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May 21 2024

Answer of exercise 1
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Answer of exercise 2
The map f is locally Lipschitz (since it is C∞), hence we can follow the method
described in class.
We observe that the only point where f vanishes is 0. Therefore,

(
t ∈ R → 0

)
is a maximal solution, and it is the only constant solution.
The two maximal intervals over which f does not vanish are R∗

− and R∗
+.

Therefore, any non-constant solution stays in one of these intervals.
First case : we look for maximal solutions with values in R∗

+. Let u : I → R be
such a solution. Following the strategy described in class, we use the equality

u′

f(u)
= 1.

For any x ∈ R∗
+, we have

1

f(x)
= − 1

x3
e

1
x2 = g′(x),

where g is defined by
g : R∗

+ → R
x → 1

2
e

1
x2 .

Therefore, g is a primitive of 1
f

over R∗
+ and, over I,

(g ◦ u)′ = 1.
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This implies that there exists a constant D ∈ R such that, for all t ∈ I,

g(u(t)) = t − D.

We observe that g is a bijection between R∗
+ and

]
1
2
; +∞

[
: it is a continuous,

strictly decreasing map, which goes to +∞ at 0 and 1
2

at +∞. Its reciprocal is

g−1 :
]
1
2
; +∞

[
→ R∗

+

x → 1√
ln(2x)

.

Consequently, there exists a constant D ∈ R such that, for all t ∈ I,

u(t) = g−1(t − D)

=
1√

ln(2(t − D))
.

Following the course, the domain I of u is the set of all t such that g−1(t − D)
is well-defined, that is

I =

]
1

2
+ D; +∞

[
.

To summarize, the solution u is

u :
]
1
2
+ D; +∞

[
→ R∗

+

t → 1√
ln(2(t−D))

. (1)

Second case : we look for maximal solutions with values in R∗
−. The reasoning

is the same as in the first case except that, this time, we must consider a
primitive of 1

f
on R∗

−. Therefore, we set

g : R∗
− → R

x → 1
2
e

1
x2 .

This map is a bijection between R∗
− and

]
1
2
; +∞

[
, with reciprocal

g−1 :
]
1
2
; +∞

[
→ R∗

−
x → − 1√

ln(2x)
.

This implies that, for some constant D ∈ R, the solution u is

u :
]
1
2
+ D; +∞

[
→ R∗

−
t → − 1√

ln(2(t−D))
. (2)

Conclusion : the maximal solutions are all maps of the form (1) or (2), for
some D ∈ R, and the zero constant map.
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Answer of exercise 3

1. The equation we consider is an autonomous equation, defined as

u′ = f(u)

for
f : R2 → R2

(x, y) → (xexy, (y − x2)exy).

All the theory we have seen in class about the equilibria of autonomous
equations applies, since f is C1 (actually, C∞).
a) Since f(0, 0) = (0, 0), (0, 0) is an equilibrium. Conversely, let (x0, y0) ∈

R2 be an equilibrium. Then f(x0, y0) = 0, hence

0 = x0e
x0y0 ⇒ x0 = 0;

0 = (y0 − x2
0)e

x0y0 = y0e
x0y0 ⇒ y0 = 0.

Therefore, (x0, y0) = (0, 0).
b) We compute the differential of f at (0, 0) and apply the theorem seen

at the last lecture of the semester. To compute the differential, we use
the following Taylor expansion : for all h, l in the neighborhood of 0,

f(h, l) = (hehl, (l − h2)ehl)

= (h(1 + o(1)), (l − h2)(1 + o(1)))

= (h, l) + o(||h, l||).

Therefore, the Jacobian of f at (0, 0) is

Jf(0, 0) =

(
1 0
0 1

)
.

This matrix has a single eigenvalue, which is 1. Since Re(1) = 1 > 0,
the point (0, 0) is an unstable equilibrium.

2. Since (x(t0), y(t0)) = (0, y(t0)), this solution (x, y) is a maximal solution
of the Cauchy problem {

u′ = f(u),
u(t0) = (0, y(t0)).

As f is C1, from the Cauchy-Lipschitz theorem, the maximal solution to
this problem is unique. Therefore, it suffices to check that the map defined
as

v : R → R2

t → (0, y(t0)e
t−t0)

is a maximal solution : this implies that I = R and (x, y) = v.
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The map v (of which we denote v1, v2 the components) is indeed a solution :
for all t ∈ R,

v′(t) = (0, y(t0)e
t−t0)

= (v1(t)e
v1(t)v2(t), (v2(t) − v1(t)

2)ev1(t)v2(t)) since v1(t) = 0

= f(v(t)).

It is maximal because it is defined on R, hence cannot be extended.
3. a) Observe that F is well-defined because x does not vanish on I. It is

differentiable (since it is a quotient of differentiable maps, whose deno-
minator does not vanish) and, for all t ∈ I,

F ′(t) =
(y′(t) + 2x′(t)x(t))x(t) − x′(t)(y(t) + x(t)2)

x(t)2

=
y′(t)x(t) − x′(t)(y(t) − x(t)2)

x(t)2

=
(y(t) − x(t)2)ex(t)y(t)x(t) − x(t)ex(t)y(t)(y(t) − x(t)2)

x(t)2

= 0.

Therefore, F is constant.
b) Let (x0, y0) ∈ R2 be such that x0 ̸= 0. We denote (x, y) : I → R2 the

maximal solution of the associated Cauchy problem :{
(x, y)′ = f(x, y),

(x(0), y(0)) = (x0, y0).

For all t0 ∈ I, x(t0) ̸= 0 (otherwise, from Question 2., it would hold
x(t) = 0 for all t ∈ I, hence x0 = 0). We can therefore apply Question
3.a) : for all t ∈ I,

y(t) + x(t)2

x(t)
= F (t) = F (0).

As a consequence, for all t ∈ I,

y(t) = F (0)x(t) − x(t)2,

which means that (x(t), y(t)) belongs to the graph of fF (0).
Since the orbit of (x0, y0) is {(x(t), y(t)), t ∈ I}, the orbit is a subset of
the graph of fF (0).
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4. .

Answer of exercise 4

1. It is possible to use any of the four definitions of a submanifold. Here, for
once, we propose to use the definition « by diffeomorphism ».
Let d be the dimension of M .
Let x be a point in MU . Let us show the existence of neighborhoods Vx of
x and V0 of 0 in Rn, and a Ck-diffeomorphism ϕ : Vx → V0 such that

ϕ(MU ∩ Vx) =
(
Rd × {0}n−d

)
∩ V0.

Let z ∈ M be such that x = Uz. As M is a submanifold of class Ck and
dimension d, there exist neighborhoods Vz of z and V0 of 0 in Rn, and a
Ck-diffeomorphism ϕz : Vz → V0 such that

ϕz(M ∩ Vz) =
(
Rd × {0}n−d

)
∩ V0.

Let us fix such Vz, V0, ϕz.
We define Vx = UVz = {Us, s ∈ Vz}. It is a neighborhood of x. 1 Let us
define

ϕ : Vx → V0

x′ → ϕz(U
−1x′).

Observe that ϕ is well-defined, and it is a Ck-diffeomorphism. Indeed, ϕ is
the composition of ϕz, which is a Ck-diffeomorphism between Vz and V0,

1. Justification : it contains Uz = x and, for all ϵ small enough, B(x, ϵ) ⊂
UB(z, |||U−1|||ϵ) ⊂ UVz = Vx.
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and of the map
(
x′ → U−1x′), which is a C∞-diffeomorphism between Vx

and Vz. 2

Moreover,

ϕ(MU ∩ Vx) = ϕ ({Ux′, x′ ∈ M ∩ Vz})
=

{
ϕz(U

−1Ux′), x′ ∈ M ∩ Vz

}
= {ϕz(x

′), x′ ∈ M ∩ Vz}
= ϕz(M ∩ Vz)

=
(
Rd × {0}n−d

)
∩ V0.

2. a) The map γU is continuous and piecewise C1, as it is the composition of
γ, which is itself continuous and piecewise C1, and a linear, hence C∞,
map. In addition,

γU(0) = Uγ(0) = Ux1 and γU(A) = Uγ(A) = Ux2.

Therefore, γU is a path connecting Ux1 and Ux2.
b) For all t ∈ [0;A] such that γ is differentiable at t, the map γU is also

differentiable at t (by the theorem of composition of differentiable maps)
and

γ′
U(t) = Uγ′(t).

As U is orthogonal, it holds for all such t that ||γ′
U(t)||2 = ||γ′(t)||2.

Consequently,

ℓ(γU) =

∫ A

0

||γ′
U(t)||2dt

=

∫ A

0

||γ′(t)||2dt

= ℓ(γ).

c) From the previous two subquestions,

distMU
(Ux1, Ux2) = inf {ℓ(γ), γ is a path connecting Ux1 and Ux2}

≤ inf {ℓ(γU), γ is a path connecting x1 and x2}
= inf {ℓ(γ), γ is a path connecting x1 and x2}
= distM(x1, x2).

To show the converse inequality, we observe that, if we replace M with
MU and U with U−1 in the previous questions, it holds

M = (MU)U−1
def
= {U−1x, x ∈ MU};

2. Remark : for any invertible matrix M and any set E ⊂ Rn,
(
x′ → Mx′) is a C∞-

diffeomorphism between E and ME, with reciprocal
(
z′ ∈ ME → M−1z′ ∈ E

)
.
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x1 = U−1(Ux1);

x2 = U−1(Ux2).

Therefore, the inequality we have just shown also implies that

distM(x1, x2) = dist(MU )U−1 (U
−1(Ux1), U−1(Ux2))

≤ distMU
(Ux1, Ux2).

The two inequalities, together, imply that

distM(x1, x2) = distMU
(Ux1, Ux2).

3. a) Let us fix t ∈ I.
Let us for a moment consider a fixed t′ ∈ I. Let us set γ̃ = γ|[t;t′] and
define, as in Question 2., γ̃U : s ∈ [t; t′] → Uγ̃(s) ∈ Rn. By the same
reasoning as in Question 2.b),

ℓ(γ̃U) = ℓ(γ̃).

In addition, we observe that γ̃U = γU |[t;t′]. Therefore, the above equality
is equivalent to

ℓ(γU |[t;t′]) = ℓ(γ|[t;t′]).

From this we deduce that, for all t′ close enough to t,

ℓ(γU |[t;t′]) = ℓ(γ|[t;t′])

= distM(γ(t); γ(t′)) as γ is locally minimizing
= distMU

(γU(t); γU(t
′)) from Question 2.c).

b) The map γU is differentiable, since it is the composition of two differen-
tiable maps. For all t ∈ I, ||γ′

U(t)||2 = ||Uγ′(t)||2 = ||γ′(t)||2. As γ has
constant speed (it is a geodesic), γU also does.

c) The map γU is C2 (as it is the composition of γ, which is C2, and
a C∞-map). We must show that it satisfies the geodesic equation. A
possibility would be to explicitely compute γ′′

U and the tangent space
to MU at every point. Here, we will rather deduce this result from
Questions 3.a) and 3.b).
We must show that γU satisfies the geodesic equation at each point of
I. Let t belong to I. Let us show that γU satisfies the geodesic equation
at t :

γ′′
U(t) ∈ (TγU (t)MU)

⊥. (3)

Let t′ ∈ I \ {t} be such that

ℓ(γU |[t;t′]) = distMU
(γU(t), γU(t

′)).
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Such a t′ exists from Question 3.a).
From a theorem seen in class (labelled as 3.22 in the lecture notes),
since γU |[t;t′] is a path with constant speed between γU(t) and γU(t

′),
whose length is equal to the distance between γU(t) and γU(t

′), it is a
geodesic. Consequently, it satisfies the geodesic equation at each point
of [t; t′]. In particular, Equation (3) is true.
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