## Geometry and differential equations : exam

May 21 2024, 2 hours
You can use any written or printed material.
For each exercise, the number of points is an indication; it may change.
Except for Exercise 1, you must justify all your answers, clearly and rigorously.
Don't forget quantifiers!


## Exercise 1

The picture on the left represents a 1dimensional submanifold of $\mathbb{R}^{2}$.
Draw a plausible affine tangent space at each of the two points marked by black dots.
[2 points]

## Exercise 2

We define

$$
\begin{array}{rccc}
f: \mathbb{R} & \rightarrow & \mathbb{R} & \\
x & \rightarrow-x^{3} e^{-\frac{1}{x^{2}}} & \text { if } x \neq 0 \\
& & 0 & \text { if } x=0
\end{array}
$$

Find all maximal solutions of the equation

$$
u^{\prime}=f(u) .
$$

[Note: if you need it, you can admit without proof that $f$ is $C^{\infty}$ over $\mathbb{R}$.]
[4 points]

## Exercise 3

We consider the following differential equation

$$
\left\{\begin{aligned}
x^{\prime} & =x e^{x y} \\
y^{\prime} & =\left(y-x^{2}\right) e^{x y} .
\end{aligned}\right.
$$

1. a) Show that the only equilibrium is $(0,0)$.
b) Is it unstable, stable, asymptotically stable?
2. Let $(x, y): I \rightarrow \mathbb{R}^{2}$ be a maximal solution such that, for some $t_{0} \in I, x\left(t_{0}\right)=0$. Show that $I=\mathbb{R}$ and, for all $t \in \mathbb{R}$,

$$
\begin{aligned}
x(t) & =0 \\
y(t) & =y\left(t_{0}\right) e^{t-t_{0}} .
\end{aligned}
$$

3. a) Let $(x, y): I \rightarrow \mathbb{R}^{2}$ be a maximal solution such that $x\left(t_{0}\right) \neq 0$ for all $t_{0} \in I$. We define

$$
\begin{aligned}
& F: I \rightarrow \quad \mathbb{R} \\
& t \rightarrow \frac{y(t)+x(t)^{2}}{x(t)} .
\end{aligned}
$$

Show that $F$ is constant.
b) For any $\alpha \in \mathbb{R}$, we define

$$
\begin{aligned}
& f_{\alpha}: \mathbb{R} \rightarrow \mathbb{R} \\
& x \rightarrow \alpha x-x^{2} .
\end{aligned}
$$

For each $\left(x_{0}, y_{0}\right) \in \mathbb{R}^{2}$ such that $x_{0} \neq 0$, show that the orbit of $\left(x_{0}, y_{0}\right)$ under the flow of the differential equation is a subset of the graph of $f_{\alpha}$, for some $\alpha \in \mathbb{R}$.
4. Draw the phase portrait.
[9 points]

## Exercise 4

Let $n, k \in \mathbb{N}^{*}$ be fixed, with $k \geq 2$. Let $M \subset \mathbb{R}^{n}$ be a submanifold of class $C^{k}$. We fix $U \in O_{n}(\mathbb{R})$ an orthogonal matrix and define

$$
M_{U}=\{U x, x \in M\} .
$$

1. Show that $M_{U}$ is a submanifold of $\mathbb{R}^{n}$ of class $C^{k}$, of the same dimension as $M$.
2. From now on, we assume that $M$ is connected. Let $x_{1}, x_{2}$ be two points in $M$.
a) For some $A \in \mathbb{R}^{+}$, let $\gamma:[0 ; A] \rightarrow M$ be a path connecting $x_{1}$ and $x_{2}$. We define

$$
\begin{aligned}
\gamma_{U}:[0 ; A] & \rightarrow \mathbb{R}^{n}, \\
t & \rightarrow U \gamma(t) .
\end{aligned}
$$

Show that $\gamma_{U}$ is a path in $M_{U}$, connecting $U x_{1}$ and $U x_{2}$.
b) Show that $\ell\left(\gamma_{U}\right)=\ell(\gamma)$.
c) Show that $\operatorname{dist}_{M}\left(x_{1}, x_{2}\right)=\operatorname{dist}_{M_{U}}\left(U x_{1}, U x_{2}\right)$.
3. Let $I \subset \mathbb{R}$ be an interval, and $\gamma: I \rightarrow M$ a geodesic. We recall that geodesics are locally minimizing, that is, for every $t \in I$,

$$
\ell\left(\gamma_{\mid\left[t ; t^{\prime}\right]}\right)=\operatorname{dist}_{M}\left(\gamma(t), \gamma\left(t^{\prime}\right)\right) \quad \text { for all } t^{\prime} \text { close enough to } t .
$$

a) We define $\gamma_{U}$ as previously. Show that $\gamma_{U}$ is locally minimizing.
b) Show that $\gamma_{U}$ has constant speed.
c) Show that $\gamma_{U}$ satisfies the geodesic equation, hence is a geodesic. [9 points]

