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Abstract

We consider MaxCut-type semidefinite programs (SDP) which ad-
mit a low rank solution. To numerically leverage the low rank hy-
pothesis, a standard algorithmic approach is the Burer-Monteiro fac-
torization, which allows to significantly reduce the dimensionality of
the problem at the cost of its convexity. We give a sharp condition
on the conditioning of the Laplacian matrix associated with the SDP
under which any second-order critical point of the non-convex prob-
lem is a global minimizer. By applying our theorem, we improve on
recent results about the correctness of the Burer-Monteiro approach
on Z2-synchronization problems.

1 Introduction

1.1 Presentation of the problem

Semidefinite programs (SDP) are optimization tools that allow the
solving and modeling of a variety of problems across applied sci-
ences. A number of problems admits a SDP formulation in combi-
natorial optimization [Goemans and Williamson, 1995], machine learning
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and data sciences [Lanckriet et al., 2004], statistics and signal processing
[Candès, Strohmer, and Voroninski, 2013]. In this paper, we are interested
in so-called MaxCut-type SDPs:

min
X∈Sn×n

− 〈C,X〉

s.t. X � 0

diag(X) = 1n,

(SDP)

where the operator diag : Rn×n → Rn extracts the diagonal of a square
matrix, 1n = (1 . . . 1)T ∈ Rn and the symmetric matrix C ∈ Rn×n is
called the cost matrix. SDP of this form are especially known to provide
precise convex relaxations of MaxCut problems from graph optimization
[Goemans and Williamson, 1995]. They can also model problems such as
group synchronization, phase retrieval and the Kuramoto model, for particu-
lar choices of the cost matrix C. Several general methods exist to numerically
solve problem (SDP), but they scale poorly with n. For instance, interior-
point solvers require O(n3) computations per iteration and O(n2) to store
the variable [Benson, Ye, and Zhang, 2000].

To reduce the computational complexity of solvers, one must ex-
ploit the specific properties of the problem at hand, if any. For in-
stance, it may be known in advance that the solution to (SDP) is low-
rank: [Pataki, 1998] guarantees that there exists a solution with rank
bounded by

√
2n + O(1) and, when (SDP) is the relaxation of a com-

binatorial problem, the optimal rank is often much less (see for instance
[Candès, Strohmer, and Voroninski, 2013] for a theoretical justification in a
particular case, [Journée, Bach, Absil, and Sepulchre, 2010] for a numerical
investigation). In this case, it is possible to tackle the problem using its so-
called Burer-Monteiro factorization. The principle is to factor the variable
as X = V V T , for V ∈ Rn×p, where p ∈ N is larger or equal to the rank of
the sought solution, and much smaller than n. Then, one optimizes over V ,
instead of directly over X .

min
V ∈Rn×p

−
〈
C, V V T

〉

s.t. diag(V V T ) = 1n .
(Burer-Monteiro)

The factorized problem reduces the number of variables to np instead of the
O(n2) variables of the initial problem which is computationally advantageous
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when p ≪ n. However, the convexity is lost, so standard solvers are not guar-
anteed to reach the solution. Still, in practice, solvers oftentimes converge to
a global solution V ∈ Rn×p of the factorized problem, for which X = V V T

solves the initial problem.

1.2 Prior work and our contribution

The main explanation proposed in the literature for the success of
standard algorithms at solving (Burer-Monteiro) has been the benign
non-convexity of the optimization landscape: it may be that all
second-order critical points of (Burer-Monteiro) are global minimizers.
Since standard algorithms typically find a second-order critical point
[Lee, Panageas, Piliouras, Simchowitz, Jordan, and Recht, 2019], they con-
sequently find a global minimizer.

Literature suggests that, the greater p is, the more likely it is that the
landscape is benign. More precisely, when p ≥

√
2n + O(1), the land-

scape of the factorized problem is benign for almost all cost matrices C
[Boumal, Voroninski, and Bandeira, 2020]. This property is even true for
all cost matrices if p > n

2
[Boumal, Voroninski, and Bandeira, 2020, Cor.

5.11], while it can fail for a zero Lebesgue measure subset of cost matri-
ces if

√
2n + O(1) ≤ p ≤ n

2
[O’Carroll, Srinivas, and Vijayaraghavan, 2022].

However, when p ≤
√
2n + O(1), there is a subset of cost matrices C of

positive Lebesgue measure for which (Burer-Monteiro) admits non-optimal
critical points [Waldspurger and Waters, 2020] (with a gap to the optimal
value scaling in O(1/p) [Mei, Misiakiewicz, Montanari, and Oliveira, 2017],
but strictly positive).

Nonetheless, in practice, standard algorithms seem to find a solution
of (Burer-Monteiro) below the threshold

√
2n, suggesting that, maybe, the

set of cost matrices with a non-optimal critical point is small, and “typical”
cost matrices do not belong to it. Therefore, researchers have tried to find
properties on C guaranteeing that C is not in this bad set, focusing for the
moment on the setting where the minimizer of (SDP) has rank 1. The articles
[McRae and Boumal, 2024] and [McRae, Abdalla, Bandeira, and Boumal,
2024] discuss matrices C with a specific structure, motivated by synchro-
nization problems. They prove that the landscape of (Burer-Monteiro) is
benign under conditions which involve eigenvalues of the subcomponents of
C. [Ling, 2023] considers general matrices C and shows that the landscape is
benign if the condition number of the associated Laplacian matrix is smaller
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than p−1
2
. For important instances of (SDP) (mainly Z2-synchronization with

additive Gaussian noise and multiplicative Bernoulli noise), these recent re-
sults show that standard algorithms, applied to (Burer-Monteiro), retrieve
the rank 1 solution under close to optimal conditions.

Main result Our main result is a sufficient condition on the condition
number of a certain matrix related to (SDP) which ensures that the land-
scape of (Burer-Monteiro) is benign. This tightens the result of [Ling, 2023]:
we show that if the condition number of the Laplacian matrix associated
with C is less than p (instead of p−1

2
in [Ling, 2023]), then the landscape

of (Burer-Monteiro) is benign. Furthermore, we show that this bound is es-
sentially optimal. Finally, by applying our theorem to Z2-synchronization, we
also improve on the applications of [McRae, Abdalla, Bandeira, and Boumal,
2024] and [Ling, 2023].

1.3 Structure of the paper

In section 2, we present our main result and, in section 3, its application
to Z2-synchronization with additive Gaussian noise and Bernoulli noise. In
section 4 we provide the proof of the main theorem, without the technical
details that we leave for the appendix.

1.4 Notation

Throughout this paper, Sn×n is the set of symmetric n × n matrices. We
write X � 0 if X is a positive semidefinite matrix. For a matrix X ∈ Rn×n,
when it makes sense, λ1(X) ≤ λ2(X) ≤ · · · ≤ λn(X) are the eigenvalues of
X in ascending order. For matrices X, Y ∈ Rn×m, 〈X, Y 〉 = Tr(XTY ) is
the standard inner product on R

n×m, X ⊙ Y is the entry-wise or Hadamard
product, ‖X‖F =

√

〈X,X〉 is the Frobenius norm on Rn×m, Xi: ∈ Rm is the
i-th row of X and X:j ∈ Rn is the j-th column of X . For X ∈ Rn×m, ‖X‖
is the spectral or ℓ2 operator norm of X and ‖X‖∞ is the ℓ∞-norm of X i.e.
the maximum entry in absolute value. The operator ddiag : Rn×n → Sn×n

zeroes out all the non diagonal entries of a matrix and for any vector x ∈ R
n,

diag(x) ∈ Sn×n is the diagonal matrix with the coordinates of x on the
diagonal. For any x, y ∈ R the notation x . y means that there exists a
constant C > 0 that does not depend on any parameter, such that x ≤ Cy.
For any vector x ∈ Rn, ‖x‖ is the Euclidean norm of x, 1n = (1 . . . 1)T ∈ Rn.
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2 Main result

Problem (Burer-Monteiro) can be seen as minimizing a function over the
product of spheres

{V ∈ R
n×p, diag(V V T ) = 1n} = {V ∈ R

n×p, ‖V1:‖ = · · · = ‖Vn:‖ = 1}
= (Sp−1)n.

The set (Sp−1)n can be endowed with the Riemannian structure inherited
from that of Rn×p. It is then a Riemannian manifold.

Definition 2.1. Let M be a Riemannian manifold and f : M → R a twice-
differentiable function. For any x ∈ M, we say that

• x is a first-order critical point if ∇f(x) = 0, where ∇f(x) is the Rie-
mannian gradient of f at x (which belongs to the tangent space TxM);

• x is a second-order critical point (SOCP) if ∇f(x) = 0 and Hess f(x) �
0, where Hess f(x) is the Riemannian Hessian of f at x (which is a
bilinear map on TxM).

More detailed explanations of these concepts can be found in [Absil, 2008]
or [Boumal, 2023].

To set up the statement of the theorem, let x ∈ {±1}n be a binary vec-
tor. An important quantity associated with problem (SDP) is the Laplacian
matrix, defined as

L = ddiag(Cxx
T )− C. (1)

Note that, by construction, Lx = 0. Standard duality theory shows that
xx

T is a (rank 1) solution to (SDP) if L � 0; this solution is unique if, in
addition, λ2(L) > 0.

Our theorem gives a sufficient condition on the condition number λn(L)
λ2(L)

of

the Laplacian matrix under which all SOCP of (Burer-Monteiro) are optimal.

Theorem 2.2. Fix a cost matrix C ∈ Sn×n and a binary vector x ∈ {±1}n.
Assume that L � 0 and λ2(L) > 0. If

p >
λn(L)

λ2(L)
,

then any second-order critical point V of (Burer-Monteiro) is a global mini-
mizer, i.e. V V T = xx

T .
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In particular, if the condition number of the Laplacian matrix is upper
bounded by p, then standard optimization algorithms converge to a global
minimum of the factorized problem. This result is purely deterministic and
holds for a variety of cost matrices C without assumption on their structure.
It improves on [Ling, 2023, Theorem 2.1], which reads as follows.

Theorem ([Ling, 2023]). Under the same assumptions as in theorem 2.2,
assume that

p ≥ 2λn(L)

λ2(L)
+ 1.

Then all second-order critical points of (Burer-Monteiro) are optimal.

Our results are similar in nature but the proofs are quite differentMore-
over, our bound is optimal in the sense of the following property, the proof
of which can be found in the appendix A.1.

Proposition 2.3. Let p ≥ 2 and n ≥ 6p. If n or p is even, there exist
C ∈ Sn×n,x ∈ {±1}n satisfying the assumptions of theorem 2.2 such that
λn(L)
λ2(L)

= p and problem (Burer-Monteiro) admits a non optimal second-order
critical point.

3 Application

3.1 Z2-synchronization with additive Gaussian noise

Here, we consider the Z2-synchronization problem with additive Gaussian
noise which consists in reconstructing a binary vector x with coordinates
x1, . . . , xn ∈ {±1} from noisy measurements xixj +σWij where Wij = Wji ∼
N (0, 1), Wii = 0 and σ > 0. This problem admits a relaxation of the
form (SDP) with cost matrix

C = xx
T + σW. (2)

[Bandeira, 2018] shows that this SDP relaxation retrieves the rank 1 ma-

trix xx
T when σ <

√
n

(2+ε) logn
(for any ε > 0), and explains that, for larger

values of σ, no algorithm is expected to succeed. Using our theorem 2.2, we
can show that the more tractable Burer-Monteiro factorization reaches the
same threshold up to a multiplicative factor which goes to 1 when p becomes
large.
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Corollary 3.1. We consider the Z2-synchronization problem with Gaussian
noise, where the cost matrix is defined by (2). For any ε > 0 and large
enough n, if

σ <
p− 1

p+ 1

√
n

(2 + ε) logn
, (3)

then all second-order critical points of (Burer-Monteiro) are optimal with
probability at least 1− n−ε/4 − 4e−n.

This corollary is proved in A.2. It improves on [Ling, 2023, corollary 2.4],
which reads as follows.

Corollary ([Ling, 2023]). Under the same conditions as corollary 3.1, if

σ <
p− 3

4(p+ 1)

√
n

log n
,

then all SOCP of the factorized problem (Burer-Monteiro) are optimal with
high probability.

Indeed, our result holds for p as small as 2 whereas theirs needs p ≥ 4. In
the large p limit, our bound is better by a constant multiplicative factor. We
also improve on [McRae, Abdalla, Bandeira, and Boumal, 2024, Corollary 1].

Corollary ([McRae, Abdalla, Bandeira, and Boumal, 2024]). For n ≥ 2,
ε > 0, if the noise level of cost matrix (2) satisfies

σ ≤ p− 3

p− 1

√
n

(2 + ε) logn
,

then all second-order critical points of (Burer-Monteiro) are optimal with
probability → 1 as n → ∞.

The improvement lies in the fact that our result does no prohibit us from
taking p as small as 2. The proof is built upon tools used both in [Ling, 2023]
and [McRae, Abdalla, Bandeira, and Boumal, 2024].

3.2 Z2-synchronization with Bernoulli noise

The problem of Z2-synchronization with Bernoulli noise consists in recovering
a binary vector x ∈ {±1}n from its pairwise observations xixj , where the
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sign of xixj is flipped with probability 1−δ
2
, for some 0 < δ ≤ 1. In other

words, when δ is close to 1, the signs are not flipped and when δ is close
to 0, the observations are often corrupted. This leads to a problem of the
form (SDP), with

Cij =







xixj with probability 1+δ
2

if i 6= j,
−xixj with probability 1−δ

2
if i 6= j,

0 if i = j.
(4)

Our result gives a condition on δ under which the landscape of the factorized
problem (Burer-Monteiro) is benign.

Corollary 3.2. We consider the Z2-synchronization problem with Bernoulli
noise of parameter 0 < δ ≤ 1, where the cost matrix is defined by (4). For
any ε > 0 and large enough n, if

δ >
p+ 1

p− 1

√

(2 + ε) logn

n
, (5)

then all second-order critical points of (Burer-Monteiro) are optimal with
probability at least 1− n−3 − n− ε

3 .

The proof of this corollary is in A.2. This corollary is an improvement
on [McRae, Abdalla, Bandeira, and Boumal, 2024, Theorem 2] in the case
where the observations xixj are complete. This theorem reads as follows.

Theorem ([McRae, Abdalla, Bandeira, and Boumal, 2024]). Consider the
Z2-synchronization problem with Bernoulli noise for some 0 < δ ≤ 1. As-
sume that p ≥ 4 and there exists some ε > 0 such that

δ >
p− 1

p− 3

√

(2 + ε) logn

n

Then, with probability → 1 as n → ∞, all second-order points of the factor-
ized problem (Burer-Monteiro) with cost matrix as in (4) are optimal.

First of all, our result does not prevent us from taking p as small as 2.
Furthermore, our bound on δ is better in the regime when p stays constant,
but n is large. Our proof of this theorem builds on ideas found in [Ling,
2023] and [McRae, Abdalla, Bandeira, and Boumal, 2024].
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4 Proof of the main theorem

Throughout the proof, we fix a symmetric cost matrix C ∈ Sn×n,x ∈ {±1}n
such that the associated Laplacian matrix L = ddiag(Cxx

T )−C is positive
semidefinite and λ2(L) > 0.

Moreover, we assume without loss of generality that x = 1n so that the
rank one solution of (SDP) is X∗ = 1n 1

T
n and a solution of the factorized

problem is V∗ =
1√
p
1n 1

T
p . Indeed, if the solution of (SDP) is xxT , then the

solutions of the factorized problem are all vectors of the form V∗ = xz
T for

z ∈ Sp−1 a unit vector. However, the change of variable V 7→ diag(x)V does
not affect the landscape of the factorized problem and changes solutions into
V∗ = 1n z

T . We refer to [McRae and Boumal, 2024] for more information on
this change of variable.

Furthermore, note that due to the diagonal constraint, changing the di-
agonal of the cost matrix does not change the landscape of the problems. As
such, we can replace the cost matrix C with

C − diag(C 1n) = −L

and study the problem

min
X∈Sn×n

〈L, X〉

s.t. X � 0

diag(X) = 1n,

(6)

and its factorized form

min
V ∈Rn×p

〈
L, V V T

〉

s.t. diag(V V T ) = 1n .
(7)

Similar changes were made in the proofs of [McRae and Boumal, 2024]. Note
that, we have by assumption L � 0, L1n = 0 and λ2(L) > 0.

4.1 Formulas for the gradient and Hessian

Before proving theorem 2.2, we provide explicit formulas for the Riemannian
gradient and Hessian of the cost function of (7). First, recall that the tangent
space of the manifold (Sp−1)n at V is

TV (S
p−1)n = {V̇ ∈ R

n×p : diag(V̇ V T ) = 0},
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Let PTV
: Rn×p → TV (S

p−1)n be the orthogonal projection onto the tangent
space, i.e. PV (X) = X − ddiag(XV T )V for X ∈ Rn×p.

The gradient of the objective function in (Burer-Monteiro) at a point
V ∈ (Sp−1)n is

2
(
L− ddiag

(
LV V T

))
V. (8)

In particular, V is first-order critical if and only if
(
L− ddiag

(
LV V T

))
V =

0.
The Hessian at V is

HessV : V̇ ∈ TV (S
p−1)n 7→ 2PTV

((
L− ddiag

(
LV V T

))
V̇
)

(9)

If V is first-order critical, it is second-order critical if and only if HessV is
positive semidefinite. As PTV

is self-adjoint, that is equivalent to the fact
that for all V̇ ∈ TV (S

p−1)n,

〈

HessV (V̇ ), V̇
〉

= 2
〈(

L− ddiag
(
LV V T

))
V̇ , V̇

〉

≥ 0.

4.2 Variational formulation

We prove the contrapositive of the main theorem : if V is a non optimal
SOCP then the condition number of the Laplacian matrix is at least p. Let
us fix V ∈ (Sp−1)n which is second-order critical, but not optimal for (7), i.e.
V V T 6= 1n 1

T
n .

We denote v1, . . . , vp the columns of V . If we multiply V by a suitable
orthogonal p × p matrix (which does not change the fact that V is second-
order critical for (7)), we can assume that 〈v1, 1n〉 ≥ 0 and 〈vk, 1n〉 = 0 for
all k ≥ 2. This is summarized by the following assumption.

Assumption 4.1. For i = 2, . . . , n, (V T 1n)i = 〈vi, 1n〉 = 0. Moreover,
〈v1, 1n〉 ≥ 0. In particular,

∥
∥V T 1n

∥
∥ = 〈v1, 1n〉 ≤ ‖v1‖ ‖1n‖ ≤ n.

Showing that the condition number satisfies λn(L)
λ2(L)

≥ p can be recast as
showing that the value of the following optimization problem is at least p:

10



inf
(L,µ)∈Sn×n×Rn

λn(L)

λ2(L)

s.t. L � 0,

L1n = 0,

λ2(L) > 0,

(L− diag(µ))V = 0,
〈

(L− diag(µ))V̇ , V̇
〉

≥ 0 for all V̇ ∈ TV (S
p−1)n.

(10)

Indeed, the point (L, µ̂), with µ̂ = diag(LV V T ) is feasible for the above
problem since V is a second-order point of (7). Hence, the condition number
of L is greater than or equal to the optimal value of problem (10).

Note that the first three constraints represent the fact that the semidef-
inite relaxation admits a rank 1 solution and the last two, the first and
second-order optimality conditions on V . Problem (10) is not convex, but
we will see that it has the same optimal value as a convex problem.

First, define the set K as the smallest convex cone containing {V̇ V̇ T , V̇ ∈
TV (S

p−1)n}. The last constraint of problem (10) is equivalent to diag(µ)−L ∈
K◦, where K◦ is the polar cone of K :

K◦ = {M ∈ S
n×n : 〈M,N〉 ≤ 0 for all N ∈ K}.

Now, consider the following convex minimization problem:

inf
(L,µ)∈Sn×n×Rn

λn(P⊥LP⊥) (Primal)

s.t. P⊥LP⊥ � P⊥,

(P⊥LP⊥ − diag(µ))V = 0,

diag(µ)− P⊥LP⊥ ∈ K◦,

where P⊥ = In − n−1 1n 1
T
n is the projection matrix on the space orthogonal

to 1n. We have the following two lemmas, whose proofs can be found in A.3.

Lemma 4.2. Problem (10) and problem (Primal) have the same optimal
value.
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Lemma 4.3. The dual problem of (Primal) is

sup
(W,Z,H)∈Rn×p×Sn×n×Sn×n

〈Z, P⊥〉 (Dual)

s.t. Z � 0,

H ∈ K,

diag(WV T ) = diag(H),

M = P⊥

(

Z +H − 1

2

(
WV T + VW T

)
)

P⊥,

M � 0,

Tr(M) ≤ 1.

By duality, to show that the optimal value of (Primal) is at least p, it
suffices to exhibit a dual certificate, i.e. a point feasible for (Dual) for which
〈Z, P⊥〉 ≥ p.

4.3 Choice of the dual certificate

In the following, we aim to find an adequate dual certificate (W∗, Z∗, H∗). A
natural choice for Z∗ (which ensures 〈Z∗, P⊥〉 = p) is

Z∗
def
=

p

〈P⊥, V V T 〉V V T .

Note that, since V V T is not colinear to 1n 1
T
n ,
〈
P⊥, V V T

〉
> 0 so Z∗ is well

defined.
To find an adequate H∗, denote e1, . . . , ep ∈ R

p the elements of the canon-
ical basis and observe that for all i = 1, . . . , p,

Ti
def
= 1n e

T
i − diag(V ei)V ∈ TV (S

p−1)n.

Indeed, diag(TiV
T ) = vi − vi = 0.

Therefore, the following matrix belongs to K:

p
∑

i=1

TiT
T
i =

p
∑

i=1

(
1n e

T
i − diag(V ei)V

) (
1n e

T
i − diag(V ei)V

)T

=

p
∑

i=1

(
1n 1

T
n − diag(V ei)(V ei) 1

T
n −1n(V ei)

T diag(V ei)

12



+diag(V ei)V V T diag(V ei)
)

= p 1n 1
T
n −

(
p
∑

i=1

(V ei)
⊙2

)

1T
n −1n

(
p
∑

i=1

(V ei)
⊙2

)T

+ V V T ⊙
p
∑

i=1

V eie
T
i V

= (p− 2) 1n 1
T
n +(V V T )⊙2.

As a consequence, we can choose H∗ of the form

H∗
def
= β((p− 2) 1n 1

T
n +(V V T )⊙2) for some β ≥ 0. (11)

This particular form of H∗ can also be found in [McRae and Boumal, 2024]
and [Ling, 2023], although the proof there follows a different path from ours,
as it does not explicitely consider problem (Primal) and its dual.

There is no straightforward choice for W∗. A natural one would be W∗ =
β(p− 1)V as it would satisfy the diagonal constraint:

diag(W∗V
T ) = β(p− 1) 1n

= β
(
(p− 2) 1n +diag

(
(V V T )⊙2

))

= diag(H∗).

However, numerical experiments suggest that it does not work. Fortunately,
this can be corrected by adding to β(p− 1)V a matrix proportional to W ′

∗ =
1n 1

T
n V + ε, for some ε ∈ Rn×p chosen so that diag(W ′

∗V
T ) = 0. We choose

ε = − diag(V V T 1n)V (so that W ′
∗ = PTV

(1n 1
T
n V )). Under assumption 4.1,

W ′
∗ = 〈v1, 1n〉 (1n e1 − diag(v1)V ) ,

which suggests the choice

W∗ = β(p− 1)V + δ(1n e1 − diag(v1)V ) for some δ ∈ R. (12)

4.4 Constraints

The goal now is to find β, δ such that the dual certificate (W∗, Z∗, H∗) defined
in the previous subsection satisfies the constraints of problem (Dual) and
〈Z∗, P⊥〉 ≥ p.

13



The definition of Z∗ immediately implies

〈Z∗, P⊥〉 = p and Z∗ � 0.

Furthermore, H∗ defined in (11) is in K if β ≥ 0, and the definition of W∗
ensures that the equality diag(W∗V

T ) = diag(H∗) holds true. Therefore, we
only have to find β, δ such that

β ≥ 0 (13a)

M∗ � 0 (13b)

Tr(M∗) ≤ 1, (13c)

where of course M∗ = P⊥(Z∗ +H∗ − 1
2
(W∗V

T + VW T
∗ ))P⊥.

For the positive semidefiniteness of M∗, we have the following lemma,
proved in A.3.

Lemma 4.4. Under assumption 4.1, if β ≥ 0, M∗ is positive semidefinite if

(
p

2(p− 1) 〈P⊥, V V T 〉

)2

≥
(

β − p

2(p− 1) 〈P⊥, V V T 〉

)2

+

(
δ

2
√
p− 1

)2

.

(14)

Now, the trace of M∗ is given by

Tr(M∗) = Tr(P⊥Z∗) + Tr(P⊥H∗)− Tr(P⊥W∗V
T )

= p+ β
〈
P⊥, (V V T )⊙2

〉
− Tr(P⊥(β(p− 1)V V T − δ diag(v1)V V T ))

= β
〈
P⊥, (V V T )⊙2 − (p− 1)V V T

〉
+ δ

〈
P⊥, diag(v1)V V T

〉
+ p.

We must therefore find β ≥ 0 and δ satisfying equation (14) such that

t1β +
t2δ

2
√
p− 1

≥ p− 1, (15)

where t1 =
〈
P⊥, (p− 1)V V T − (V V T )⊙2

〉

and t2 = −2
√

p− 1
〈
P⊥, diag(v1)V V T

〉
.

We set

β =
p

2(p− 1) 〈P⊥, V V T 〉

(

1 +
t1

√

t21 + t22

)

,

14



δ =
p√

p− 1 〈P⊥, V V T 〉
t2

√

t21 + t22
.

With this definition, equation (14) is true. It remains to show that equa-
tion (15) is also true, which is equivalent to

√

t21 + t22 ≥
2(p− 1)2

〈
P⊥, V V T

〉

p
− t1.

This inequality is true if t21 + t22 ≥
(

2(p−1)2〈P⊥,V V T 〉
p

− t1

)2

, that is, if

〈
P⊥, diag(v1)V V T

〉2
+

(p− 1)2

p2
〈
P⊥, V V T

〉2

− p− 1

p

〈
P⊥, V V T

〉 〈
P⊥, (V V T )⊙2

〉
≥ 0. (16)

We observe that

〈
P⊥, (V V T )⊙2

〉
=

〈

In −
1

n
1n 1

T
n , (V V T )⊙2

〉

= n− ||V V T ||2F
n

(17)

= n− ||V TV ||2F
n

= n−
∑p

i,j=1 〈vi, vj〉
2

n

≤ n−
∑p

i=1 ||vi||4
n

= n− ||v1||4
n

−
∑p

i=2 ||vi||4
n

≤ n− ||v1||4
n

− (
∑p

i=2 ||vi||2)
2

n(p− 1)
(18)

= n− ||v1||4
n

− (n− ||v1||2)2
n(p− 1)

. (19)

At line (17), we used diag(V V T ) = 1n. At line (18), we used Cauchy-Schwarz
and, at line (19), we used that

∑p
i=1 ||vi||2 = ||V ||2F = Tr(diag(V V T )) = n.

15



In addition, from assumption 4.1,

〈
P⊥, V V T

〉
=

〈

In −
1

n
1n 1

T
n , V V T

〉

= n− 〈v1, 1n〉2
n

,

and
〈
P⊥, diag(v1)V V T

〉
=
〈
diag(v1), V V T

〉
− 1

n

〈
1n 1

T
n , diag(v1)V V T

〉

=
〈
v1, diag(V V T )

〉
− 1

n

〈
v1, V V T 1n

〉

= 〈v1, 1n〉
(

1− ||v1||2
n

)

.

We combine the last three equations. They show that the left-hand side
of equation (16) can be lower bounded by

〈v1, 1n〉2
(

1− ||v1||2
n

)2

+
(p− 1)2

p2

(

n− 〈v1, 1n〉2
n

)2

− p− 1

p

(

n− 〈v1, 1n〉2
n

)(

n− ||v1||4
n

− (n− ||v1||2)2
n(p− 1)

)

= ||v1||4 −
2

p

(
p− 1

n
〈v1, 1n〉2 + n

)

||v1||2

+
1

p2

(
(p− 1)2

n2
〈v1, 1n〉4 + 2(p− 1) 〈v1, 1n〉2 + n2

)

=

(

||v1||2 −
1

p

(

n+
p− 1

n
〈v1, 1n〉2

))2

≥ 0.

Equation (16) is therefore true, which concludes.
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A Technical lemmas

A.1 Proofs of section 2

Proof of proposition 2.3. Let us set x = 1n and let V ∈ (Sp−1)n be such that

V T 1n = 0, (20)

V TV =
n

p
Ip, (21)

〈vi ⊙ vj ⊙ vk, 1n〉 = 0, for all 1 ≤ i, j, k ≤ p, (22)

where the vl’s are the columns of V . Such matrices V exist at least when p
is even or n is; an example is provided at the end of the proof. Now, set

C = −(PV + pPV ⊥ − pP1),

where PV = p
n
V V T is the orthogonal projector onto Range(V ), PV ⊥ = In −

p
n
V V T the projector onto Range(V )⊥ and P1 = 1

n
1n 1

T
n the projector onto

R 1n.
Since C 1n = 0, the Laplacian matrix is L = −C = PV + pPV ⊥ −pP1. Its

eigenvalues are 0 (with eigenspace R 1n), 1 (with eigenspace Range(V )) and
p (with eigenspace (Range(V ) ⊕ R 1n)

⊥). Therefore, L � 0, λ2(L) > 0 and
its condition number is p.

Using (8) and (9), V is second-order optimal if

SV = 0,
〈

HessV (V̇ ), V̇
〉

= 2
〈

SV̇ , V̇
〉

≥ 0, ∀ V̇ ∈ TV (S
p−1)2

p

, (23)

where

S
def
= L− ddiag(LV V T ) = L− In = (p− 1)PV ⊥ − pP1n

.

It is clear that with this choice of C, LV = V , hence SV = 0. It remains to
show that the Hessian is positive semidefinite at V . The difficulty stems from
the fact that S has a negative eigenvalue: S 1n = −1n. We first exhibit a
subspace of TV (S

p−1)n included in KerHessV . Then, we prove equation (23)
by decomposing V̇ onto the kernel and its orthogonal.

Note that any matrix of the form

diag(V a)V − 1n a
T , (24)
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with a ∈ Rp, belongs to TV (S
p−1)n and to the kernel of HessV . Indeed, for

any a ∈ Rp,

1

2
HessV

(
diag(V a)V − 1n a

T
)
= PTV

(
S(diag(V a)V − 1n a

T )
)

= PTV

(

−p(p− 1)

n
V V T diag(V a)V

)

+ PTV
((p− 1) diag(V a)V
︸ ︷︷ ︸

∈(TV (Sp−1)n)⊥

)

− PTV

(
(p− 1) 1n a

T
)

− PTV

(p

n
1n 1

T
n diag(V a)V − p 1n a

T
)

= PTV

(

−p(p− 1)

n
V V T diag(V a)V

)

+ PTV

(

1n a
T − p

n
1n a

T V TV
︸ ︷︷ ︸

=n
p
In

)

= −
(
p(p− 1)

n

)

PTV

(
V V T diag(V a)V

)
.

For 1 ≤ j, k ≤ p, we have

(V T diag(V a)V )jk =

p
∑

i=1

ai 〈vi ⊙ vj ⊙ vk, 1n〉
︸ ︷︷ ︸

=0

= 0,

hence V T diag(V a)V = 0, and HessV
(
diag(V a)V − 1n a

T
)
= 0.

Let us fix V̇ ∈ TV (S
p−1)n. It can be decomposed as V̇ = X +Y , for some

X, Y ∈ TV (S
p−1)n such that X ∈ kerHessV and Y ∈ (ker HessV )

⊥. Since Y
is orthogonal to the kernel of HessV , it is orthogonal to any matrix of the
form (24). Therefore, for any a ∈ Rp,

0 =
〈
diag(V a)V − 1n a

T , Y
〉

=
〈
V a, diag(Y V T )

〉
−
〈
1n a

T , Y
〉

= −
〈
1n a

T , Y
〉

(since Y ∈ TV (S
p−1)n)

= −
〈
aT , 1T

n Y
〉
,

which implies that 1T
n Y = 0. Hence, it holds that

SY = (PV + pPV ⊥ − In)Y − p

n
1n 1

T
n Y = (PV + pPV ⊥ − In)Y.

18



Finally,

〈

HessV (V̇ ), V̇
〉

=

=0
︷ ︸︸ ︷

〈HessV (X), X〉+
=0

︷ ︸︸ ︷

2 〈HessV (X), Y 〉+
2〈SY,Y 〉

︷ ︸︸ ︷

〈HessV (Y ), Y 〉
= 2 〈(PV + pPV ⊥ − In)Y, Y 〉
= 2(p− 1) 〈PV ⊥Y, Y 〉
≥ 0.

To conclude, we show the existence of V satisfying equations (20), (21)
and (22). For instance, when p is even, for any j ∈

{
1, . . . p

2

}
and i ∈

{1, . . . , n}, we can set

Vi,2j−1 =

√
2

p
cos

(
2πmj

n
(i− 1)

)

and Vi,2j =

√
2

p
sin

(
2πmj

n
(i− 1)

)

,

where mj = 3j − 2. All three equations can be proved using similar compu-
tations. Let us for instance establish equality (22) in the case where i, j, k
are odd. We have

〈vi ⊙ vj ⊙ vk, 1n〉 =
(
2

p

) 3
2

n−1∑

l=0

cos

(
2πmi

n
l

)

cos

(
2πmj

n
l

)

cos

(
2πmk

n
l

)

=
1

√

2p3

n−1∑

l=0

cos

(
2π

n
(mi +mj +mk)l

)

+ cos

(
2π

n
(mi +mj −mk)l

)

+ cos

(
2π

n
(mi −mj +mk)l

)

+ cos

(
2π

n
(mi −mj −mk)l

)

.

This sum is zero because one can check that, for any εj, εk ∈ {±1}, mi +
εjmj + εkmk 6≡ 0[n].

If p is odd but n is even, we can make the same construction for the first
p−1 columns of V and add one last column whose entries alternate between

−
√

1
p
and

√
1
p
.
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A.2 Proofs of section 3

Proof of Corollary 3.1. The Laplacian matrix of C defined in (2) is

L = n(In − n−1
xx

T ) + σ(ddiag(Wxx
T )−W ).

Define the following matrix:

L
W = ddiag(Wxx

T )−W.

Since In − n−1
xx

T is the orthogonal projector on the orthogonal space of x,
its eigenvalues are 0 (with multiplicity 1) and 1 (with multiplicity n− 1).

Therefore, using Weyl’s inequality,

λn(L) ≤ n+ σ
∥
∥L

W
∥
∥ ,

λ2(L) ≥ n− σ
∥
∥L

W
∥
∥ .

We need to upper bound
∥
∥L

W
∥
∥. The triangular inequality gives

∥
∥L

W
∥
∥ ≤ ‖Wx‖∞ + ‖W‖ .

Moreover, for all ε′ > 0, it holds that

‖Wx‖∞ ≤
√

(2 + ε′)n log n, (25)

with probability at least 1−n−ε′/2. Indeed, note that, for all i ≤ n, (Wx)i ∼
N (0, n− 1). Therefore, from [Vershynin, 2018, Prop 2.1.2], for all t > 0,

P(|(Wx)i| > t) ≤
√

2(n− 1)

π

e
− t2

2(n−1)

t
.

Applying a union bound and taking t =
√

(2 + ε′)n logn yields (25). More-
over, it is also true that, with probability at least 1− 4e−n,

‖W‖ ≤ c0
√
n,

for some universal constant c0 > 0. This is an immediate consequence of
[Vershynin, 2018, Corollary 4.3.6]. Therefore, for any ε > 0, it holds with
probability at least 1− n−ε/4 − 4e−n that

∥
∥L

W
∥
∥ ≤

√
(

2 +
ε

2

)

n logn+ c0
√
n
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≤
√

(2 + ε)n log n (for n large enough).

Then, with the same probability,

σ <
p− 1

p+ 1

√
n

(2 + ε) logn
⇐⇒ n + σ

√

(2 + ε)n logn

n− σ
√

(2 + ε)n logn
< p

=⇒ λn(L)

λ2(L)
< p.

Furthermore, since λ2(L) ≥ n− σ
√

(2 + ε)n logn, it is true that λ2(L) > 0
and L � 0 for n large enough, with probability at least 1 − n−ε/4 − 4e−n.
The conclusion follows from theorem 2.2.

Proof of corollary 3.2. Let ε > 0 be fixed. We can assume without loss of
generality that the vector we want to reconstruct is x = 1n (see section 4 for
more details). The Laplacian matrix is

L = diag(C 1n)− C.

Note that L can be decomposed as a principal term and a noise term as
follows:

L = E(L) + (L− E(L))

= δ(nIn − 1n 1
T
n )

︸ ︷︷ ︸

principal term

+ (L− E(L))
︸ ︷︷ ︸

noise term

.

Therefore, using Weyl’s inequality yields

λn(L) ≤ δn + ‖L− E(L)‖ ,
λ2(L) ≥ δn− ‖L− E(L)‖ .

In particular, as soon as ‖L− E(L)‖ < δn, λ2(L) > 0 and

λn(L)

λ2(L)
≤ δn + ‖L− E(L)‖

δn− ‖L− E(L)‖ ,

so that, from theorem 2.2, all second-order critical points are global mini-
mizers if the right-hand side of the above is below p.

Note that

‖L− E(L)‖ ≤ ‖diag(C 1n)− δ(n− 1)In‖+
∥
∥C − δ(1n 1

T
n −In)

∥
∥ .
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For 1 ≤ i ≤ n, we have the following equality:

(diag(C 1n)− δ(n− 1))ii =
∑

j 6=i

(Cij − δ).

Let h(u) = (1+u) log(1+u)−u = u2

2
(1+ou→0(1)). Using Bennett’s inequality,

we get for t ≥ 0

P

(∣
∣
∣
∣
∣

∑

j 6=i

(Cij − δ)

∣
∣
∣
∣
∣
> t

)

≤ 2 exp

(

−(n− 1)(1− δ)

1 + δ
h

(
t

(n− 1)(1− δ)

))

≤ 2 exp

(

−
(
n− 1

1 + δ

)

h

(
t

n− 1

))

.

The second inequality is true because h is convex and h(0) = 0, so ah(x/a) ≥
h(x) for all x ≥ 0, a ∈]0; 1].

We set t =
√

(2 + ε′)(1 + δ)n logn for some ε′ < ε
2
. Observe that t

n−1
→ 0

when n → +∞, so h
(

t
n−1

)
= t2

2n2 (1 + o(1)) and

P

(∣
∣
∣
∣
∣

∑

j 6=i

(Cij − δ)

∣
∣
∣
∣
∣
>
√

(2 + ǫ′)(1 + δ)n log n

)

≤ 2n−(1+ε′/2)(1+on→∞(1)).

Therefore, using a union bound, we get

P

(

‖diag(C 1n)− δ(n− 1)In‖ ≤
√

(2 + ε′)(1 + δ)n log n
)

≥ 1−2n−(ε′/2+o(1)).

Moreover, from [McRae, Abdalla, Bandeira, and Boumal, 2024, Lemma 2],
with probability at least 1− n−3,

∥
∥C − δ(1n 1

T
n −In)

∥
∥ .

√
n,

This bound is negligible in front of
√
n log n, for n large enough, so that

‖L− E(L)‖ <
√

(2 + 2ε′)(1 + δ)n logn,

with probability at least 1−n−3−2n− ε′

3 . Therefore, we get the desired result
if

δn+
√

(2 + 2ε′)(1 + δ)n logn

δn−
√

(2 + 2ε′)(1 + δ)n logn
< p ⇐⇒ δ >

1 +

√

1 + 4
(

p−1
p+1

)2
n

(2+2ε′) logn

2
(

p−1
p+1

)2
n

(2+2ε′) logn

.
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In the regime when n is large, recalling that ε > 2ε′, this is implied by

δ >
p+ 1

p− 1

√

(2 + ε) logn

n
.

A.3 Proofs of section 4

Proof of lemma 4.2. Let (L, µ) be a solution of (Primal). Since P⊥LP⊥ � P⊥
it holds that λ2(P⊥LP⊥) ≥ 1, therefore λn(P⊥LP⊥)

λ2(P⊥LP⊥)
≤ λn(P⊥LP⊥). Since

(P⊥LP⊥, µ) is feasible for (10), the optimal value of (10) is less than that
of (Primal).

Now, let (L, µ) be feasible for (10) and define

(L′, µ′) =

(
L

λ2(L)
,

µ

λ2(L)

)

,

which is feasible for (Primal). The last two constraints of (Primal) are easily
verified. For the first constraint, note that Ker(L) = 1n; therefore, for all
x ∈ Rn, P⊥x is the projection of x onto the orthogonal of Ker(L), and
‖Lx‖2 ≥ λ2(L) ‖P⊥x‖2. This implies that P⊥L

′P⊥ � P⊥. Thus we have

Opt (Primal) ≤ λn(L
′) =

λn(L)

λ2(L)
.

By minimizing both sides of the inequality for all L feasible for (10), we get

Opt (Primal) ≤ Opt (10).

Proof of lemma 4.3. First, we first incorporate the constraints into the cost
function and problem (Primal) becomes

inf
(L,µ)∈Sn×n×Rn

λn(P⊥LP⊥) + sup
Z�0

− 〈P⊥LP⊥ − P⊥, Z〉

+ sup
W∈Rn×p

〈(P⊥LP⊥ − diag(µ))V,W 〉

+ sup
H∈K

〈diag(µ)− P⊥LP⊥, H〉 .
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To lighten notations, define the constraint set C as :

C = {(W,Z,H) ∈ R
n×p × S

n×n × S
n×n : Z � 0 and H ∈ K}.

We symmetrize and simplify the previous expression of problem (Primal).
We get that it is equal to

inf
(L,µ)∈Sn×n×Rn

λn(P⊥LP⊥)

+ sup
(W,Z,H)∈C

−
〈

P⊥

(

Z +H − WV T + VW T

2

)

P⊥, L

〉

+ 〈P⊥, Z〉+
〈
diag(µ), H −WV T

〉
.

By inverting the inf and the sup we get

Opt (Primal)

≥ sup
(W,Z,H)∈C

〈P⊥, Z〉

+ inf
L∈Sn×n

λn(P⊥LP⊥)−
〈

P⊥

(

Z +H − WV T + VW T

2

)

P⊥, L

〉

+ inf
µ∈Rn

〈
diag(µ), H −WV T

〉
.

(26)

The next step is to rewrite the last two terms of the right hand side of
inequality (26) as characteristic functions of convex sets. Note that

inf
µ∈Rn

〈
diag(µ), H −WV T

〉
=

{
0 if diag(H) = diag(WV T )
−∞ otherwise.

Moreover, by letting M = P⊥

(

Z +H − WV T+VWT

2

)

P⊥, we have

inf
L∈Sn×n

λn(P⊥LP⊥)− 〈M,L〉 =
{

0 if M � 0 and Tr(M) ≤ 1,
−∞ otherwise.

To see this, assume first that M is not positive semidefinite. Therefore, we
can write the eigendecomposition of M as M =

∑n
i=1 ρiuiu

T
i with ρ1 = 0 and

u1 =
1n√
n
(since 1n belongs to the kernel of M) and ρ2 < 0. Take Lx = xu2u

T
2 ,

with x < 0. By noting that P⊥LxP⊥ = Lx, we have

λn(P⊥LxP⊥)− 〈M,Lx〉 = −xρ2 ‖u2‖2 −−−−→
x→−∞

−∞.
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Now, assume that Tr(M) > 1 and take Ly = yIn with y > 0. We have

λn(P⊥LyP⊥)− 〈M,Ly〉 = y(1− Tr(M)) −−−→
y→∞

−∞.

Finally, assume that M � 0 and Tr(M) ≤ 1. It is always true that for any
symmetric matrix L, P⊥LP⊥ � λn(P⊥LP⊥)In. Therefore, since M � 0, we
have

〈P⊥LP⊥,M〉 ≤ 〈λn(P⊥LP⊥)In,M〉
= λn(P⊥LP⊥) Tr(M).

Using the fact that Tr(M) ≤ 1 and 〈P⊥LP⊥,M〉 = 〈L,M〉, we get that
λn(P⊥LP⊥)− 〈M,L〉 ≥ 0 and the bound is reached for L = 0. To conclude,
the right hand side of inequality (26) becomes

sup
(W,Z,H)∈C

〈Z, P⊥〉

s.t. diag(WV T ) = diag(H)

M = P⊥

(

Z +H − 1

2

(
WV T + VW T

)
)

P⊥

M � 0

Tr(M) ≤ 1.

Proof of lemma 4.4. Let us assume that β ≥ 0. We define

S =

( p
〈P⊥,V V T 〉 − (p− 1)β δ

2
δ
2

β

)

and, for each k = 1, . . . , p,

Mk =
(
vk v1 ⊙ vk

)
∈ R

n×2.

We show that, if equation (14) holds, then M∗ � 0. We have

M∗ = P⊥

(

Z∗ +H∗ −
1

2

(
W∗V

T + VW T
∗
)
)

P⊥

= P⊥

((
p

〈P⊥, V V T 〉 − (p− 1)β

)

V V T + β(V V T )⊙2

25



+
δ

2
(diag(v1)V V T + V V T diag(v1))

)

P⊥

= P⊥

((
p

〈P⊥, V V T 〉 − (p− 1)β

)( p
∑

k=1

vkv
T
k

)

+ β

(
p
∑

k,k′=1

(vk ⊙ vk′)(vk ⊙ vk′)
T

)

+
δ

2

(
p
∑

k=1

(v1 ⊙ vk)v
T
k + vk(v1 ⊙ vk)

T

))

P⊥

(a)

� P⊥

((
p

〈P⊥, V V T 〉 − (p− 1)β

)( p
∑

k=1

vkv
T
k

)

+ β

(
p
∑

k=1

(v1 ⊙ vk)(v1 ⊙ vk)
T

)

+
δ

2

(
p
∑

k=1

(v1 ⊙ vk)v
T
k + vk(v1 ⊙ vk)

T

))

P⊥

= P⊥

(
p
∑

k=1

MkSM
T
k

)

P⊥.

Inequality (a) is true because β(vk ⊙ vk′)(vk ⊙ vk′)
T � 0 for all k, k′.

Therefore, if S � 0, then MkSM
T
k � 0 for all k, hence M∗ � 0. This

condition is fulfilled if all principal minors of S are nonnegative, that is

0 ≤ p

〈P⊥, V V T 〉 − (p− 1)β, (27a)

0 ≤ β, (27b)

0 ≤ det(S) = β

(
p

〈P⊥, V V T 〉 − (p− 1)β

)

− δ2

4
. (27c)

Equation (27b) is true by assumption, and (27a) is implied by (27c). Indeed,
if equation (27a) is not true, then

β >
p

(p− 1) 〈P⊥, V V T 〉 > 0,

so

β

(
p

〈P⊥, V V T 〉 − (p− 1)β

)

< 0 ≤ δ2

4
,

26



and (27c) is not true either. Therefore, if equation (27c) is true, then (27a)
is also true and M∗ � 0. This equation is equivalent to (14).
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