ Rd such that Ax = y = Ax∗ and ||x||1 ≤ ||x∗||1
⇐⇒ Bℓ1,x∗ ∩ {x ∈ Rd, Ax = Ax∗} = {x∗}
⇐⇒ Bℓ1,x∗ ∩ ({x∗} +Ker(A)) = {x∗}.

And the intersection of Bℓ1,x∗ and an affine space containing x∗ has much
more chances to be the singleton {x∗} if x∗ is in a "corner" of Bℓ1,x∗ (very
crudely, if x∗ is in a "corner", then, in the neighborhood of x∗, Bℓ1,x∗ occupies
only a small fraction of the space; it is therefore easier not to intersect it when
considering an affine space going through x∗). This is depicted on Figure 2.2.

2.1. THE BASIS: COMPRESSED SENSING 29

2.1.3 Tightness guarantees under restricted isometry

The convex problem (Basis Pursuit) can be traced back to at least the 70’s.
Since then, many researchers have proposed conditions on x∗ and A under
which the relaxation is tight (that is, the solutions of (Basis Pursuit) and
(CS) are the same). A major progress (due notably to Candès, Donoho,
Romberg and Tao) on this subject was, around twenty years ago, the in-
troduction of the so-called Restricted Isometry Property, which is a simple
assumption on A under which it is possible to guarantee tightness without
imposing stringent conditions on x∗.

Definition 2.3 : restricted isometry

Let A ∈ Rm×d be a matrix. For any k ∈ {1, . . . , d}, we define the k-
restricted isometry constant δk of A as the smallest real number such
that

(1 − δk)||z||2 ≤ ||Az||2 ≤ (1 + δk)||z||2
for all vectors z ∈ Rd with at most k non-zero coordinates.

Tightness of the convex relaxation (Basis Pursuit) under a restricted
isometry condition is guaranteed by the following theorem.

Theorem 2.4

Let A ∈ Rm×d be a matrix. For some k ∈ {1, . . . , d}, we assume that
its 4k-restricted isometry constant satisfies

δ4k <
1

4
. (2.4)

For any x∗ ∈ Rd with at most k non-zero coordinates, Problem
(Basis Pursuit) with y = Ax∗ has a unique solution, which is x∗.

Under the same condition, it is moreover possible to prove a stability
result for the convex relaxation: if y is “close” to Ax∗, then the solution of a
slight modification of (Basis Pursuit) is “close” to x∗. The proof of Theorem
2.4 is the subject of an exercise, which follows [Candès, Romberg, and Tao,
2006].

Let us keep in mind that the restricted isometry property is a sufficient
but not necessary condition for the correctness of the basis pursuit approach:

30 CHAPTER 2. CONVEXIFICATION

there are matrices A for which condition (2.4) does not hold and, neverthe-
less, Problems (CS) and (Basis Pursuit) have the same solution. However,
it turns out that many natural matrices A satisfy the condition, hence The-
orem 2.4 explains the success of the basis pursuit approximation in several
interesting situations. The following theorem provides the simplest example
of matrices with the restricted isometry property: matrices chosen at random
according to a normal distribution (with high probability).

Theorem 2.5 : [Candès and Tao, 2005]

Let c > 0 be some explicit constant, whose value we will not give here.
We assume that A ∈ Rm×d is generated at random according to a
normal distributiona. If

ck log(d/k) ≤ m,

Condition (2.4) holds with high probability.b

athat is, each coefficient of A is chosen independently at random according to a
normal law N (0, 1/m).

bWith high probability means that it holds with probability at least 1 − e−αm

for some constant α > 0.

This theorem, combined with Theorem 2.4, shows that convexification
allows to recovery k-sparse vectors from O(k log(d/k)) linear measurements.
This is surprisingly few. Indeed, Problem (CS) is only interesting when
the number of measurements is at least O(k) (otherwise, the solution is not
unique). At this threshold, solving this problem is a priori impossible with a
polynomial time algorithm, but we see that it suffices to increase the number
of measurements by a logarithmic factor so that polynomial time recovery
becomes possible, through convexification.

Appendix A

Reminders on symmetric and
Hermitian matrices

Let d ∈ N∗ be fixed.
For any matrix M ∈ Cd×d, we denote M∗ the transpose conjugate of M ,

that is the d × d matrix such that, for all i, j ≤ d,

M∗
ij = Mji.

The notation “⟨., .⟩” stands for the standard dot product when applied to
real vectors: for all a, b ∈ Rd,

⟨a, b⟩ =
d∑

i=1

aibi.

When applied to complex vectors, it denotes the standard Hermitian product:
for all a, b ∈ Cd,

⟨a, b⟩ =
d∑

i=1

aibi = a∗b.

Definition A.1 : Hermitian matrices

A matrix M ∈ Cd×d is Hermitian if M = M∗, that is if, for all i, j ≤ d,

Mij = Mji.

31

32APPENDIX A. REMINDERS ON SYMMETRIC AND HERMITIAN MATRICES

Equivalently, M is Hermitian if and only if, for all x, y ∈ Cd,

⟨Mx, y⟩ = ⟨x, My⟩ .

Definition A.2 : semidefinite positive matrices

Let K be R or C.
A matrix M ∈ Kd×d is semidefinite positive if and only if it is symmetric
(if K = R) or Hermitian (if K = C) and, for all x ∈ Kd,

⟨x, Mx⟩ ∈ R+.

It is definite positive if and only if it is semidefinite positive and, for
all x ∈ Kd \ {0},

⟨x, Mx⟩ > 0.

Proposition A.3 : diagonalization of symmetric / Hermitian
matrices

Let K be R or C. Let M ∈ Kd×d be a symmetric or Hermitian matrix.
It can be diagonalized in an orthogonal basis, with real eigenvalues:
there exist λ1, . . . , λd in R and (z1, . . . , zd) an orthonormal basis of Kd

such that

X = (z1 ... zd)

Ö
λ1 0 ... 0

0 λ2

...
...

λd

è
(z1 ... zd)∗ =

d∑
k=1

λkzkz∗
k.

Matrix M is semidefinite positive if and only if λk ≥ 0 for all k ≤ d.
It is definite positive if and only if λk > 0 for all k ≤ d.

Bibliography

A. Barvinok. A course in convexity, volume 54. American Mathematical
Society, 2002.

E. J. Candès and T. Tao. Decoding by linear programming. IEEE transac-
tions on information theory, 51(12):4203–4215, 2005.

E. J. Candès and M. B. Wakin. An introduction to compressive sampling.
IEEE signal processing magazine, 25(2):21–30, 2008.

E. J. Candès, J. K. Romberg, and T. Tao. Stable signal recovery from incom-
plete and inaccurate measurements. Communications on Pure and Applied
Mathematics: A Journal Issued by the Courant Institute of Mathematical
Sciences, 59(8):1207–1223, 2006.

A. Conca, D. Edidin, M. Hering, and C. Vinzant. Algebraic characterization
of injectivity in phase retrieval. Applied and Computational Harmonic
Analysis, 32(2):346–356, 2015.

33

	Introduction
	Inverse problems
	Definition
	Theoretical aspects
	Our focus: algorithms

	Convex vs non-convex
	Non-convex inverse problems: examples
	Sparse recovery - compressed sensing
	Low rank matrix recovery
	Other examples

	Convexification
	The basis: compressed sensing
	Convexification: principle
	Intuition
	Tightness guarantees under restricted isometry

	Reminders on symmetric and Hermitian matrices

