Geometry and differential equations : exam

May 21 2024, 2 hours

You can use any written or printed material.

For each exercise, the number of points is an indication; it may change.

Except for Exercise 1, you must justify all your answers, clearly and rigorously. Don't forget quantifiers!

Exercise 1

The picture on the left represents a 1-dimensional submanifold of \mathbb{R}^2 .

Draw a plausible affine tangent space at each of the two points marked by black dots. [2 points]

Exercise 2

We define

$$f : \mathbb{R} \to \mathbb{R}$$

$$x \to -x^3 e^{-\frac{1}{x^2}} \text{ if } x \neq 0,$$

$$0 \qquad \text{if } x = 0.$$

Find all maximal solutions of the equation

$$u' = f(u)$$

[Note : if you need it, you can admit without proof that f is C^{∞} over \mathbb{R} .] [4 points]

Exercise 3

We consider the following differential equation

$$\begin{cases} x' = xe^{xy}, \\ y' = (y - x^2)e^{xy}. \end{cases}$$

- 1. a) Show that the only equilibrium is (0,0).b) Is it unstable, stable, asymptotically stable?
- 2. Let $(x, y) : I \to \mathbb{R}^2$ be a maximal solution such that, for some $t_0 \in I$, $x(t_0) = 0$. Show that $I = \mathbb{R}$ and, for all $t \in \mathbb{R}$,

$$\begin{aligned} x(t) &= 0, \\ y(t) &= y(t_0)e^{t-t_0}. \end{aligned}$$

3. a) Let $(x, y) : I \to \mathbb{R}^2$ be a maximal solution such that $x(t_0) \neq 0$ for all $t_0 \in I$. We define

$$\begin{array}{rcccc} F & : & I & \to & \mathbb{R} \\ & t & \to & \frac{y(t) + x(t)^2}{x(t)} \end{array}$$

Show that F is constant.

b) For any $\alpha \in \mathbb{R}$, we define

$$\begin{array}{rccc} f_{\alpha} & : & \mathbb{R} & \to & \mathbb{R} \\ & & x & \to & \alpha x - x^2. \end{array}$$

For each $(x_0, y_0) \in \mathbb{R}^2$ such that $x_0 \neq 0$, show that the orbit of (x_0, y_0) under the flow of the differential equation is a subset of the graph of f_{α} , for some $\alpha \in \mathbb{R}$.

4. Draw the phase portrait.

[9 points]

Exercise 4

Let $n, k \in \mathbb{N}^*$ be fixed, with $k \geq 2$. Let $M \subset \mathbb{R}^n$ be a submanifold of class C^k . We fix $U \in O_n(\mathbb{R})$ an orthogonal matrix and define

$$M_U = \{Ux, x \in M\}.$$

- 1. Show that M_U is a submanifold of \mathbb{R}^n of class C^k , of the same dimension as M.
- From now on, we assume that M is connected. Let x₁, x₂ be two points in M.
 a) For some A ∈ ℝ⁺, let γ : [0; A] → M be a path connecting x₁ and x₂. We define

$$\begin{array}{rccc} \gamma_U & : & [0;A] & \to & \mathbb{R}^n, \\ & t & \to & U\gamma(t) \end{array}$$

Show that γ_U is a path in M_U , connecting Ux_1 and Ux_2 .

- b) Show that $\ell(\gamma_U) = \ell(\gamma)$.
- c) Show that $\operatorname{dist}_M(x_1, x_2) = \operatorname{dist}_{M_U}(Ux_1, Ux_2)$.
- 3. Let $I \subset \mathbb{R}$ be an interval, and $\gamma : I \to M$ a geodesic. We recall that geodesics are locally minimizing, that is, for every $t \in I$,

 $\ell\left(\gamma_{\mid [t;t']}\right) = \operatorname{dist}_M(\gamma(t),\gamma(t')) \quad \text{for all } t' \text{ close enough to } t.$

a) We define γ_U as previously. Show that γ_U is locally minimizing.

b) Show that γ_U has constant speed.

c) Show that γ_U satisfies the geodesic equation, hence is a geodesic. [9 points]