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PROJECTED GRADIENT DESCENT ACCUMULATES AT
BOULIGAND STATIONARY POINTS*

GUILLAUME OLIKIER' AND IRENE WALDSPURGER#

Abstract. This paper considers the projected gradient descent (PGD) algorithm for the problem
of minimizing a continuously differentiable function on a nonempty closed subset of a Euclidean vector
space. Without further assumptions, this problem is intractable and algorithms are only expected
to find a stationary point. PGD is known to generate a sequence whose accumulation points are
Mordukhovich stationary. In this paper, these accumulation points are proven to be Bouligand
stationary, and even proximally stationary if the gradient is locally Lipschitz continuous. These are
the strongest stationarity properties that can be expected for the considered problem.
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Clarke regularity
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1. Introduction. Let £ be a Euclidean vector space, C' a nonempty closed sub-
set of £, and f : £ — R a function satisfying at least the first of the following two
properties:

(H1) f is differentiable on C, i.e., for every = € C, there exists a (unique) vector
in &, denoted by V f(z), such that

fly) = f(2) = (Vf(x),y — )

— j—
G ly — ||

:07

and V[ : C — & is continuous;
(H2) f is differentiable on £ and Vf : £ — £ is locally Lipschitz continuous.
This paper considers the problem

(1.1) min f(z)

of minimizing f on C. In general, without further assumptions on C or f, finding an
exact or approximate global minimizer of problem (1.1) is intractable. Even finding
an approximate local minimizer is not always feasible in polynomial time (unless
P = NP) [2]. Therefore, algorithms are only expected to return a point satisfying a
condition called stationarity, which is a tractable surrogate for local optimality.

A point z € C is said to be stationary for (1.1) if —V f(z) is normal to C at x.
Several definitions of normality exist. Each one defines a different notion of station-
arity, which is a surrogate for local optimality in the sense that, possibly under mild
regularity assumptions on f, every local minimizer of f|c is stationary for (1.1). In
particular, each of the three notions of normality in [53, Definition 6.3 and Exam-
ple 6.16], namely normality in the general sense, in the regular sense, and in the
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2 G. OLIKIER AND I. WALDSPURGER

proximal sense, yields an important definition of stationarity. The sets of general,
regular, and proximal normals to C' at « € C are respectively denoted by N (z),

ﬁc(x), and Nc(x) These sets are reviewed in Section 2.2. Importantly, they are
nested as follows: for every z € C,

(1.2) Ne(x) € Ne(w) € Ne(x),

and C is said to be Clarke regular at z if the second inclusion is an equality. The
definitions of stationarity based on these sets are given in Definition 1.1, and the
terminology is discussed in Section 3.

DEFINITION 1.1. For problem (1.1), a point x € C is said to be:
e Mordukhovich stationary (M-stationary) if —V f(z) € Na(x);
e Bouligand stationary (B-stationary) if —V f(z) € N(z);

e proximally stationary (P-stationary) if —V f(z) € Ny ().

There are many practical examples of a set C' for which at least one of the inclu-
sions in (1.2) is strict, especially the second one. This is notably shown by the four
examples studied in Section 7, where the second inclusion is strict at infinitely many
points. The three notions of stationarity are therefore not equivalent. Actually, as ex-
plained next, B-stationarity and P-stationarity are the strongest necessary conditions
for local optimality under different sets of assumptions on f, while M-stationarity is
a weaker condition.

As pointed out in [13, §5], for problem (1.1) under the only assumption that f
is differentiable on C', B-stationarity is the strongest necessary condition for local
optimality. The same is true if f satisfies (H1). Indeed, by [53, Theorem 6.11], for all
xzeC,

h: & — R is differentiable at z,
x is a local minimizer of h|c

(1.3) Ne(z) = {Vh(;z:) ]

(1.4) _ {—Vh(x) ‘ h: & — R satisfies (H1), } .

x is a local minimizer of h|c

The inclusion D in (1.3) shows that every local minimizer of f|c is B-stationary
for (1.1). Thus, N’C(x) is sufficiently large to yield a necessary condition for local
optimality. The inclusion C in (1.3) shows that replacing Nc(x) with one of its
proper subsets would yield a condition that is not necessary for local optimality. The
equality (1.4) shows that these observations also hold if f satisfies (H1).

P-stationarity is the strongest necessary condition for local optimality if f satis-
fies (H2). Indeed, by Theorem 2.5, for all z € C,

h: & — R satisfies (H2),
x is a local minimizer of h|c [~

xR

(1.5) Ne(z) = {—Vh(x) ‘

The inclusion D in (1.5) shows that, under (H2), every local minimizer of f|c is P-

stationary for (1.1). The inclusion C in (1.5) shows that replacing ]Vc(x) with one of
its proper subsets would yield a condition that is not necessary for local optimality.
In comparison, M-stationarity is a weaker notion of stationarity which is con-
sidered unsatisfactory in [27, §4], [32, §1], and [50, §2.1]. Furthermore, as explained
n [32], distinguishing convergence to a B-stationary point from convergence to an
M-stationary point is difficult (a phenomenon formalized by the notion of apoca-
lypse in [32]) in the sense that it cannot be done based on standard measures of
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PGD ACCUMULATES AT B-STATIONARY POINTS 3

B-stationarity because of their possible lack of lower semicontinuity at points where
the feasible set is not Clarke regular, as also explained in [46, §§1.1 and 2.4].

Projected gradient descent, or PGD for short, is a basic algorithm aiming at
solving problem (1.1). To the best of our knowledge, the first article to have considered
PGD on a possibly nonconvex closed set was [6]. The nonmonotone backtracking
version considered in this paper is defined as Algorithm 4.2 and is based on [30,
Algorithm 3.1] and [11, Algorithm 3.1]. Given x € C as input, the iteration map of
PGD, called the PGD map and defined as Algorithm 4.1, performs a backtracking
projected line search along the direction of —V f(z), i.e., computes a projection y
of x — aVf(z) onto C for decreasing values of the step size a € (0,00) until y
satisfies an Armijo condition. In the simplest version of PGD, called monotone,
the Armijo condition ensures that the value of f at the next iterate is smaller by a
specified amount than the value at the current iterate. Following the general settings
proposed in [30, 31] and [11], the value at the current iterate can be replaced with
the maximum value of f over a prefixed number of the previous iterates (“max” rule)
or with a weighted average of the values of f at the previous iterates (“average”
rule). This version of PGD is called nonmonotone. By [31, Theorem 3.1], monotone
PGD accumulates at M-stationary points of (1.1) if f is continuously differentiable
on £ and bounded from below on C. By [11, Theorem 4.6], the same result holds
for nonmonotone PGD with the “average” rule and, by [31, Theorem 4.1], also for
nonmonotone PGD with the “max” rule if f is further uniformly continuous on the
sublevel set

(1.6) {zeC[f(z) < flxo)},

where zy € C is the initial iterate given to the algorithm. However, as pointed out in
[32, §1], it is an open question whether the accumulation points of PGD are always
B-stationary for (1.1).

This paper answers positively the question by proving Theorem 1.2.

THEOREM 1.2. Consider a sequence generated by PGD (Algorithm 4.2) when ap-
plied to problem (1.1).
o If this sequence is finite, then its last element is B-stationary for (1.1) un-
der (H1), and even P-stationary for (1.1) under (H2).
o If this sequence is infinite, then all of its accumulation points, if any, are B-
stationary for (1.1) under (H1), and even P-stationary for (1.1) under (H2).

If Vf is globally Lipschitz continuous, then it is known in the literature that
every local minimizer of f|c is P-stationary for (1.1) [61, Proposition 3.5(ii)] (the
result is given for a global minimizer but the proof shows that it also holds for a local
minimizer) and that PGD with a constant step size smaller than the inverse of the
Lipschitz constant accumulates at P-stationary points of (1.1) [61, Theorem 5.6(i)].
Indeed, the ZeroFPR algorithm proposed in [61] extends the proximal gradient (PG)
algorithm with a constant step size [61, Remark 5.5] which itself extends PGD with
a constant step size; problem (1.1) corresponds to [61, problem (1.1)] with g the
indicator function of our set C'. These results were rediscovered in [50] where, in
addition, the distance from the negative gradient of the continuously differentiable
function to the regular subdifferential of the other function is proven to converge to
zero along the generated sequence, and a quadratic lower bound on f — f(Z) at every
accumulation point Z of PG is obtained. The two results cited from [61] were already
stated in [5, Theorems 2.2 and 3.1] for C the set R” of vectors of R having at most
s nonzero components for some positive integer s < n, and in [3, Proposition 1 and

This manuscript is for review purposes only.



124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150

151

4 G. OLIKIER AND I. WALDSPURGER

Theorem 1] for C satisfying a regularity condition called prozimal smoothness which
none of the four examples studied in Section 7 satisfies.

This paper is organized as follows. The necessary background in variational analy-
sis is introduced in Section 2. The literature on stationarity is partially surveyed in
Section 3. The PGD algorithm is reviewed in Section 4. It is analyzed under hy-
pothesis (H1) in Section 5 and under hypothesis (H2) in Section 6. Four practical
examples of a set C' for which the first inclusion in (1.2) is an equality for all z € C
and the second is strict for infinitely many € C are given in Section 7. Theorem 1.2
is illustrated by a comparison between PGD and a first-order algorithm that is not
guaranteed to accumulate at B-stationary points of (1.1) in Section 8. Concluding
remarks are gathered in Section 9.

2. Elements of variational analysis. This section, mostly based on [53], re-
views background material in variational analysis that is used in the rest of the paper.
Section 2.1 concerns the projection map onto C' and its main properties. Section 2.2
reviews the three notions of normality on which the three notions of stationarity
provided in Definition 1.1 are based.

Recall that, throughout the paper, £ is a Euclidean vector space and C' C & is
nonempty and closed. Moreover, for every z € £ and p € (0,00), B(z,p) ={y € £ |
lz =yl < p} and Blz,p] = {y € £ | |[x — y|| < p} are respectively the open and
closed balls of center z and radius p in €. Following [53, §3B], a nonempty subset K
of £ is called a cone if x € K implies ax € K for all a € [0, 00).

2.1. Projection map. Given z € &, the distance from z to C is d(z,C) =
minyec ||z — yl| and the projection of x onto C' is Po(x) = argmin, . ||z — y. By
[53, Example 1.20], the function & — R : z + d(x,C) is continuous and, for every
x € &, the set Po(x) is nonempty and compact. Proposition 2.1 is invoked frequently
in the rest of the paper.

PROPOSITION 2.1. For allz € C,v €&, and y € Po(x —v),
(2.1) ly — x|l < 2vl,
(2'2) 2<v,y—x> < —||y—9c||2,
and the inequalities are strict if x ¢ Po(x — v).

Proof. By definition of the projection, ||y — (x — v)|| < ||l — (z — v)|| = ||v|| and
the inequality is strict if ¢ Po(x — v). Thus, on the one hand,

ly —zll = lly = (z —v) = vl <lly = (@ = 0)[[ + ]| = vl| < [Jol| + [o]] = 2[|v]],
and, on the other hand, ||y — (z — v)||? < ||v||?, which is equivalent to (2.2). O

2.2. Normality and stationarity. Based on [53, Chapter 6], this section re-
views the three notions of normality on which the three notions of stationarity given
in Definition 1.1 are based.

Following [53, Definition 6.1], a vector v € £ is said to be tangent to C at x € C
if there exist sequences (z;)ien in C converging to = and (¢;);en in (0,00) such that
the sequence (= );cn converges to v. The set of all tangent vectors to C at z € C
is a closed cone r53, Proposition 6.2] called the tangent cone to C' at x and denoted
by T (z). Following [53, Definition 6.3 and Proposition 6.5], the regular normal cone

toCatxeCis

Neg(z)={ve&| (v,w) <0Vw e Ty(z)}
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168 which is a closed convex cone. Following [53, Definition 6.3], a vector v € £ is said to
169 be normal (in the general sense) to C' at x € C' if there exist sequences (z;)ien in C
170 converging to x and (v;);en converging to v such that, for all i € N v; € ]/\?C(xl) The
171 set of all normal vectors to C' at x € C' is a closed cone [53, Proposition 6.5] called
172 the normal cone to C at x and denoted by N(x). Following [53, Example 6.16], a
173 vector v € & is called a prozimal normal to C at x € C if there exists @ € (0, 00) such
174 that z € Po(z + aw), i.e., a||v|| = d(z 4+ awv, C), which implies that, for all a € [0, @),
175 Po(x 4+ av) = {x}. The set of all proximal normals to C' at z € C' is a convex cone
176 called the prozimal normal cone to C' at x and denoted by ]/\\70(:5)

177 As stated in (1.2), for all x € C,

=

178 Ng(z) € Np(z) € Ne(x).

179 Following [53, Definition 6.4], C is said to be Clarke regular at x € C' if ]vc(m) =
180 Ng(x). Thus, M-stationarity is equivalent to B-stationarity at a point z € C if and
181 only if C is Clarke regular at x, which is not the case in many practical situations, as
182 shown by the four examples given in Section 7. For those examples, however, regular
183 mnormals are proximal normals (Proposition 7.1). An example of a set C' and a point
184 x € C such that both inclusions in (1.2) are strict is given in Example 2.2.

185 EXAMPLE 2.2. Let & := R? and C := {(t,max {0,t3/°}) | t € R} (inspired by [53,
186 Figure 6-12(a)]). Then,

187 T(0,0) = ({0} x [0,00)) U ((—00,0] x {0}),
188 (Oa O) [ ) (—OO, 0]7
189 ¢(0,0) = N(0,0) \ ((0,00) x {0}),
190 Ng(0,0) = N (0,0) U T4 (0,0).
191 Thus,
102 No(0,0) € Ne(0,0) € Ne(0,0).
This is illustrated in Figure 1.
C
(0,0)
NC(070): U(NC(OaO)\NC(()*O))U

Fic. 1. Tangent and normal cones from Example 2.2.
193
194 As pointed out in Section 1, the regular and proximal normal cones enjoy gradient

195 characterizations which imply that B- and P-stationarity are the strongest necessary
196 conditions for local optimality under different sets of assumptions on f. Those given
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6 G. OLIKIER AND I. WALDSPURGER

in (1.3)—(1.4) come from [53, Theorem 6.11]. That given in (1.5) comes from Theo-
rem 2.5, established at the end of this section.

As shown by (1.4), for problem (1.1), B-stationarity is the strongest necessary
condition for local optimality if f is only assumed to satisfy (H1). In particular, under
this assumption, P-stationarity is not necessary for local optimality, as illustrated by
Example 2.3.

EXAMPLE 2.3. Let £ :=R? C = {(ml,xg) € R? | x5 > max {O,xf/s}} [53, Fig-
ure 6-12(a)], and f : R? = R : (z1,22) — 3(x1 — 1)% + |z2>/2. Then, f is continu-
ously differentiable on £, hence on C, and, for all (z1,x2) € R?, Vf(x1,22) = (z1 —
1, 3sgn(xo)|z2|Y/2). Thus, =V f(0,0) = (1,0) € N(0,0)\ No(0,0), yet argming f =
{(0,0)}.

Proposition 2.4 states that P-stationarity is necessary for local optimality if f is

assumed to satisfy (H2), that is, f is differentiable on £ and V f is locally Lipschitz
continuous. The latter means that, for every open or closed ball B C &,

L) sup LY@ =VIWI _
B :1:,1{7663 H.’L‘ - yH
zFy

which implies, by [44, Lemma 1.2.3], that, for all z,y € B,

(2.3) FW) ~ 1) — (V(a).y - 2) | < 228D

PROPOSITION 2.4. Assume that [ satisfies (H2). If x € C is a local minimizer of
flo, then =V f(z) € Ne(x).

Proof. By contrapositive. Assume that —V f(z) ¢ NC(;E) for some x € C. Let
p € (0,00). Then, for all @ € (

ly — ).

0, aro e
r ¢ Po(x —aVf(z)) C B(z,2a||Vf(z)]]) € B(x,p),

where the first inclusion holds by (2.1). Thus, by (2.3) and (2.2), for all o €
(0, min{ 5ty LipB(:p)(Vf) }H and y € Po(x — aVf(z)),

) = f(@) < (Vf(@),y —a) + —E—ly — o
1 LipB(:c,p)(vf) 2
< (mgm + 222y -
<0.
Hence, z is not a local minimizer of f|c. 0

Theorem 2.5 strengthens [53, Proposition 8.46(d)] by stating that (1.5) is valid,
which shows that P-stationarity is the strongest necessary condition for local opti-
mality under hypothesis (H2).

THEOREM 2.5 (gradient characterization of proximal normals). For everyxz € C,
(1.5) holds.

Proof. Let x € C. The inclusion 2 holds by Proposition 2.4. For the inclusion C,

let v € ]vc(a:) By definition of the proximal normal cone, there exists @ € (0, 00)

This manuscript is for review purposes only.
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PGD ACCUMULATES AT B-STATIONARY POINTS 7

such that z € Po(x + @v). This is equivalent to the fact that = is a minimizer of h|¢,
where h : & — R is defined by

1
h(y) = 5=lly = (z +av)||* vy e&.

The function h is differentiable, its gradient is locally Lipschitz continuous (actually,
globally Lipschitz continuous, since it is an affine map), and

—Vh(z) =v.

Since z is a global minimizer of h|c, it is also a local minimizer of h|c. This shows
that
ved Vi) ‘ h 5 —R sat%sf.ies. (H2), ,
x is a local minimizer of h|c

which implies the inclusion C in (1.5). d

Remark 2.6. From our proof, we see that (1.5) is also true if we replace “local
minimizer” with “global minimizer”. The same holds for equations (1.3)—(1.4) [53,
Theorem 6.11]. However, in this section, we are interested in understanding the
closeness between the notions of stationarity and local optimality.

3. Stationarity in the literature. This section surveys the names given to the
stationarity notions provided in Definition 1.1 and attempts to offer a brief historical
perspective. The terms “B-stationarity” and “M-stationarity” first appeared in the
literature about mathematical programs with equilibrium constraints (MPECs), as
explained in Sections 3.1 and 3.2. In contrast, the term “P-stationarity” seems to be
new in the literature. P-stationarity is called “criticality” in [61, Definition 3.1(ii)];
problem (1.1) corresponds to [61, problem (1.1)] with g the indicator function of our
set C'. We propose the name “P-stationarity” because this stationarity notion is based
on the proximal normal cone. It is closely related to the so-called a-stationarity, as
explained in Section 3.3.

3.1. A brief history of Bouligand stationarity. Peano already knew that
B-stationarity is a necessary condition for optimality. The statement is implicit in
his 1887 book Applicazioni geometriche del calcolo infinitesimale and explicit in his
1908 book Formulario Mathematico where the formulation is based on the tangent
cone and the derivative defined in the same book; see the historical investigation in
[12, 13].

B-stationarity appears as a necessary condition for optimality in [62, Theorem 2.1]
and [23, Theorem 1], without any reference to Peano’s work. The latter theorem uses
the polar of the closure of the convex hull of the tangent cone which equals the polar of
the tangent cone by [53, Corollary 6.21]. Neither “stationary” nor “critical” appears
in [62] or [23].

The “Bouligand derivative”, or “B-derivative” for short, was introduced in [52].
It is a special case of the contingent derivative introduced by Aubin based on the
tangent cone. The name “Bouligand derivative” was chosen because the tangent
cone is generally attributed to Bouligand; see, e.g., [53, 41, 42] for recent references.
Differentiability implies B-differentiability.

In [58, §4], a point where a real-valued function is B-differentiable is called a
“Bouligand stationary (B-stationary) point” of the function if the B-derivative at that
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point is nonnegative. This is a stationarity concept for unconstrained optimization,
which therefore does not apply to problem (1.1).

B-stationarity is called a “stationarity condition” and said to be
[38, §4.1] where [23] is cited.

In [54, §2.1], the term “B-stationarity” is used to name the stationarity concept
for an MPEC that corresponds to the B-stationarity in the sense of [58, §4] for a
nonsmooth reformulation of the MPEC [54, Proposition 6]. As pointed out in [65,
§2.1] and [14, §3.3 |, the “B-stationarity” in the sense of [54, §2.1], which is specific
to MPECs, is not B-stationarity in the sense of Definition 1.1 and is called “MPEC-
linearized B-stationarity” in [14, §3.3] to avoid confusion. Nevertheless, this MPEC-
linearized B-stationarity appears under the name “B-stationarity” in [28, §1.1], [24,
Definition 2.2], and [64, Definition 3.2] which all cite [54].

The term “B-stationarity” was used to name the absence of descent directions in
the tangent cone (as in Definition 1.1) first in [48, §1]. It was used in this sense in
several subsequent works by various authors; see, e.g., [18, §2], [19, §2], [17, Defini-
tion 2.4], [65, Definition 2.2], [14, §§3.3 and 4], [15, §3], [47, §2], [59, Definition 2.4],
21, Definition 3.4], [49, (18)], [7, Definition 3(1)], [8, Definition 4(i)], [27, §4], and [9,
Definition 6.1.1].

In [9, Definition 6.1.1], B-stationarity is defined for the problem of minimizing a
real-valued function that is B-differentiable on a nonempty closed subset of a Euclid-
ean vector space, thereby extending the concept introduced in [58, §4] to constrained
optimization. This more general definition reduces to that from Definition 1.1 if the
function is differentiable.

B-stationarity is also known under other names in the literature. First, in [16,
Definition 1(b)] and [40, §3], B-stationarity is called “strong stationarity”; [16, prob-
lem (4)] and [40, (P2)] reduce to problem (1.1) for F' the identity map on R™. Second,
because the regular normal cone is also called the Fréchet normal cone, especially in
infinite-dimensional spaces [53, 41, 42], B-stationarity is called “Fréchet stationarity”,
or “F-stationarity” for short, in [35, Definition 4.1(ii)], [36, Definition 5.1(i)], and [37,
Definition 3.2(ii)]. Third, B-stationarity is simply called “stationarity” (or “critical-
ity”) in [55, §2.1], [25, §2.1.1], [32, Definition 2.3], [33, Definition 3.2(c)], and [20,
Definition 1].

“well known” in

3.2. A brief history of Mordukhovich stationarity. According to [16, §2],
the term “M-stationarity” was introduced in [56] for an MPEC. This name was chosen
because the corresponding stationarity condition was derived from the generalized
differential calculus of Mordukhovich. To the best of our knowledge, the term “M-
stationarity” was used to indicate that the negative gradient is in the normal cone (as
in Definition 1.1) first in [16, Definition 1(a)]; recall that [16, problem (4)] reduces to
problem (1.1) for F' the identity map on R™. There, the name is motivated by the
presence of the normal cone which was introduced by Mordukhovich. M-stationarity
appears, under this name, in several subsequent works by various authors; see, e.g.,
[7, Definition 3(3)], [8, Definition 4(iii)], [27, §4], [40, §3], [31, §2], [30, §3], and [29,
§2.3].

3.3. Proximal stationarity and a-stationarity. P-stationarity is related to
a-stationarity which was introduced in [5, Definition 2.3] for C = R%, and in [35,
Definition 4.1(i)], [25, §2.1.1], [36, Definition 5.1(ii)], [34, (4.2)], and [37, Defini-
tion 3.2(i)] for several low-rank sets. By definition of the proximal normal cone,
a point x € C is P-stationary for (1.1) if and only if there exists a € (0,00) such
that x € Po(x — aV f(z)). In contrast, given o € (0,00), a point z € C is said to be
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PGD ACCUMULATES AT B-STATIONARY POINTS 9

a-stationary for (1.1) if x € Po(z — aV f(x)). Thus, while a-stationarity prescribes
the number « € (0, 00), P-stationarity merely requires the existence of such a number.
Furthermore, a-stationarity should not be confused with the approximate stationarity
from [32, Definition 2.6].

4. The PGD algorithm. This section reviews the PGD algorithm, as defined
in [30, Algorithm 3.1] except that the “average” rule is allowed as an alternative to
the “max” rule. Its iteration map, called the PGD map, is defined as Algorithm 4.1.
PGD is defined as Algorithm 4.2 which uses Algorithm 4.1 as a subroutine. The
nonmonotonic behavior of PGD is described in Propositions 4.6 and 4.7.

Algorithm 4.1 PGD map

Require: (£,C, f,a,@, 8,c¢) where £ is a Euclidean vector space, C' is a nonempty
closed subset of £, f : &€ — R is differentiable on C, 0 < a < @ < oo, and
B,c € (0,1).

Input: (z,u) with z € C and p € [f(z), 00).

Output: y € PGD(z, 1;E,C, f,a, @, 5, ¢).

1: Choose a € [a, @] and y € Po(x — aVf(x));
2: while f(y) > p+c(Vf(z),y —z) do

3: a — af;

4: Choose y € Po(z — aVf(x));

5: end while

6: Return y.

Remark 4.1. The Armijo condition
f) <p+ce(Vi),y—=)

ensures that the decrease u — f(y) is at least a fraction ¢ of the opposite of the
directional derivative of f at = along the update vector y —z. By (2.2), this condition
implies that

(4.1) F) <= o-lly -l

which is the condition used in [31, Algorithms 3.1 and 4.1] and [11, Algorithm 3.1].
Importantly, all results from [31] hold for both conditions, as is clear from the proofs.

Remark 4.2. By Proposition 5.3, if f satisfies (H1) and x is not B-stationary
for (1.1), then the while loop in Algorithm 4.1 is guaranteed to terminate, thereby
producing a point y such that f(y) < p; y # « holds because z is not B-stationary
and hence not P-stationary. If f satisfies (H2), then the while loop is guaranteed to
terminate for every x € C, by Corollary 6.2.

The PGD algorithm is defined as Algorithm 4.2. It is said to be monotone or
nonmonotone depending on whether u; = f(x;) for all ¢ (that is, [ = 0 for the “max”
rule, or p = 1 for the “average” rule) or not.
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Algorithm 4.2 PGD

Require: (£,C, f,a, @, 3, ¢, “nonmonotonicity”) where £ is a Euclidean vector space,
C is a nonempty closed subset of £, f : £ — R is differentiable on C, 0 < a <
a < oo, B,c € (0,1), and “nonmonotonicity” € {(“max”,l), (“average”,p)} with
leNand pe (0,1].

Input: zo € C.

Output: a sequence in C.

1: ¢ < 0;

2 por < flzo)y

3: while =V f(z;) ¢ N(z;) do

4: if “nonmonotonicity” = (“max”,l) then

5: M 4 MaXjemax{0,i—1},...,i} f(xj);

6: else if “nonmonotonicity” = (“average”,p) then
7: pi = (L= p)pi—1 +pf(xs);

8: end if

9: Choose z;1+1 € PGD(z;, 13 €, C, f, o, @, 8, ¢);
10: 141+ 1;

11: end while

Remark 4.3. For simplicity, we use a constant weight p in the “average” rule.
However, we could allow the weight to change from one iteration to the other. It
would then be denoted by p;. The main results of the article would hold true in this
more general setting, under the additional assumption that inf;cyp; > 0.

Remark 4.4. If f satisfies (H2), then Nc(xl) should be replaced with ﬁc(zz) in
line 3.

Examples of a set C' for which the projection map and the regular and proximal
normal cones can be described explicitly abound in the literature; see Section 7. For
such examples, Algorithm 4.2 can be practically implemented.

Remark 4.5. From Remark 4.2, under (H1), the call to Algorithm 4.1 in line 9
of PGD never results in an infinite loop. Consequently, by running PGD, one always
encounters one of the following two situations:

e PGD generates a finite sequence, and the last element of this sequence is
B-stationary for (1.1) if f satisfies (H1), and even P-stationary for (1.1) if f
satisfies (H2);

e PGD generates an infinite sequence.

The rest of this section and the next two concern the nontrivial case where PGD
generates an infinite sequence. In that case, the stationarity of the accumulation
points of the generated sequence, if any, is studied in Sections 5 and 6. Following
[51, Remark 14], which states that it is usually better to determine whether an al-
gorithm generates a sequence having at least one accumulation point by examining
the algorithm in the light of the specific problem to which one wishes to apply it,
no condition ensuring the existence of a convergent subsequence is imposed. As a
reminder, a sequence (z;);en in € has at least one accumulation point if and only if
lim inf; 0 |24 ]| < oo.

A property of monotone PGD that is helpful for its analysis is the fact that f is
strictly decreasing along the generated sequence. For nonmonotone PGD, this is not
true. However, weaker properties, stated in the following two propositions, will be
enough for our purposes.

This manuscript is for review purposes only.
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PROPOSITION 4.6. Let (x;);en be a sequence generated by PGD (Algorithm 4.2)
using the “maz” rule. For every i € N, let g(i) € argmax;cmax{o,i—1},....i} f(Z;)-
Then:

L. (f(zg()))ien is monotonically nonincreasing;

2. (z4)ien is contained in the sublevel set (1.6);

3. if x € C is an accumulation point of (x;)ien, then (f(z4e:)))ien converges to
o € [F(@), (zo));

4. if f is bounded from below and uniformly continuous on a set that contains
(x:)ien, then (f(z;))ien converges to ¢ € R.

Proof. The first two statements are [31, Lemma 4.1 and Corollary 4.1]. For
the third one, let (z;, )ren be a subsequence converging to x. Since the sequence
(f(xg4(s)))ien is monotonically nonincreasing, it has a limit in R U {—oco}. Thus,

lim f(zgm) = lim f(zg,)) 2 lminf f(2;,) = f(z) > —co.
It remains to prove the fourth statement. From the first statement, and because f
is bounded from below, (f(z4(;)))ien converges to some limit ¢ € R. Assume, for
the sake of contradiction, that (f(z;))ien does not converge to . Then, there exist
p € (0,00) and a subsequence (f(z;;))jen contained in R\ [¢ — p, + p|. For all
j € N, define p; = g(i; +1) —i; € {0,...,1}. Then, there exist p € {0,...,1}
and a subsequence (pj, )ken such that, for all £ € N, p;, = p. By [31, (27)] or [30,
(A9)], (f(xg@iy—p))ien converges to @. Therefore, (f(zg(;41)—p))ien converges to .
Hence, (f(zg(i;, +1)-p))ken converges to ¢. This is a contradiction since, for all k € N,

f(xg(ijk-‘rl)—p) = f(fﬂi_,»k )- o
PROPOSITION 4.7. Let (z;);en be a sequence generated by PGD (Algorithm 4.2)
using the “average” rule. Then:
1. (2;)ien is contained in the sublevel set (1.6);
2. if (x;)ien has an accumulation point, then (f(x;))ien and (w;)ien converge,
toward the same (finite) value.

Proof. The sequence (u;);en is monotonically nonincreasing since, for all i € N,
flx;) < pi—q, hence p; = (1 — p)pi—1 + pf(x;) < pi—1. Therefore, for all i € N,

f(xi) < pic1 < p_1 = f(xo),

meaning that (z;);en is contained in the sublevel set (1.6).

Now, we prove the second item of the proposition. Let us assume that (z;);en has
an accumulation point z. Let (z;, )ren be a subsequence converging to x. Observe
that

k—oc0

since f is differentiable, and in particular continuous, at . As (u;);en is monotonically
nonincreasing, it has a limit ¢ € RU {—o0}. For all k € N,

f(xik) < Mg —1-

Letting k£ tend to infinity yields

k—o0

k—o0
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12 G. OLIKIER AND I. WALDSPURGER

In particular, ¢ is finite.
Now, we show that ¢ = liminf; .o f(z;). Let (z;, )ren be a subsequence such
that

lim f(zj,)=lminf f(z;).
— 00 71— 00
For all £ € N, it holds that
Hj = (1 _p)l‘}’jk_l +pf(mjk)‘
The two sides of this equality must have the same limit:
¢ = (1 =p)p +pliminf f(z;).

As p > 0, this implies ¢ = liminf;, f(z;) (and, in particular, liminf; . f(2;) >
—00). To conclude, we observe that, for all k € N,

f(@r) < pr—1.
Hence,
limsup f(zr) < lm prp—1 = ¢ = liminf f(zy).
k—00 k—o00 k—o00
Therefore, (f(xk))ren converges to ¢. d

5. Convergence analysis for a continuous gradient. In this section, PGD
(Algorithm 4.2) is analyzed under hypothesis (H1). As mentioned after Remark 4.5,
only the nontrivial case where an infinite sequence is generated is considered here.
Specifically, the first part of the second item of Theorem 1.2, restated in Theorem 5.1
for convenience, is proven.

THEOREM 5.1. Let (x;)ien be a sequence generated by PGD (Algorithm 4.2). If
f satisfies (H1), then all accumulation points of (x;);en are B-stationary for (1.1).
If, moreover, (x;)ien has an isolated accumulation point, then (x;);en converges.

The proof is divided into three parts. First, in Section 5.1, we show that, in a
neighborhood of every point that is not B-stationary for (1.1), the PGD map (Al-
gorithm 4.1) terminates after a bounded number of iterations. Then, in Section 5.2,
we prove that, if a subsequence (x;, )ren converges, then (z;, +1)ren also does, to the
same limit. Finally, we combine the first two parts in Section 5.3: roughly, if (z;, )ren
converges to x, then, from the second part,

Hxik"t‘l - mikH — 0 when k — 0,

but, from the first part, if = is not B-stationary for (1.1), then the iterates of PGD
move by at least a constant amount at each iteration. It is therefore impossible that
(x4, )ken converges to a point that is not B-stationary for (1.1).

5.1. First part: analysis of the PGD map. In this section, we show that, if
z € C is not B-stationary for (1.1), then the while loop in Algorithm 4.1 terminates,
in some neighborhood of x, for nonvanishing values of «. The intuition for this proof
is that, for every x close to x and for every y € Po(z — aV f(x)),

fly) = f(x) + (Vf(z),y — z) + some remainder.

This manuscript is for review purposes only.



459

460

461

462
463

464

465

466

467

468

469

470

471

476

478

479

480

481

PGD ACCUMULATES AT B-STATIONARY POINTS 13

The inner product (V f(x),y — x) is negative, and larger in absolute value than some
fraction of ||V f(x)||||ly —z|| (Proposition 5.2). On the other hand, if « is small enough,
the remainder (upper bounded in Proposition 5.3) is smaller than some arbitrarily
small fraction of |V f(z)|||ly — z||. Therefore, for & small enough,

fly) < f(@) +e(Vi(x),y —x).

PROPOSITION 5.2. Assume that f satisfies (H1). Let x € C be non-B-stationary
for (1.1), and w € T-(x) be such that

(5.1) (w, =V f(z)) > 0.

Define k = \/1 - % € (0,1). For every e € (0,00), there exist oy € (0,¢]
and p(ay) € (0,00) such that, for all x € B(z,p(ay)) NC and a € [ag, ay/F],

d(z — aVf(z),C) < kal|V f(z)]],
which implies, for all y € Po(x — aV f(x)),
(Vf(@),y—z) < =vV1-r?[|V[(@)|ly— =l
Proof. Let € € (0,00) be fixed. We show that there exist o, € (0,¢] and p(ay,) €
(0, 00) satisfying the required property.

Let (w;);en be a sequence in C' converging to z, and (¢;);en be a sequence in
(0, 00) such that

W; — X j—o00
=/,

t;

w.

From the definition of w in (5.1), it holds for all i € N large enough that

(5.2) (wi —z, -V f(z)) > 0.
As ti (wlgf:%”;@» e <wl%uf2@)) and t; i, 0, it also holds for all ¢+ € N large

enough that

i —
>3 w2~V @) "

Similarly, it holds for all ¢ € N large enough that

(wi —2,-Vf(@)* _ (w,—Vf(z))

(5.4)
Jw; — x| 2[jw|?

Fix 7 € N satisfying (5.2), (5.3), and (5.4). Pick a, such that

oz _ |w; — z|)?
2 (wi—z,—Vf(z))

<oy <E.

Since V f is continuous at z, there exists pp € (0, 00) such that, for all x € Bz, po]NC,
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182
483 (5.5a) (wi — z, ~V f(z)) > 0,
A 2
e % (wi !w; Jt%Hf(ac)) = e
45 (5.50) (wi =z, ~Vf(@))* _ (w,~Vf(z))’

i — 2PV @I~ 2wlP V@I

486 We now establish the first inequality we have to prove: for an adequate value of p(ay),
487 it holds for all x € B(z, p(ay)) N C and « € [ay, ay/F] that

188 |z —aVf(z) -yl < salVF(@)l, Vye Po(z—aVf(z)),
189 which is equivalent to d(x — aV f(z),C) < ka|V f(x)].

490 Let us for the moment consider any p(ay) € (0, po]. For all x € B(z, p(ag)) NC,
191 « € [ag,a,/pB], and y € Po(x — aVf(z)),

192 lz —aVf(x) —yl? < ||z —aVf(z) —wl?

493 =llz—aVf(z) —wl?*+2(z—2,aVf(z)+w —z) + ||z — 2|
494 <z —aVf(z) —wl?

495 +25(ag) (@l V f(@)]| + lwi — z[]) + plag)?

496 <z —aVf(z) —wl

197 +20(0) (oo VG + s - 2l) + plas )

Blz,po

o TSI 20 (o~ ) + s gl
199 +op(an) (e IS+ a2l ) + plos )
500 < 2|V E(@)]? - a(w; —z,—Vf(x))

(07
5 25( ety -z \V/ ; — . 2
o +op(an) (%o IS+ - 2]) + ple)

502 where the last inequality follows from (5.5b) and the fact that a, < a < % Choose
503 plag) € (0, po] small enough to ensure

5 zeBmp nc

. 250 (a IV + s — xu) T plag)?
min  (w; —xz, -V f(2)).

2 z€Blz,polNC

506  Note that the right-hand side of this inequality is positive, from (5.5a). Combining
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this definition with the previous inequality, we arrive at

«

|z —aV f(z) —yl> < ®|Vf(z)]* - ) (wi —z, =V f(z))
(w; — z, —Vf(@))

— V@) (1 -

2a||V f(z)]|?
B{w; —z, =V f(x)) Qy
< |V f(x)|? (1— 2 [V @) ) as a < 5

B (w; — z, ~V f(z))>
Affw; — 2PV f ()]

B (w, ~V f(z))”
8wV £ ()

< ?||Vf(2)]? (1 - > from (5.5b)

< Q| V(@) (1 -

= r2a®||V f(2)[|*.

) from (5.5¢)

In other words, for all z € B(z,p(ay))NC, a € [ag, /B, and y € Po(x — aV f(x)),
it holds that

[z —aVf(z) —yll < kel Vf(2)].

To conclude, we show that this inequality implies

(5.6) < y—o Vi) >§m.

ly = [ IV ()]

Indeed, if we define 6 € R such that <ﬁ, H%Egl& = cos(f), we have

ly = l* + 2]V f(@)llly — @ll cos(6) + o*[|V f()|* < oKV f(2)]]*.

This already shows that cos(d) < 0. In addition, if we minimize the left-hand side
over all possible values of ||y — z||, we get

—a?||Vf(2)[[* cos*(0) + o*|V f(@)|* < oKV f(2)]%,

hence cos?(f) > 1 — k2, which establishes (5.6). O

PROPOSITION 5.3. Let o € (0,00) and ¢ € (0,1). Assume that f satisfies (H1).
Let x € C be non-B-stationary for (1.1). There exists oy € (0,a] and p € (0,00) such
that, for all x € B(z,p) NC, a € [ay, ay/B], and y € Po(x — aV f(z)),

fly) < fl@) +c(Vi(x),y —x).

Proof. Define k as in Proposition 5.2. Let § € (0,00) be small enough to ensure

(5.7a)
. F) @)~ (Vi)y—2)| _ (1= VI= |V
veB[z, BV (@)]nC\{z} ly =zl 4 (1 + ﬁ)
(5.7) wp V) - Vi) < L ).

yeB[z, I ||V f(@)]|]nC
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These inequalities are satisfied by all § small enough, from the definition of the gra-
dient for the first one, and because the gradient is continuous at x for the second
one.

Then, define ¢ := min{w,d} and let o, € (0,¢] and p(ay) € (0,00) be as in
Proposition 5.2. Define

p 7m1n{p Otz avaf ”}

Note that, for all x € B(z,p) N C,

[l = zl| < p < aul|VF(z)|

76
< 2
@l < 2195,
so that from (5.7b), |V f(z) — Vf(2)] < Hv{li)“, which implies

%Ilvf@)ll <[IVi@)| - IVf(z) = V()

< IV f (@)l
<IVf@)l +VF(z) = V@)l

(53) <2 IV/@I.

For all x € B(z,p) N C, a € [ag, az/F], and y € Po(z — aV f(x)),

fy) = f(z) +(Vf(z),y — )
L (f@) — fl@) — (Vf(@)z— o)
()~ f@) — (Vf(2)y — z))
(5.9 < @)+ (Vi@)y—a)+ LZWYLZRIVI@N Gy = oy

8
4 (1 + 3(17,{))
The last inequality follows from (5.7a); observe that

ly =zl < lly — 2/l + llz — z|
<2a||Vf(z)||+ p from (2.1)

(@)l + o[V £ ()]l

504:1;

IIVf( )+ e[|V F(z)| from (5.8)

70@

=35 Vi@
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We continue from (5.9):
(1 - ov1-r2Vf(@)]

1(1+ 50)

2 r) + (v I@),y -y + LAV,

< @)+ (Vf(@)y —a) + VS (@) = VI @)y - o]
, 1= VI=R|V/()
4

fy) < flx) +(Vf(z),y —x) +

2llz =zl + [ly — =)

I
ly — |

< f@) + (V) - 2y + LA EINT@ oy o (5.70)
<f@)+(Vf(@),y—2) + (1 = )V1=r2[Vf(@)|lly — || from (5.8)
< flz)+(Vf(x),y—z) — (1 —¢)(Vf(z),y —z) from Proposition 5.2
— 1) + (V) y )

Inequality (a) is true because

ly — z|| > a||Vf(x)|]| — ||z — aV f(x) — y|| by the triangle inequality
a[Vf(2)|| - d(z — aVf(z),C)
> (1 - k)a||Vf(z)| from Proposition 5.2

> —(1 — k)p from (5.8), the definition of p, and a, < «

3
— 4
3
>1(17KZ)HI*£H. 1]

5.2. Second part: convergence of successive iterates.

PROPOSITION 5.4. Assume that [ satisfies (H1). Let (x;)ien be a sequence gen-
erated by PGD (Algorithm 4.2), and x be an accumulation point. Then, for every
subsequence (x;, )ken converging to x, the sequence (x4, +1)ken also converges to x.

Proof. Let (z;,)ren be a subsequence converging to x. We show that (2, +1)ken
also converges to .

If the nonmonotonicity rule is set to “average”, this is a direct consequence of
Proposition 4.7. Indeed, for all i € N, from (4.1),

c
f@ivr) < pi = o= llwivn = il < i
From Proposition 4.7, (f(2;+1))ien and (;)ien converge to the same limit. Therefore,
c 2)
S e —
(s = gl —ll?)

also converges to this limit. This implies that (||z;+1 — ;||)ien converges to 0, hence
(lwip+1 — i, |l)ken converges to 0, and (x;,+1)ken converges to the same limit as
(25, )ken, that is, x.

Now, let us consider the “max” rule case. It suffices to show that x is an accumula-

tion point of every subsequence of (z;, +1)ken. In other words, we show the following:
for every subsequence (ij, )xen of (ix)ren, there exists a subsequence of (xiij)kGN
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18 G. OLIKIER AND I. WALDSPURGER

that converges to x. Let (i, )xen be a subsequence of (ix)ren. For all ¢ € N, define

9(i) € argmax;c (max{0,i—1},....i;}  (¥;), as in Proposition 4.6. By the third statement of

Proposition 4.6, the sequence (f(z4(;)))ien converges to ¢ € [f(x), f(zo)]. For every

lli E(N, l)etting ai;, € (0, @] be the number such that zi; +1 € Po(i;, —ai; Vf(mijk ),
v (2.1),

i, 41 — @i, [| < 200, [V f (2, )| < 2a[|VF (2,

Thus, since (z;;, )ren is bounded and V f is locally bounded (as it is continuous), the
sequence (xijk+1)keN is bounded. If we replace (ij,)ren by a subsequence, we can
assume that (2, +1)ken converges.

Iterating the reasoning, we can assume that (:cz]k +s)keN converges to some z° € C
for every s € {0,...,1+ 1}. By definition of z, 2° = .

Observe that, from the continuity of f,

f(@gi;, +141)) = max{f (@i, +1), .-, [ (@i, +141)}
— max{f(z'),..., f(z'™)} when k — oco.

In particular, there exists s1 € {1,...,] + 1} such that

(5.10) f@™) =

Let s; be the smallest such integer. For all £ € N, from the condition in line 2 of
Algorithm 4.1 and (4.1),

c
f(xijk“!‘sl) < f(xg(ijk-‘rsl—l)) - ﬁ||xijk+sl - xijk+51—1”2'
Letting k tend to infinity yields

S c S 51—
p=fa") <o pellott ot

Consequently, 2%t = 2171, In particular, f(z17!) = f(2°!) = ¢. Therefore, s; = 1,
otherwise it would not be the smallest integer satisfying (5.10). The equality x°* =

25171 then rewrites as ! = 2° = 2 and, when k — oo
) b

]
1
xijk+l — T =

5.3. Third part: proof of Theorem 5.1. Let x be an accumulation point of
(z;)ien. Assume, for the sake of contradiction, that z is not B-stationary for (1.1).
Let (z;,)ken be a subsequence converging to z.

Let o, and p be as in Proposition 5.3. For all k£ € N large enough, z;, € B(z,p)N
C. Thus, when Algorithm 4.1 is called at point z;,, the condition in line 2 stops being
fulfilled for some «;, > g, meaning that

T 41 € Po(zi, — o,V f(x;,)) for some ;) € [y, @).

If we replace (ir)reny With a subsequence, we can assume that (o, )xeny converges to
some Qi € [ay, al.
For all k£ € N, we have

”xik - alkvf(xlk) - xik-‘rl” = d(xlk - aikvf(xik)ﬂ C)
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and since the distance to a nonempty closed set is a continuous function, we can
take this equality to the limit. We use the fact that z;, 1 — 2 when k — oo, from
Proposition 5.4. This yields

iV f(2)]| = d(z — i V f(2), C),

which means that z € Po(z — aim V£ (z)). In particular, —V f(z) € Ne(z) C Nc(gc),
which contradicts our assumption that z is not B-stationary for (1.1). We have
therefore proven that every accumulation point is B-stationary.

Finally, if (z;);en has an isolated accumulation point, then the sequence (x;);en
converges, from Proposition 5.4 and [43, Lemma 4.10].

6. Convergence analysis for a locally Lipschitz continuous gradient. In
this section, PGD (Algorithm 4.2) is analyzed under hypothesis (H2). As mentioned
after Remark 4.5, only the nontrivial case where an infinite sequence is generated
is considered here. Specifically, the second part of the second item of Theorem 1.2,
restated in Theorem 6.3 for convenience, is proven based on Proposition 6.1 and
Corollary 6.2 which state that, for every x € C' and every input x sufficiently close to
z, the PGD map (Algorithm 4.1) terminates after at most a given number of iterations
which depends only on z.

PROPOSITION 6.1. Assume that f satisfies (H2). Let x € C, @ € (0,00), ¢ €
(0,1), and p € (0,00). Let p € [p+ 2amaxyepz pnc |V f(2)],00) and define o, =
(1 —=c¢)/Lipgy (V). Then, for all z € Blz,p] N C, a € [0, min{a.,a}], and y €
Po(z - OéVf(l‘))

fy) < f2) +e{Vi(z),y - ).
Proof. For all x € Blz,p]NC and «a € [0,a], Pc(x — aV f(z)) C Blz, p]; indeed,
for all y € Po(z — aV f(x)),
ly —zll < lly — 2l + llz — zl| <2V (@)l +p <P,

where the second inequality follows from (2.1). Thus, by (2.3) and (2.2), for all
v € Ble,pl N C, a € [0, min{au, a}], and y € Po(z — aVf(x),

1) < f(2) + (Vf(@),y— ) + % ip (Vf)ly —ef
Sf(w)+<1—aL1p w) - )
Blz,p]
< f(@) + e (V@) 0

COROLLARY 6.2. Consider Algorithm 4.1 under hypothesis (H2). Given z € C
and p € (0,00), let p be as in Proposition 6.1. Then, for every x € Blz,p] N C, the

while loop terminates with a step size o € [min {Q, %} ,@} and hence after
z,p

1—c¢
max {0, ’7111 <a0 Libng p](Vf)> /ln(ﬁ)-‘ }

iterations, where aq is the step size chosen in line 1.

at most
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Proof. At the latest, the while loop ends after iteration i € N\ {0} with a = af3°

such that 5 > m In that case, ¢ < 1+ ln(m)/ln(ﬂ) and thus

1< ﬂn(m)/ln(ﬁﬂ 0

THEOREM 6.3. Assume that [ satisfies (H2). Let (x;);en be a sequence generated
by PGD (Algorithm 4.2). Then, all accumulation points of (x;);en are P-stationary
for (1.1). Moreover, for every convergent subsequence (x;,)jen,

=

(6.1) lim d(—=V f(zi;+1), No(@i;+1))-

j—o0

Proof. Assume that a subsequence (z;; ) jen converges to z € C. Given p € (0, 00),
let p be as in Proposition 6.1. Define

min < « M al .
“ Lipgp (V) |7

There exists j. € N such that, for all integers j > j., z;; € Blz, p|, thus, by Corol-
lary 6.2, ;41 € Po(wi; — i,V f(zi;)) with o, € I, and hence

I =

[Tij41 = (@i, — @i,V (2i)ll = d(zi; — @i, V[(zi;), O).

Since I is compact, a subsequence (o i )ken converges to a € I. Moreover, there exists
k. € N such that ji, > j.. Furthermore, by Proposition 5.4, (i, 1);jen converges to
x. Therefore, for all integers k > k,,

@i, +1 — (@i, — auy, V(i ) = dlzi;, —auy, V(i ),0),

and letting k& tend to infinity yields
lz = (z — aVf(2))| = dz — aVf(z),C).

It follows that z € Po(z — aV f(z)), which implies that —V f(z) € Ng ().

We now establish (6.1). Recall that, for all integers j > j., since x;, 41 € Po(x;; —
a;;V f(z;;)) with o, € I, it holds that O%(xl] —i,41) — V() € Nc(xij+1), and
thus ’

A 1

A=V f(2i;+1), No(@i;41)) < || = V(@i 41) = (= (@i; = 2i;41) = Vf(23))]

i
1
< o @i, 41 — x4, | + |V f(2i,41) — V(i)
— 0 when j — oo,
by Proposition 5.4 and the fact that () en is bounded away from zero. ]

Proposition 6.4 considers the case where PGD generates a bounded sequence.

PROPOSITION 6.4. Assume that f satisfies (H2). Let (x;);en be a sequence gen-
erated by PGD (Algorithm 4.2). If (x;)ien is bounded, which is the case if the sublevel
set (1.6) is bounded, then all of its accumulation points, of which there exists at least
one, are P-stationary for (1.1) and have the same image by f, and

P

(6.2) lim d(—Vf(z;), No(z;)) = 0.

71— 00
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Proof. Assume that (z;);cy is bounded. It suffices to establish (6.2) and to prove
that all accumulation points of (z;);en have the same image by f; the other statements
follow from Theorem 6.3.

The proof that all accumulation points of (z;);en have the same image by f is
based on the argument given in the proof of [51, Theorem 65]. Assume that (z;, )ren
and (zj, )ken converge respectively to z and Z. Being bounded, the sequence (z;)en is
contained in a compact set. By Propositions 4.6 and 4.7, the sequence (f(x;))ien con-
verges; Proposition 4.6 applies because a continuous real-valued function is bounded
from below and uniformly continuous on every compact set [63, Propositions 1.3.3 and
1.3.5]. Therefore, f(z) = im0 f(24,) = lim; 00 f(25) = limpoo f(2),) = f(T).

Let us establish (6.2). Assume, for the sake of contradiction, that (6.2) does not
hold. Then, there exist ¢ € (0,00) and a subsequence (;;);en such that ig > 1 and

d(fo(zij),ﬁc(:cij)) > ¢ for all j € N. Since (2;;,_1)jen is bounded, it contains a
subsequence (ﬂfi_jk—l)keN that converges to a point € C. Therefore, by (6.1),

P

lim d(—Vf(z;, ), No(i, ) =0,

k—o0

a contradiction. 0

7. Examples of feasible sets on which PGD can be practically imple-
mented. Examples of a set C' on which PGD can be practically implemented include:
1. the closed cone RZ, of s-sparse vectors of R", i.e., those having at most s
nonzero components, n and s being positive integers such that s < n;
2. the closed cone RZ, NR?} of nonnegative s-sparse vectors of R™;
3. the determinantal variety [26, Lecture 9]

RZX™ = {X e R™*" | rank X <r},

m, n, and r being positive integers such that » < min{m,n};
4. the closed cone

St(n) ={X eRL"|XT =X, X =0}

of order-n real symmetric positive-semidefinite matrices of rank at most r, n
and r being positive integers such that r < n.
Indeed, for every set in this list, the projection map, the tangent cone, the regular
normal cone, and the normal cone are explicitly known; see [45, §§6 and 7.4] and the
references therein. In particular, it is known that these sets are not Clarke regular at
infinitely many points. In this section, we prove that, for these sets, regular normals
are proximal normals.

As detailed in [45], if C is a set in this list, then there exist a positive integer p
and disjoint nonempty smooth submanifolds Sp, ..., S, of £ such that S, = C and,
for alli € {0,...,p}, S; = U;:o S;. This implies that {So,...,S,} is a stratification
of C satisfying the condition of the frontier [39, §5]. Thus, C' is called a stratified set
and So, ..., S, are called the strata of {So,...,S,}.

PROPOSITION 7.1. Let C be a set in the list. For all x € C,

and, if © ¢ Sp, then
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Since the proof of Proposition 7.1 relies on significantly different concepts than
those previously used, we present it in Appendix A.

8. Comparison of PGD and P2GD on a simple example. P2GD, which
is short for projected-projected gradient descent, was introduced in [55, Algorithm 3]
for C':= R”) " and extended to an arbitrary set C' in [45, Algorithm 5.1]. It works
like PGD except that it involves an additional projection: given x € C as input, the
P2GD map [45, Algorithm 5.1] performs a backtracking projected line search along a
projection g of —V f(z) onto T (x), i.e., computes a projection y of  + ag onto C
for decreasing values of the step size o € (0, 00) until y satisfies an Armijo condition.

As pointed out in [57, §3.2], the convergence of optimization algorithms that
use descent directions in the tangent cone, such as P2GD, often suffers from the
discontinuity of the tangent cone. In [32, §2.2], on an instance of (1.1) where £ := R3*3
and C = R3<X23, P2GD is proven to generate a sequence converging to a point of
rank one that is M-stationary but not B-stationary. Several methods are compared
numerically on this instance in [46, §8.2].

In this section, monotone PGD and P?2GD are compared analytically on the in-
stance of (1.1) where & = R%, C = R%,, f(z) = %[z — 2,|? for all 2 € R?,
7, = (a,0), and a € R\ {0}. For all x € R%, Vf(z) = = — z.. Thus, the global
Lipschitz constant of V f is 1; in particular, f satisfies (H2). Both algorithms are used
with o := @ := « € (0,2) and an arbitrary 8 € (0,1). The initial iterate is (0,b) for
some b € R\ {0}.

We recall from [45, Proposition 7.13] that T]R2<1 (0,0) = RZ, and, for all t € R\{0},
(0,t) = {0} x R, Te

TIR (tv 0) =R x {0}7

2 2
<1 <1

from [45, Propositions 7.16 and 7.17] that

Ngz, (0,0) = {(0,0)} € K%, = Ngz (0,0)
and, for all t € R\ {0},
ﬁkél(o,t) =R x {0}, NRél(t, 0) = {0} xR,

and from Proposition 7.1 that ﬁR% (z) = Nga () for all z € RZ,.

R2g1
Proposition 8.1 explicitly describes the sequences generated by PGD and P2GD
for small values of ¢. We omit its proof, which consists in elementary computations.

PROPOSITION 8.1. If a = 1 and ¢ € (0, 3], then PGD and P?GD generate the
finite sequences ((0,b), (a,0)) and ((0,b),(0,0), (a,0)), respectively. If o # 1, then
both algorithms generate infinite sequences.

e For every c € (0,25%], P2GD generates the sequence ((0, (1 —a)'b));en which
converges to (0,0).
e For every c € (0, 252):
— if ala|/|b] > |1 — «f, then PGD generates the sequence

((0,0), (a(1 = (1 = a)™,0))ien);

— ifalal/|b| < [1—af, then i, = {%J € N\{0} and PGD generates

the sequence

(((0,(1 = @)'0)=y", (a(l = (1 = a)™**, 0))en)

This manuscript is for review purposes only.
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if /) ¢ N g

In([1—al)
(((0,(1 = @)®));iZg, (a(l = (1 — @)™, 0))sen)
or (((0, (1 = a)'0)); =5 ™, (a(1 = (1 = a)'™,0)ien)

In(alal/|b
if T (\|1‘/o‘4|) €N.

Thus, every sequence generated by PGD converges to (a,0).

In conclusion, if a # 1, then P2GD converges to (0, 0), which is M-stationary but
not B-stationary, while PGD converges to (a,0), which is P-stationary and even a
global minimizer of f \Rz< . (and f). This is illustrated in Figure 2 for some choice of

a, b, and .
By Proposition 8.1, for every sequence (z;);en generated by P?2GD, it holds that

lim d(~ f(2:), Ry (22)) = 0.
Thus, the measure of B-stationarity R2, — R : z +— d(—V f(z), NRQ (x)) is not lower
= <1

semicontinuous at (0,0), and the convergence to an M-stationary point that is not
B-stationary cannot be suspected based on the mere observation of this limit. In the
terminology of [32], ((0,0), (x;):en, f) is an apocalypse.

{0} xR {0} xR

(0,0)
N

) R x {0} w0 R x {0}

(0,0)

.

FIG. 2. First few iterates generated by PGD (right) and P2GD (left) on the instance of (1.1)
studied in Section 8 with a :=b:=1 and a := 0.45. The arrows represent x; — oV f(x;). The point
(a,0), which is the unique global minimizer, is also represented. It is already visible from the first
few iterates that P2GD converges to the M-stationary point (0,0) while PGD converges to the global
minimazer.

9. Conclusion. The main contribution of this paper is the proof of Theorem 1.2.
This theorem ensures that PGD (Algorithm 4.2) enjoys the strongest stationarity
properties that can be expected for problem (1.1) under the considered assumptions.

A sufficient condition for the convergence of a sequence generated by PGD is
provided in Theorem 5.1. However, if satisfied, this condition does not offer a charac-
terization of the rate of convergence. This important matter is addressed in [29] for
monotone PGD under the assumption that f satisfies (H2) and a Kurdyka—Lojasiewicz
property.

Two possible extensions of this work are left for future research. First, can The-
orem 1.2 be extended to an algorithm that uses more general search directions than
PGD? For example, a search direction at a point € C' that is not B-stationary
for (1.1) could be a vector v ¢ N(x) that satisfies [22, conditions (2) and (3)], i.e.,
(V (@) v) < 1| V()2 and [Jo]] < o[V f ()] with c1, 3 € (0,00).
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Second, can Theorem 1.2 be extended to the proximal gradient algorithm as de-
fined in [31, Algorithm 4.1] or [11, Algorithm 3.1]? The first step toward such an ex-
tension would be defining suitable stationarity notions for the corresponding problem
whose objective function is not differentiable. Furthermore, significant adaptations
would be needed, e.g., because inequality (2.1), which plays an instrumental role in
our analysis, does not seem to admit a straightforward extension.

Appendix A. Proof of Proposition 7.1. The strict inclusion follows from
[45, Proposition 7.16] and [4, Theorem 3.9] if C = R, from [45, Proposition 6.7]
and [60, Theorem 3.4] if C = R, NR", from [27, Corollary 2.3 and Theorem 3.1] if
C = RZ)™, and from [45, Proposition 6.28] and [60, Theorem 3.12] if C = S% (n).
By (1.2), it remains to prove that, for all z € C, Nc(aj) ) Nc(x) This follows
from [1, Lemma 4] if z € S,. Let z € C'\ S,. If C is RZ, or RZX"™, then, by [45,

Proposition 7.16] and [27, Corollary 2.3], ZVC(J:) = {0} and the result follows. If C
is R, NR7% or SE (n), then the result follows from [45, Proposition 6.7] and [60,
Proposition 3.2] or [45, Proposition 6.28] and [10, Corollary 17]; the detail is given
below for completeness.

Assume that C'is R, NR%. Let supp(x) = {i € {1,...,n} | x; # 0}. By [45,
Proposition 6.7],

Nan gy (@) = {v € R | supp(v) € {1,....n} \ supp(z)}.

Thus, by [60, Proposition 3.2], for every v € N 5 AR? (), Prn vy (z +0) = {z}.
Assume now that C is S, (n). By [45, Proposition 6.28],

~

Ne: ((X) =8(m)" +{Z €87 (n) | XZ = O},

with S(n) = {X € R™" | X" = X}, S(n)t = {X ¢ R"™*" | X" = —X}, and
S7(n) ={X €S(n) | X <X0}. Let Z € ng(n)(X) and Zgym = $(Z + Z7). Then,
by [10, Corollary 17], Pst ) (X+2) = P+ () (X + Zgym). Let r := rank X and

7 = rank Zgym,. Since im Zgyr, C ker X, 7 < n —r and there exists U € O(n) such
that

X = Udiag(M(X),..., \(X),0,_,)U"

and
Zoym = U diag(0p—7, Mi—i11(Zsgm)s - - - M (Zsym))U T
are eigendecompositions. Thus,
X + Zsym = U diag(M(X), -+ -, Ae(X), 0 vy At 1 (Zsym)s + - s A (Zym))U T
is an eigendecomposition. Hence, by [10, Corollary 17], PSJQ (n)(X + Zoym) = {X}.
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