
Non-convex inverse problems
February 21, 2025
Correction

Exercise 1

1. Problem 1. is a direct problem, not an inverse one : the main object is the house,
whose description is known, and we want to simulate an observation of it.
Problem 2. is an inverse problem. The unknown quantity of interest is the time
at which the system is turned on. The observation is a temperature measure-
ment at 7pm.
Problem 3. is an inverse problem. The unknown quantity of interest is the
position of the object. The observations are the distances of the object to the
sensors.

2. Yes, it is unique. Indeed, let (x, y), (x′, y′) ∈ R2 be such that M(x, y) = M(x′, y′).
— First case : x2 = x′2 = 0. Then x = x′ = 0 and y = x + y = x′ + y′ = y′.
— Second case : x2 = x′2 ̸= 0. Then y = x2y

x2 = x′2y′

x′2 = y′ and x = (x+y)−y =
(x′ + y′) − y = (x′ + y′) − y′ = x′.

In any case, (x, y) = (x′, y′).

Exercise 2

1. First, let X ∈ Rd1×d2 be a unit-normed matrix with exactly one non-zero row.
We show that it is an extremal point of B. Let i0 be the index of the non-zero
row. It holds

||X||1,2 = ||(Xi0,1, . . . , Xi0,d2)||2
= ||X||F since Xi,j = 0 for all i ̸= i0

= 1,

so X ∈ B. We now show that it is extremal. Let t ∈ [0; 1], X1, X2 ∈ B be such
that

X = (1 − t)X1 + tX2.

We show that either X = X1 or X = X2. If t = 0 or t = 1, this is true, so we
can assume 0 < t < 1. We have

1 = ||Xi0,:||22
= ||(1 − t)(X1)i0,: + t(X2)i0,:||22
= (1 − t)2||(X1)i0,:||22 + 2t(1 − t) ⟨(X1)i0,:, (X2)i0,:⟩ + t2||(X2)i0,:||22
≤ (1 − t)2||(X1)i0,:||22 + 2t(1 − t)||(X1)i0,:||2||(X2)i0,:||2 + t2||(X2)i0,:||22
= ((1 − t)||(X1)i0,:||2 + t||(X2)i0,:||2)2

≤ 1.
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For the last line, we have used that ||(X1)i0,:||2 ≤ ||X1||1,2 ≤ 1 (as X1 ∈ B), and
same for X2. Since the left and right-hand side of the inequality are equal, all
inequalities must be equalities :

⟨(X1)i0,:, (X2)i0,:⟩ = ||(X1)i0,:||2||(X2)i0,:||2,
||(X1)i0,:||2 = ||X1||1,2 = 1,

||(X2)i0,:||2 = ||X2||1,2 = 1.

The first equality implies that (X1)i0,: and (X2)i0,: are colinear, with a nonne-
gative proportionality coefficient. From the second and third equalities, these
vectors have the same norm, 1, so they are equal :

(X1)i0,: = (X2)i0,:.

The equality ||(X1)i0,:||2 = ||X1||1,2 implies that ||(X1)i,:||2 = 0 for all i ̸= i0, so
(X1)i0,: is the only non-zero row of X1. The same holds for X2, so that X1 = X2,
and

X = (1 − t)X1 + tX2 = X1 = X2.

This concludes the proof that X is extremal.
Then, let X ∈ B be an extremal point. Let us show that it has unit Frobenius
norm, and exactly one non-zero row. First, we show that X has exactly one
non-zero row. We proceed by contradiction, and fix i0, i1 ≤ d1 the indices of
two non-zero rows. We define X1, X2 ∈ Rd1×d2 such that, for all i, j,

(X1)i,j = 0 if i ̸= i0

=
Xi,j

||Xi0,:||2
if i = i0.

(X2)i,j =
Xi,j

1 − ||Xi0,:||2
if i ̸= i0,

= 0 if i = i0.

Both matrices are different from X : the i1-th of X1 and the i0-th row of X2 are
zero, while the corresponding rows of X are not. Both matrices belong to B :

||X1||1,2 = ||(X1)i0,:||2 =
||Xi0,:||2
||Xi0,:||2

= 1,

||X2||1,2 =

∑
i ̸=i0

||Xi,:||2
1 − ||Xi0,:||2

=
||X||1,2 − ||Xi0,:||2

1 − ||Xi0,:||2

≤ 1 − ||Xi0,:||2
1 − ||Xi0,:||2

= 1.

In addition,
X = ||Xi0,:||2X1 + (1 − ||Xi0,:||2)X2,
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so X is not extremal. We have reached a contradiction. This shows that X
cannot have more than one non-zero row.
It remains to show that X has unit Frobenius norm. Since X has no more
than one non-zero row, ||X||1,2 = ||X||F , so that we only have to show that
||X||1,2 = 1. We observe that

X = ||X||1,2
X

||X||1,2

+ (1 − ||X||1,2) × 0.

The matrices X
||X||1,2

and 0 both belong to B. Since X is extremal and X ̸= 0

(because 0 is not extremal), we must have X = X
||X||1,2

, which implies that
||X||1,2 = 1.

2. In the case of compressed sensing, we have approximated the ℓ0-norm with the
ℓ1-norm based on the argument that the unit-normed vectors with minimal ℓ0-
norm were the extremal points of the unit ℓ1-ball. Here, in the previous question,
we have shown that the unit-normed vectors with minimal ℓ0-row norm were
the extremal points of the unit mixed ℓ1/ℓ2-norm ball. This suggests that ||.||1,2

is a reasonable convex approximation for ||.||0,row, which leads to the following
minimization problem :

minimize ||X||1,2

over all X ∈ Rd1×d2

such that L(X) = b.

3. In the case of compressed sensing, we say that L satisfies a (k, δ)-restricted
isometry property if, for any vector x such that ||x||0 ≤ k,

(1 − δ)||x||2 ≤ ||L(x)||2 ≤ (1 + δ)||x||2.

In the context of the exercise, we can modify the definition as follows : L satisfies
a (k, δ)-restricted isometry property if, for any matrix X ∈ Rd1×d2 with at most
k non-zero rows,

(1 − δ)||X||F ≤ ||L(X)||2 ≤ (1 + δ)||X||F .

Exercise 3

1. The ℓ0 norm is non-convex. Indeed, if x is any vector with exactly one non-zero
coordinate, ∣∣∣∣∣∣∣∣02 +

x

2

∣∣∣∣∣∣∣∣
0

= 1 >
1

2
=

||0||0
2

+
||x||0
2

.

2.

minimize ||x||1,
over all x ∈ Rd, (ConvRel)

such that Ax = y.

3



3. First, we assume that |zi| ≤ 1 for all i ≤ d. Then, for any x ∈ Rd,

||x||1 − ⟨x, z⟩ =
d∑

i=1

|xi| − xizi

≥
d∑

i=1

|xi| − |xi||zi|

≥
d∑

i=1

|xi| − |xi|

= 0. (1)

The minimum is therefore nonnegative. In addition, ||0||1 − ⟨0, z⟩ = 0, so the
minimum is exactly 0.
The minimizers are the vectors x for which all inequalities in the equation
block (1) are equalities. This is equivalent to

∀i ≤ d, xizi = |xi||zi| = |xi|
⇐⇒ ∀i ≤ d, (xi = 0) or (sgn(xi)zi = |zi| = 1)

⇐⇒ ∀i ≤ d, (xi = 0) or (zi = sgn(xi))

⇐⇒ ∀i ≤ d s.t. xi ̸= 0, zi = sgn(xi).

Second, we consider the case where there exists at least one index i such that
|zi| > 1. Let such an index i be fixed. Let ei ∈ Rd denote the i-th element of
the canonical basis. Then, for all t ≥ 0,

min
x∈Rd

||x||1 − ⟨x, z⟩ ≤ || sgn(zi)tei||1 − ⟨sgn(zi)tei, z⟩

= t(1 − |zi|).

Since t(1 − |zi|) → −∞ when t → +∞, the minimum can only be −∞.
4. We write (ConvRel) in min-max form :

min
x∈Rd s.t. Ax=y

||x||1 = min
x∈Rd

||x||1 + 1y=Ax

= min
x∈Rd

max
b∈Rm

||x||1 + ⟨y − Ax, b⟩

= min
x∈Rd

max
b∈Rm

||x||1 −
〈
x, AT b

〉
+ ⟨y, b⟩ def

= F (x, b).

We get the dual by switching the minimum and maximum :

max
b∈Rm

min
x∈Rd

F (x, b) = max
b∈Rm

min
x∈Rd

||x||1 −
〈
x, AT b

〉
+ ⟨y, b⟩

= max
b∈Rm

−1||AT b||∞≤1 + ⟨y, b⟩

= max
b∈Rm s.t. ||AT b||∞≤1

⟨y, b⟩ ,

which is what was expected.
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5. A pair (x, b) is primal-dual optimal if x is optimal for the primal problem, b is
optimal for the dual problem, and the optimal primal and dual values are the
same. Since weak duality holds, this is equivalent to

Dual at b = Primal at x.

Since

Dual at b = min
z∈Rd

F (z, b)

≤ F (x, b)

≤ max
c∈Rm

F (x, c)

= Primal at x,

this holds true if and only if x is a minimizer of

min
z∈Rd

F (z, b)

and b is a maximizer of
max
c∈Rm

F (x, c).

The first of these two conditions is equivalent, from Question 3., to

||AT b||∞ ≤ 1 and (AT b)i = sgn(xi), ∀i ≤ d s.t. xi ̸= 0,

which is exactly equivalent to Properties 2. and 3.. The second condition is
equivalent to b being a maximizer of

max
c∈Rd

⟨y − Ax, c⟩ .

This problem has a maximizer if and only if y − Ax = 0 and, in this case,
any vector is a maximizer. Therefore, the second condition is equivalent to
y − Ax = 0, which is Property 1..

6. a) Let us define b = sgn((xsol)s)A:s, for s the index of the only non-zero coordi-
nate of xsol, and show that (xsol, b) is primal-dual optimal. It suffices to check
the three properties from Question 5..
The first property, Axsol = y, is equivalent to xsol being feasible for (ConvRel),
which is true because xsol is feasible for (CS).
For the second property, observe that, for any i ≤ d, |(AT b)i| = | ⟨A:i, b⟩ | =
| ⟨A:i, A:s⟩ | ≤ ||A:i||2||A:s||2 = 1.
For the third property, observe that, for any i ≤ d, (xsol)i ̸= 0 if and only if
i = s, in which case

(AT b)i = sgn((xsol)s)||A:s||22 = sgn((xsol)i).

We have thus shown that (xsol, b) is primal-dual optimal. In particular, xsol

is a minimizer of (ConvRel).
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b) Let x be any minimizer of (ConvRel). Let us show that x = xsol.
Let b be defined as in the previous question. Since b is dual optimal and strong
duality holds (because we have seen that (xsol, b) is primal-dual optimal), and
since x is primal optimal, (x, b) is a primal-dual optimal pair. In particular,
it satisfies the properties from Question 5., in particular

sgn(xi) = (AT b)i = sgn((xsol)s) ⟨A:i, A:s⟩ , ∀i ≤ d s.t. xi ̸= 0.

For any i ̸= s, | ⟨A:i, A:s⟩ | < ||A:,i||2||A:s||2 = 1, because no distinct columns
of A are colinear ; therefore, sgn(xi) ̸= sgn((xsol)s) ⟨A:i, A:s⟩. This shows that
xi = 0 for all i ̸= s.
Since x and xsol are both 1-sparse, with the same non-zero coordinate, they
are colinear. Let λ ∈ R be such that x = λxsol. We use the fact that x is
feasible for (ConvRel) :

y = Ax = λAxsol = λy.

As y = (xsol)sA:s ̸= 0, we must have λ = 1, meaning that x = xsol.
c) The convex relaxation (ConvRel) of Problem (CS) is tight.
d) In this case, since the convex problem (ConvRel) has the same solution as

(CS), it suffices to solve this convex problem (using any linear programming
solver) ; the solution obtained solves (CS).

Exercise 4

1. We observe that f(a, b) ≥ 0 for any (a, b) ∈ Rd × Rd. In addition, if we denote
1 the all-one vector, it holds f(y,1) = 0. Therefore, the minimum of f is 0, and
the minimizers are

{(a, b) ∈ Rd × Rd, f(a, b) = 0}
={(a, b) ∈ Rd × Rd, a ⊙ b = y}.

2. Let (a, b) ∈ Rd × Rd be fixed. For any (h, l),

f(a + h, b + l) =
1

2
||a ⊙ b − y + h ⊙ b + a ⊙ l||22 + o(||h|| + ||l||)

= f(a, b) + ⟨h ⊙ b + a ⊙ l, a ⊙ b − y⟩ + o(||h|| + ||l||)
= f(a, b) + ⟨h, (a ⊙ b − y) ⊙ b⟩ + ⟨l, (a ⊙ b − y) ⊙ a⟩ + o(||h|| + ||l||).

Therefore,
∇f(a, b) = ((a ⊙ b − y) ⊙ b, (a ⊙ b − y) ⊙ a) .

Let us now compute the Hessian. For any (h, l),

∇f(a + h, b + l)

=∇f(a, b) + (b ⊙ b ⊙ h + (2a ⊙ b − y) ⊙ l, a ⊙ a ⊙ l + (2a ⊙ b − y) ⊙ h)

+ o(||h|| + ||l||).

Therefore, for all (h, l),

∇2f(a, b)(h, l) = (b ⊙ b ⊙ h + (2a ⊙ b − y) ⊙ l, a ⊙ a ⊙ l + (2a ⊙ b − y) ⊙ h) .
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3. a) For any i ≤ d,

(at)
2
i + (bt)

2
i ≥ 2|(at)i||(bt)i|
= 2 |((at)i(bt)i − yi) + yi|
≥ 2 (|yi| − |(at)i(bt)i − yi|)
≥ 2 (|yi| − ||at ⊙ bt − y||2)

≥ 2
(

m − m

2

)
= m,

and

|((at)i(bt)i − yi) (at)i(bt)i| ≤ ||at ⊙ bt − y||2 |(at)i(bt)i|
≤ ||at ⊙ bt − y||2 (|yi| + |(at)i(bt)i − yi|)

≤ m

2

(
M +

m

2

)
≤ m

2

(
M +

M

2

)
=

3

4
mM.

b) It holds (at+1, bt+1) = (at, bt) − τ∇f(at, bt), hence

at+1 = at − τ(at ⊙ bt − y) ⊙ bt,

bt+1 = bt − τ(at ⊙ bt − y) ⊙ at,

and

at+1 ⊙ bt+1 − y = at ⊙ bt − y − τ(at ⊙ bt − y) ⊙ (at ⊙ at + bt ⊙ bt)

+ τ 2(at ⊙ bt − y) ⊙ (at ⊙ bt − y) ⊙ at ⊙ bt

= (at ⊙ bt − y) ⊙ (1 − τ(at ⊙ at + bt ⊙ bt)

+ τ 2(at ⊙ bt − y) ⊙ at ⊙ bt),

which implies

||at+1 ⊙ bt+1 − y||22 =
d∑

i=1

((at)i(bt)i − yi)
2
(
1 − τ((at)

2
i + (bt)

2
i )

+ τ 2((at)i(bt)i − yi)(at)i(bt)i

)2
≤

d∑
i=1

((at)i(bt)i − yi)
2

(
1 − τm +

3

4
τ 2mM

)2

≤
d∑

i=1

((at)i(bt)i − yi)
2
(
1 − τm +

τm

2

)2
=
(
1 − τm

2

)2 d∑
i=1

((at)i(bt)i − yi)
2.

Taking the square root, we obtain the result.
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c) The results from the previous two questions, applied iteratively, show that,
if ||a0 ⊙ b0 − y||2 ≤ m

2
, then, for any t ≥ 0,

||at ⊙ bt − y||2 ≤
(
1 − τm

2

)t

||a0 ⊙ b0 − y||2.

In particular, ||at ⊙ bt − y||2 → 0 when t → +∞, and thus f(at, bt) → 0.
d) For any (a, b) ∈ Rd × Rd,

||∇f(a, b)||2 =

(
d∑

i=1

(aibi − yi)
2(a2

i + b2i )

)1/2

≤ ||a ⊙ b − y||2||(a, b)||2.

From this, we can first deduce that (at, bt)t∈N is bounded. Indeed, for any
t ∈ N,

||(at+1, bt+1)||2 ≤ ||(at, bt)||2 + τ ||∇f(at, bt)||2
≤ ||(at, bt)||2 (1 + τ ||at ⊙ bt − y||2)

≤ ||(at, bt)||2
(
1 + τ ||a0 ⊙ b0 − y||2

(
1 − τm

2

)t
)

≤ ||(at, bt)||2
(
1 +

τm

2

(
1 − τm

2

)t
)

.

Consequently, for any t,

||(at, bt)||2 ≤

(
t−1∏
s=0

(
1 +

τm

2

(
1 − τm

2

)s))
||(a0, b0)||2

= exp

(
t−1∑
s=0

ln
(
1 +

τm

2

(
1 − τm

2

)s))
||(a0, b0)||2

≤ exp

(
t−1∑
s=0

τm

2

(
1 − τm

2

)s
)

||(a0, b0)||2

≤ exp

(
+∞∑
s=0

τm

2

(
1 − τm

2

)s
)

||(a0, b0)||2

= exp(1)||(a0, b0)||2,

so that the sequence is indeed bounded. Let us denote R = supt ||(at, bt)||2.
For any t,

||(at+1, bt+1) − (at, bt)||2 = τ ||∇f(at, bt)||2
≤ τR||at ⊙ bt − y||2

≤ τmR

2

(
1 − τm

2

)t

.

In particular, for any t, t′ ∈ N such that t ≤ t′,

||(at′ , bt′) − (at, bt)||2 ≤ τmR

2

t′−1∑
s=t

(
1 − τm

2

)s
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≤ τmR

2

+∞∑
s=t

(
1 − τm

2

)s

= R
(
1 − τm

2

)t

.

The sequence of iterates is therefore a Cauchy sequence. As a consequence, it
converges. Since f is continuous and f(at, bt) → 0 when t → +∞, the limit
point of (at, bt)t∈N is a zero of f , meaning that it is a global minimizer.

e) It is a local convergence result.
4. a) Let (a, b) ∈ Rd × Rd be arbitrary. It is a first-order critical point of f if and

only if ∇f(a, b) = 0, i.e. for any i ≤ d,

(aibi − yi)bi = 0 and (aibi − yi)ai = 0

⇐⇒ (aibi − yi = 0 or ai = bi = 0).

The set of first-order critical points is{
(a, b) ∈ Rd × Rd, ∀i, aibi − yi = 0 or ai = bi = 0

}
.

b) Let (a, b) ∈ Rd × Rd be a first-order critical point of f . Let us determine
under which condition it is a second-order critical point. From the expression
we have found for the Hessian, it holds for any (h, l) ∈ Rd × Rd that

〈
∇2f(a, b)(h, l), (h, l)

〉
=

d∑
i=1

(
h2

i b
2
i + l2i a2

i + 2(2aibi − yi)hili
)

.

If aibi − yi = 0 for all i ≤ d, then for any (h, l) ∈ Rd × Rd,

〈
∇2f(a, b)(h, l), h, l

〉
=

d∑
i=1

(
h2

i b
2
i + l2i a2

i + 2aibihili
)

=
d∑

i=1

(hibi − liai)
2

≥ 0,

so that (a, b) is a second-order critical point.
On the contrary, if there exists i ≤ d such that aibi − yi ̸= 0 then, for this
index i, it holds ai = bi = 0 (and yi ̸= 0). Therefore, if we choose h = ei (the
i-th vector of the canonical basis), and l = sgn(yi)h, we have〈

∇2f(a, b)(h, l), (h, l)
〉
= −2yihili

= −2|yi|
< 0.

This means that (a, b) is not a second-order critical point.
Second-order critical points are exactly the minimizers of f .
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c) The results seen in class on gradient descent guarantee convergence of the
iterates towards a second-order critical point, provided that f is analytic
(which is true) and coercive (which is false). Therefore, they do not directly
apply here. However, we can expect that
— either the iterates diverge (due to the non-coercivity of f) ;
— or they stay in a bounded region and, then, they converge to a second-

order critical point of f , i.e. a global minimizer, for almost any initial
point.

(Actually, if the stepsize is small enough, the iterates do not diverge, and
convergence to a global minimizer occurs for almost any initial point, but
this is not easy to prove.)
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