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Chapter 1

Introduction

Apporter son ordinateur la prochaine fois, en ayant installé Convex.jl et
SCS.jl pour les utilisateur/trices de Julia, CVXPY pour les utilisateur/trices
de Python.
Dans le courant du cours, se renseigner sur la familiarité des élèves avec le
compressed sensing.

What you should know / be able to do after this chapter

• Know the definition of “inverse problem”, and a few examples.

• Understand what we call (in the context of this course) theoretical as-
pects and algorithmic aspects of an inverse problem. Know that the
class will be about algorithmic aspects.

• Know the definition of “uniqueness” and “stability” in the context of
inverse problems.

• For a linear problem, determine whether it is stable or not by looking
at the singular values.

• With some guidance, be able to prove that a given inverse problem
satisfies the uniqueness and stability properties (or not).

• Know our evaluation criteria for algorithms.

• Identify the main differences between convex and non-convex inverse
problems.
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6 CHAPTER 1. INTRODUCTION

• Be able to determine whether a given problem is convex or not.

• Identify the main common points and differences between sparse and
low-rank recovery.

• Understand the change of variable which turns phase retrieval into a
low-rank matrix recovery problem.

1.1 Inverse problems

1.1.1 Definition

An inverse problem consists in identifying a (possibly complicated) object
from a set of observations1. For instance, if we are given (two-dimensional)
photographs of a building, viewed from different angles, reconstructing a
three-dimensional model of the building is an inverse problem. Here, the
“object” is the 3D shape of the building and the set of observations is the set
of photographs.

Suggérer un autre exemple. Autres exemples que je peux donner :

• à partir de la consommation électrique d’un ordinateur au cours du
temps, déterminer au mieux quelles ont été les activités de l’utilisatrice ;

• (échographie) donner une image d’un organe humain en envoyant des
ondes sonores à l’intérieur et en enregistrant les ondes réfléchies.

Mathematically, these problems are formalized as follows. Let E be the
set of possible objects, and F the set of possible observations. The observation
procedure is described by a function M : E → F . An inverse problem is, given
some observation y ∈ F ,

find x ∈ E such that M(x) = y. (Inverse)

1Here, we will call observation any procedure which, from the object, produces an
outcome.
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Remark

The notion of inverse problem is often opposed to the notion of direct
problem. A direct problem is the converse of an inverse problem: as-
suming the object and the observation procedure are known, compute
the observations. For instance, if we are given a description of a fluid
at some instant (viscosity, density, velocity at each point...), predict-
ing how the fluid will be one minute later is a direct problem, which
amounts to solving a specific partial differential equation. Here, the
object is the fluid, and the observation procedure is “let it flow for one
minute, then look at it”.

1.1.2 Theoretical aspects

Problems of the form (Inverse) can be approached from two main angles.

• One can try to describe the properties of the solutions, without ex-
plicitely computing them. I will call this the theoretical aspects.

• One can design algorithms to numerically solve the problem. I will call
this the algorithmic aspects. 2

This class is about algorithmic aspects. However, it is difficult to design a
sensible algorithm if one has no idea at all of the properties of the solution.
Therefore, in this section, we give a very brief overview of the theoretical
aspects.

When given a specific instance of Problem (Inverse), a first question that
arises is the existence of solutions: for an arbitrary y, does there always exist
a solution x to Problem (Inverse)? If we restrict ourselves to vectors y which
are the outcome of a real measurement process (that is, of the form y = M(x)
for some x), the answer is obviously yes. But if some errors have occured in
the process, the answer may not be obvious anymore. For the problems we
will consider in this class, existence will rarely be a problem, so we leave this
question aside.

Assuming a solution exists, the other main two questions are uniqueness
and stability.

2This choice of names does not mean that there is no “theory” behind algorithms.
Actually, this class is about algorithmic aspects, but it will be mostly theoretical and
rigorous.
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• Uniqueness: Is the solution of Problem (Inverse) unique? This question
is crucial, since, if the solution is not unique, it is impossible to recover
the true object of interest with certainty.
More formally, we say that Problem (Inverse) satisfies the uniqueness
property if and only if

∀x1, x2 ∈ E such that x1 ̸= x2, M(x1) ̸= M(x2).

• Stability: If y is not exactly known, but only available up to some
error, what will the solution(s) of Problem (Inverse) look like? Will
it be close to the “true” solution, the one we would have obtained if
there had been no error on y? This is also crucial: in real life, exact
measurements are never available.
There are several sensible, but not equivalent, ways to translate this
informal property to a formal one. A standard one is to say that Prob-
lem (Inverse) is stable if there exists a constant C > 0 “not too large”
(say C ≤ 10) such that

∀x1, x2 ∈ E such that x1 ̸= 0,

||x1 − x2||E
||x1||E

≤ C
||M(x1) − M(x2)||F

||M(x1)||F
. (1.1)

Here, ||.||E and ||.||F are norms on E and F .3

Pour l’exemple ci-dessous : attention, tous les problèmes inverses ne sont
pas linéaires !

Example 1.1 : finite-dimensional linear inverse problem

Let us assume that

• E, F are real finite-dimensional vector spaces: E = Rd and F =
Rm for some d, m ∈ N∗;

• M : E → F is linear, represented by some matrix A ∈ Rm×d.

3These norms must in principle be carefully chosen according to the physical structure
of the concrete underlying problem. Some choices may reflect better than others the
desired properties of the solutions.
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Under these assumptions, Problem (Inverse) rewrites as

find x ∈ Rd such that Ax = y.

Questions 1 et 3 de l’exercice 1.
For a given y, assuming a solution x∗ exists, it is unique if

{x ∈ Rd, Ax = y} = {x∗},

that is if and only if Ker(A) = {0} (A is an injective matrix).
We now assume that the solution is unique. Is it stable? If the norms
||.||E and ||.||F in Equation (1.1) are the standard ℓ2-norms, then it is
possible to show that the problem is stable if and only if the smallest
and largest singular values of A satisfy

λmax(A)

λmin(A)
≲ 10.

The ratio λmax(A)
λmin(A)

is called condition number of A.
For more details, see the exercises.

As said before, these questions will not be the subject of the class. For
each newly encountered problem, we will try to give conditions under which
the solution is unique and stable but we will not spend much time on it.
When these questions are not mentionned, the reader can simply assume
that the considered problem satisfies uniqueness and stability properties.
However, in principle, when facing a new problem, these questions must be
the starting point, otherwise we are at risk of working towards the conception
of algorithms for solving problems which can actually not be solved.

1.1.3 Our focus: algorithms

In this class, we will be interested in algorithms which allow to solve inverse
problems. Cambridge dictionary defines the word algorithm as

“a set of mathematical instructions or rules that, especially if given to a
computer, will help to calculate an answer to a problem.”
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Following this definition, an algorithm can take many forms. In particular,
although the class of iterative algorithms (that is, those that repeat a set
of instructions until some stopping criterion is met) will be of particular
importance to us, one must not imagine that all algorithms are iterative.

In applications, a “good” algorithm is an algorithm which which what?
Trois critères.

• works: given a problem, it must output a correct solution; we can
tolerate the algorithm failing once in a while, but the failure rate must
be as small as possible;

• uses as few computational resources as possible: it must be fast (not
too many operations) and have a moderate memory footprint.

Here, we will be interested in algorithms for which, moreover,

• these good properties (especially the first one) can be rigorously proved.

This additional requirement tends to be in contradiction with the compu-
tational efficiency, in the sense that, oftentimes, the algorithms which work
best in practice are difficult to study rigorously. As a consequence, the algo-
rithms we will present in this class will in most cases not be the best ones for
real applications. They must be considered as toy models for “really usable”
algorithms, should ideally retain as many specificities of their “really usable”
counterparts as possible, but will inevitably miss some.

Similarly, the hypotheses under which we will establish correctness guar-
antees for the algorithms will often be much stronger than what holds in real
applications. It is an important but difficult research direction to weaken
these hypotheses.

1.2 Convex vs non-convex
All inverse problems can be reformulated as optimization problems, that is
problems of the following form:

minimize f(x)

over all x ∈ H

such that x ∈ C1, (Opt)
. . .
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x ∈ CS.

Here, f : H → R ∪ {+∞} can be any objective function, over a real or
complex vector space H, and C1, . . . , CS are subsets of H which model the
constraints imposed on the unknown x.

An optimization problem is called convex if f is a convex function and
C1, . . . , CS are convex sets. By extension, we say that an inverse problem is
convex if it can be reformulated as a convex optimization problem.

Definition 1.2 : convexity

A function f : H → R ∪ {+∞} is convex if, for any x1, x2 ∈ H and
any s ∈ [0; 1],

f((1 − s)x1 + sx2) ≤ (1 − s)f(x1) + sf(x2). (1.2)

A set C ⊂ H is convex if, for any x1, x2 ∈ C and any s ∈ [0; 1], the
vector

(1 − s)x1 + sx2

is also an element of C.

In first approximation, we can say that convex problems admit efficient
algorithms. This is not an absolute rule, since some convex sets or functions
are quite difficult to manipulate. However, it is true that many algorithms
exist for convex problems, with a behavior which is quite well understood.
The situation is very different for the problems we will consider in this class,
which are non-convex. For non-convex problems, the existence of algorithms
both guaranteed to succeed and running in an reasonable amount of time is
an exception.

Intuitively, convexity allows to deduce global information from local one.
For instance, if one knows the values at a few points of a convex function
f and its gradient, Inequality (1.2) makes it possible to compute upper and
lower bounds on f , and hence obtain an approximation of its minimum. One
can then query the values at other points to refine the approximation. This
is illustrated on Figures 1.1a and 1.1b. But if the function is not convex,
the knowledge of its values at a few points provides no information about
the values at other points and, in particular, provides no information on its
minimum. This is illustrated on Figures 1.1c and 1.1d. This is what makes
non-convex optimization much more difficult than convex optimization.
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Figure 1.1: (a) Representation of the values and derivatives of a function
f : R → R at a few points. (b) Upper and lower bounds on f (respectively
orange and red lines) one can deduce from the knowledge of these values
and derivatives if f is convex. Observe that it gives a reasonably tight ap-
proximation of f , its minimum and minimizer. (c) A non-convex function
compatible with these values and derivatives. (d) Another non-convex func-
tion compatible with these values and derivatives. Observe that the minimum
and minimizer are significantly different from 1.1c.
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This difficulty is a fundamental property of non-convex problems: if we
do not have good algorithms able to solve any non-convex problem, it is not
because we have not discovered these good algorithms yet. It is because good
algorithms do not exist.4 As a consequence, in this class, we will not try to
propose algorithms able to solve all problems of a given non-convex family:
this is hopeless. At best, our algorithms will be able to solve “a large part”
of problems of the family.

Remplir le tableau ci-dessous. Je donne la première colonne.
Convex problems Non-convex problems

Definition

All functions and con-
straint sets in the opti-
mization problem are con-
vex.

The objective function or
one of the constraint sets
is not convex.

Theoretical aspects

The set of solutions is con-
vex. Idem for approximate
solutions.
The solution is unique iff it
is locally unique.
Duality tools.
(⇒ analysis less difficult.)

The set of solutions can be
arbitrary.
The solution can be non
unique, but locally unique.
Duality results are much
weaker.
(⇒ analysis more diffi-
cult.)

Algorithmic aspects

Many algorithms exist, for
relatively large classes of
convex problems.
The goal is generally to
solve the problem up to
fixed arbitrary precision.

For most classes of prob-
lems, no algorithm ex-
ists, which is guaranteed to
solve any problem in the
class.
When facing a family of
problems, the goal is gen-
erally to solve as many in-
stances as possible.

1.3 Non-convex inverse problems: examples

Let us now present a few examples of non-convex inverse problems.

4In particular, many families of non-convex problems have been proved to be NP-
difficult. This means that, unless P=NP, there exists no algorithm able to solve all prob-
lems in the family with a time complexity at most polynomial in their dimension.
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1.3.1 Sparse recovery - compressed sensing

Our first example is called sparse recovery or compressed sensing. It consists
in recovering a vector x ∈ Rd from linear measurements

y
def
= Ax ∈ Rm,

where A ∈ Rm×d is a known matrix, under the assumption that x is sparse.
The word sparse means that x has a small number of non-zero coordinates:
for some k ∈ N∗ much smaller than d,

||x||0 ≤ k,

where ||x||0 = Card{i ≤ d, xi ̸= 0}. (This quantity is often called the ℓ0-
norm, although it is not a norm, since it is not homogeneous.)

Note that, if m ≥ d and A is injective, then this problem can be solved
by inverting A; it is not necessary to use the sparsity assumption. This
problem is only interesting when m is much smaller than d, in which case A
is not injective and, if we were to ignore the sparsity assumption, y would
not uniquely determine x.

Écrire ce problème sous la forme d’un problème d’optimisation (Opt).
Convexe ou non-convexe ?

Assuming that k is known, the problem can be written as

recover x ∈ Rd

such that Ax = y,

and ||x||0 ≤ k.

(CS)

It is non-convex because the set {x, ||x||0 ≤ k} is non-convex.
Sometimes, the unknown x is not directly sparse, but only sparse when

represented in some adequate basis, or after some adequate linear trans-
formation. In this case, the condition “||x||0 ≤ k” must be replaced with
“||Φx||0 ≤ k”, where Φ encodes the basis or linear transformation.

This problem is notably natural in image processing, since many natural
images enjoy a sparsity structure. Photos, for instance, are well-known to be
approximately sparse when represented in a wavelet basis.

For compressed sensing, uniqueness of the reconstruction can be guaran-
teed through a condition on the kernel of A.
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Proposition 1.3 : unique recovery for compressed sensing

We assume that Ker(A) does not contain a vector X such that ||X||0 ≤
2k. Then, if Problem (CS) has a solution, this solution is unique.

Proof. Let us assume, by contradiction, that Problem (CS) has two distinct
solutions X1, X2 ∈ Rd. Then

A(X1 − X2) = AX1 − AX2 = y − y = 0,

so X1 − X2 belongs to Ker(A). And

||X1 − X2||0 ≤ ||X1||0 + ||X2||0 ≤ 2k,

which contradicts the assumption.

From this proposition, one can show that, if m ≥ 2k, then almost all
matrices A guarantee unique recovery of the underlying sparse vector. Under
a stronger condition on A, one can also establish stability recovery guarantees
(see for instance the introductory article [Candès and Wakin, 2008]).

1.3.2 Low rank matrix recovery

In low-rank matrix recovery, the goal is also to recover an object from linear
measurements. This time, the “object” is a matrix X ∈ Rd1×d2 (or X ∈
Cd1×d2). As in the case of compressed sensing, there are not enough linear
measurements to uniquely determine X without additinal information, but
we do have some additional information on X: it is low-rank. This yields
the problem

recover X ∈ Rd1×d2

such that L(X) = y,

and rank(X) ≤ r.

(Low rank)

Here, L : Rd1×d2 → Rm is the linear measurement operator and r is a given
upper bound on the rank of the matrix. Given that any d1 × d2 matrix has
rank at most min(d1, d2), the rank constraint is only useful if r < min(d1, d2).
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In some applications, it is relevant to assume that d1 = d2 and X is semidef-
inite positive: X ⪰ 0.

This problem is sometimes called matrix sensing, especially when L is a
random operator. A uniqueness result similar to Proposition (1.3) holds.

Proposition 1.4 : uniqueness for low-rank matrix recovery

We assume that Ker(L) does not contain a matrix X such that

rank(X) ≤ 2r.

Then, if Problem (Low rank) has a solution, this solution is unique.

The proof of the proposition is identical to Proposition 1.3. From this
proposition, one can show (but it is not easy) that the solution of Problem
(Low rank), when it exists, is unique, for almost all operators L, provided
that

m ≥ 2r(d1 + d2 − 2r) if 2r ≤ min(d1, d2),

≥ d1d2 if min(d1, d2) < 2r < 2min(d1, d2).

When r is small (of order 1, for instance), this shows that we can hope to
recover the “true” matrix X with a number of linear measurements much
smaller than what we would need if we did not know X to be low-rank (in
this case, we would need m ≥ dim(Rd1×d2) = d1d2, which is much larger than
2r(d1 + d2 − 2r) if r ≪ min(d1, d2)).

Préparer (pour le cours suivant) un tableau de comparaison entre la re-
construction parcimonieuse et la reconstruction de matrices de rang faible.
Je donne la première ligne comme exemple.
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Sparse recovery Low rank matrix recovery
Unknown vector matrix

Measurements - convex
part linear linear
Measurements - non-
convex part ℓ0-norm ≤ k rank ≤ r

Necessary condition
for uniqueness

No element with ℓ0-
norm ≤ 2k in the ker-
nel of the measurement
operator

No element with rank
≤ 2r in the kernel of
the measurement oper-
ator

Uniqueness for generic
linear operators

if m ≥ 2k (ie twice the
degrees of freedom)

if m ≥ 2r(d1+ d2 − 2r)
(more or less twice the
degrees of freedom)

Matrix completion Several special cases of Problem (Low rank) are of
particular interest, and form subfamilies of inverse problems with their own
applications and theoretical characteristics. The first one is matrix comple-
tion. In this case, the linear measurements available on X are a subset of
coefficients:

recover X ∈ Rd1×d2

such that Xij = yij, ∀(i, j) ∈ Ω

and rank(X) ≤ r.

(Matrix completion)

Here, Ω ⊂ {1, . . . , d1} × {1, . . . , d2} contains the indices of available coeffi-
cients.

The most popular application is the so-called “Netflix problem”.5 In this
application, X represents the opinion of users on films: the coefficient Xij is
an “affinity score” between User i and Film j (it represents how much User
i would like Film j). It is reasonable to assume that X is low-rank:6 this
models the similarities between the users, and between the films (e.g. if User
1 and 2 have the same opinion on Films 1, 2, 3, 4, it is plausible that they also
have essentially the same opinion on Film 5). The available coefficients Xij

5asked by Netflix in 2006, with a 1, 000, 000$ prize, and declared solved in 2009
6Keep however in mind that this assumption is only approximately satisfied by the

“true” Netflix affinity scores matrix. On the other hand, the true matrix has additional
structure that can be exploited to solve the problem.
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correspond to pairs (i, j) for which User i has watched Film j and sent the
corresponding score to the film distribution platform. The other coefficients
are not available, but the platform would like to guess them, so as to be able
to propose relevant film suggestions to their users. Guessing the non-available
coefficients exactly amounts to solving Problem (Matrix completion).

À votre avis, quelle doit être la taille de Ω pour qu’on ait unicité quel que
soit y ?

Phase retrieval Another special case of Problem (Low rank) which we
will discuss in length in this course is phase retrieval.

At first sight, phase retrieval problems have nothing to do with matrices
and low-rankness. They are problems of the following general form

recover x ∈ Cd

such that |Lj(x)| = yj, ∀j ≤ m.
(Phase retrieval)

Here, L1, . . . , Lm : Cd → C are known linear operators, the notation “|.|”
stands for the usual complex modulus, and y1, . . . , ym are given.

The main motivations for studying phase retrieval come from the field
of imaging. Indeed, it is much easier to record the intensity (that is, the
modulus, in an adequate mathematical model) of an electromagnetic wave
than its phase. It is therefore frequent to have to recover an object from
modulus-only measurements. Oftentimes, these measurements can specifi-
cally be described by a Fourier transform (because, under some assumptions,
the diffraction pattern of an object is the Fourier transform of its character-
istic function), but not always. Phase retrieval is also of interest for audio
processing.

Remark

For any x ∈ Cd and u ∈ C such that |u| = 1, it holds

|Lj(ux)| = |uLj(x)| = |u| |Lj(x)| = |Lj(x)|, ∀j ≤ m.

Therefore, the sole knowledge of (yj = |Lj(x)|)j≤m can never allow to
exactly recover x. There is always a global phase ambiguity : x cannot
be distinguished from ux.
This is in general not harmful in applications, and we will be satisfied
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if we can recover x up to a global phase.

Given specific linear forms Lj, it is in general difficult to determine if the
(Phase retrieval) problem satisfies the uniqueness and stability properties.
However, it is known that uniqueness holds “in principle” as soon as m is
larger than (roughly) 4d.

Proposition 1.5 : [Conca, Edidin, Hering, and Vinzant, 2015]

Let us assume that m ≥ 4d − 4. Then, for almost all linear maps
L1, . . . , Lm : Cd → C, it holds that, for all x, x′ ∈ Cd,(

|Lj(x)| = |Lj(x
′)|, ∀j ≤ m

)
⇒

(
∃u ∈ C, |u| = 1, x = ux′).

With a slightly larger m, stability also “generically” holds.
Ici, je rappelle la définition du produit hermitien, des matrices hermiti-

ennes et des matrices semidéfinies positives.
Let us now explain why phase retrieval is a special case of low-rank matrix

recovery. Readers which are not perfectly comfortable with the notions of
Hermitian matrices and of semidefinite positive matrices should first read
Appendix A.

The crucial ingredient is an adequate change of variable: instead of re-
covering x ∈ Cd up to a global phase, let us try to recover

X
def
= xx∗ =

Ñ |x1|2 x1x2 ... x1xd

x2x1 |x2|2 ... x2xd

... ... ...
xdx1 ... |xd|2

é
.

Remark

A matrix X ∈ Cd×d can be written as X = xx∗ for some x ∈ Cd if and
only if

X ⪰ 0 and rank(X) ≤ 1.

When these conditions hold, x is equal, up to a global phase, to√
λ1z1,

where λ1 is the largest eigenvalue of X, and z1 any unit-normed eigen-
vector for this eigenvalue.
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Proof. For any x ∈ Cd, the matrix xx∗ is Hermitian, and semidefinite posi-
tive:

∀z ∈ Cd, ⟨z, xx∗z⟩ = z∗(xx∗)z = |z∗x|2 ≥ 0.

It has rank at most 1 because Range(xx∗) = Vect{x}.
Conversely, if X ⪰ 0 and rank(X) ≤ 1, then X can be diagonalized in an

orthogonal basis (z1, . . . , zd):

X =
d∑

k=1

λkzkz∗
k with λ1 ≥ · · · ≥ λd the eigenvalues.

All the eigenvalues are nonnegative, since X ⪰ 0. Since rank(X) ≤ 1, they
are all 0, except possibly the first one, so

X = λ1z1z
∗
1 = (

√
λ1z1)(

√
λ1z1)

∗,

so it can be written as X = xx∗ with x =
√

λ1z1. This proves the first part
of the remark.

For the second part, let us assume that X = xx∗ for some x ∈ Cd. We
have just seen that X is also equal to x̃x̃∗ for x̃ =

√
λ1z1. We must simply

show that x and x̃ are equal up to a global phase. As

Vect{x} = Range(X) = Vect{x̃},

it holds that x and x̃ are colinear: there exists u ∈ C such that x = ux̃. In
addition,

||x||2 = Tr(X) = ||x̃||2,
hence x and x̃ have the same norm. As ||x|| = |u| ||x̃||, this implies that
|u| = 1: x and x̃ are equal up to a global phase.

From the previous remark, it is equivalent to recover x up to a global
phase or X. Indeed, X can be computed from x (even up to a global phase:
(ux)(ux)∗ = uuxx∗ = xx∗ if |u| = 1) and x can be computed up to a
global phase from X by extracting the only eigenvector of X with non-zero
eigenvalue.

Reformuler le problème de reconstruction de phase avec l’inconnue x en
un problème avec l’inconnue X.

In addition, for any j, knowing |Lj(x)| is equivalent to knowing |Lj(x)|2.
Denoting vj the vector such that Lj = ⟨vj, .⟩, we have

|Lj(x)|2 = ⟨vj, x⟩ ⟨vj, x⟩
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= (v∗
j x)(x∗vj)

= v∗
j Xvj.

Consequently, Problem (Phase retrieval) is equivalent to

recover X ∈ Cd×d

such that v∗
j Xvj = y2

j , ∀j ≤ m,

X ⪰ 0,

rank(X) ≤ 1.

(Matrix PR)

This is, as announced, a low rank matrix recovery problem.
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Appendix A

Reminders on symmetric and
Hermitian matrices

Let d ∈ N∗ be fixed.
For any matrix M ∈ Cd×d, we denote M∗ the transpose conjugate of M ,

that is the d × d matrix such that, for all i, j ≤ d,

M∗
ij = Mji.

The notation “⟨., .⟩” stands for the standard dot product when applied to
real vectors: for all a, b ∈ Rd,

⟨a, b⟩ =
d∑

i=1

aibi.

When applied to complex vectors, it denotes the standard Hermitian product:
for all a, b ∈ Cd,

⟨a, b⟩ =
d∑

i=1

aibi = a∗b.

Definition A.1 : Hermitian matrices

A matrix M ∈ Cd×d is Hermitian if M = M∗, that is if, for all i, j ≤ d,

Mij = Mji.

23



24APPENDIX A. REMINDERS ON SYMMETRIC AND HERMITIAN MATRICES

Equivalently, M is Hermitian if and only if, for all x, y ∈ Cd,

⟨Mx, y⟩ = ⟨x, My⟩ .

Definition A.2 : semidefinite positive matrices

Let K be R or C.
A matrix M ∈ Kd×d is semidefinite positive if and only if it is symmetric
(if K = R) or Hermitian (if K = C) and, for all x ∈ Kd,

⟨x, Mx⟩ ∈ R+.

It is definite positive if and only if it is semidefinite positive and, for
all x ∈ Kd \ {0},

⟨x, Mx⟩ > 0.

Proposition A.3 : diagonalization of symmetric / Hermitian
matrices

Let K be R or C. Let M ∈ Kd×d be a symmetric or Hermitian matrix.
It can be diagonalized in an orthogonal basis, with real eigenvalues:
there exist λ1, . . . , λd in R and (z1, . . . , zd) an orthonormal basis of Kd

such that

X = ( z1 ... zd )

Ö
λ1 0 ... 0

0 λ2

...
... ... ...

λd

è
( z1 ... zd )∗ =

d∑
k=1

λkzkz∗
k.

Matrix M is semidefinite positive if and only if λk ≥ 0 for all k ≤ d.
It is definite positive if and only if λk > 0 for all k ≤ d.
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