
PROJECTED GRADIENT DESCENT ACCUMULATES AT1

BOULIGAND STATIONARY POINTS∗2

GUILLAUME OLIKIER† AND IRÈNE WALDSPURGER‡3
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1. Introduction. Let E be a Euclidean vector space, C a nonempty closed sub-14

set of E , and f : E → R a function satisfying at least the first of the following two15

properties:16

(H1) f is differentiable on C, i.e., for every x ∈ C, there exists a (unique) vector17

in E , denoted by ∇f(x), such that18

lim
y→x

y∈E\{x}

f(y)− f(x)− ⟨∇f(x), y − x⟩
∥y − x∥

= 0,19

and ∇f : C → E is continuous;20

(H2) f is differentiable on E and ∇f : E → E is locally Lipschitz continuous.21

This paper considers the problem22

(1.1) min
x∈C

f(x)23

of minimizing f on C. In general, without further assumptions on C or f , finding an24

exact or approximate global minimizer of problem (1.1) is intractable. Even finding25

an approximate local minimizer is not always feasible in polynomial time (unless26

P = NP) [2]. Therefore, algorithms are only expected to return a point satisfying a27

condition called stationarity, which is a tractable surrogate for local optimality.28

A point x ∈ C is said to be stationary for (1.1) if −∇f(x) is normal to C at x.29

Several definitions of normality exist. Each one defines a different notion of station-30

arity, which is a surrogate for local optimality in the sense that, possibly under mild31

regularity assumptions on f , every local minimizer of f |C is stationary for (1.1). In32

particular, each of the three notions of normality in [53, Definition 6.3 and Exam-33

ple 6.16], namely normality in the general sense, in the regular sense, and in the34
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French government through the 3IA Côte d’Azur Investments ANR-19-P3IA-0002 and the PRAIRIE
3IA Institute ANR-19-P3IA-0001, managed by the National Research Agency.
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2 G. OLIKIER AND I. WALDSPURGER

proximal sense, yields an important definition of stationarity. The sets of general,35

regular, and proximal normals to C at x ∈ C are respectively denoted by NC(x),36

N̂C(x), and ̂̂NC(x). These sets are reviewed in Section 2.2. Importantly, they are37

nested as follows: for every x ∈ C,38

(1.2) ̂̂NC(x) ⊆ N̂C(x) ⊆ NC(x),39

and C is said to be Clarke regular at x if the second inclusion is an equality. The40

definitions of stationarity based on these sets are given in Definition 1.1, and the41

terminology is discussed in Section 3.42

Definition 1.1. For problem (1.1), a point x ∈ C is said to be:43

• Mordukhovich stationary (M-stationary) if −∇f(x) ∈ NC(x);44

• Bouligand stationary (B-stationary) if −∇f(x) ∈ N̂C(x);45

• proximally stationary (P-stationary) if −∇f(x) ∈ ̂̂NC(x).46

There are many practical examples of a set C for which at least one of the inclu-47

sions in (1.2) is strict, especially the second one. This is notably shown by the four48

examples studied in Section 7, where the second inclusion is strict at infinitely many49

points. The three notions of stationarity are therefore not equivalent. Actually, as ex-50

plained next, B-stationarity and P-stationarity are the strongest necessary conditions51

for local optimality under different sets of assumptions on f , while M-stationarity is52

a weaker condition.53

As pointed out in [13, §5], for problem (1.1) under the only assumption that f54

is differentiable on C, B-stationarity is the strongest necessary condition for local55

optimality. The same is true if f satisfies (H1). Indeed, by [53, Theorem 6.11], for all56

x ∈ C,57

N̂C(x) =

{
−∇h(x)

∣∣∣ h : E → R is differentiable at x,
x is a local minimizer of h|C

}
(1.3)58

=

{
−∇h(x)

∣∣∣ h : E → R satisfies (H1),
x is a local minimizer of h|C

}
.(1.4)59

The inclusion ⊇ in (1.3) shows that every local minimizer of f |C is B-stationary60

for (1.1). Thus, N̂C(x) is sufficiently large to yield a necessary condition for local61

optimality. The inclusion ⊆ in (1.3) shows that replacing N̂C(x) with one of its62

proper subsets would yield a condition that is not necessary for local optimality. The63

equality (1.4) shows that these observations also hold if f satisfies (H1).64

P-stationarity is the strongest necessary condition for local optimality if f satis-65

fies (H2). Indeed, by Theorem 2.5, for all x ∈ C,66

(1.5) ̂̂NC(x) =

{
−∇h(x)

∣∣∣ h : E → R satisfies (H2),
x is a local minimizer of h|C

}
.67

The inclusion ⊇ in (1.5) shows that, under (H2), every local minimizer of f |C is P-68

stationary for (1.1). The inclusion ⊆ in (1.5) shows that replacing ̂̂NC(x) with one of69

its proper subsets would yield a condition that is not necessary for local optimality.70

In comparison, M-stationarity is a weaker notion of stationarity which is con-71

sidered unsatisfactory in [27, §4], [32, §1], and [50, §2.1]. Furthermore, as explained72

in [32], distinguishing convergence to a B-stationary point from convergence to an73

M-stationary point is difficult (a phenomenon formalized by the notion of apoca-74

lypse in [32]) in the sense that it cannot be done based on standard measures of75
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PGD ACCUMULATES AT B-STATIONARY POINTS 3

B-stationarity because of their possible lack of lower semicontinuity at points where76

the feasible set is not Clarke regular, as also explained in [46, §§1.1 and 2.4].77

Projected gradient descent, or PGD for short, is a basic algorithm aiming at78

solving problem (1.1). To the best of our knowledge, the first article to have considered79

PGD on a possibly nonconvex closed set was [6]. The nonmonotone backtracking80

version considered in this paper is defined as Algorithm 4.2 and is based on [30,81

Algorithm 3.1] and [11, Algorithm 3.1]. Given x ∈ C as input, the iteration map of82

PGD, called the PGD map and defined as Algorithm 4.1, performs a backtracking83

projected line search along the direction of −∇f(x), i.e., computes a projection y84

of x − α∇f(x) onto C for decreasing values of the step size α ∈ (0,∞) until y85

satisfies an Armijo condition. In the simplest version of PGD, called monotone,86

the Armijo condition ensures that the value of f at the next iterate is smaller by a87

specified amount than the value at the current iterate. Following the general settings88

proposed in [30, 31] and [11], the value at the current iterate can be replaced with89

the maximum value of f over a prefixed number of the previous iterates (“max” rule)90

or with a weighted average of the values of f at the previous iterates (“average”91

rule). This version of PGD is called nonmonotone. By [31, Theorem 3.1], monotone92

PGD accumulates at M-stationary points of (1.1) if f is continuously differentiable93

on E and bounded from below on C. By [11, Theorem 4.6], the same result holds94

for nonmonotone PGD with the “average” rule and, by [31, Theorem 4.1], also for95

nonmonotone PGD with the “max” rule if f is further uniformly continuous on the96

sublevel set97

(1.6) {x ∈ C | f(x) ≤ f(x0)},98

where x0 ∈ C is the initial iterate given to the algorithm. However, as pointed out in99

[32, §1], it is an open question whether the accumulation points of PGD are always100

B-stationary for (1.1).101

This paper answers positively the question by proving Theorem 1.2.102

Theorem 1.2. Consider a sequence generated by PGD (Algorithm 4.2) when ap-103

plied to problem (1.1).104

• If this sequence is finite, then its last element is B-stationary for (1.1) un-105

der (H1), and even P-stationary for (1.1) under (H2).106

• If this sequence is infinite, then all of its accumulation points, if any, are B-107

stationary for (1.1) under (H1), and even P-stationary for (1.1) under (H2).108

If ∇f is globally Lipschitz continuous, then it is known in the literature that109

every local minimizer of f |C is P-stationary for (1.1) [61, Proposition 3.5(ii)] (the110

result is given for a global minimizer but the proof shows that it also holds for a local111

minimizer) and that PGD with a constant step size smaller than the inverse of the112

Lipschitz constant accumulates at P-stationary points of (1.1) [61, Theorem 5.6(i)].113

Indeed, the ZeroFPR algorithm proposed in [61] extends the proximal gradient (PG)114

algorithm with a constant step size [61, Remark 5.5] which itself extends PGD with115

a constant step size; problem (1.1) corresponds to [61, problem (1.1)] with g the116

indicator function of our set C. These results were rediscovered in [50] where, in117

addition, the distance from the negative gradient of the continuously differentiable118

function to the regular subdifferential of the other function is proven to converge to119

zero along the generated sequence, and a quadratic lower bound on f − f(x) at every120

accumulation point x of PG is obtained. The two results cited from [61] were already121

stated in [5, Theorems 2.2 and 3.1] for C the set Rn
≤s of vectors of Rn having at most122

s nonzero components for some positive integer s < n, and in [3, Proposition 1 and123
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4 G. OLIKIER AND I. WALDSPURGER

Theorem 1] for C satisfying a regularity condition called proximal smoothness which124

none of the four examples studied in Section 7 satisfies.125

This paper is organized as follows. The necessary background in variational analy-126

sis is introduced in Section 2. The literature on stationarity is partially surveyed in127

Section 3. The PGD algorithm is reviewed in Section 4. It is analyzed under hy-128

pothesis (H1) in Section 5 and under hypothesis (H2) in Section 6. Four practical129

examples of a set C for which the first inclusion in (1.2) is an equality for all x ∈ C130

and the second is strict for infinitely many x ∈ C are given in Section 7. Theorem 1.2131

is illustrated by a comparison between PGD and a first-order algorithm that is not132

guaranteed to accumulate at B-stationary points of (1.1) in Section 8. Concluding133

remarks are gathered in Section 9.134

2. Elements of variational analysis. This section, mostly based on [53], re-135

views background material in variational analysis that is used in the rest of the paper.136

Section 2.1 concerns the projection map onto C and its main properties. Section 2.2137

reviews the three notions of normality on which the three notions of stationarity138

provided in Definition 1.1 are based.139

Recall that, throughout the paper, E is a Euclidean vector space and C ⊆ E is140

nonempty and closed. Moreover, for every x ∈ E and ρ ∈ (0,∞), B(x, ρ) := {y ∈ E |141

∥x − y∥ < ρ} and B[x, ρ] := {y ∈ E | ∥x − y∥ ≤ ρ} are respectively the open and142

closed balls of center x and radius ρ in E . Following [53, §3B], a nonempty subset K143

of E is called a cone if x ∈ K implies αx ∈ K for all α ∈ [0,∞).144

2.1. Projection map. Given x ∈ E , the distance from x to C is d(x,C) :=145

miny∈C ∥x − y∥ and the projection of x onto C is PC(x) := argminy∈C ∥x − y∥. By146

[53, Example 1.20], the function E → R : x 7→ d(x,C) is continuous and, for every147

x ∈ E , the set PC(x) is nonempty and compact. Proposition 2.1 is invoked frequently148

in the rest of the paper.149

Proposition 2.1. For all x ∈ C, v ∈ E, and y ∈ PC(x− v),150

∥y − x∥ ≤ 2∥v∥,(2.1)151

2 ⟨v, y − x⟩ ≤ −∥y − x∥2,(2.2)152

and the inequalities are strict if x /∈ PC(x− v).153

Proof. By definition of the projection, ∥y − (x − v)∥ ≤ ∥x − (x − v)∥ = ∥v∥ and154

the inequality is strict if x /∈ PC(x− v). Thus, on the one hand,155

∥y − x∥ = ∥y − (x− v)− v∥ ≤ ∥y − (x− v)∥+ ∥ − v∥ ≤ ∥v∥+ ∥v∥ = 2∥v∥,156

and, on the other hand, ∥y − (x− v)∥2 ≤ ∥v∥2, which is equivalent to (2.2).157

2.2. Normality and stationarity. Based on [53, Chapter 6], this section re-158

views the three notions of normality on which the three notions of stationarity given159

in Definition 1.1 are based.160

Following [53, Definition 6.1], a vector v ∈ E is said to be tangent to C at x ∈ C161

if there exist sequences (xi)i∈N in C converging to x and (ti)i∈N in (0,∞) such that162

the sequence (xi−x
ti

)i∈N converges to v. The set of all tangent vectors to C at x ∈ C163

is a closed cone [53, Proposition 6.2] called the tangent cone to C at x and denoted164

by TC(x). Following [53, Definition 6.3 and Proposition 6.5], the regular normal cone165

to C at x ∈ C is166

N̂C(x) := {v ∈ E | ⟨v, w⟩ ≤ 0 ∀w ∈ TC(x)}167
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which is a closed convex cone. Following [53, Definition 6.3], a vector v ∈ E is said to168

be normal (in the general sense) to C at x ∈ C if there exist sequences (xi)i∈N in C169

converging to x and (vi)i∈N converging to v such that, for all i ∈ N, vi ∈ N̂C(xi). The170

set of all normal vectors to C at x ∈ C is a closed cone [53, Proposition 6.5] called171

the normal cone to C at x and denoted by NC(x). Following [53, Example 6.16], a172

vector v ∈ E is called a proximal normal to C at x ∈ C if there exists α ∈ (0,∞) such173

that x ∈ PC(x + αv), i.e., α∥v∥ = d(x + αv,C), which implies that, for all α ∈ [0, α),174

PC(x + αv) = {x}. The set of all proximal normals to C at x ∈ C is a convex cone175

called the proximal normal cone to C at x and denoted by ̂̂NC(x).176

As stated in (1.2), for all x ∈ C,177

̂̂NC(x) ⊆ N̂C(x) ⊆ NC(x).178

Following [53, Definition 6.4], C is said to be Clarke regular at x ∈ C if N̂C(x) =179

NC(x). Thus, M-stationarity is equivalent to B-stationarity at a point x ∈ C if and180

only if C is Clarke regular at x, which is not the case in many practical situations, as181

shown by the four examples given in Section 7. For those examples, however, regular182

normals are proximal normals (Proposition 7.1). An example of a set C and a point183

x ∈ C such that both inclusions in (1.2) are strict is given in Example 2.2.184

Example 2.2. Let E := R2 and C :=
{(

t,max
{

0, t3/5
})
| t ∈ R

}
(inspired by [53,185

Figure 6–12(a)]). Then,186

TC(0, 0) = ({0} × [0,∞)) ∪ ((−∞, 0]× {0}),187

N̂C(0, 0) = [0,∞)× (−∞, 0],188 ̂̂NC(0, 0) = N̂C(0, 0) \ ((0,∞)× {0}),189

NC(0, 0) = N̂C(0, 0) ∪ TC(0, 0).190

Thus,191

̂̂NC(0, 0) ⊊ N̂C(0, 0) ⊊ NC(0, 0).192

This is illustrated in Figure 1.

NC(0, 0) = ̂̂NC(0, 0) ∪ (N̂C(0, 0) \ ̂̂NC(0, 0)) ∪ TC(0, 0)

•
(0, 0)

C

Fig. 1. Tangent and normal cones from Example 2.2.

193

As pointed out in Section 1, the regular and proximal normal cones enjoy gradient194

characterizations which imply that B- and P-stationarity are the strongest necessary195

conditions for local optimality under different sets of assumptions on f . Those given196
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6 G. OLIKIER AND I. WALDSPURGER

in (1.3)–(1.4) come from [53, Theorem 6.11]. That given in (1.5) comes from Theo-197

rem 2.5, established at the end of this section.198

As shown by (1.4), for problem (1.1), B-stationarity is the strongest necessary199

condition for local optimality if f is only assumed to satisfy (H1). In particular, under200

this assumption, P-stationarity is not necessary for local optimality, as illustrated by201

Example 2.3.202

Example 2.3. Let E := R2, C :=
{

(x1, x2) ∈ R2 | x2 ≥ max
{

0, x
3/5
1

}}
[53, Fig-203

ure 6–12(a)], and f : R2 → R : (x1, x2) 7→ 1
2 (x1 − 1)2 + |x2|3/2. Then, f is continu-204

ously differentiable on E, hence on C, and, for all (x1, x2) ∈ R2, ∇f(x1, x2) = (x1 −205

1, 3
2 sgn(x2)|x2|1/2). Thus, −∇f(0, 0) = (1, 0) ∈ N̂C(0, 0) \ ̂̂NC(0, 0), yet argminC f =206

{(0, 0)}.207

Proposition 2.4 states that P-stationarity is necessary for local optimality if f is208

assumed to satisfy (H2), that is, f is differentiable on E and ∇f is locally Lipschitz209

continuous. The latter means that, for every open or closed ball B ⊊ E ,210

Lip
B

(∇f) := sup
x,y∈B
x ̸=y

∥∇f(x)−∇f(y)∥
∥x− y∥

<∞,211

which implies, by [44, Lemma 1.2.3], that, for all x, y ∈ B,212

(2.3) |f(y)− f(x)− ⟨∇f(x), y − x⟩ | ≤ LipB(∇f)

2
∥y − x∥2.213

Proposition 2.4. Assume that f satisfies (H2). If x ∈ C is a local minimizer of214

f |C , then −∇f(x) ∈ ̂̂NC(x).215

Proof. By contrapositive. Assume that −∇f(x) /∈ ̂̂NC(x) for some x ∈ C. Let216

ρ ∈ (0,∞). Then, for all α ∈ (0, ρ
2∥∇f(x)∥ ],217

x /∈ PC(x− α∇f(x)) ⊆ B(x, 2α∥∇f(x)∥) ⊆ B(x, ρ),218

where the first inclusion holds by (2.1). Thus, by (2.3) and (2.2), for all α ∈219

(0,min{ ρ
2∥∇f(x)∥ ,

1
LipB(x,ρ)(∇f)}] and y ∈ PC(x− α∇f(x)),220

f(y)− f(x) ≤ ⟨∇f(x), y − x⟩+
LipB(x,ρ)(∇f)

2
∥y − x∥2221

<

(
− 1

2α
+

LipB(x,ρ)(∇f)

2

)
∥y − x∥2222

≤ 0.223

Hence, x is not a local minimizer of f |C .224

Theorem 2.5 strengthens [53, Proposition 8.46(d)] by stating that (1.5) is valid,225

which shows that P-stationarity is the strongest necessary condition for local opti-226

mality under hypothesis (H2).227

Theorem 2.5 (gradient characterization of proximal normals). For every x ∈ C,228

(1.5) holds.229

Proof. Let x ∈ C. The inclusion ⊇ holds by Proposition 2.4. For the inclusion ⊆,230

let v ∈ ̂̂NC(x). By definition of the proximal normal cone, there exists α ∈ (0,∞)231
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such that x ∈ PC(x+αv). This is equivalent to the fact that x is a minimizer of h|C ,232

where h : E → R is defined by233

h(y) :=
1

2α
∥y − (x + αv)∥2 ∀y ∈ E .234

The function h is differentiable, its gradient is locally Lipschitz continuous (actually,235

globally Lipschitz continuous, since it is an affine map), and236

−∇h(x) = v.237

Since x is a global minimizer of h|C , it is also a local minimizer of h|C . This shows238

that239

v ∈
{
−∇h(x)

∣∣∣ h : E → R satisfies (H2),
x is a local minimizer of h|C

}
,240

which implies the inclusion ⊆ in (1.5).241

Remark 2.6. From our proof, we see that (1.5) is also true if we replace “local242

minimizer” with “global minimizer”. The same holds for equations (1.3)–(1.4) [53,243

Theorem 6.11]. However, in this section, we are interested in understanding the244

closeness between the notions of stationarity and local optimality.245

3. Stationarity in the literature. This section surveys the names given to the246

stationarity notions provided in Definition 1.1 and attempts to offer a brief historical247

perspective. The terms “B-stationarity” and “M-stationarity” first appeared in the248

literature about mathematical programs with equilibrium constraints (MPECs), as249

explained in Sections 3.1 and 3.2. In contrast, the term “P-stationarity” seems to be250

new in the literature. P-stationarity is called “criticality” in [61, Definition 3.1(ii)];251

problem (1.1) corresponds to [61, problem (1.1)] with g the indicator function of our252

set C. We propose the name “P-stationarity” because this stationarity notion is based253

on the proximal normal cone. It is closely related to the so-called α-stationarity, as254

explained in Section 3.3.255

3.1. A brief history of Bouligand stationarity. Peano already knew that256

B-stationarity is a necessary condition for optimality. The statement is implicit in257

his 1887 book Applicazioni geometriche del calcolo infinitesimale and explicit in his258

1908 book Formulario Mathematico where the formulation is based on the tangent259

cone and the derivative defined in the same book; see the historical investigation in260

[12, 13].261

B-stationarity appears as a necessary condition for optimality in [62, Theorem 2.1]262

and [23, Theorem 1], without any reference to Peano’s work. The latter theorem uses263

the polar of the closure of the convex hull of the tangent cone which equals the polar of264

the tangent cone by [53, Corollary 6.21]. Neither “stationary” nor “critical” appears265

in [62] or [23].266

The “Bouligand derivative”, or “B-derivative” for short, was introduced in [52].267

It is a special case of the contingent derivative introduced by Aubin based on the268

tangent cone. The name “Bouligand derivative” was chosen because the tangent269

cone is generally attributed to Bouligand; see, e.g., [53, 41, 42] for recent references.270

Differentiability implies B-differentiability.271

In [58, §4], a point where a real-valued function is B-differentiable is called a272

“Bouligand stationary (B-stationary) point” of the function if the B-derivative at that273
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8 G. OLIKIER AND I. WALDSPURGER

point is nonnegative. This is a stationarity concept for unconstrained optimization,274

which therefore does not apply to problem (1.1).275

B-stationarity is called a “stationarity condition” and said to be “well known” in276

[38, §4.1] where [23] is cited.277

In [54, §2.1], the term “B-stationarity” is used to name the stationarity concept278

for an MPEC that corresponds to the B-stationarity in the sense of [58, §4] for a279

nonsmooth reformulation of the MPEC [54, Proposition 6]. As pointed out in [65,280

§2.1] and [14, §3.3 ], the “B-stationarity” in the sense of [54, §2.1], which is specific281

to MPECs, is not B-stationarity in the sense of Definition 1.1 and is called “MPEC-282

linearized B-stationarity” in [14, §3.3] to avoid confusion. Nevertheless, this MPEC-283

linearized B-stationarity appears under the name “B-stationarity” in [28, §1.1], [24,284

Definition 2.2], and [64, Definition 3.2] which all cite [54].285

The term “B-stationarity” was used to name the absence of descent directions in286

the tangent cone (as in Definition 1.1) first in [48, §1]. It was used in this sense in287

several subsequent works by various authors; see, e.g., [18, §2], [19, §2], [17, Defini-288

tion 2.4], [65, Definition 2.2], [14, §§3.3 and 4], [15, §3], [47, §2], [59, Definition 2.4],289

[21, Definition 3.4], [49, (18)], [7, Definition 3(1)], [8, Definition 4(i)], [27, §4], and [9,290

Definition 6.1.1].291

In [9, Definition 6.1.1], B-stationarity is defined for the problem of minimizing a292

real-valued function that is B-differentiable on a nonempty closed subset of a Euclid-293

ean vector space, thereby extending the concept introduced in [58, §4] to constrained294

optimization. This more general definition reduces to that from Definition 1.1 if the295

function is differentiable.296

B-stationarity is also known under other names in the literature. First, in [16,297

Definition 1(b)] and [40, §3], B-stationarity is called “strong stationarity”; [16, prob-298

lem (4)] and [40, (P2)] reduce to problem (1.1) for F the identity map on Rn. Second,299

because the regular normal cone is also called the Fréchet normal cone, especially in300

infinite-dimensional spaces [53, 41, 42], B-stationarity is called “Fréchet stationarity”,301

or “F-stationarity” for short, in [35, Definition 4.1(ii)], [36, Definition 5.1(i)], and [37,302

Definition 3.2(ii)]. Third, B-stationarity is simply called “stationarity” (or “critical-303

ity”) in [55, §2.1], [25, §2.1.1], [32, Definition 2.3], [33, Definition 3.2(c)], and [20,304

Definition 1].305

3.2. A brief history of Mordukhovich stationarity. According to [16, §2],306

the term “M-stationarity” was introduced in [56] for an MPEC. This name was chosen307

because the corresponding stationarity condition was derived from the generalized308

differential calculus of Mordukhovich. To the best of our knowledge, the term “M-309

stationarity” was used to indicate that the negative gradient is in the normal cone (as310

in Definition 1.1) first in [16, Definition 1(a)]; recall that [16, problem (4)] reduces to311

problem (1.1) for F the identity map on Rn. There, the name is motivated by the312

presence of the normal cone which was introduced by Mordukhovich. M-stationarity313

appears, under this name, in several subsequent works by various authors; see, e.g.,314

[7, Definition 3(3)], [8, Definition 4(iii)], [27, §4], [40, §3], [31, §2], [30, §3], and [29,315

§2.3].316

3.3. Proximal stationarity and α-stationarity. P-stationarity is related to317

α-stationarity which was introduced in [5, Definition 2.3] for C = Rn
≤s and in [35,318

Definition 4.1(i)], [25, §2.1.1], [36, Definition 5.1(ii)], [34, (4.2)], and [37, Defini-319

tion 3.2(i)] for several low-rank sets. By definition of the proximal normal cone,320

a point x ∈ C is P-stationary for (1.1) if and only if there exists α ∈ (0,∞) such321

that x ∈ PC(x− α∇f(x)). In contrast, given α ∈ (0,∞), a point x ∈ C is said to be322
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α-stationary for (1.1) if x ∈ PC(x − α∇f(x)). Thus, while α-stationarity prescribes323

the number α ∈ (0,∞), P-stationarity merely requires the existence of such a number.324

Furthermore, α-stationarity should not be confused with the approximate stationarity325

from [32, Definition 2.6].326

4. The PGD algorithm. This section reviews the PGD algorithm, as defined327

in [30, Algorithm 3.1] except that the “average” rule is allowed as an alternative to328

the “max” rule. Its iteration map, called the PGD map, is defined as Algorithm 4.1.329

PGD is defined as Algorithm 4.2 which uses Algorithm 4.1 as a subroutine. The330

nonmonotonic behavior of PGD is described in Propositions 4.6 and 4.7.331

Algorithm 4.1 PGD map

Require: (E , C, f, α, α, β, c) where E is a Euclidean vector space, C is a nonempty
closed subset of E , f : E → R is differentiable on C, 0 < α ≤ α < ∞, and
β, c ∈ (0, 1).

Input: (x, µ) with x ∈ C and µ ∈ [f(x),∞).
Output: y ∈ PGD(x, µ; E , C, f, α, α, β, c).
1: Choose α ∈ [α, α] and y ∈ PC(x− α∇f(x));
2: while f(y) > µ + c ⟨∇f(x), y − x⟩ do
3: α← αβ;
4: Choose y ∈ PC(x− α∇f(x));
5: end while
6: Return y.

Remark 4.1. The Armijo condition332

f(y) ≤ µ + c ⟨∇f(x), y − x⟩333

ensures that the decrease µ − f(y) is at least a fraction c of the opposite of the334

directional derivative of f at x along the update vector y−x. By (2.2), this condition335

implies that336

(4.1) f(y) ≤ µ− c

2α
∥y − x∥2,337

which is the condition used in [31, Algorithms 3.1 and 4.1] and [11, Algorithm 3.1].338

Importantly, all results from [31] hold for both conditions, as is clear from the proofs.339

Remark 4.2. By Proposition 5.3, if f satisfies (H1) and x is not B-stationary340

for (1.1), then the while loop in Algorithm 4.1 is guaranteed to terminate, thereby341

producing a point y such that f(y) < µ; y ̸= x holds because x is not B-stationary342

and hence not P-stationary. If f satisfies (H2), then the while loop is guaranteed to343

terminate for every x ∈ C, by Corollary 6.2.344

The PGD algorithm is defined as Algorithm 4.2. It is said to be monotone or345

nonmonotone depending on whether µi = f(xi) for all i (that is, l = 0 for the “max”346

rule, or p = 1 for the “average” rule) or not.347
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Algorithm 4.2 PGD

Require: (E , C, f, α, α, β, c, “nonmonotonicity”) where E is a Euclidean vector space,
C is a nonempty closed subset of E , f : E → R is differentiable on C, 0 < α ≤
α < ∞, β, c ∈ (0, 1), and “nonmonotonicity” ∈ {(“max”, l), (“average”, p)} with
l ∈ N and p ∈ (0, 1].

Input: x0 ∈ C.
Output: a sequence in C.
1: i← 0;
2: µ−1 ← f(x0);

3: while −∇f(xi) /∈ N̂C(xi) do
4: if “nonmonotonicity” = (“max”, l) then
5: µi ← maxj∈{max{0,i−l},...,i} f(xj);
6: else if “nonmonotonicity” = (“average”, p) then
7: µi ← (1− p)µi−1 + pf(xi);
8: end if
9: Choose xi+1 ∈ PGD(xi, µi; E , C, f, α, α, β, c);

10: i← i + 1;
11: end while

Remark 4.3. For simplicity, we use a constant weight p in the “average” rule.348

However, we could allow the weight to change from one iteration to the other. It349

would then be denoted by pi. The main results of the article would hold true in this350

more general setting, under the additional assumption that infi∈N pi > 0.351

Remark 4.4. If f satisfies (H2), then N̂C(xi) should be replaced with ̂̂NC(xi) in352

line 3.353

Examples of a set C for which the projection map and the regular and proximal354

normal cones can be described explicitly abound in the literature; see Section 7. For355

such examples, Algorithm 4.2 can be practically implemented.356

Remark 4.5. From Remark 4.2, under (H1), the call to Algorithm 4.1 in line 9357

of PGD never results in an infinite loop. Consequently, by running PGD, one always358

encounters one of the following two situations:359

• PGD generates a finite sequence, and the last element of this sequence is360

B-stationary for (1.1) if f satisfies (H1), and even P-stationary for (1.1) if f361

satisfies (H2);362

• PGD generates an infinite sequence.363

The rest of this section and the next two concern the nontrivial case where PGD364

generates an infinite sequence. In that case, the stationarity of the accumulation365

points of the generated sequence, if any, is studied in Sections 5 and 6. Following366

[51, Remark 14], which states that it is usually better to determine whether an al-367

gorithm generates a sequence having at least one accumulation point by examining368

the algorithm in the light of the specific problem to which one wishes to apply it,369

no condition ensuring the existence of a convergent subsequence is imposed. As a370

reminder, a sequence (xi)i∈N in E has at least one accumulation point if and only if371

lim infi→∞ ∥xi∥ <∞.372

A property of monotone PGD that is helpful for its analysis is the fact that f is373

strictly decreasing along the generated sequence. For nonmonotone PGD, this is not374

true. However, weaker properties, stated in the following two propositions, will be375

enough for our purposes.376
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Proposition 4.6. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2)377

using the “max” rule. For every i ∈ N, let g(i) ∈ argmaxj∈{max{0,i−l},...,i} f(xj).378

Then:379

1. (f(xg(i)))i∈N is monotonically nonincreasing;380

2. (xi)i∈N is contained in the sublevel set (1.6);381

3. if x ∈ C is an accumulation point of (xi)i∈N, then (f(xg(i)))i∈N converges to382

φ ∈ [f(x), f(x0)];383

4. if f is bounded from below and uniformly continuous on a set that contains384

(xi)i∈N, then (f(xi))i∈N converges to φ ∈ R.385

Proof. The first two statements are [31, Lemma 4.1 and Corollary 4.1]. For386

the third one, let (xik)k∈N be a subsequence converging to x. Since the sequence387

(f(xg(i)))i∈N is monotonically nonincreasing, it has a limit in R ∪ {−∞}. Thus,388

lim
i→∞

f(xg(i)) = lim
k→∞

f(xg(ik)) ≥ lim inf
k→∞

f(xik) = f(x) > −∞.389

It remains to prove the fourth statement. From the first statement, and because f390

is bounded from below, (f(xg(i)))i∈N converges to some limit φ ∈ R. Assume, for391

the sake of contradiction, that (f(xi))i∈N does not converge to φ. Then, there exist392

ρ ∈ (0,∞) and a subsequence (f(xij ))j∈N contained in R \ [φ − ρ, φ + ρ]. For all393

j ∈ N, define pj := g(ij + l) − ij ∈ {0, . . . , l}. Then, there exist p ∈ {0, . . . , l}394

and a subsequence (pjk)k∈N such that, for all k ∈ N, pjk = p. By [31, (27)] or [30,395

(A.9)], (f(xg(i)−p))i∈N converges to φ. Therefore, (f(xg(i+l)−p))i∈N converges to φ.396

Hence, (f(xg(ijk+l)−p))k∈N converges to φ. This is a contradiction since, for all k ∈ N,397

f(xg(ijk+l)−p) = f(xijk
).398

Proposition 4.7. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2)399

using the “average” rule. Then:400

1. (xi)i∈N is contained in the sublevel set (1.6);401

2. if (xi)i∈N has an accumulation point, then (f(xi))i∈N and (µi)i∈N converge,402

toward the same (finite) value.403

Proof. The sequence (µi)i∈N is monotonically nonincreasing since, for all i ∈ N,404

f(xi) ≤ µi−1, hence µi = (1− p)µi−1 + pf(xi) ≤ µi−1. Therefore, for all i ∈ N,405

f(xi) ≤ µi−1 ≤ µ−1 = f(x0),406

meaning that (xi)i∈N is contained in the sublevel set (1.6).407

Now, we prove the second item of the proposition. Let us assume that (xi)i∈N has408

an accumulation point x. Let (xik)k∈N be a subsequence converging to x. Observe409

that410

lim
k→∞

f(xik) = f(x),411

since f is differentiable, and in particular continuous, at x. As (µi)i∈N is monotonically412

nonincreasing, it has a limit φ ∈ R ∪ {−∞}. For all k ∈ N,413

f(xik) ≤ µik−1.414

Letting k tend to infinity yields415

f(x) = lim
k→∞

f(xik) ≤ lim
k→∞

µik−1 = φ.416
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In particular, φ is finite.417

Now, we show that φ = lim infi→∞ f(xi). Let (xjk)k∈N be a subsequence such418

that419

lim
k→∞

f(xjk) = lim inf
i→∞

f(xi).420

For all k ∈ N, it holds that421

µjk = (1− p)µjk−1 + pf(xjk).422

The two sides of this equality must have the same limit:423

φ = (1− p)φ + p lim inf
i→∞

f(xi).424

As p > 0, this implies φ = lim infi→∞ f(xi) (and, in particular, lim infi→∞ f(xi) >425

−∞). To conclude, we observe that, for all k ∈ N,426

f(xk) ≤ µk−1.427

Hence,428

lim sup
k→∞

f(xk) ≤ lim
k→∞

µk−1 = φ = lim inf
k→∞

f(xk).429

Therefore, (f(xk))k∈N converges to φ.430

5. Convergence analysis for a continuous gradient. In this section, PGD431

(Algorithm 4.2) is analyzed under hypothesis (H1). As mentioned after Remark 4.5,432

only the nontrivial case where an infinite sequence is generated is considered here.433

Specifically, the first part of the second item of Theorem 1.2, restated in Theorem 5.1434

for convenience, is proven.435

Theorem 5.1. Let (xi)i∈N be a sequence generated by PGD (Algorithm 4.2). If436

f satisfies (H1), then all accumulation points of (xi)i∈N are B-stationary for (1.1).437

If, moreover, (xi)i∈N has an isolated accumulation point, then (xi)i∈N converges.438

The proof is divided into three parts. First, in Section 5.1, we show that, in a439

neighborhood of every point that is not B-stationary for (1.1), the PGD map (Al-440

gorithm 4.1) terminates after a bounded number of iterations. Then, in Section 5.2,441

we prove that, if a subsequence (xik)k∈N converges, then (xik+1)k∈N also does, to the442

same limit. Finally, we combine the first two parts in Section 5.3: roughly, if (xik)k∈N443

converges to x, then, from the second part,444

∥xik+1 − xik∥ → 0 when k →∞,445

but, from the first part, if x is not B-stationary for (1.1), then the iterates of PGD446

move by at least a constant amount at each iteration. It is therefore impossible that447

(xik)k∈N converges to a point that is not B-stationary for (1.1).448

5.1. First part: analysis of the PGD map. In this section, we show that, if449

x ∈ C is not B-stationary for (1.1), then the while loop in Algorithm 4.1 terminates,450

in some neighborhood of x, for nonvanishing values of α. The intuition for this proof451

is that, for every x close to x and for every y ∈ PC(x− α∇f(x)),452

f(y) = f(x) + ⟨∇f(x), y − x⟩+ some remainder.453
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The inner product ⟨∇f(x), y − x⟩ is negative, and larger in absolute value than some454

fraction of ∥∇f(x)∥∥y−x∥ (Proposition 5.2). On the other hand, if α is small enough,455

the remainder (upper bounded in Proposition 5.3) is smaller than some arbitrarily456

small fraction of ∥∇f(x)∥∥y − x∥. Therefore, for α small enough,457

f(y) < f(x) + c ⟨∇f(x), y − x⟩ .458

Proposition 5.2. Assume that f satisfies (H1). Let x ∈ C be non-B-stationary459

for (1.1), and w ∈ TC(x) be such that460

(5.1) ⟨w,−∇f(x)⟩ > 0.461

Define κ :=
√

1− β⟨w,−∇f(x)⟩2
8∥w∥2∥∇f(x)∥2 ∈ (0, 1). For every ε ∈ (0,∞), there exist αx ∈ (0, ε]462

and ρ(αx) ∈ (0,∞) such that, for all x ∈ B(x, ρ(αx)) ∩ C and α ∈ [αx, αx/β],463

d(x− α∇f(x), C) ≤ κα∥∇f(x)∥,464

which implies, for all y ∈ PC(x− α∇f(x)),465

⟨∇f(x), y − x⟩ ≤ −
√

1− κ2∥∇f(x)∥∥y − x∥.466

Proof. Let ε ∈ (0,∞) be fixed. We show that there exist αx ∈ (0, ε] and ρ(αx) ∈467

(0,∞) satisfying the required property.468

Let (wi)i∈N be a sequence in C converging to x, and (ti)i∈N be a sequence in469

(0,∞) such that470

wi − x

ti

i→∞−−−→ w.471

From the definition of w in (5.1), it holds for all i ∈ N large enough that472

(5.2) ⟨wi − x,−∇f(x)⟩ > 0.473

As 1
ti

∥wi−x∥2

⟨wi−x,−∇f(x)⟩
i→∞−−−→ ∥w∥2

⟨w,−∇f(x)⟩ and ti
i→∞−−−→ 0, it also holds for all i ∈ N large474

enough that475

(5.3)
∥wi − x∥2

⟨wi − x,−∇f(x)⟩
< ε.476

Similarly, it holds for all i ∈ N large enough that477

(5.4)
⟨wi − x,−∇f(x)⟩2

∥wi − x∥2
>
⟨w,−∇f(x)⟩2

2∥w∥2
.478

Fix i ∈ N satisfying (5.2), (5.3), and (5.4). Pick αx such that479

αx

2
<

∥wi − x∥2

⟨wi − x,−∇f(x)⟩
< αx < ε.480

Since ∇f is continuous at x, there exists ρ0 ∈ (0,∞) such that, for all x ∈ B[x, ρ0]∩C,481
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482

⟨wi − x,−∇f(x)⟩ > 0,(5.5a)483

αx

2
<

∥wi − x∥2

⟨wi − x,−∇f(x)⟩
< αx,(5.5b)484

⟨wi − x,−∇f(x)⟩2

∥wi − x∥2∥∇f(x)∥2
>
⟨w,−∇f(x)⟩2

2∥w∥2∥∇f(x)∥2
.(5.5c)485

We now establish the first inequality we have to prove: for an adequate value of ρ(αx),486

it holds for all x ∈ B(x, ρ(αx)) ∩ C and α ∈ [αx, αx/β] that487

∥x− α∇f(x)− y∥ ≤ κα∥∇f(x)∥, ∀y ∈ PC(x− α∇f(x)),488

which is equivalent to d(x− α∇f(x), C) ≤ κα∥∇f(x)∥.489

Let us for the moment consider any ρ(αx) ∈ (0, ρ0]. For all x ∈ B(x, ρ(αx)) ∩ C,490

α ∈ [αx, αx/β], and y ∈ PC(x− α∇f(x)),491

∥x− α∇f(x)− y∥2 ≤ ∥x− α∇f(x)− wi∥2492

= ∥x− α∇f(x)− wi∥2 + 2 ⟨x− x, α∇f(x) + wi − x⟩+ ∥x− x∥2493

≤ ∥x− α∇f(x)− wi∥2494

+ 2ρ(αx) (α∥∇f(x)∥+ ∥wi − x∥) + ρ(αx)2495

≤ ∥x− α∇f(x)− wi∥2496

+ 2ρ(αx)

(
α max

z∈B[x,ρ0]∩C
∥∇f(z)∥+ ∥wi − x∥

)
+ ρ(αx)2497

= α2∥∇f(x)∥2 − 2α ⟨wi − x,−∇f(x)⟩+ ∥wi − x∥2498

+ 2ρ(αx)

(
α max

z∈B[x,ρ0]∩C
∥∇f(z)∥+ ∥wi − x∥

)
+ ρ(αx)2499

≤ α2∥∇f(x)∥2 − α ⟨wi − x,−∇f(x)⟩500

+ 2ρ(αx)

(
αx

β
max

z∈B[x,ρ0]∩C
∥∇f(z)∥+ ∥wi − x∥

)
+ ρ(αx)2501

where the last inequality follows from (5.5b) and the fact that αx ≤ α ≤ αx

β . Choose502

ρ(αx) ∈ (0, ρ0] small enough to ensure503

2ρ(αx)

(
αx

β
max

z∈B[x,ρ0]∩C
∥∇f(z)∥+ ∥wi − x∥

)
+ ρ(αx)2504

≤
αx

2
min

z∈B[x,ρ0]∩C
⟨wi − x,−∇f(z)⟩ .505

Note that the right-hand side of this inequality is positive, from (5.5a). Combining506
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this definition with the previous inequality, we arrive at507

∥x− α∇f(x)− y∥2 ≤ α2∥∇f(x)∥2 − α

2
⟨wi − x,−∇f(x)⟩508

= α2∥∇f(x)∥2
(

1− ⟨wi − x,−∇f(x)⟩
2α∥∇f(x)∥2

)
509

≤ α2∥∇f(x)∥2
(

1− β ⟨wi − x,−∇f(x)⟩
2αx∥∇f(x)∥2

)
as α ≤

αx

β
510

≤ α2∥∇f(x)∥2
(

1− β ⟨wi − x,−∇f(x)⟩2

4∥wi − x∥2∥∇f(x)∥2

)
from (5.5b)511

≤ α2∥∇f(x)∥2
(

1− β ⟨w,−∇f(x)⟩2

8∥w∥2∥∇f(x)∥2

)
from (5.5c)512

= κ2α2∥∇f(x)∥2.513

In other words, for all x ∈ B(x, ρ(αx))∩C, α ∈ [αx, αx/β], and y ∈ PC(x−α∇f(x)),514

it holds that515

∥x− α∇f(x)− y∥ ≤ κα∥∇f(x)∥.516

To conclude, we show that this inequality implies517

(5.6)

〈
y − x

∥y − x∥
,
∇f(x)

∥∇f(x)∥

〉
≤ −

√
1− κ2.518

Indeed, if we define θ ∈ R such that
〈

y−x
∥y−x∥ ,

∇f(x)
∥∇f(x)∥

〉
= cos(θ), we have519

∥y − x∥2 + 2α∥∇f(x)∥∥y − x∥ cos(θ) + α2∥∇f(x)∥2 ≤ α2κ2∥∇f(x)∥2.520

This already shows that cos(θ) < 0. In addition, if we minimize the left-hand side521

over all possible values of ∥y − x∥, we get522

−α2∥∇f(x)∥2 cos2(θ) + α2∥∇f(x)∥2 ≤ α2κ2∥∇f(x)∥2,523

hence cos2(θ) ≥ 1− κ2, which establishes (5.6).524

Proposition 5.3. Let α ∈ (0,∞) and c ∈ (0, 1). Assume that f satisfies (H1).525

Let x ∈ C be non-B-stationary for (1.1). There exists αx ∈ (0, α] and ρ ∈ (0,∞) such526

that, for all x ∈ B(x, ρ) ∩ C, α ∈ [αx, αx/β], and y ∈ PC(x− α∇f(x)),527

f(y) < f(x) + c ⟨∇f(x), y − x⟩ .528

Proof. Define κ as in Proposition 5.2. Let δ ∈ (0,∞) be small enough to ensure529

sup
y∈B[x, 7δ2β ∥∇f(x)∥]∩C\{x}

|f(y)− f(x)− ⟨∇f(x), y − x⟩ |
∥y − x∥

<
(1− c)

√
1− κ2∥∇f(x)∥

4
(

1 + 8
3(1−κ)

) ,

(5.7a)

530

sup
y∈B[x, 7δ2β ∥∇f(x)∥]∩C

∥∇f(y)−∇f(x)∥ < (1− c)
√

1− κ2

4
∥∇f(x)∥.(5.7b)531
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These inequalities are satisfied by all δ small enough, from the definition of the gra-532

dient for the first one, and because the gradient is continuous at x for the second533

one.534

Then, define ε := min {α, δ} and let αx ∈ (0, ε] and ρ(αx) ∈ (0,∞) be as in535

Proposition 5.2. Define536

ρ := min
{
ρ(αx), αx∥∇f(x)∥

}
.537

Note that, for all x ∈ B(x, ρ) ∩ C,538

∥x− x∥ < ρ ≤ αx∥∇f(x)∥ <
7αx

2β
∥∇f(x)∥ ≤ 7δ

2β
∥∇f(x)∥,539

so that from (5.7b), ∥∇f(x)−∇f(x)∥ < ∥∇f(x)∥
4 , which implies540

3

4
∥∇f(x)∥ < ∥∇f(x)∥ − ∥∇f(x)−∇f(x)∥541

≤ ∥∇f(x)∥542

≤ ∥∇f(x)∥+ ∥∇f(x)−∇f(x)∥543

<
5

4
∥∇f(x)∥.(5.8)544

For all x ∈ B(x, ρ) ∩ C, α ∈ [αx, αx/β], and y ∈ PC(x− α∇f(x)),545

f(y) = f(x) + ⟨∇f(x), y − x⟩546

+ (f(x)− f(x)− ⟨∇f(x), x− x⟩)547

+ (f(y)− f(x)− ⟨∇f(x), y − x⟩)548

≤ f(x) + ⟨∇f(x), y − x⟩+
(1− c)

√
1− κ2∥∇f(x)∥

4
(

1 + 8
3(1−κ)

) (∥x− x∥+ ∥y − x∥) .(5.9)549

The last inequality follows from (5.7a); observe that550

∥y − x∥ ≤ ∥y − x∥+ ∥x− x∥551

≤ 2α∥∇f(x)∥+ ρ from (2.1)552

≤
2αx

β
∥∇f(x)∥+ αx∥∇f(x)∥553

<
5αx

2β
∥∇f(x)∥+ αx∥∇f(x)∥ from (5.8)554

=
7αx

2β
∥∇f(x)∥.555
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We continue from (5.9):556

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
(1− c)

√
1− κ2∥∇f(x)∥

4
(

1 + 8
3(1−κ)

) (2∥x− x∥+ ∥y − x∥)557

(a)
< f(x) + ⟨∇f(x), y − x⟩+

(1− c)
√

1− κ2∥∇f(x)∥
4

∥y − x∥558

≤ f(x) + ⟨∇f(x), y − x⟩+ ∥∇f(x)−∇f(x)∥∥y − x∥559

+
(1− c)

√
1− κ2∥∇f(x)∥

4
∥y − x∥560

≤ f(x) + ⟨∇f(x), y − x⟩+
(1− c)

√
1− κ2∥∇f(x)∥

2
∥y − x∥ from (5.7b)561

< f(x) + ⟨∇f(x), y − x⟩+ (1− c)
√

1− κ2∥∇f(x)∥∥y − x∥ from (5.8)562

≤ f(x) + ⟨∇f(x), y − x⟩ − (1− c) ⟨∇f(x), y − x⟩ from Proposition 5.2563

= f(x) + c ⟨∇f(x), y − x⟩ .564

Inequality (a) is true because565

∥y − x∥ ≥ α∥∇f(x)∥ − ∥x− α∇f(x)− y∥ by the triangle inequality566

= α∥∇f(x)∥ − d(x− α∇f(x), C)567

≥ (1− κ)α∥∇f(x)∥ from Proposition 5.2568

≥ 3

4
(1− κ)ρ from (5.8), the definition of ρ, and αx ≤ α569

>
3

4
(1− κ)∥x− x∥.570

5.2. Second part: convergence of successive iterates.571

Proposition 5.4. Assume that f satisfies (H1). Let (xi)i∈N be a sequence gen-572

erated by PGD (Algorithm 4.2), and x be an accumulation point. Then, for every573

subsequence (xik)k∈N converging to x, the sequence (xik+1)k∈N also converges to x.574

Proof. Let (xik)k∈N be a subsequence converging to x. We show that (xik+1)k∈N575

also converges to x.576

If the nonmonotonicity rule is set to “average”, this is a direct consequence of577

Proposition 4.7. Indeed, for all i ∈ N, from (4.1),578

f(xi+1) ≤ µi −
c

2α
∥xi+1 − xi∥2 ≤ µi.579

From Proposition 4.7, (f(xi+1))i∈N and (µi)i∈N converge to the same limit. Therefore,580 (
µi −

c

2α
∥xi+1 − xi∥2

)
i∈N

581

also converges to this limit. This implies that (∥xi+1 − xi∥)i∈N converges to 0, hence582

(∥xik+1 − xik∥)k∈N converges to 0, and (xik+1)k∈N converges to the same limit as583

(xik)k∈N, that is, x.584

Now, let us consider the “max” rule case. It suffices to show that x is an accumula-585

tion point of every subsequence of (xik+1)k∈N. In other words, we show the following:586

for every subsequence (ijk)k∈N of (ik)k∈N, there exists a subsequence of (xijk+1)k∈N587
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18 G. OLIKIER AND I. WALDSPURGER

that converges to x. Let (ijk)k∈N be a subsequence of (ik)k∈N. For all i ∈ N, define588

g(i) ∈ argmaxj∈{max{0,i−l},...,i} f(xj), as in Proposition 4.6. By the third statement of589

Proposition 4.6, the sequence (f(xg(i)))i∈N converges to φ ∈ [f(x), f(x0)]. For every590

k ∈ N, letting αijk
∈ (0, α] be the number such that xijk+1 ∈ PC(xijk

−αijk
∇f(xijk

)),591

by (2.1),592

∥xijk+1 − xijk
∥ ≤ 2αijk

∥∇f(xijk
)∥ ≤ 2α∥∇f(xijk

)∥.593

Thus, since (xijk
)k∈N is bounded and ∇f is locally bounded (as it is continuous), the594

sequence (xijk+1)k∈N is bounded. If we replace (ijk)k∈N by a subsequence, we can595

assume that (xijk+1)k∈N converges.596

Iterating the reasoning, we can assume that (xijk+s)k∈N converges to some xs ∈ C597

for every s ∈ {0, . . . , l + 1}. By definition of x, x0 = x.598

Observe that, from the continuity of f ,599

f(xg(ijk+l+1)) = max{f(xijk+1), . . . , f(xijk+l+1)}600

→ max{f(x1), . . . , f(xl+1)} when k →∞.601

In particular, there exists s1 ∈ {1, . . . , l + 1} such that602

(5.10) f(xs1) = φ.603

Let s1 be the smallest such integer. For all k ∈ N, from the condition in line 2 of604

Algorithm 4.1 and (4.1),605

f(xijk+s1) ≤ f(xg(ijk+s1−1))−
c

2α
∥xijk+s1 − xijk+s1−1∥2.606

Letting k tend to infinity yields607

φ = f(xs1) ≤ φ− c

2α
∥xs1 − xs1−1∥2.608

Consequently, xs1 = xs1−1. In particular, f(xs1−1) = f(xs1) = φ. Therefore, s1 = 1,609

otherwise it would not be the smallest integer satisfying (5.10). The equality xs1 =610

xs1−1 then rewrites as x1 = x0 = x and, when k →∞,611

xijk+1 → x1 = x.612

5.3. Third part: proof of Theorem 5.1. Let x be an accumulation point of613

(xi)i∈N. Assume, for the sake of contradiction, that x is not B-stationary for (1.1).614

Let (xik)k∈N be a subsequence converging to x.615

Let αx and ρ be as in Proposition 5.3. For all k ∈ N large enough, xik ∈ B(x, ρ)∩616

C. Thus, when Algorithm 4.1 is called at point xik , the condition in line 2 stops being617

fulfilled for some αik ≥ αx, meaning that618

xik+1 ∈ PC(xik − αik∇f(xik)) for some αik ∈ [αx, α].619

If we replace (ik)k∈N with a subsequence, we can assume that (αik)k∈N converges to620

some αlim ∈ [αx, α].621

For all k ∈ N, we have622

∥xik − αik∇f(xik)− xik+1∥ = d(xik − αik∇f(xik), C)623
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and since the distance to a nonempty closed set is a continuous function, we can624

take this equality to the limit. We use the fact that xik+1 → x when k → ∞, from625

Proposition 5.4. This yields626

∥αlim∇f(x)∥ = d(x− αlim∇f(x), C),627

which means that x ∈ PC(x−αlim∇f(x)). In particular, −∇f(x) ∈ ̂̂NC(x) ⊆ N̂C(x),628

which contradicts our assumption that x is not B-stationary for (1.1). We have629

therefore proven that every accumulation point is B-stationary.630

Finally, if (xi)i∈N has an isolated accumulation point, then the sequence (xi)i∈N631

converges, from Proposition 5.4 and [43, Lemma 4.10].632

6. Convergence analysis for a locally Lipschitz continuous gradient. In633

this section, PGD (Algorithm 4.2) is analyzed under hypothesis (H2). As mentioned634

after Remark 4.5, only the nontrivial case where an infinite sequence is generated635

is considered here. Specifically, the second part of the second item of Theorem 1.2,636

restated in Theorem 6.3 for convenience, is proven based on Proposition 6.1 and637

Corollary 6.2 which state that, for every x ∈ C and every input x sufficiently close to638

x, the PGD map (Algorithm 4.1) terminates after at most a given number of iterations639

which depends only on x.640

Proposition 6.1. Assume that f satisfies (H2). Let x ∈ C, α ∈ (0,∞), c ∈641

(0, 1), and ρ ∈ (0,∞). Let ρ ∈
[
ρ + 2αmaxx∈B[x,ρ]∩C ∥∇f(x)∥,∞

)
and define α∗ :=642

(1 − c)/LipB[x,ρ](∇f). Then, for all x ∈ B[x, ρ] ∩ C, α ∈ [0,min{α∗, α}], and y ∈643

PC(x− α∇f(x)),644

f(y) ≤ f(x) + c ⟨∇f(x), y − x⟩ .645

Proof. For all x ∈ B[x, ρ] ∩ C and α ∈ [0, α], PC(x− α∇f(x)) ⊆ B[x, ρ]; indeed,646

for all y ∈ PC(x− α∇f(x)),647

∥y − x∥ ≤ ∥y − x∥+ ∥x− x∥ ≤ 2α∥∇f(x)∥+ ρ ≤ ρ,648

where the second inequality follows from (2.1). Thus, by (2.3) and (2.2), for all649

x ∈ B[x, ρ] ∩ C, α ∈ [0,min{α∗, α}], and y ∈ PC(x− α∇f(x)),650

f(y) ≤ f(x) + ⟨∇f(x), y − x⟩+
1

2
Lip

B[x,ρ]

(∇f)∥y − x∥2651

≤ f(x) +

(
1− α Lip

B[x,ρ]

(∇f)

)
⟨∇f(x), y − x⟩652

≤ f(x) + c ⟨∇f(x), y − x⟩ .653

Corollary 6.2. Consider Algorithm 4.1 under hypothesis (H2). Given x ∈ C654

and ρ ∈ (0,∞), let ρ be as in Proposition 6.1. Then, for every x ∈ B[x, ρ] ∩ C, the655

while loop terminates with a step size α ∈
[
min

{
α, β(1−c)

LipB[x,ρ](∇f)

}
, α
]
and hence after656

at most657

max

{
0,

⌈
ln

(
1− c

α0 LipB[x,ρ](∇f)

)
/ ln(β)

⌉}
658

iterations, where α0 is the step size chosen in line 1.659

This manuscript is for review purposes only.



20 G. OLIKIER AND I. WALDSPURGER

Proof. At the latest, the while loop ends after iteration i ∈ N\{0} with α = α0β
i660

such that α
β > 1−c

LipB[x,ρ](∇f) . In that case, i < 1 + ln( 1−c
α0 LipB[x,ρ](∇f) )/ ln(β) and thus661

i ≤ ⌈ln( 1−c
α0 LipB[x,ρ](∇f) )/ ln(β)⌉.662

Theorem 6.3. Assume that f satisfies (H2). Let (xi)i∈N be a sequence generated663

by PGD (Algorithm 4.2). Then, all accumulation points of (xi)i∈N are P-stationary664

for (1.1). Moreover, for every convergent subsequence (xij )j∈N,665

(6.1) lim
j→∞

d(−∇f(xij+1), ̂̂NC(xij+1)).666

Proof. Assume that a subsequence (xij )j∈N converges to x ∈ C. Given ρ ∈ (0,∞),667

let ρ be as in Proposition 6.1. Define668

I :=

[
min

{
α,

β(1− c)

LipB[x,ρ](∇f)

}
, α

]
.669

There exists j∗ ∈ N such that, for all integers j ≥ j∗, xij ∈ B[x, ρ], thus, by Corol-670

lary 6.2, xij+1 ∈ PC(xij − αij∇f(xij )) with αij ∈ I, and hence671

∥xij+1 − (xij − αij∇f(xij ))∥ = d(xij − αij∇f(xij ), C).672

Since I is compact, a subsequence (αijk
)k∈N converges to α ∈ I. Moreover, there exists673

k∗ ∈ N such that jk∗ ≥ j∗. Furthermore, by Proposition 5.4, (xij+1)j∈N converges to674

x. Therefore, for all integers k ≥ k∗,675

∥xijk+1 − (xijk
− αijk

∇f(xijk
))∥ = d(xijk

− αijk
∇f(xijk

), C),676

and letting k tend to infinity yields677

∥x− (x− α∇f(x))∥ = d(x− α∇f(x), C).678

It follows that x ∈ PC(x− α∇f(x)), which implies that −∇f(x) ∈ ̂̂NC(x).679

We now establish (6.1). Recall that, for all integers j ≥ j∗, since xij+1 ∈ PC(xij−680

αij∇f(xij )) with αij ∈ I, it holds that 1
αij

(xij − xij+1)−∇f(xij ) ∈ ̂̂NC(xij+1), and681

thus682

d(−∇f(xij+1), ̂̂NC(xij+1)) ≤ ∥ −∇f(xij+1)− (
1

αij

(xij − xij+1)−∇f(xij ))∥683

≤ 1

αij

∥xij+1 − xij∥+ ∥∇f(xij+1)−∇f(xij )∥684

→ 0 when j →∞,685

by Proposition 5.4 and the fact that (αij )j∈N is bounded away from zero.686

Proposition 6.4 considers the case where PGD generates a bounded sequence.687

Proposition 6.4. Assume that f satisfies (H2). Let (xi)i∈N be a sequence gen-688

erated by PGD (Algorithm 4.2). If (xi)i∈N is bounded, which is the case if the sublevel689

set (1.6) is bounded, then all of its accumulation points, of which there exists at least690

one, are P-stationary for (1.1) and have the same image by f , and691

(6.2) lim
i→∞

d(−∇f(xi),
̂̂NC(xi)) = 0.692
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Proof. Assume that (xi)i∈N is bounded. It suffices to establish (6.2) and to prove693

that all accumulation points of (xi)i∈N have the same image by f ; the other statements694

follow from Theorem 6.3.695

The proof that all accumulation points of (xi)i∈N have the same image by f is696

based on the argument given in the proof of [51, Theorem 65]. Assume that (xik)k∈N697

and (xjk)k∈N converge respectively to x and x. Being bounded, the sequence (xi)i∈N is698

contained in a compact set. By Propositions 4.6 and 4.7, the sequence (f(xi))i∈N con-699

verges; Proposition 4.6 applies because a continuous real-valued function is bounded700

from below and uniformly continuous on every compact set [63, Propositions 1.3.3 and701

1.3.5]. Therefore, f(x) = limk→∞ f(xik) = limi→∞ f(xi) = limk→∞ f(xjk) = f(x).702

Let us establish (6.2). Assume, for the sake of contradiction, that (6.2) does not703

hold. Then, there exist ε ∈ (0,∞) and a subsequence (xij )j∈N such that i0 ≥ 1 and704

d(−∇f(xij ), ̂̂NC(xij )) > ε for all j ∈ N. Since (xij−1)j∈N is bounded, it contains a705

subsequence (xijk−1)k∈N that converges to a point x ∈ C. Therefore, by (6.1),706

lim
k→∞

d(−∇f(xijk
), ̂̂NC(xijk

)) = 0,707

a contradiction.708

7. Examples of feasible sets on which PGD can be practically imple-709

mented. Examples of a set C on which PGD can be practically implemented include:710

1. the closed cone Rn
≤s of s-sparse vectors of Rn, i.e., those having at most s711

nonzero components, n and s being positive integers such that s < n;712

2. the closed cone Rn
≤s ∩ Rn

+ of nonnegative s-sparse vectors of Rn;713

3. the determinantal variety [26, Lecture 9]714

Rm×n
≤r := {X ∈ Rm×n | rankX ≤ r},715

m, n, and r being positive integers such that r < min{m,n};716

4. the closed cone717

S+
≤r(n) := {X ∈ Rn×n

≤r | X
⊤ = X, X ⪰ 0}718

of order-n real symmetric positive-semidefinite matrices of rank at most r, n719

and r being positive integers such that r < n.720

Indeed, for every set in this list, the projection map, the tangent cone, the regular721

normal cone, and the normal cone are explicitly known; see [45, §§6 and 7.4] and the722

references therein. In particular, it is known that these sets are not Clarke regular at723

infinitely many points. In this section, we prove that, for these sets, regular normals724

are proximal normals.725

As detailed in [45], if C is a set in this list, then there exist a positive integer p726

and disjoint nonempty smooth submanifolds S0, . . . , Sp of E such that Sp = C and,727

for all i ∈ {0, . . . , p}, Si =
⋃i

j=0 Sj . This implies that {S0, . . . , Sp} is a stratification728

of C satisfying the condition of the frontier [39, §5]. Thus, C is called a stratified set729

and S0, . . . , Sp are called the strata of {S0, . . . , Sp}.730

Proposition 7.1. Let C be a set in the list. For all x ∈ C,731

̂̂NC(x) = N̂C(x)732

and, if x /∈ Sp, then733

N̂C(x) ⊊ NC(x).734
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Since the proof of Proposition 7.1 relies on significantly different concepts than735

those previously used, we present it in Appendix A.736

8. Comparison of PGD and P2GD on a simple example. P2GD, which737

is short for projected-projected gradient descent, was introduced in [55, Algorithm 3]738

for C := Rm×n
≤r and extended to an arbitrary set C in [45, Algorithm 5.1]. It works739

like PGD except that it involves an additional projection: given x ∈ C as input, the740

P2GD map [45, Algorithm 5.1] performs a backtracking projected line search along a741

projection g of −∇f(x) onto TC(x), i.e., computes a projection y of x + αg onto C742

for decreasing values of the step size α ∈ (0,∞) until y satisfies an Armijo condition.743

As pointed out in [57, §3.2], the convergence of optimization algorithms that744

use descent directions in the tangent cone, such as P2GD, often suffers from the745

discontinuity of the tangent cone. In [32, §2.2], on an instance of (1.1) where E := R3×3746

and C := R3×3
≤2 , P2GD is proven to generate a sequence converging to a point of747

rank one that is M-stationary but not B-stationary. Several methods are compared748

numerically on this instance in [46, §8.2].749

In this section, monotone PGD and P2GD are compared analytically on the in-750

stance of (1.1) where E := R2, C := R2
≤1, f(x) := 1

2∥x − x∗∥2 for all x ∈ R2,751

x∗ := (a, 0), and a ∈ R \ {0}. For all x ∈ R2, ∇f(x) = x − x∗. Thus, the global752

Lipschitz constant of ∇f is 1; in particular, f satisfies (H2). Both algorithms are used753

with α := α := α ∈ (0, 2) and an arbitrary β ∈ (0, 1). The initial iterate is (0, b) for754

some b ∈ R \ {0}.755

We recall from [45, Proposition 7.13] that TR2
≤1

(0, 0) = R2
≤1 and, for all t ∈ R\{0},756

TR2
≤1

(0, t) = {0} × R, TR2
≤1

(t, 0) = R× {0},757

from [45, Propositions 7.16 and 7.17] that758

N̂R2
≤1

(0, 0) = {(0, 0)} ⊊ R2
≤1 = NR2

≤1
(0, 0)759

and, for all t ∈ R \ {0},760

N̂R2
≤1

(0, t) = R× {0}, N̂R2
≤1

(t, 0) = {0} × R,761

and from Proposition 7.1 that ̂̂NR2
≤1

(x) = N̂R2
≤1

(x) for all x ∈ R2
≤1.762

Proposition 8.1 explicitly describes the sequences generated by PGD and P2GD763

for small values of c. We omit its proof, which consists in elementary computations.764

Proposition 8.1. If α = 1 and c ∈ (0, 1
2 ], then PGD and P2GD generate the765

finite sequences ((0, b), (a, 0)) and ((0, b), (0, 0), (a, 0)), respectively. If α ̸= 1, then766

both algorithms generate infinite sequences.767

• For every c ∈ (0, 2−α
2 ], P2GD generates the sequence ((0, (1−α)ib))i∈N which768

converges to (0, 0).769

• For every c ∈ (0, 2−α
4 ):770

– if α|a|/|b| > |1− α|, then PGD generates the sequence771

((0, b), (a(1− (1− α)i+1, 0))i∈N);772

– if α|a|/|b| ≤ |1−α|, then i∗ :=
⌊
ln(α|a|/|b|)
ln(|1−α|)

⌋
∈ N\{0} and PGD generates773

the sequence774

(((0, (1− α)ib))i=i∗
i=0 , (a(1− (1− α)i+1, 0))i∈N)775
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if ln(α|a|/|b|)
ln(|1−α|) /∈ N and776

(((0, (1− α)ib))i=i∗
i=0 , (a(1− (1− α)i+1, 0))i∈N)777

or (((0, (1− α)ib))i=i∗+1
i=0 , (a(1− (1− α)i+1, 0))i∈N)778

if ln(α|a|/|b|)
ln(|1−α|) ∈ N.779

Thus, every sequence generated by PGD converges to (a, 0).780

In conclusion, if α ̸= 1, then P2GD converges to (0, 0), which is M-stationary but781

not B-stationary, while PGD converges to (a, 0), which is P-stationary and even a782

global minimizer of f |R2
≤1

(and f). This is illustrated in Figure 2 for some choice of783

a, b, and α.784

By Proposition 8.1, for every sequence (xi)i∈N generated by P2GD, it holds that785

lim
i→∞

d(−∇f(xi), N̂R2
≤1

(xi)) = 0.786

Thus, the measure of B-stationarity R2
≤1 → R : x 7→ d(−∇f(x), N̂R2

≤1
(x)) is not lower787

semicontinuous at (0, 0), and the convergence to an M-stationary point that is not788

B-stationary cannot be suspected based on the mere observation of this limit. In the789

terminology of [32], ((0, 0), (xi)i∈N, f) is an apocalypse.790

R× {0}

{0} × R

•

(a, 0)

•(0, b) •

•

•
•
• R× {0}

{0} × R

•

(a, 0)

•(0, b) •

•

• • ••

Fig. 2. First few iterates generated by PGD (right) and P2GD (left) on the instance of (1.1)
studied in Section 8 with a := b := 1 and α := 0.45. The arrows represent xi − α∇f(xi). The point
(a, 0), which is the unique global minimizer, is also represented. It is already visible from the first
few iterates that P2GD converges to the M-stationary point (0, 0) while PGD converges to the global
minimizer.

9. Conclusion. The main contribution of this paper is the proof of Theorem 1.2.791

This theorem ensures that PGD (Algorithm 4.2) enjoys the strongest stationarity792

properties that can be expected for problem (1.1) under the considered assumptions.793

A sufficient condition for the convergence of a sequence generated by PGD is794

provided in Theorem 5.1. However, if satisfied, this condition does not offer a charac-795

terization of the rate of convergence. This important matter is addressed in [29] for796

monotone PGD under the assumption that f satisfies (H2) and a Kurdyka– Lojasiewicz797

property.798

Two possible extensions of this work are left for future research. First, can The-799

orem 1.2 be extended to an algorithm that uses more general search directions than800

PGD? For example, a search direction at a point x ∈ C that is not B-stationary801

for (1.1) could be a vector v /∈ N̂C(x) that satisfies [22, conditions (2) and (3)], i.e.,802

⟨∇f(x), v⟩ ≤ −c1∥∇f(x)∥2 and ∥v∥ ≤ c2∥∇f(x)∥ with c1, c2 ∈ (0,∞).803
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Second, can Theorem 1.2 be extended to the proximal gradient algorithm as de-804

fined in [31, Algorithm 4.1] or [11, Algorithm 3.1]? The first step toward such an ex-805

tension would be defining suitable stationarity notions for the corresponding problem806

whose objective function is not differentiable. Furthermore, significant adaptations807

would be needed, e.g., because inequality (2.1), which plays an instrumental role in808

our analysis, does not seem to admit a straightforward extension.809

Appendix A. Proof of Proposition 7.1. The strict inclusion follows from810

[45, Proposition 7.16] and [4, Theorem 3.9] if C = Rn
≤s, from [45, Proposition 6.7]811

and [60, Theorem 3.4] if C = Rn
≤s ∩ Rn

+, from [27, Corollary 2.3 and Theorem 3.1] if812

C = Rm×n
≤r , and from [45, Proposition 6.28] and [60, Theorem 3.12] if C = S+

≤r(n).813

By (1.2), it remains to prove that, for all x ∈ C, ̂̂NC(x) ⊇ N̂C(x). This follows814

from [1, Lemma 4] if x ∈ Sp. Let x ∈ C \ Sp. If C is Rn
≤s or Rm×n

≤r , then, by [45,815

Proposition 7.16] and [27, Corollary 2.3], N̂C(x) = {0} and the result follows. If C816

is Rn
≤s ∩ Rn

+ or S+
≤r(n), then the result follows from [45, Proposition 6.7] and [60,817

Proposition 3.2] or [45, Proposition 6.28] and [10, Corollary 17]; the detail is given818

below for completeness.819

Assume that C is Rn
≤s ∩ Rn

+. Let supp(x) := {i ∈ {1, . . . , n} | xi ̸= 0}. By [45,820

Proposition 6.7],821

N̂Rn
≤s

∩Rn
+

(x) = {v ∈ Rn
− | supp(v) ⊆ {1, . . . , n} \ supp(x)}.822

Thus, by [60, Proposition 3.2], for every v ∈ N̂Rn
≤s

∩Rn
+

(x), PRn
≤s

∩Rn
+

(x + v) = {x}.823

Assume now that C is S+
≤r(n). By [45, Proposition 6.28],824

N̂
S+
≤r

(n)
(X) = S(n)⊥ + {Z ∈ S−(n) | XZ = 0n×n},825

with S(n) := {X ∈ Rn×n | X⊤ = X}, S(n)⊥ = {X ∈ Rn×n | X⊤ = −X}, and826

S−(n) := {X ∈ S(n) | X ⪯ 0}. Let Z ∈ N̂
S+
≤r

(n)
(X) and Zsym := 1

2 (Z + Z⊤). Then,827

by [10, Corollary 17], PS+
≤r

(n)(X + Z) = PS+
≤r

(n)(X + Zsym). Let r := rankX and828

r̃ := rankZsym. Since imZsym ⊆ kerX, r̃ ≤ n − r and there exists U ∈ O(n) such829

that830

X = U diag(λ1(X), . . . , λr(X), 0n−r)U⊤
831

and832

Zsym = U diag(0n−r̃, λn−r̃+1(Zsym), . . . , λn(Zsym))U⊤
833

are eigendecompositions. Thus,834

X + Zsym = U diag(λ1(X), . . . , λr(X), 0n−r−r̃, λn−r̃+1(Zsym), . . . , λn(Zsym))U⊤
835

is an eigendecomposition. Hence, by [10, Corollary 17], PS+
≤r

(n)(X + Zsym) = {X}.836
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