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1 Exercises

Exercise 1: linear inverse problems
Let d, m be positive integers, with d ≤ m. Let A ∈ Rm×d be a matrix. For a
given y ∈ Rm, we consider the inverse problem

find x ∈ Rd such that Ax = y. (Lin-inverse)

1. Under which conditions on A and y does Problem (Lin-inverse) have
exactly one solution?

2. (Singular value decomposition) In this question, we show the existence
of orthogonal matrices U ∈ Rm×m, V ∈ Rd×d, and nonnegative numbers
λ1 ≥ · · · ≥ λd ∈ R+, such that

A = UDV,

with

D =


λ1 0 ... 0

0 λ2

...
... ... ...

λd
... 0

...
...

0 ... ... 0

 . (1)

This decomposition of A is called the singular value decomposition (SVD).
The numbers λ1, . . . , λd are the singular values. They are uniquely de-
fined.
a) Let v1 ∈ Rd be such that ||v1||2 = 1 and

||Av1||2 = max
v∈Rd,||v||2=1

||Av||2.

Then, let v2, . . . , vd be such that, for any k, vk ∈ Vect{v1, . . . , vk−1}⊥,
||vk||2 = 1, and

||Avk||2 = max
v∈Vect{v1,...,vk−1}⊥

||v||2=1

||Av||2.

Show that this definition is valid (i.e. that the maximums exist) and
that (v1, . . . , vd) is an orthonormal basis of Rd.
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b) Show that, for any k, k′ ∈ {1, . . . , d} with k ̸= k′, ⟨Avk, Avk′⟩ = 0.
[Hint: assume k < k′. Show that, from the definition of vk, it holds
for any θ ∈ R that ||A(cos(θ)vk + sin(θ)vk′)||2 ≤ ||Avk||2. Raise the
inequality to the square and show that the derivative of the left-hand
side with respect to θ must be 0 at θ = 0.]

c) For any k = 1, . . . , d, let us set λk = ||Avk||2. Show that the λk are
nonnegative, and that λ1 ≥ λ2 ≥ · · · ≥ λd.

d) Show that there exists an orthonormal basis (u1, . . . , um) of Rm such
that

∀k ≤ d, Avk = λkuk.

e) Let D be defined as in Equation (1), U be the matrix whose columns
are u1, . . . , um, and V the matrix whose rows are v1, . . . , vd. Show that
U, V are orthogonal matrices, and

A = UDV.

f) Show that the singular values are uniquely defined: if Ũ , Ṽ , λ̃1, . . . , λ̃d

is another SVD of A, then λ̃k = λk for any k.
3. We assume that A, y satisfy the conditions of Question 1, and denote

x∗ the solution of Problem (Lin-inverse). For ϵ ∈ Rm such that y + ϵ
also satisfies the conditions of Question 1, we denote xϵ the solution of
Problem (Lin-inverse) when y is replaced with y + ϵ.
a) Assuming y ̸= 0, show that, for any ϵ,

||xϵ − x∗||2
||x∗||2

≤ λ1

λd

||ϵ||2
||y||2

.

b) Show that the inequality is tight (that is, it is not true anymore if λ1

λd

is replaced with a smaller constant).
c) Under which condition on λ1 and λd is Problem (Lin-inverse) stable?

Exercise 2: an example of linear inverse problem
Let d be a positive integer, and µ a positive real number.
For a given y ∈ Rd, we consider the inverse problem

find x ∈ Rd,

such that xi + µ

(
d∑

k=1

xk

)
= yi, ∀i ∈ {1, . . . , d}.

3



1. Show that, for any y, the problem has exactly one solution.
2. For which values of µ can we say that the problem is stable?

Exercise 3 (2024 exam) We consider the problem

recover (x1, x2) ∈ R2

from y1
def
= x1

and y2
def
=

x2

1 + x2
1

.

Is reconstruction unique? Stable?

Exercise 4: intersection of convex sets
Let d ∈ N∗ be fixed. Let C1, . . . , CS ⊂ Rd be closed convex non-empty sets.
We consider the problem

find x ∈ Rd,

such that x ∈ Cs, ∀s ≤ S. (2)

For any s ≤ S, we denote Ps the projector onto Cs: for any z ∈ Rd, Ps(z) is
the point of Cs which is at minimal distance from z:

||Ps(z) − z||2 = min
a∈Cs

||a − z||2.

It is a classical result from convex analysis that Ps is well-defined (that is,
a point at minimal distance exists, and is unique). We assume that the
sets Cs are sufficiently simple so that the corresponding projections can be
numerically computed.
The goal of the exercise is to present an algorithm to solve (2).
1. We consider any s ∈ {1, . . . , S}.

a) Show that, for all z ∈ Rd, a ∈ Cs,

⟨a − Ps(z), z − Ps(z)⟩ ≤ 0

b) Show that, for all z, z′ ∈ Rd,

⟨Ps(z
′) − Ps(z), z − z′ − Ps(z) + Ps(z

′)⟩ ≤ 0
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c) Show that, for all z, z′ ∈ Rd,

||Ps(z) − Ps(z
′)||22 + ||Ps(z) − Ps(z

′) − z + z′||22 ≤ ||z − z′||22.

d) Deduce from the previous question that, for all z, z′ ∈ Rd,

||Ps(z) − Ps(z
′)||2 ≤ ||z − z′||2,

and that the inequality is strict, unless Ps(z) − Ps(z
′) = z − z′.

The algorithm starts with an arbitrary initial point x0 ∈ Rd. It then com-
putes iteratively a sequence of iterates (xk)k∈N defined by

∀n ∈ N, ∀s ∈ {1, . . . , S}, xnS+s = Ps(xnS+(s−1)).

We assume that Problem (2) has at least one solution:

C1 ∩ C2 ∩ · · · ∩ CS ̸= ∅.

2. a) Show that, for any x∗ ∈ ∩s≤SCs, the sequence (||xk − x∗||2)k∈N is
non-increasing, hence that it converges. Let us call ℓ(x∗) ∈ R the
limit.

b) Show that (xkS)k∈N has a converging subsequence. We denote x∞ ∈ Rd

the limit.
c) Show that x∞ ∈ ∩s≤SCs.

[Hint: show that P1(x∞) is a limit point of (xkS+1)k∈N, then that, for
any x∗ ∈ ∩s≤SCs,

||x∞ − x∗||2 = ||P1(x∞) − x∗||2 = ℓ(x∗).

Using Question 1.d), show that x∞ ∈ C1. Iterate the reasoning to
show that x∞ ∈ Cs for any s ≤ S.]

d) Show that xk
k→+∞−→ x∞.

Exercise 5: real phase retrieval
This exercise is about real phase retrieval problems, that is phase retrieval
problems where the unknown signal and measurement vectors have real (and
not complex ) coordinates.
A real phase retrieval problem is any problem of the form

find x ∈ Rd
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such that | ⟨x, vs⟩ | = ys, ∀s ≤ m, (Real-PR)

where v1, . . . , vm is a known family of vectors of Rd, y1, . . . , ym are given and
“|.|” denotes the absolute value.
Since multiplication by −1 does not change the absolue value, a real phase
retrieval problem can, at best, be solved up to multiplication by −1.
We say that a family of vectors (v1, . . . , vm) satisfies the complement property
if, for any S ⊂ {1, . . . , m},

Vect{vs}s∈S = Rd or Vect{vs}s/∈S = Rd.

1. In this question, we show that (v1, . . . , vm) satisfies the complement
property if and only if, for any y1, . . . , ym, the solution of Problem
(Real-PR) (when it exists) is unique.
a) Let us assume that (v1, . . . , vm) satisfies the complement property.

Let y1, . . . , ym be any numbers. Let x, x′ ∈ Rd be such that, for any
s ≤ m,

| ⟨x, vs⟩ | = ys = | ⟨x′, vs⟩ |.

Show that x = x′ or x = −x′.
[Hint: apply the complement property for S = {s, ⟨x, vs⟩ = ⟨x′, vs⟩}.]

b) Let us assume that (v1, . . . , vm) does not satisfy the complement prop-
erty. Show the existence of z1, z2 ∈ Rd \ {0} such that

∀s ≤ m, ⟨z1, vs⟩ = 0 or ⟨z2, vs⟩ = 0.

c) Define x = z1 + z2, x′ = z1 − z2 and show that Problem (Real-PR)
may have a non-unique solution.

2. a) Show that, if Problem (Real-PR) has a unique solution for any y1, . . . , ym,
then m ≥ 2d − 1.

b) Conversely, we assume that m ≥ 2d − 1. Show that, for almost any
(v1, . . . , vm) ∈ (Rd)m, Problem (Real-PR) has a unique solution for
any y1, . . . , ym.

3. Provide an explicit example of a family (v1, v2, v3) ∈ (R2)3 and of a
family (v1, v2, v3, v4, v5) ∈ (R3)5 for which Problem (Real-PR) has a
unique solution for any y1, . . . , ym.
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2 Answers

Answer of Exercise 1
1. Problem (Lin-inverse) has at least one solution if and only if y ∈ Range(A).

This solution, which we denote x∗, is unique if the set

{x ∈ Rd such that Ax = Ax∗} = {x∗ + h, h ∈ Ker(A)}

is the singleton {x∗}. This happens if and only if A is injective (that is
Ker(A) = {0}).

2. a) The application v ∈ Rd → ||Av||2 ∈ R is continuous. The unit sphere
of Rd is compact. Therefore, the maximum

max
v∈Rd,||v||2=1

||Av||2

exists (i.e. there is a vector v1 at which the maximum is attained).
Similarly, for any k ∈ {2, . . . , d}, the set

{v ∈ Vect{v1, . . . , vk−1}⊥, |||v||2 = 1}

is compact (it is a bounded and closed subset of a finite-dimensional
vector space), and v ∈ Rd → ||Av||2 ∈ R is still continuous. Therefore,
the maximum in the definition of vk exists.
From the definition, the family (v1, . . . , vd) contains d vectors of Rd,
which all have unit norm and are orthgonal one to each other: it is an
orthonormal basis.

b) Let k, k′ ∈ {1, . . . , d} be such that k ̸= k′. We can assume that k < k′.
Let us show that

⟨Avk, Avk′⟩ = 0.

From the definition of vk′ ,

vk′ ∈ Vect{v1, . . . , vk′−1}⊥ ⊂ Vect{vk}⊥ ⇒ ⟨vk′ , vk⟩ = 0.

As a consequence, for any θ ∈ R,

|| cos(θ)vk + sin(θ)vk′||2 =
√
cos2(θ)||vk||22 + sin2(θ)||vk′ ||22 = 1. (3)

In addition, vk is in Vect{v1, . . . , vk−1}⊥ and vk′ is in Vect{v1, . . . , vk′−1}⊥ ⊂
Vect{v1, . . . , vk−1}⊥, so

cos(θ)vk + sin(θ)vk′ ∈ Vect{v1, . . . , vk−1}⊥. (4)
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Equations (3) and (4), together with the definition of vk, imply:

||A (cos(θ)vk + sin(θ)vk′) ||2 ≤ ||Avk||2, ∀θ ∈ R.

We raise this inequality to the square: for all θ ∈ R,

||A (cos(θ)vk + sin(θ)vk′) ||22
= cos2(θ)||Avk||22 + 2 sin(θ) cos(θ) ⟨Avk, Avk′⟩ + sin2(θ)||Avk′||22
≤ ||Avk||22.

This means that the map θ → cos2(θ)||Avk||22+2 sin(θ) cos(θ) ⟨Avk, Avk′⟩+
sin2(θ)||Avk′||22 reaches its maximum at θ = 0. In particular, its deriva-
tive at 0 must be 0:

0 = −2 cos(0) sin(0)||Avk||22 + 2(cos2(0) − sin2(0)) ⟨Avk, Avk′⟩
+ 2 sin(0) cos(0)||Avk′ ||22

= 2 ⟨Avk, Avk′⟩ .

Therefore, ⟨Avk, Avk′⟩ = 0.
c) The λk are nonnegative because a norm is always nonnegative. To

show that (λ1, . . . , λd) is a nonincreasing sequence, we can reuse a part
of the reasoning of the previous question. For any k, k′ ∈ {1, . . . , d}
with k < k′, we have seen that vk′ belongs to Vect{v1, . . . , vk−1}⊥, and
||vk′||2 = 1. Hence, from the definition of vk,

λk = ||Avk||2 ≥ ||Avk′||2 = λk′ .

d) Let D be the smallest index such that λD = 0 (it is possible that
λk ̸= 0 for all k ≤ d, in which case we set D = d + 1).
For any k = 1, . . . , D − 1, we set

uk =
Avk

||Avk||
=

Avk

λk

.

This is an orthonormal family of Rm: for any k < D, ||uk|| = 1, and
for any k, k′ < D with k ̸= k′, it holds

⟨uk, uk′⟩ = ⟨Avk, Avk′⟩
λkλk′

= 0

from Question 2.b). We define uD, . . . , um so that (u1, . . . , um) is an
orthonormal basis of Rm.
For any k < D, we have Avk = λkuk by construction. And for any
k = D, ..., d, since λk = ||Avk|| = 0, it also holds Avk = 0 = λkuk.
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e) The matrices U, V are orthogonal because their columns (resp. rows,
for V ) form an orthonormal basis of Rm (resp. Rd).
The equation

∀k ≤ d, Avk = λkuk

reads, in matricial form,

A
(
v1 . . . vd

)
=
(
u1 . . . um

)


λ1 0 ... 0

0 λ2

...
... ... ...

λd
... 0

...
...

0 ... ... 0

 ,

which is equivalent to
AV T = UD,

which is in turn equivalent, since V T V = V V T = Id, to

A = UDV.

f) Let Ũ , Ṽ , λ̃1, . . . , λ̃d be another SVD of A. Let us denote

D̃ =



λ̃1 0 ... 0

0 λ̃2

...
... ... ...

λ̃d
... 0

...
...

0 ... ... 0

 .

From the definition of the SVD,

A = UDV = ŨD̃Ṽ

⇒ AT A = V T DT DV = Ṽ T D̃T D̃Ṽ .

The matrix DT D is diagonal, with coefficients on the diagonal λ2
1, . . . , λ2

d.
The matrices V and V T are inverse one from each other, since V is an
orthogonal matrix. As a consequence, V T (DT D)V is the eigenvector
decomposition of AT A and λ2

1, . . . , λ2
d are the eigenvalues of AT A.

For the same reason, λ̃2
1, . . . , λ̃2

d are the eigenvalues of AT A. Since the
eigenvalues of a matrix are uniquely defined and λ2

1, . . . , λ2
d as well as
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λ̃2
1, . . . , λ̃2

d are ordered (they are non-increasing sequences), we must
have

λ2
1 = λ̃2

1, . . . , λ2
d = λ̃2

d,

which implies, since the λk and λ̃k are nonnegative,

λ1 = λ̃1, . . . , λd = λ̃d,

3. a) We assume that A, y and A, y+ ϵ satisfy the conditions of Question 1,
that is A is injective, and y, y + ϵ belong to Range(A).
We consider the SVD of A, as in Question 2. We observe that λ1 ̸=
0, . . . , λd ̸= 0, otherwise D would not be injective, and A would not
be either.
We have

UDV x∗ = Ax∗ = y and UDV xϵ = Axϵ = y + ϵ,

⇒ D(V x∗) = UT y and D(V xϵ) = UT (y + ϵ) = UT y + UT ϵ.
(5)

We respectively denote (xV,k)k≤d, (x
(ϵ)
V,k)k≤d, (yU,k)k≤m and (ϵU,k)k≤m

the coordinates of V x∗, V xϵ, UT y and UT ϵ. From Equation (5), for
all k ≤ d,

λkxV,k = yU,k and λkx
(ϵ)
V,k = yU,k + ϵU,k,

⇒ xV,k =
yU,k

λk

and x
(ϵ)
V,k =

yU,k

λk

+
ϵU,k

λk

and, for all k = d + 1, . . . , m,

yU,k = ϵU,k = 0.

From these equalities we deduce

||V x∗||2 =

(
d∑

k=1

x2
V,k

)1/2

=

(
d∑

k=1

y2
U,k

λ2
k

)1/2

≥

(
d∑

k=1

y2
U,k

λ2
1

)1/2

=
1

λ1

(
m∑

k=1

y2
U,k

)1/2

=
||UT y||2

λ1
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and

||V (x∗ − xϵ)||2 =

(
d∑

k=1

(
xV,k − x

(ϵ)
V,k

)2)1/2

=

(
d∑

k=1

ϵ2U,k

λ2
k

)1/2

≤

(
d∑

k=1

ϵ2U,k

λ2
d

)1/2

=
1

λd

(
m∑

k=1

ϵ2U,k

)1/2

=
||UT ϵ||2

λd

.

Therefore,
||V (x∗ − xϵ)||2

||V x∗||2
≤ λ1

λd

||UT ϵ||2
||UT y||2

and, since V, U are orthogonal matrices, hence preserve the norm of
vectors,

||x∗ − xϵ||2
||x∗||2

≤ λ1

λd

||ϵ||2
||y||2

.

b) Let us consider the following y and ϵ:

y = Ue1, ϵ = Ued,

where e1, ed respectively denote the first and d-th vector in the canon-
ical basis of Rm. Then

x∗ =
1

λ1

V T ẽ1, xϵ =
1

λ1

V T ẽ1 +
1

λd

V T ẽd,

where ẽ1, ẽd respectively denote the first and d-th vector in the canon-
ical basis of Rd. Therefore,

||x∗ − xϵ||2
||x∗||2

=
λ1

λd

||V T ẽd||2
||V T ẽ1||2

=
λ1

λd

=
λ1

λd

||ϵ||2
||y||2

.

c) The inverse problem is stable if λ1

λd
is of order 1 (say ≤ 10).
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Answer of Exercise 2
1. We are exactly in the same setting as the previous exercise, with

A =


1 µ . . . µ
µ 1 . . .
... . . . ...
µ . . . 1

 .

According to Question 1 of the previous exercise, we must show that A
is injective and surjective. Given that A is square, it is enough to show
that A is injective.
To show that A is injective, we consider z ∈ Ker(A) and show that,
necessarily, z = 0. From the definition of the kernel,

zi + µ

(
d∑

k=1

zk

)
= 0, ∀i ∈ {1, . . . , d}.

Therefore, all coordinates of z are equal:

z1 = z2 = · · · = zd = −µ

(
d∑

k=1

zk

)
.

We plug this into the first equation:

(1 + dµ)z1 = 0.

Since µ > 0, we must have z1 = 0, and therefore z2 = · · · = zd = 0, that
is z = 0.

2. Following the previous exercise, we compute the singular value decom-
position of A. As A is a symmetric matrix, its singular values are the
absolute values of its eigenvalues. Let us compute the eigenvalues.
Let for the moment λ ∈ R be any eigenvalue, and let z be an associated
eigenvector. From the definition of A,

zi + µ

(
d∑

k=1

zk

)
= λzi, ∀i ∈ {1, . . . , d}.
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Therefore, if λ ̸= 1, it holds

z1 = z2 = · · · = zd =
µ

λ − 1

(
d∑

k=1

zk

)
,

which means that z is a constant vector.
Conversely, if z is a constant vector, we see that it is an eigenvector,
with eigenvalue 1 + dµ.
Since the set of constant vectors has dimension 1, we conclude that
there is exactly one eigenvalue different from 1, which is 1+ dµ and has
multiplicity 1.
Since A are d eigenvalues (when counted with multiplicity), the only
other eigenvalue is 1, with multiplicity d − 1.
The eigenvalues are nonnegative, so they are the same as the singular
values.
From the previous exercise, the inverse problem is stable if the ratio
between that largest and smallest singular values is of order 1, that is if
1 + dµ is of order 1. In other words, reconstruction is stable when µ is
at most of order 1

d
.

Answer of Exercise 3
[Caution: this is a non-linear inverse problem. Therefore, it cannot be ana-
lyzed using the results on linear inverse problems.]

Reconstruction is unique: for any (x1, x2) ∈ R2 and associated measurements
(y1, y2), it holds (x1, x2) = (y1, (1 + y2

1)y2). Therefore, the measurements
(y1, y2) uniquely determine (x1, x2).
Reconstruction is not stable. Indeed, for any ϵ > 0, there exist pairs (x1, x2)
and (x′

1, x′
2), with associated measurements (y1, y2), (y

′
1, y′

2) such that

||(y1, y2) − (y′
1, y′

2)||2
||(y1, y2)||2

≤ ϵ
||(x1, x2) − (x′

1, x′
2)||2

||(x1, x2)||2
.

To show it, we can consider the pairs (x1, x2) = (t, t) and (x′
1, x′

2) = (t, 0),
for some t > 0 to be defined later. Then

||(x1, x2) − (x′
1, x′

2)||2
||(x1, x2)||2

=
t√
2t

=
1√
2
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while

||(y1, y2) − (y′
1, y′

2)||2
||(y1, y2)||2

=
t

1+t2

t
√

1 + 1
(1+t2)2

=
1

(1 + t2)
√

1 + 1
(1+t2)2

≤ 1

t2
.

Consequently, if t ≥ 21/4

ϵ1/2 , it holds

||(y1, y2) − (y′
1, y′

2)||2
||(y1, y2)||2

≤ ϵ
||(x1, x2) − (x′

1, x′
2)||2

||(x1, x2)||2
.

Answer of Exercise 4
1. a) Let z ∈ Rd, a ∈ Cs be fixed. For any ϵ ∈ [0; 1], the vector

(1 − ϵ)Ps(z) + ϵa

belongs to Cs, since Ps(z) and a belong to Cs and Cs is convex. There-
fore, from the definition of the projection,

||Ps(z) − z||22 ≤ ||(1 − ϵ)Ps(z) + ϵa − z||2

= ||Ps(z) − z||2 − ϵ ⟨a − Ps(z), z − Ps(z)⟩
+ ϵ2||a − Ps(z)||22.

Therefore, for any ϵ ∈]0; 1],

⟨a − Ps(z), z − Ps(z)⟩ ≤ ϵ||a − Ps(z)||22.

If we let ϵ go to 0, we get that ⟨a − Ps(z), z − Ps(z)⟩ ≤ 0.
b) Let z, z′ ∈ Rd be fixed. We apply the previous question to a = Ps(z

′),
then to a = Ps(z):

⟨Ps(z
′) − Ps(z), z − Ps(z)⟩ ≤ 0,

⟨Ps(z) − Ps(z
′), z′ − Ps(z

′)⟩ ≤ 0.

We sum the two inequalities and get the desired result.
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c) Let z, z′ ∈ Rd be fixed.

||Ps(z) − Ps(z
′)||22 + ||Ps(z) − Ps(z

′) − z + z′||22
= ||z − z′||22 + 2||Ps(z) − Ps(z

′)||22 + 2 ⟨Ps(z) − Ps(z
′), z′ − z⟩

= ||z − z′||22 + 2 ⟨Ps(z
′) − Ps(z), z − z′ − Ps(z) + Ps(z

′)⟩
≤ ||z − z′||22.

The last inequality is a consequence of Question 1.b).
d) For all z, z′ ∈ Rd, from the previous question, since ||Ps(z) − Ps(z

′) −
z + z′||22 ≥ 0, we must have

||Ps(z) − Ps(z
′)||22 ≤ ||z − z′||22,

hence ||Ps(z) − Ps(z
′)||2 ≤ ||z − z′||2. In addition, if the inequality

is not strict, it must hold ||Ps(z) − Ps(z
′) − z + z′||22 = 0, so that

Ps(z) − Ps(z
′) − z + z′ = 0, hence Ps(z) − Ps(z

′) = z − z′.
2. a) Let k ∈ N be fixed. Let n ∈ N, s ∈ {1, . . . , S} be such that k =

nS + (s − 1). Then xk+1 = xnS+s = Ps(xk). In addition, x∗ = Ps(x∗)
because x∗ is in Cs, so

||xk+1 − x∗||2 = ||Ps(xk) − Ps(x∗)||2 ≤ ||xk − x∗||2.

The last inequality is true from Question 1.d). The sequence is there-
fore nonincreasing. It has a limit as any nonnegative nonincreasing
sequence of real numbers has a limit.

b) The sequence (xkS)k∈N is bounded: for any k,

||xkS||2 ≤ ||x∗||2 + ||xkS − x∗||2
≤ ||x∗||2 + ||x0 − x∗||2.

From Bolzano-Weierstrass theorem, it has a converging subsequence.
c) As P1 is continuous (from Question 1.d), it is even 1-Lipschitz) and x∞

is a limit point of (xkS)k∈N, P1(x∞) is a limit point of (P1(xkS))k∈N =
(xkS+1)k∈N.
Since ||xkS −x∗||2

k→+∞−→ ℓ(x∗) and ||xkS+1 −x∗||2
k→+∞−→ ℓ(x∗), we must

have

||x∞ − x∗||2 = ℓ(x∗),
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||P1(x∞) − P1(x∗)||2 = ||P1(x∞) − x∗||2 = ℓ(x∗).

This implies that ||x∞ − x∗||2 = ||P1(x∞) − P1(x∗)||2. From Question
1.d), we must have

x∞ − x∗ = P1(x∞) − P1(x∗) = P1(x∞) − x∗,

so that x∞ = P1(x∞), which is equivalent to x∞ ∈ C1.
We can reapply iteratively the same reasoning: as x∞ = P1(x∞) is
a limit point of (xkS+1)k∈N, P2(x∞) is a limit point of (xkS+2)k∈N,
which allows to show that ||x∞ − x∗||2 = ||P2(x∞) − P2(x∗)||2, hence
x∞ = P2(x∞), so that x∞ ∈ C2. And so on.

d) As x∞ belongs to ∩s≤SCs, Question 2.a) tells us that (||xk −x∞||2)k∈N
is nonincreasing. This sequence has a subsequence which goes to 0
(since x∞ is a limit point of (xk)k∈N). Therefore, the whole sequence
goes to 0, which means that xk

k→+∞−→ x∞.
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