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Chapter 1

Introduction

The subject of this thesis is the investigation of the mechanisms underlying
the slowing down of dynamics and the occurrence of a dynamical arrest for
some physical systems. Experimentally, upon changing physically relevant
parameters such as temperature or density the typical times for relaxation
to equilibrium of a wide variety of systems increase dramatically. There-
fore, after a certain value of the tuned parameter the sample is no more
able to equilibrate and freezes in an amorphous phase where dynamics ex-
perimentally occurs in a non-stationary regime. One of the most well-know
among these phenomena is the so—called glass transition, namely the dynam-
ical arrest occurring for a supercooled liquid upon lowering its temperature.
Therefore, the overall phenomena related to dynamical arrest are usually
referred to as glassy dynamics. We emphasize that glass transition is how-
ever only a particular case of these jamming transitions, which are a more
widespread phenomenon. For example, analogous phenomena occur upon
increasing the density for granular media, polymer melts and suspensions of
colloidal particles and upon lowering the temperature for spin glasses. De-
spite a great deal of theoretical efforts, these remarkable phenomena are still
far from understood. In particular, it is not clear if the slowing down of
dynamics is due to an underlying thermodynamic transition or is a purely
dynamical phenomenon. More generally, understanding the nature of the
physical mechanisms inducing the slowing down of dynamics is still a widely
open issue.

In this work we analyze the dynamics of some kinetically constrained
models. These are models of particles with possible discrete positions on the
sites of a lattice and hard core exclusion. The dynamics is given through a
stochastic sequence of jumps (for conservative models) or birth-death (for
non—conservative models) of particles. The former are referred to as ki-
netically constrained lattice gases and the latter as kinetically constrained
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spin models. Indeed, it is natural to rewrite non—conservative models as spin
models with a spin on each site and a dynamics consisting in a sequence of
spin flips. For both models the moves are allowed only if the configuration
satisfies some local constraints, namely for some configurations the rate of
a given move (particle jump or spin flip) can degenerate to zero. Moreover,
these rates are chosen in order to satisfy detailed balance with respect to a
trivial measure, which is therefore invariant under dynamics. For kinetically
constrained lattice gases this is usually flat measure over all configurations
with the same number of particles on a finite lattice and Bernoulli prod-
uct measure at a given density on the infinite lattice. However, due to the
degeneracy of rates, the configuration space is usually broken in different
irreducible components, namely there are configurations which cannot be
connected one to the other by any path of allowed moves. In this case the
invariant measure is not unique. In particular there exist blocked configu-
rations, i.e. configurations in which any move is forbidden by the kinetic
constraints. Therefore, measure concentrated on these particular configura-
tions are invariant too. The existence of many invariant measure implies a
non—trivial relaxation dynamics and in the thermodynamic limit a dynamical
transition could occur. With this we refer to the possibility that the infinite
system undergoes an ergodic/non—ergodic transition. For example, if the ki-
netic constraints strongly depends on the local density of particles, it could
be possible that a kinetically constrained lattice gas is ergodic with respect
to Bernoulli product measure in a given density regime and non—ergodic at
different densities. Moreover, even if such transition does not take place there
could be a different kind of dynamical arrest, e.g. a diffusive/non-diffusive
transition in the long time behaviour of a tagged particle displacement.
Kinetically constrained models were introduced as simplified models to
study glassy dynamics. A very intuitive link among these models and super-
cooled liquids is that by a proper choice of kinetic rules one can mimic the fact
that in a dense liquid a molecule can get trapped by surrounding molecules.
This cage effect could be at the root of the cooperative behaviour which in-
duces glass transition. In this respect, these are very simplified models since
they allow only a discrete choice for the positions of particles. However, there
is a deeper reason for studying these models in relation with glass and more
generally jamming transition. The basic Ansatz is that jamming transition
is a purely dynamical phenomenon with static correlations playing no role.
This is suggested by the fact that, in a small window in the vicinity of the
transition, experiments detect a dramatic change in dynamical properties
while structural ones remain almost unchanged. In other words, there could
exist a dynamical length which diverges while static one remains constant.
If this is the case, the key mechanism for glass transition could be captured



by an effective model obtained by performing a coarse graining on the scale
of the static length. This rescaled model should have a trivial statics and
a very slow relaxation dynamics which could be well reproduced by a ki-
netically constrained model. Therefore, despite their simplicity, such models
could provide a good description of real systems at a mesoscopic level which
already contains the key mechanisms for glassy dynamics. In this approach
the discrete variable could correspond to e.g. the average of the particle den-
sity over the coarse-graining volumes. Of course, a true mapping from the
microscopic description to the mesoscopic one is a formidable task. However,
studying the dynamics of these models can be a very useful ground to under-
stand the mechanisms underlying jamming transitions in real systems. On
the other hand, this study is also a relevant issue in the context of stochastic
models of interacting particles.

In recent years several numerical simulations have been performed on
these models. For some choices of the kinetic constraints a sluggish and
heterogeneous relaxation which is very reminiscent of glassy dynamics has
been detected. However, the main issues in understanding these phenomena
are still open. In particular, it is not clear if the slowing down of dynamics
is related to the presence of a real dynamical transition or is a simple cross
over in typical time—scales. More generally, one would like to understand the
nature of the collective processes inducing the slowing down of dynamics and
its heterogeneous character. Numerical studies are not conclusive on these
issues. The difficulty lies in the fact that since dynamics is very slow, one
cannot analyze the large time behaviour by means of simulations. Moreover,
since the behaviour of these models on finite and infinite lattices can be
extremely different, it is difficult to controll finite size effects on numerical
results and extrapolate the behaviour of the system in the thermodynamic
limit.

In this work we study some of these models by means of analytical tools.
In particular we focus on Kob Andersen (KA) [1] and Fredrickson Ander-
sen (FA) [2] models, which are probably the most well-known kinetically
constrained models of conservative and non—conservative type, respectively.
On infinite lattices, KA dynamics satisfies detailed balance with respect to
Bernoulli product measure at any density. The same is true for FA dynamics
with respect to canonical measure at any temperature with a simple non—
interacting Hamiltonian. For KA model we prove that a dynamical transition
occurs in the mean field approximation, namely there exists a critical den-
sity above which the system is not ergodic. This transition is destroyed in
finite dimensions by exponentially rare processes which occur in sufficiently
large systems. More precisely, we identify the cooperative rearrangements
which guarantee ergodicity and a strictly positive diffusion coefficient at any
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density. Furthermore, we predict the typical length and time scales of these
collective processes, which grow extremely rapidly in the high density regime.
On the other hand, we predict a cross—over at a finite density to a different re-
laxation mechanism which should give rise to a substantial range of ”critical
behaviour” for diffusion coefficient (and relaxation times) near an apparent
transition. This cross—over, which can be in some cases very sharp, can be
regarded as a ghost of the mean field transition surviving in finite dimensions
and could explain previous numerical results which claimed the existence of
a dynamical transition. To confirm our analytical results we have performed
Monte Carlo numerical simulations, which are indeed in good agreement with
the theoretical predictions. Moreover, we give a possible explanation of the
heterogeneous character of the dynamics which relies on the strong density—
dependence of typical relaxation times. For FA model we obtain very similar
results. In particular, we calculate a finite critical temperature at which a
mean field ergodic/non—ergodic transition takes place. By performing numer-
ical simulations we find indeed that below such temperature the dynamics
dysplays the typical character of out of equilibrium glassy dynamics. In the
finite dimensional case, irreducibility in the thermodynamic limit was an al-
ready proven result. We show that this implies ergodicity (which is not a
priori guaranteed for an infinite volume process) and predict typical relax-
ation times in the low temperature regime, which are in good agreement with
numerical simulations.

1.1 Outline of the thesis

This work is organized as follows.

e In Chapter 2 we introduce glass and jamming transition. After recall-
ing the main open issues in understanding the slow relaxation dynam-
ics related to these phenomena, we introduce some of the theoretical
approaches. In particular we focus on kinetically constrained lattice
models, which are the main subject of present work. After defining
such models, we analyze the different forms of dynamical arrests that
could take place for these systems and introduce some of the tools we
will use to study their dynamics.

e In Chapter 3 we introduce two classes of kinetically constrained lattice
gases. First we consider these models on finite d—dimensional hyper-
cubic lattices in contact with boundary sources of particles and give
sharp estimates on the velocity of convergence to equilibrium. Then
we analyze the models on the infinite lattice. In this case we prove
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ergodicity and positiveness of the self diffusion coefficient of a tagged
particle at any finite density.

This chapter is based on:

L.Bertini, C.Toninelli Exclusion processes with degenerate rates: con-
vergence to equilibrium and tagged particle
preprint numbercond-mat/0304694.

e In Chapter 4 we recall the definition of Kob Andersen model (KA).
We shortly recall previous numerical results which detected a slow and
heterogeneous behaviour in the high density regime for . We study
the model on d—dimensional hypercubic lattices and prove that in the
thermodynamic limit the configuration space is always covered by a
single ergodic component at any finite density. In other words, an
ergodic/non—ergodic transition cannot take place. On the other hand,
on lattices of finite linear size L, the process is never ergodic. However,
we identify a density dependent crossover size Z(p) which separates
the regime (L < Z(p)) in which the configuration space breaks into
exponentially many ergodic components from the regime (L > Z(p))
in which a single component has almost unit probability.

This chapter is based on:

C.Toninelli, G.Biroli, D.S.Fisher Spatial structures and dynamics of
kinetically constrained models for glasses
preprint numbercond-mat/ 0306746

C.Toninelli, G.Biroli, D.S.Fisher Kob Andersen model: proof of ergod-
icity and mean field transition
in preparation

e In Chapter 5 we analyze KA model on a Bethe lattice, which provides
a mean field approximation of the model on the hypercubic lattice. In
this case the scenario is completely different. Indeed we prove that
there exists a finite critical density at which the system undergoes an
ergodic/non—ergodic transition. This corresponds to a transition from
a regime in which all particles can diffuse to a partially frozen phase.
The transition has aspects of both first and second order transition
and is very similar to the dynamical transition in p—spin models with
quenched disorder. The comparison of results for the hypercubic and
Bethe lattice case can be a first step towards a better understanding of
how the results in other mean field approaches to glass transition (e.g.
mode coupling theory and random first order scenario) modify for real
systems.
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This chapter is based on:

C.Toninelli, G.Biroli, D.S.Fisher Spatial structures and dynamics of
kinetically constrained models for glasses
preprint numbercond-mat/ 0306746

C.Toninelli, G.Biroli, D.S.Fisher Kob Andersen model: proof of ergod-
icity and mean field transition
in preparation

In Chapter 6 we consider dynamics of KA model on hypercubic lat-
tices. First we prove that there is no dynamical diffusive/non—diffusive
transition at any finite density, namely the self diffusion coefficient of
the tagged particle is strictly positive at any density. Then we analyze
the density dependence of the self diffusion coefficient and of the typi-
cal relaxation times. In the high density regime diffusion is guaranteed
by the cooperative slow motion of rare regions in which vacancies are
configured in special ways. The self diffusion coefficient vanishes, for
density which goes to one, as the density of these rare regions which
goes to zero faster than any power law. Therefore, this collective pro-
cesses are at the root of the dramatic slowing down of dynamics for this
model. By performing Monte Carlo simulations we have checked the
validity of these analytical results. On the other hand, by percolation—
type arguments we predict a cross over for lower densities to a non—
cooperative diffusion mechanism. This should give rise to an apparent
diffusive/non-diffusive transition due to a substantial range of power
law decrease for the self diffusion coefficient near a finite density. The
existence of such cross—over provides a possible explanation of the dy-
namical transition claimed by previous numerical results.

Finally we give a possible interpretation of the heterogeneous relaxation
which occurs in the high density regime.

This chapter is based on:

C.Toninelli, G.Biroli, D.S.Fisher Spatial structures and dynamics of
kinetically constrained models for glasses
preprint numbercond-mat/ 0306746

C.Toninelli, G.Biroli, D.S.Fisher Relaxation time scales for kinetically
constrained lattice models
in preparation

G.Biroli, C.Toninelli Kob Andersen model: diffusion of the tagged par-
ticle
in preparation
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e In Chapter 7 we recall the definition of Fredrickson Andersen model
(FA). For the model on the hypercubic lattice we recall the result of
irreducibility in the thermodynamic limit and prove that this implies
ergodicity. Then, as for KA model, we estimate the typical relaxation
time scales and check by numerical simulations our predictions. Also in
this case, the mean field scenario is completely different. Indeed, for the
model on the Bethe lattice, we find a dynamical transition which has
aspects very similar to those of p—spin models with quenched disorder.

This chapter is based on:

G.Biroli, S.Franz, M.Sellitto, C.Toninelli Fredrickson Andersen model:
mean field vs finite dimensions (tentative title)
in preparation

e Finally, in Chapter 8 we briefly summarize our results and outline some
open problems and possible lines of research.
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Chapter 2

Glass transition and kinetically
constrained models

In this chapter we introduce glass transition recalling both open problems
and some of the theoretical approaches developed to study this phenomenon
(section 2.1). In particular we focus on kinetically constrained lattice gases,
which are the main subject of present work. After a general definition of
the models and a discussion of the relation with glass transition, we give
an overview on the key issues one should investigate in connection with the
physical problem ( section 2.5).

2.1 Glass transition

In the last fifty years there have been several experimental and theoretical
efforts to solve a long standing puzzle in condensed matter physics, namely
explaining liquid-glass transition and understanding the nature of glasses.
The glass phase, which is a solid state lacking long range order, can be
obtained by the following experimental procedure. Take a liquid at high
temperature 17" > T,,, where T, is melting temperature, and cool it at a
constant rate. If the quench is fast enough with respect to the time needed
to enucleate the crystal inside the liquid, crystallization is avoided and the
liquid enters a metastable super-cooled phase (the true equilibrium phase
being the crystal). In this regime, on time scales shorter than those required
for crystallization to occur, thermodynamic and structural properties of the
liquid depend weakly on temperature and they are smoothly related to those
of the liquid above T;,,. For example, by plotting the volume as a function of
temperature, no unusual behavior arises when 7,, is crossed (see figure 2.1).
On the other hand dynamical properties, such as the viscosity or the diffusion
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constant, show a very pronounced temperature dependence. In particular, as
temperature is lowered, typical relaxation time scales increase dramatically.
When equilibration times become longer than experimentally accessible time
scales, the liquid falls out of equilibrium and becomes a glass. Empirically,
glass transition temperature 7, is defined as the value at which viscosity
reaches the value of 10" Poise (Pa s), which corresponds to a structural
relaxation time of the order of one hour. As we will explain in next section,
T, depends on the experimental setting and in particular on the value of the
cooling rate. Note that at T; no true thermodynamic transition occurs, but
a dynamical cross over takes place between a regime where the dynamics of
the supercooled liquid is stationary' and a regime where the system is no
more able to equilibrate on experimentally accessible time scales.

A complete theoretical explanation of the mechanism inducing such dy-
namical arrest and other striking phenomena in the vicinity of T} is still
lacking [3]. The first crucial question to be settled is whether the dramatic
increase of the relaxation time is due to an underlying equilibrium transition
occurring at a temperature 7' < T, (and therefore experimentally unaccessi-
ble) or else it is a purely dynamical phenomenon. The second possibility is
supported by the fact that no static divergent correlation length is experimen-
tally detected and the structural properties show a very small temperature
dependence [4]. On the other hand, the existence of a true thermodynamic
transition, usually referred to as ideal glass transition, is suggested by a
conjecture on the behaviour of the entropy that was first suggested by Kauz-
mann [5]. As usual, the entropy of the supercooled liquid can be obtained
by integrating C'(T")/T with respect to temperature, where C'(T') is the spe-
cific heat. Experimental data for specific heat are available only for T" > Ty,
however one can extrapolate them to lower temperatures. The result from
the extrapolated data is that the entropy goes to the one of the crystal at
a finite temperature Tx < T,. In other words the configuration entropy S,
defined as the difference among liquid and crystal entropy, goes to zero at
Tk > 0 with a finite slope. Since a negative configurational entropy does not
make sense?, Kauzmann conjectured that at 7" = Ty a true thermodynamic
transition occurs, with S, = 0 for 7" < Tx. However, it is possible that
the configurational entropy below a certain temperature is different form the

!Note that at any temperature T' < T}, the true equilibrium state of the system is the
crystal. However, on time scales shorter than typical crystallization times for 1" > Ty,
the supercooled liquid relaxes to a stationary state whose thermodynamic and structural
properties can be smoothly achieved from equilibrium ones above 7},,. On the other hand,
for T' < Ty, the dynamics of the liquid cannot reach stationarity.

2For hard sphere a negative configurational entropy occurs, but this is due to the
absence of interaction energy.
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extrapolated one and does not vanish at 7. Note that this putative glass
transition would have character of both second and first order transition.
It is second order because the derivative of entropy is discontinuous while
both entropy and energy are continuous at 7. On the other hand, since it
corresponds to the thermodynamic transition among supercooled liquid and
glass phase, there should exist an order parameter which has a jump at Tk.
Indeed, the fact that the glass is an amorphous solid state corresponds to a
density profile which is not flat as the liquid one but has peaks as for the
crystal even if not at periodic positions.

In this section we have illustrated the phenomenon of glass transition
occurring by cooling glass forming liquids. We emphasize that the latter
are not special liquids, indeed in principle all liquids belong to this class.
However, for some liquids it is not possible to create a glass because the time
for enucleating the crystal is very small and therefore a very high cooling
rate would be needed to enter the metastable supercooled phase.® Before
giving a more detailed explanation of experimental results (section 2.3) and
presenting some of the theoretical approaches to glass transition (section 2.4),
let us shortly recall some different physical systems in which a transition
analogous to supercooled—glass transition occurs.

2.2 Other phenomena of dynamical arrest

Phenomena of dynamical arrest followed by a non—equilibrium dynamics
analogous to those occurring for supercooled liquids, take place for very dif-
ferent physical systems. Therefore, also for these systems this arrest is com-
monly referred to as glass transition and the non—equilibrium phase as glass
phase (when ambiguities can arise, real glasses will be referred to as struc-
tural glasses). In particular we recall polymer melts, which become glassy at
sufficiently low temperature; suspension of colloid particles and granular sys-
tems, which become glassy at large densities; spin—glasses, where at a finite
temperature a transition between a paramagentic and a glassy phase occurs.
Let us say a few more words on granular systems and spin glasses. Indeed,
some of the models we analyze in our work have been successfully used to
study granular media. On the other hand, we introduce spin glasses since
we will later compare some of our results with those coming from spin glass
models.

Granular media are systems composed by many particles with hard core

3Note that the need of a high cooling rate should be matched with the opposite need of
sufficiently small cooling rate that enables equilibration of the liquid at each temperature
step.
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interactions. Moreover, the particles feel an external field due to gravity.
Note that for these models thermal excitations are negligible, since kg1 at
room temperature is negligible with respect to the energy needed to lift a
grain in the presence of gravity. Therefore, the system has an effective zero
temperature, and energy is injected by external excitations such as vibrations,
shearing and vertical tapping of the system containing the grains, which are
non—thermal sources. For example by gently tapping the container the sys-
tem compactifies (it corresponds in some sense to lowering the temperature
in liquids). However the increase of density is very slow and after a finite
density p. (with p. well below close packing density), the system gets blocked
and density cannot be further increased. This dynamical arrest, commonly
referred to as jamming transition, shares with glass transition many proper-
ties, both in the non—equilibrium regime and in the slow relaxation dynamics
for p < p..

On the other hand, spin glasses are magnetic alloys formed by an inert
material with magnatic impurities at random positions, which are assumed
not to vary in the experimental time (quenched disorder). Since the sign
of magnetic interactions among impurities is very sensitive to changes in
the relative distance and since such distance is random, the interactions
has a random sign. Experimentally, by starting at high temperature and
performing a cooling procedure, at a finite temperature T, the system falls
out of equilibrium (the non equilibrium phase occurring for 7' < T}, is the true
spin glass phase, while for 7" > T} the system is paramagnetic). Again, both
the slow relaxation dynamics in the vicinity (above) 7, and the phenomena
occurring in the non-equilibrium below 7}, are analogous to those described
in previous and next section for glass forming liquids.

2.3 Experimental phenomena

In this section we give a more detailed description of some of the remarkable
phenomena related to glass transition (for further details see e.g. [6], [7], [4]).
We always refer to supercooled liquids—glass transition, but we emphasize
that the properties we describe in this section are present with small modi-
fications in all the different above system displaying a glass—like dynamical
arrest.

Take a liquid at high temperature and cool it at a constant rate v =
—AT/At. On each temperature step viscosity relaxes quickly and by ex-
trapolating its asymptotic behavior it is possible define a function n(7T) for
viscosity vs temperature. At sufficiently high temperature, (7)) is well fitted
for most liquids by an Arrhenius dependence, i.e. by a function
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Tg ng2 Tg3 T

Figure 2.1: Typical plot of the temperature dependence of the volume of
a supercooled liquid which is cooled with cooling rate v;, with 7, > 7, >
v3. The bold line is the curve extrapolated from equilibrium data. The
experimental curve corresponds at high temperature to the equilibrium one
and then departs from it at a cooling rate dependent temperature 7,; which
is lower for lower cooling rate.

F(k,t)

[B-relaxation

arelaxatiﬁq\

T

Figure 2.2: Schematic plot of a typical correlation function F'(k,t) versus
log(t). The exponential and two step relaxatiuon correspond to the high and
low temperature regime, respectively
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o) xewp (7)) 1)

with A constant. On the other hand, at lower temperature two possible be-
haviors can occur. For the so—called strong liquids Arrhenius dependence
still holds, while for fragile liquids it is subsituted by a super—Arrhenius law,
i.e. in (2.1) constant A is substituted by a function A(T") which increases by
lowering temperature. A natural interpretation of (2.1) is that for relaxation
to occur the system must overcome energy barrier of the order of A, there-
fore a super—Arrhenius behavior suggests the existence of higher and higher
barrier for lower temperatures. This is consistent with the idea that such
barriers should be inversely proportional to configurational entropy, that is
indeed almost constant (in the considered range of temperatures) for strong
liquids and decreases for fragile liquids. The exact form of A(T) is still a
matter of debate. Fits of some experimental data are in good agreement
with an inverse power law of 1" — 15, with 7 a finite temperature, which
would imply the so called Vogel-Tamman-Fulcher law for viscosity

o) o (727 (2.2

This form suggests the divergence of viscosity and therefore the existence
of a dynamical transition at T,* However, since (2.2) comes from the ex-
trapolation of experimental data for temperatures much higher than 7}, one
cannot exclude the possibility that at 7" > Tj a crossover to a different behav-
ior takes place, thus preventing the transition. Note that one cannot settle
through experiments the question whether a transition or a cross over takes
place, since temperature 7j is not experimentally reachable. In other words,
if the system is in contact with temperature reservoirs at such temperature,
it cannot equilibrate and therefore data for viscosity (which is an equilibrium
property) are not available at such temperature. Indeed, the minimal exper-
imentally reachable temperature can be derived as follows. Let 7(T") be the
temperature dependent relaxation time of the liquid and ¢.,, the maximal ex-
perimentally reachable time. The system can equilibrate only at temperature
T > Ty(teyp) defined by 7(Ty(tesp)) = tesp. In particular, since 7(7") has at
T = Tj the same divergence as 1(7"), T, > Ty. Note that t.,, depends on the

4As emphasized in previous section, the question whether the glass transition is a true
thermodynamic transition or a purely dynamical phenomenon is still debated. Therefore,
it is not clear whether the putative divergence of viscosity is a purely dynamical phe-
nomenon or else it corresponds to the existence of a true thermodynamic transition. The
second possibility is supported by the experimental observation that Ty and Kauzmann’s
temperature T are very close for a large variety of systems.
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cooling procedure, more precisely it is set by the inverse of v and therefore 7}
itself depends on the cooling procedure. Conventionally experimental glass
transition temperature, Ty, is defined by choosing experimental time-scales
of the order of one hour, which correspond to viscosity of the order of 103
Poise. The prediction of a cooling rate dependent glass transition tempera-
ture is very well reproduced by experiments. The temperature at which the
system is no more able to equilibrate can be detected by plotting the volume
of the liquid as a function of temperature. Indeed, at a finite temperature
T,(7y) the volume curve departs from the equilibrium one (see figure 2.1) and
T,(7y) is lower for lower 7.

Before turning to the out of equilibrium phenomena occurring below 7,
let us describe the relaxation of microscopic functions in the equilibrium
regime. Consider for example the Fourier transform of the density—density
correlation function

F(k,t) = 1/N < p(k,t)p(k,0) > (2.3)

where N is the number of molecules, the mean is taken over equilibrium
Boltzmann Gibbs distribution at temperature T and

p(k,t) = Z exp (1kr;(t)) (2.4)

with r; the position of molecule j at time ¢. Such a function, the so—called
intermediate scattering function, can be studied through experiments of dy-
namic light scattering. The result is that F'(k,t) relaxes in a very different
way in the high and low temperature regime as is schematically shown in
figure 2.2. At high temperature, after a ballistic regime at short times, the
system shows a Debye-relaxation, i.e. F'(k,t) is well fitted by an exponential
decay. In particular, on large length scales, i.e. for small k, the relaxation is
of the form

F(k,t) ~ exp (—k*Dt) (2.5)

namely density fluctuations relaxes diffusively with the macroscopic diffusion
coefficient D. On the other hand at low temperatures, after the ballistic
regime, F'(k,t) shows a plateau and only for much larger times the correlator
decays to zero. The time window in which F'(k, t) is near the plateau is the so—
called f—relaxation, while the regime of relaxation below the plateau is the a—
relaxation. Moreover, the final decay at large times is slower than exponential
and is well approximated by a stretched exponential or Kohlrausch-Williams-
Watts function
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F(k,t) = exp (—At”) (2.6)

with stretching parameter g < 1. Typically, both g and A decrease with
temperature and § ~ 0.5 at 7,. The presence of a plateau (/-relaxation)
is usually explained by the so called cage effect, which will be further ex-
plained in section 2.5. At low temperatures each particle is surrounded by
many neighbors, which form a cage around it. Therefore, for short times
all the possible displacements of each particle are the small rearrangements
occurring inside the cage, thus giving a ballistic relaxation. On the other
hand, at long times the particles are able to leave the cage and therefore the
correlator relaxes to zero. However, for intermediate times, the particle is
trapped by its neighbors and the correlator cannot decay and remains close
to the plateau®. On the other hand, two different scenarios have been pro-
posed for the explanation of the non—Debye a—relaxation and they are still
a matter of debate. The first possibility is that the stretched exponential
arises from the superposition of exponential relaxations with different typ-
ical times. This should be related to the presence of a very heterogeneous
spatial structure, with different regions having different relaxation times. On
the other hand, the second scenario suggests that relaxation is homogeneous
but intrinsically non—exponential. Of course, since the stretched exponential
comes from fits of experimental data which cover a very limited range of time
scales, one cannot exclude the possibility that a cross over to an exponential
relaxation takes place at longer times. In any case, the ubiquitous presence
of a stretched behavior in glasses requires an explanation.

Let us now turn to non-—equilibrium dynamics. Recall that when the
system reaches T}, by further lowering temperature it enters (by definition)
a non—equilibrium state and it cannot be described by Boltzmann Gibbs
distribution. Out of equilibrium properties can be investigated through the
study of two times correlation function C(t,t,) and instantaneous linear
response function R(t,t,). Given an observable ¢, such functions are defined
respectively as

C(ta tw) = < ¢(t)¢(tw) > —< ¢(t) >< ¢(tw) >
R(t,t,) = % - (2.7)

5This explanation is still debated. In particular, recent experiments have shown that
in some cases it is not true that the a-relaxation corresponds to the regime in which the
particle is able to leave the cage, but only to make a displacement inside the cage that is
much larger than the initial rattling.
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where t > t,,, <> is the mean over different initial conditions. The formal
derivative in the definition of R means that one should compare the free evo-
lution of ¢(t) with the evolution in presence of an instantaneous perturbing
external field h(t) = ho(t—t,,) conjugated with variable ¢ and set h to zero at
the end of the calculation, i.e. keep only the linear order in the perturbation.
Therefore, to measure correlation function C'(¢,t,,), one should let the system
evolve from time t,, to a later time ¢ and then compare the configuration at
the two times. On the other hand, to measure R(t,t,) one should perturb at
t,, the system with a small instantaneous external field A and then compare
its evolution with the evolution in absence of perturbation. On the other
hand, one can also define the integrated linear response function x(t,t,),
which is the response to a step—like perturbation applied from time ¢, to
time ¢

() = /t "R (2.8)

For T' > T, the system reaches equilibrium at sufficiently large times, there-
fore stationarity holds and above functions depend only on the time differ-
ence, i.e. C(t,t,) = c(t — ty), R(t,t,) = r(t — ty), x(t,tw) = x(t — tu).
Moreover, they are related trough the fluctuation dissipation relation

r(t) = 81;—?) - —% %C(t) (2.9)

On the other hand, for T" < T}, equilibrium cannot be reached and correlation
and response depend on the two arguments ¢ and ¢,, even at very large times.
In figure (2.3) we show a typical plot of correlation as a function of ¢ — ¢,
for different values of t,,, where time zero corresponds to the time at which
the quenching procedure from an initial temperature grater than 7, to a
final temperature 1" < T has been performed. While for 1" > T} curves for
different ¢,, superimpose as in the equilibrium case, for 1" < T this is true
only for the initial part of the f-relaxation. On the other hand, the time
spent on the plateau and the a-relaxation depend on ¢,. In particular, the
relaxation of the correlator is slower the larger the value of ¢,,, which is the
age of the system (time elapsed since quenching) Therefore, these effect are
usually referred to as aging effects.

Moreover, in this non—equilibrium regime, fluctuation dissipation relation
(2.9) no more holds. To quantify the violation of FDT, one can measure the
violation factor X (t,t,) implicitely defined by

Cox(tht,)  X(tt,) O

S = g Clht) (2.10)

R(t,ty,) =
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-2 0 ln(t-tw) 2 4

Figure 2.3: The typical form of a two time correlation function plotted as a
function of ¢t — ¢, with age t,, increasing from left to right.

Indeed, values of X (t,t,) different from unity mark a violation of FDT. In
several mean field models X (¢,t,) becomes a function of a single argument
at large t and t,: taking t,t, — oo with C(t,t,) = C constant, X(¢,t,)
becomes a single valued function of C. In these mean field models, aging can
be explained through the existence of one or more time—scales for the model
becoming infinite for ¢,, — co. The presence of different time—scales which
become separately infinite, identifies different time—sectors and on each of
them the effective temperature 7,7y = T/X(C) is constant and corresponds
to the response of a thermometer tuned on this time—scale.

Of course, one of the major goals is to find a substitute of Boltzmann Gibbs
distribution for this non—equilibrium regime, i.e. to find a way to compute
observables attained dynamically. A proposal in this sense was made by
Edwards [10] for granular systems, who suggested that the right ensemble
could be the equilibrium measure correspondent to the value of the dynam-
ically reached one time quantities and restricted to blocked configurations,
i.e. configurations in which no grain can move in the absence of external tap-
ping. In other words, once the mean value of density p(¢) has been measured,
any other observable should be calculated by a using equilibrium measure at
density p(t) restricted to blocked configurations. Of course, extending this
proposal to real glasses is not straightforward, since one should first translate
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the concept of blocked configurations. Moreover, also for granular systems,
there is no clear justification for this choice and its validity is not univer-
sally accepted. However, Edward’s conjecture has been successfully checked
by some numerical experiments for some simplified models of granular me-

dia [49].

2.4 Theoretical approaches

Among the most important theoretical approaches to glass transition we
recall the followings

1. Microscopic theories. These theories start from first principle kinetic
liquid equations and solve them via proper approximations. One of
the most successfull among these approaches is mode coupling theory
(MCT) [11]. The main ingredient of MCT is the a separation of time
scales occurring in supercooled liquids, i.e. the fact that some dynam-
ical processes occur on the microscopic time scale while others, such
as relaxation, are on much larger time scales. More precisely, since
the density distribution of particles evolve much slower than others
variables, the approximation consists in an adiabatic projection of the
equation of motion on these relevant variables. The main criticism
against this theory is that the underlying approximation is rather un-
controlled (note that it is not a perturbative approach). Nevertheless
MCT leads to some quantitative predictions that are fulfilled by exper-
iments. One of the main results is the prediction of a dynamical tran-
sition taking place at a finite temperature Ty;cr. More precisely, MCT
predicts that the typical time for a-relaxation (see previous section)
diverges at T);cr with an inverse power law. However, this putative
glass transition would take place in a region where experiments clearly
show that the system is still in the liquid phase, i.e. Tyor > Ty. A
possible interpretation of this discrepancy is that Th,;cr do not cor-
respond to Tp, but to a higher temperature at which for mean filed
models a dynamical transition takes place, which is substituted for real
system by a crossover. This hypothesis is supported by the following
argument. MCT is exact for some mean field models, e.g. p—spin mod-
els. Such models display two transitions: a thermodynamic one at 7,
and a dynamical one at T; > T,.. The latter, which coincides with the
mode coupling transition, is an ergodic/non—ergodic transition, i.e. at
T, the configuration space of the system breaks into many disconnected
components which are separated by infinitely high barriers. Therefore
by starting from an initial configuration inside a given component, the
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system can never escape such component and it cannot reach equilib-
rium. In other words, even at large times the temporal mean of a given
observable cannot be substituted with the mean over Boltzmann Gibbs
distribution (for a more rigorous definition see section 2.5.1). Since real
systems are not mean field, it is natural to expect that these barriers are
no longer of infinite height and therefore there is no sharp transition.
However, there should be a change in the transport mechanism for the
particles, from a flow-like one to a regime in which particles should
rearrange in a cooperative way in order that a few of them can hop
the barrier. In other words, the sharp transition predicted by MCT,
should be substituted by a crossover between two different relaxation
mechanisms in real systems.

. Random first order scenario. In this approach predictions are drawn in

analogy with results for fully connected discontinuous spin glass mod-
els, e.g. p—spin model with p > 2. Recalling the brief introduction to
spin glasses in section 2.2, it is immediate to see that a simplified model
for such systems is given by representing impurities with Ising spins on
the vertices of a cubic lattice with an interaction among nearest neigh-
bor spins which is chosen at random from a Gaussian distribution with
zero mean. The mean field version of this model, i.e. a spin model
with interaction among any couple of spins, is the so—called Sherring-
ton Kirkpatrick (SK) model. P-spin model is the generalization of SK
with interactions among p spins (p = 2 reduces to SK). P—spin model
with s > 2 share with glass forming liquids a similar behaviour. As
mentioned in previous paragraph such models display both a dynamical
and a thermodynamic transition. The former has a discontinuous order
parameter, but a continuous energy and entropy, therefore has a char-
acter similar to the putative thermodynamic liquid—glass transition at
Tk (see section 2.1). Moreover, for T — T, from above the relaxation
of dynamics has a two step behavior and for 7" < T}; aging phenomena
occur which are very similar to those of real systems (see section 2.3).
However, despite these similarities, due to the presence of quenched
disorder it is not immediate to establish a connection of these mod-
els with supercooled liquids. A possible explanation [13], [3] for this
analogy could lie in the fact that spin glasses share with real glasses
the presence of frustration inducing a very complex energy landscape.
Frustration, which is related in spin glasses to the presence of quenched
disorder, could be related for glass forming liquids to the presence of ge-
ometrical constraints on the possible positions of particles. Therefore,
random first order approach derives predictions for glasses in analogy



2.5. Kinetically constrained lattice gases 21

with the available results for these spin models.

3. Phenomenological theories. In this approach glass transition is ana-
lyzed through the behavior of effective variables of mesoscopic charac-
ter. In particular we recall free—volume theories, entropic theories and
the energy landscape approach [14].

4. Kinetically constrained models. These models share with the phe-
nomenological approach the use of effective mesoscopic variables. How-
ever, an Hamiltonian and a dynamical evolution for these variables are
explicitely defined and no further approximation is performed. The
main limit of this approach lies in the fact that, due to the simplic-
ity of the models, it is not possible to establish a true mapping with
real systems. Nevertheless, the study of such models can be a very
useful ground to test and develop new ideas. Kinetically constrained
models are of two kinds: spin facilitated Ising models and kinetically
constrained lattice gases. The former, introduced in the early eighties
by Fredrickson and Andersen [2], are spin models on lattices. The dy-
namics is given by a Markovian evolution allowing the flip of a chosen
spin only if the whole spin configuration obeys some previously chosen
rules. Such models can be reformulated as non—conservative particle
models with a dynamics allowing birth—death of particles. On the other
hand, kinetically constrained lattice gases are conservative models and
dynamics is given by a Markovian sequence of particle jumps satisfying
both hard core and additional constraints. In the rest of this chapter
we give a more detailed introduction to these models which are the
main subject of present work. In particular, we focus on the open is-
sues which are relevant in relation with the study of glass transition
and other phenomena of dynamical arrest.

2.5 Kinetically constrained lattice gases

Kinetically constrained lattice gases are stochastic lattice gases with hard
core exclusion, i.e. systems of particles on a lattice A with the constraint that
on each site there can be at most one particle. A configuration is therefore
defined by giving for each site x € A the occupation number 7, € {0,1},
which represents an empty or occupied site respectively. The dynamics is
given by a continuous time Markov process on the configuration space 2, =
{0, 1} which consists of a sequence of particle jumps. A particle at site
x attempts to jump to a different site y with a fixed rate ¢, ,(n), which in
general depends both on {z,y} and on the configuration n over the entire
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lattice. The discretized time version of the process is the following. At time
t choose at random a particle let x be its position, and a site y. At time
t + dt, the particle has jumped from z to y with probability c,,(n(t)), while
with probability 1 — ¢,,(n(t)) the configuration has remained unchanged. In
other words, the probability measure at time t, u;, can be derived by the
initial measure p as

) = > exp(Lt) () (2.11)

n'e{0,1}Al

where L, the generator of the Markov process, is the operator which acts on
local functions f: Q24 — R as

LI = D cayln) (F(™) = F(n)) (2.12)

{z,y}CA

where we defined

ny if z=ua
(™). =18 m if 2=y (2.13)
ne if 24,y

The simplest model is the symmetric simple exclusion process (SSEP), in
which ¢, 4 (1) = 1y (1 —mn,)+n,(1—n,) for nearest neighbors {z, y}, ¢, , () =0
otherwise. Therefore, only nearest neighbor jumps are allowed and there are
no further kinetical constraints besides hard core. The definition kinetically
constrained more properly refers to models in which jump rates impose addi-
tional requirements in order for the nearest neighbor move to be allowed. In
other words, the rate ¢, ,(77) can be zero for some choices of the configuration
n and the couple {z,y} even if n, = 1 n, = 0, thus preventing the jump of
a particle from site x to final empty site y. From the above definition it is
immediate to see that dynamics preserves the number of particles, i.e. the hy-
perplanes with fixed number N of particles Qx y := {n € Qx > )1, = N}
are invariant under dynamics. Moreover, the rates are chosen in order to
satisfy detailed balance w.r.t. uniform measure v, x on such hyperplanes. In
other words condition ¢, ,(n) = ¢, ,(n™) is satisfied for any choice of 1 and
the couple {z,y}. This implies that the generator is reversible with respect
to van and therefore vy y is stationary®. Note that va,n is nothing else

SLet u(g,h)0 > nea (m)g(mh(n). L is reversible with respect to u if, for any functions
f and g, equality u(g,Lf) = u(f,Lg) holds. By a direct calculation it is possible to
check that detailed balance implies reversibility with respect to vy n, therefore the choice
g(eta) = 1 Vn, implies p(Lf) = 0 Vf. This, together with (2.11) implies that va n is
invariant under time evolution.
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than canonical measure with zero Hamiltonian, i.e. with this choice of the
rules there are no static interactions beyond hard core and an equilibrium
transition cannot occur. However, it is possible that a dynamical transition
occurs for some choices of the rules. The possible forms of such transition
will be explained in detail in the rest of the chapter. However, we emphasize
since now that the degeneracy of the rates implies that v, » is not the unique
invariant measure, i.e. the system is not ergodic on {25 y and this will have
several consequences on dynamics inducing a very different behavior with
respect to SSEP case.

The reason which motivated the introduction of kinetically constrained
lattice gases to study glassy dynamics is the following. Consider a molecule
in a dense liquid: the presence of surrounding particles can create geomet-
rical constraints inhibiting its motion, i.e. a molecule can be caged by its
neighbors and the cage must be opened to allow its motion. These local
constraints might produce, for a finite value of density, a cooperative behav-
ior inducing a slowing down of dynamics and this could be the mechanism
underlying glass transition. Therefore, kinetically constrained lattice models
for glasses are devised by choosing jump rates which encode this cage effect.
A deeper justification behind the use of such models to study glass transition
and more general jamming transition lies in the ansatz that these transitions
are a purely dynamical phenomenon and static correlations play no role (see
e.g. [15] and [16]). This conjecture is supported by the fact that, in a small
experimental window in the vicinity of the transition, dynamical properties
vary enormously while structural ones remain almost unchanged. This sug-
gests that there could exist a dynamical length which diverges while static
one remains constant. If this is the case, it is natural to expect that, by a
coarse graining on the scale of the static length, the real systems reduce to a
kinetically constrained model. In other words, by a proper choice of kinetic
rules, these models would provide a mesoscopic description of real systems
(the discrete variable could correspond to e.g. the average of the particle
density over the coarse-graining volumes). Of course, a true mapping from
the microscopic description to the mesoscopic one is a formidable task. Nev-
ertheless, despite their simplicity and discrete character, these models might
capture, at least at a mesoscopic level, some of the key dynamical ingredi-
ents of real glasses. Indeed, some of these models display a slow dynamics
and a whole phenomenology that is very reminiscent the behavior of glass
forming liquids in the vicinity of the glass transition [15]. Therefore, it is
important to unveil the mechanism inducing the slowing down of dynamics
in such models and to investigate whether this is due to the presence of a
dynamical transition. In the rest of the chapter, we analyze in some detail
different possible forms of dynamical arrest that could occur in these particle
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systems.

2.5.1 Irreducibility and ergodicity

As we already mentioned, jump rates are chosen in order that to satisfy
detailed balance w.r.t. uniform measure v, y on hyperplanes Q5 y with N
particles, which is therefore a stationary measure. However, due to the pres-
ence of degenerate rates, usually there exist configurations which can not
be connected one to the other using moves allowed by the dynamics and
therefore €25 y breaks into disconnected components, i.e. the Markov chain
correspondent to the process is reducible. This implies that the invariant
measure in not unique and therefore ergodicity does not hold with respect
to any of these invariant measure. In other words there are subsets of the
configuration space that are left invariant by the dynamics and it is not true
that starting form any initial distribution it relaxes at large times on the
invariant one, which is a necessary condition to substitute temporal means
with mean over the invariant measure.

A natural question is whether in the thermodynamic limit irreducibility
and/or ergodicity are recovered.
To settle this question one should study the asymptotic behavior v, (€) for
|A] = 0o, N — oo at fixed density p = N/|A| of the probability vy x(E),
where £ is the maximal irreducible component. We say that the process is
irreducible in the thermodynamic limit if v, (€) = 1, irreducible otherwise.
Note that limy|n—eo,n/[A|=p VAN = Voo,p(€) depends on density, therefore
there could exists a finite density p. below which irreducibility holds and
above which the configuration space breaks into many disconnected com-
ponents. In this case we say that an irreducible/non—-irreducible transition
takes place at a p..
A strictly related issue is whether ergodicity holds for the process on the
infinite lattice with respect to Bernoulli product measure p, = [, p"@ (1 —
p)' =) which is invariant for the models on such lattices (the product is over
all the sites of the lattice). For a finite volume system irreducibility of the
Markov chain implies that there exists one and only one invariant measure
and that under time evolution any initial measure reaches the invariant one
in the large time limit. Therefore, irreducibility implies that ergodicity holds.
However, for infinite systems, irreducibility does not a priori imply ergodic-
ity (for example Ising model is irreducible but not ergodic at the equilibrium
transition). On the other hand, a sufficient condition to establish ergodicity
on infinite lattices is the validity of the mixing property

tlgg /dup(n) [P.f(n) — up(f)]2 =0 forany f € La(p,) (2.14)
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where P, = exp Lt is the semigroup associated to the Markov process, see
equation (2.11). By spectral theorem, (2.14) holds if and only if zero is a
simple eigenvalue of the generator, i.e. if the only functions f such that
Lf(n) = 0 are constant almost surely in Ly(f,). This implies there cannot
exist an invariant region of the configuration space whose probability is dif-
ferent from zero and one. Indeed, the characteristic function of this region
would be a non constant eigenvector of £ with zero eigenvalue. Note that
this corresponds to the natural idea that ergodicity breaking is related to
the existence of disconnected regions of the configuration space in which the
system can get trapped for infinite time. An ergodic/non—ergodic transition
occurs at p, if the process is ergodic for p < p. and not ergodic for p > p..

Investigating the presence of such transition for kinetically constrained
models is particularly relevant since ergodicity breaking is one of the possible
explanations for the dynamical arrest in glass forming liquids. In particular,
the transition predicted in mean field approximation both for spin models
and in MCT (see section 2.4) is an ergodic/non—ergodic transition.

2.5.2 Diftusion of the tagged particle

A different kind of dynamical arrest, which could take place even in the
density regime where ergodicity holds, is diffusive/sub-diffusive transition.

Consider a kinetically constrained model on the infinite lattice A = Z¢
and start at time zero from the equilibrium distribution, so that the process
will be stationary. Then single out one particle, the tracer, and analyze its
motion. In the density regime where the process is ergodic one can repeat the
arguments in [18,19] and show that under a diffusive rescaling the position
of the tracer at time ¢, Z(t), converges to a Brownian motion with diffusion
coefficient Dg(p). More precisely, lim_,o eZ(e 2t) = /2Dy b(t), where b(t)
is standard Brownian motion and the self diffusion matrix Dg(p) is given by
the variational formula ( [17])

EDs()l) =int |5 2)um(%amu—n@»§j@@+fvyw%—fmw)

{y#0}CA i=1

1Y o (eI — S0)P) (215)
{z,y}CA
x#0,y#0
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-

where (@-b) is Euclidean scalar product, 7_,n is the configuration obtained
translating the configuration n of y, 11,0 is the Bernoulli measure at density
p conditioned to the existence of a particle in the origin and the infimum is
over all real-valued local functions f, i.e. functions which depend on a finite
number of occupation variables. For spatially hysotropic systems, as the one
we will deal with, the self diffusion matrix is usually proportional to identity,
the proportionality coefficient being the so—called self diffusion coefficient.
For future purposes it is useful to define the two sums in (2.15) as Di(p, f)

and D2(p7 f)

Di(p, f) = % > o (cmy(n)(l—n(y))[Z(fff + f(royn™) f(77)12>
{y#0}CA i=1

Dap ) = 1 3 o (easIOr) — 1))
{z,y}CA
r7#0,y7#0

(2.16)

It is immediate to notice that D;(p, f) > 0 and Dy(p, f) > 0 at any density
p, and therefore Dg(p) > 0. However, for the tagged particle process to be
diffusive, Dg should be strictly positive. A diffusive/sub-diffusive transition
takes place at p. if Dg > 0 for p < p. and Dg = 0 for p > p.. The exis-
tence of such transition could again be related with glass transition. Indeed
experimental data for supercooled liquids suggest that the ratio of the mean
square displacement of a tracer over time, < x(¢)? > /t, vanishes at the glass
transition [4] (here we use <> for the mean over equilibrium measure).

In the rest of this section we will outline the proof of the well known
result Dg > 0 at any density p < 1 for simple exclusion process in d = 2 [18].
The proof, which can be extended to any dimension d > 2, uses as a key
ingredient the fact that jumps from occupied to neighboring empty sites are
always allowed and cannot be trivially extended to kinetically constrained
models. We emphasize that this is not only a technical difficulty since, due
to the presence of kinetic constraints, the tagged particle could in princi-
ple get trapped and the diffusion coefficient turn to zero at sufficiently high
density. Analyzing the proof for SSEP is a useful ground for a deeper under-
standing of the difficulties that arise for kinetically constrained models and to
understand the ideas behind the proofs of diffusivity we will construct both
for the two classes of models introduced in chapter 3 and for Kob Andersen
model (chapter 6).
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SSEP for d = 2: proof of positive self-diffusion coefficient

The physical mechanism behind diffusion of the tagged particle in SSEP is
the following. Since a particle can always move to an empty site, the tagged
particle can move whenever a vacancy passes by and therefore the typical
relaxation time 7 ~ 1/Dg should be of order 7,/p,, with p, = 1 — p being
the vacancy concentration and 7, the relaxation time of a single vacancy.
Moreover, since a vacancy can always move in an otherwise totally filled
lattice, 7, is finite and density independent. Therefore, for p < 1, 7 should
be finite and Dg positive, with a density dependence well fitted by 1 — p at
high density.

The strategy of the proof is the following. Instead of dealing directly
with the variational formula (2.15), one defines a proper auxiliary model
and proceeds in two steps. First, one establishes that D" > 0; second,
one proves that Dg > cDE'" with ¢ a positive constant. In principle such
strategy can be generalized to any stochastic lattice gas, the major difficulty
is finding a proper auxiliary process in order that the above two sentences
are true and that they can be directly proved.

For SSEP a suitable auxiliary process is the following. Let n be the
configuration and x the position of the tagged particle

(i) The tagged particles can jump from z to x + e;. The rate of the jump is
one if n(x + ;) = 0, zero otherwise;

(ii) The tagged particles can jump from x to z — e;. The rate of the jump
is one if n(x — e;) = 0, zero otherwise;

(iii) The occupation variables of site © — e; can be exchanged with the one
of site x 4+ e;. The rate of the exchange is one;

(iv) All other moves are not allowed.

It is immediate to check that, if in the configuration 7(0) at time zero the
tagged particle has a vacancy on the right or left neighboring, then at each
subsequent time there will be a vacancy either in z(¢) —e; or x(t) +e;, where
x(t) is the position of the tagged particle in the configuration 7(t) evolute
of n(0) at time ¢. Moreover, since one can always move this neighboring
vacancy from z(t) — e; to z(t) + e; and viceversa (move (iii) above), the
jump of the tagged particle to any of the two neighbors in direction e; can
always be performed via a sequence of at most two moves. Therefore, since
the condition we are requiring on the initial configuration has a probability
1 — p? which is finite even in the high density limit, it follows that D% is
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strictly greater than zero. This ends the first step of the proof. In particular,
for p — 1, DE* > (1 — p)k with k a density independent positive constant.

Let us now turn to the second step, namely establishing inequality Dg >
cD¥* with ¢ > 0. Since move (iii) for the auxiliary process is not allowed
for SSEP, some work is required to establish such inequality. The basic
idea is to show that all the moves allowed for the auxiliary process can be
performed through a proper finite sequence of elementary nearest neighbors
jumps which are allowed in the SSEP case. If this is true, it is natural
to expect above inequality among the diffusion coefficients, which can be
rigorously established. Let us outline the proof. Consider the second term,
D,, of the variational formula (2.15) which yields for the auxiliary process

D = 1< (0 ) = Fm)’ > (217)

and let us define a path of neighboring sites xy, ... x4 joining e; and —e; as
follows: xg = ey, x1 = €1 + €3, Ty = €9, T3 = €3 — €1, 4 = —e;. By recalling
definition (2.13) and letting the exchange operator 7}, be

Tyyn=n"" (2.18)

we immediately obtain the following equivalence

n N =Ty wo T, 21 Tyy 2, Ts, xaTyy 5y T1, 09T, 211 (2.19)

Therefore, term f(n~¢°) — f(n) in (2.17) can be rewritten by a telescopic
sum as

Fomeo) = fm) = (f(Tayeane) = f(16) + (f (Tasais) — f(115))

+ ([ Ty wone) = f(ma)) + (f Ty 0ams) — [ (03))

+ ([ Tagame) = 1)) + (f (Tayaom) — f(m))
+  (f(Leoeim0) — f(m0)) (2.20)
where we have defined 1, ... 75 as o = 1, N1 = 0", 90 = 970", n3 = 07",
Ny = 35" ns = 00", ne = n57". Then, by using (2.20) and Cauchy—

Scharwz inequality we obtain
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(f(TIj:Ij+177j) - f(77j))2 +
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(F(Tsyp0am-5) — F(07-5))
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] (2.21)

Since the sequence 1), .. .7 has been chosen in order that the exchanges in
the right hand side are all nearest neighbor exchanges, SSEP rate ¢, .., (1)
is one when 7 is such that f(7%, ., ,m;) — f(n;) # 0 and the same is true for
the exchanges in the second term. Therefore, we can rewrite above inequality
by introducing in the right hand side the corresponding jump rates for SSEP

(f(niel’el) - f(ﬁ))2 < 7 Zcmj,ijrl (77j) (f(ij,ijnj) - f(ﬁj))z +

3
Z Cxj,x541 (n7—j) (f(ij,mj+1n7—j) - f(n7—j))2
j=1

(2.22)

Multiplying above inequality by 1/4 and averaging over Bernoulli measures
conditioned to have the origin occupied yields, for any real-valued local func-
tions f,

1 1
F<UE = f@) >0 < 314 3, < () - fm) >0 (229
Aoy
which recalling (2.15) and (2.17) gives
DY (p, f) < 14 Dofp, f) (2.24)

for any p and f. Note that factor 14 comes from the fact that the shortest
path needed to reconstruct the moves of the auxiliary process is composed
of 7 elementary moves allowed by SSEP (see formula (2.19)) and an overall
factor 2 comes from the fact that in this sequence each move of SSEP is
used at most twice. On the other hand, since the tagged particle jumps with
the same rate for the auxiliary process and for SSEP, the first term of the
variational expression (2.15) for Dg is the same for the two processes, i.e.
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D" (p, f) = Di(p, f) (2.25)
for any p and f. Therefore
1
Ds(p) = 77 D**(p) >0 (2.26)

at any density p < 1. In order to obtain D, in (2.23) from the average of
right hand side of equation (2.21), we used the changes of variables n —
and the invariance of equilibrium measure under exchange of occupation
numbers. We emphasize that the proof uses as a key ingredients that the
tagged particle can jump to any nearest neighbor empty site and that a
particle can be exchanged with a vacancy next nearest neighbor to it by
means of a configuration independent path composed of a fixed finite number
of allowed moves.

2.5.3 Relaxation to equilibrium

Another interesting issue, in the regime where ergodicity holds, is the anal-
yses of relaxation towards equilibrium for the model either on finite and on
infinite lattices.

For finite lattices the quantities which give the velocity of convergence to
equilibrium are the spectral gap and the logarithmic Sobolev constant with
respect to equilibrium measure. Let us recall the definition of such quantities.
The spectral gap of a Markov generator £ with respect to a measure p is
defined as the smallest eigenvalue of —L on the subspace of Ly() orthogonal
to the constant functions, namely

_ p(fLS)
Bl = B T - (P
where we recall that the action L£f of the generator on a function f was
defined in (2.12) and p(fg) is the mean value of the scalar product among
the two functions, i.e. p(fg) = >, u(n)f(n)g(n). For finite systems above
definition implies [20] that the gap is the smallest positive constant C, such
that, for any real-valued local function f, inequality

(2.27)

Eef = () ey < N1 = () 2oy exp{—1Cy} (2.28)

holds, where we recall that P; = exp Lt is the semigroup associated to the
evolution of the process (see equation (2.11)). In other words, the gap is the
worst mean velocity (and 1/gap the slowest relaxation time) of convergence to
equilibrium. Note that definition (2.27) implies that gap(L) is strictly greater
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than zero when ergodicity holds. Moreover, the variational characterization
(2.27) implies that

Eu(F1(0)); F (1) < exp { —Cy b [1f = sl (2:29)

for any function f, where E is the mean over the stationary process with
initial measure y. This means that the worst velocity of decay to zero of any
two time correlation function is given by C|.

On the other hand, the logarithmic Sobolev constant is defined as the smallest
constant C; such that, for any real-valued local f, inequality

f2
p(f?)
holds. Above definition implies (se e.g. [21]) inequality

pu(f?log

) < Cs (=u(fLS)) (2.30)

n(Puflog Pir) < exp { = 2 bu(f1os ) (231)

for any real function f such that f > 0 and p(f) = 1, i.e. for any f which
is a probability density w.r.t. . In other words, the logarithmic Sobolev
constant controls the exponential decay of the relative entropy with respect
to equilibrium measure.

The dependence of both these velocities in system size and particle number is
well known for the SSEP case. In particular, one can prove [38, §8] that the
spectral gap on Ly (v ) goes with 1/¢2 for large ¢ uniformely in N, where ¢ is
the linear size of A and N the number of particles. The logarithmic Sobolev
constant, on the other hand, goes as ¢?. Let us give a rough explanation
of such results. Consider a lattice gas with hard core constraints and long
jumps, i.e. with jump rates ¢, (n) = 1 for any choice of {z,y}, even if not
nearest neighbor. In this case v, y is invariant and the gap with respect to
this measure is size independent, as it is natural to expect since every site is
connected to any other and can be easily checked using variational formula
(2.27). Let L™ be the generator of the process with long jumps. By using
path arguments analogous to those in previous section, one can rewrite the
exchange of occupation variables in non nearest neighbors sites appearing
in £ as a sequence of nearest neighbor exchanges allowed by the SSEP
process. Since any nearest neighbor exchange is allowed by SSEP, the length
of such path is at most ¢. Therefore, by using telescopic sums and Cauchy
Schwartz, one can obtain inequality

—van(f, LF) £ —Cuan(f, L") (2.32)
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for any function f, which implies gap(£) > gap(L'"9)/¢* and therefore
gap(L) > ¢/¢* for SSEP, with ¢ independent from ¢. By taking as a test
function f(n) = >, A (1. — p) cos(mx/20) and using definition (2.27), an up-
per bound with the same 1/¢? form immediately follows.

As we already stressed, kinetically constrained models on finite lattices are
not ergodic due to the existence of blocked configurations and therefore both
the gap and the inverse of the logarithmic Sobolev constant are trivially zero.
On the other hand, an interesting issue is the behavior of typical relaxation
times towards equilibrium for kinetically constrained models on finite lattices
with boundary sources, i.e. with the addition in generator (2.12) of a term
allowing birth and death of particles at the boundary with rate p and 1 — p
respectively. This corresponds to adding to the generator (2.12) a term

Loowna.f () = D cm)(f(n") = f(n)) (2.33)
e
with
o= {0 (234
and
ca(n) = (1= p)na + p(1 = 12) (2.35)

Note that the number of particles is no more conserved by the dynamics
generated by £ + Lyoung. and the invariant measure is Bernoulli product
measure /i, o at density p instead of canonical measure vy o. The dependence
on ¢ of both the gap and logarithmic Sobolev constant (with respect to ju, )
for the SSEP model with the addition of the boundary term (5.14) are the
same as without sources. Therefore, since for other kinetically constrained
model jump rates are always greater or equal than those of SSEP and the
equilibrium measure is the same, the gap of any such model should go to zero
at least as 1/¢* and the logarithmic Sobolev constant should go to infinity at
least as /2. However, the true dependence on ¢ could in principle be different
and it is also possible that a different dependence on the density appears.
Indeed the gap, which is density independent for SSEP, usually depends on
the density for these models. Therefore it is possible that at a finite density a
crossover between regimes with a different dependence of the gap on p occurs.
Recalling that the gap represents the worst mean velocity of relaxation to
equilibrium, this would correspond to a cross over from a faster to a slower
relaxation to equilibrium for models on finite lattices with boundary sources.
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Let us now turn to models on infinite lattices A = Z<¢. In this case a
quantity which gives informations on the velocity of convergence to equi-
librium is the structure function S(k,t), i.e. the Fourier transform of the
density—density correlation function in the stationary state

S(k.t) =Y exp{ika} [1y(n.(t)0(0)) — p] (2.36)

z€Z4d

which is the discrete analogous of (2.3). In the SSEP case, the time depen-
dence of S(k,t) is exponential at large time and small wave number. More
precisely, in the small € limit, the following scaling form holds

S(ek,e ?t) ~ exp{—k*D(p)t} (2.37)

with D(p) = 1. A rough explanation of above result, which can be rigorously
proved [17], is the following. Since

= Fuln) =D F ) D o) (mexp(Lt)y') (2.38)

neQ neQ 7' €N
it follows that
d _
S S(eck, ) =2 3 expliker [ny((Enle20)m(0) — 7] (2:39)
r€Z4

By using (2.12) we can rewrite £, in the right hand side as

Lot =) Cay()(ny = 10) = Y oy () (2.40)

yeA yeEA

where j,,(17)dt is the number of particles which jump in time dt from z to
y minus those which jump form y to x, or in other words the infinitesimal
current among x and y. The choice of the jump rates of SSEP (see section
2.5), i.e. the fact that c;,(n) is always one when n, # 7, and {z,y} are
nearest neighbors, yields j,, = 0 for {z,y} non-nearest neighbors and

jx,x+8i(77) = [Tw - Tw+ei](77x) (2‘41)

Therefore the sum over y in (2.40) can be rewritten as

Z]x,y 27':1: Tzter — 7—:1:—61](7]:1:) (2.42)
yEeEA
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The operator in parenthesis in the right hand side above is the discrete version
of the Laplacian, therefore in the limit of small € by inserting (2.42) in (2.40)
and (2.39) and integrating twice by parts we finally obtain

%S(ek, e2t) = —k28(ek, e2t) (2.43)

from which (2.37) immediately follows. Note we have used the fact that the
current among neighboring sites can be written as (2.41). When the less
restrictive condition

Jey(n) = j1(n) = [T — 7y ]h(n) (2.44)

holds, with h a local function, results (2.37) can be established again with a
density dependent diffusion constant

1
D(p)as = —=c—= D Tatsliy(Coa) (2.45)
€A

432, 5(x,0) 4

Models satisfying (2.44) are known as gradient models, since the particle
current can be rewritten as the gradient of a local function. This is a key
ingredient in the proof of (2.37) (see [17] Sec II 2.10), indeed a key step of the
proof is the substitution of a sum of currents with a gradient over function
h followed by a double integration by parts. Note that the same ingredient
was necessary in the above rough explanation for the SSEP case. On the
other hand, for non-gradient models proving that the scaling limit (2.37)
holds is in generally not trivial and its validity is not a priori guaranteed.
However, the Green-Kubo formula gives the form the diffusion coefficient
should satisfy provided the scaling limit holds

1 oo 1
Do = 5557 1m, Ty Unatn0)ins(a0)  (6)
For kinetically constrained models, it is a priori possible that relaxation is
slower than exponential or else it could be exponential below a critical den-
sity and slower than exponential above it. This could explain why for some
models a stretched exponential rather than exponential behavior is detected
above a finite density in the time scale accessible by numerical experiments.
However, it is more likely that also for these systems (2.37) holds, but that
the asymptotic behavior arises only after a very long density dependent re-
laxation time. More precisely, it is possible that the scaling regime in which
(2.37) holds is smaller the higher the density and there could be a crossover
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at a finite density to a more rapid decrease of the width of such regime with
1 — p. Therefore, above such cross over density numerical experiment will
always be in the pre-asymptotic regime were (2.37) does not hold. This
transition or crossover could again be related to a similar behavior in glass
forming liquids, where the long time behavior of relaxation functions is well
fitted by an exponential at high temperature and by a stretched exponential
(or Kolhlrausch-Williams-Watts function) at low temperature [8], [9] (see
sectiond.2).

2.5.4 Evolution of density profiles

A different kind of dynamical arrest could be related to the time evolution
of density profiles. Consider for example a model on a finite lattice A with
boundary sources at a density p. It is immediate to check that the only
invariant measure is Bernoulli product measure with density p. A natural
issue is the study of the evolution of initial states with constant density
p(0) # p or with a position—dependent slowly varying density. Note that such
states are locally in equilibrium, therefore they are locally time invariant and
it is natural to expect their evolution to be rather slow, the slower the larger
the length scale on which the density varies appreciably. Moreover, since we
expect the process to be diffusive, if we let ¢ ! be the typical spatial scale
on which the density changes, the correspondent time scale should be of the
order e~2. By defining the rescaled space and time scales

=%t (2.47)

and recalling that the number of particles is locally conserved, it is natural
to expect that the density p(q, 7) satisfies a continuity law

dp(g,7)
oT
where the current j(g,7) should be related to the density gradient by Fick’s
diffusion law

+ Vi(g,7) =0 (2.48)

j(an) = _D(p(an))vp(%T) (249)

with the density dependent macroscopic diffusion coefficient D(p) which ap-
pears in the relaxation of density density correlation (2.37). Note that the
diffusion coefficient D(p) do not correspond to the self diffusion coefficient
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Ds(p) of a tagged particle, neither the positiveness of one of them guaran-
tees the positiveness of the other (for example for the SSEP model in d = 1,
Ds = 0 and D(p) = 1). Therefore, combining (2.48) and (2.49) we expect
the evolute of density at time 7 to be the solution of

P8T) _ G 1D(p(q. 7))V pla. 7)] (2.50)
with condition p(7,¢q) = p at the boundary. The proof of the hydrody-
namic limit consists in establishing the validity of the above parabolic equa-
tion. In other words, one should prove that starting from a local-equilibrium
state with a given density profile, the state at later times is again a local—
equilibrium state, with density profile determined by the solution of (2.50).
The hydrodynamic limit can be rigorously proven for SSEP and for gradient
models such that the jump rates do not degenerates with respect to those
of SSEP, i.e. there do not exists configurations 1 such that ¢, ,(n) = 0 if
{z,y} are nearest neighbors and either site x or y is empty. The extension
of the result to non—degenerate non—gradient models involve some technical
difficulties, see ( [22]) for some solvable cases. On the other hand, for ki-
netically constrained models the rates degenerate and extending the proof
of the hydrodynamic limit for these models (even when they are of gradient
type) is not a trivial task. In general, it is neither obvious which equation
should determine p(t) at later times. A possible candidate is a diffusion
equation of porous media type, i.e. with a macroscopic diffusion coefficient
D(p) vanishing for a finite density. This would give rise to a sort of macro-
scopic arrest, correspondent to the fact that density profiles above a certain
density no more evolve. We emphasize that the difficulties which arise when
one tries to establish (2.50) for kinetically constrained models are not purely
technical. Indeed, it is a priori possible that local equilibrium is not con-
served, or in other words there is no density profile at later times. In order
to clarify this issue, let us briefly recall how the proof of (2.50) works for
non—degenerate gradient models and which are the difficulties arising for ki-
netically constrained models.

Consider a gradient model in d = 1 on a lattice A with N sites, let
e = 1/N, i.e. let the macroscopic rescaled lattice be [0, 1]. Moreover, define
the empirical density as

pr(r.) = S m(N)3(g — 1) 2:51)

TEA

and the scalar product with any test function G(q) as
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1
< pn,G > (1) :/ dupy (1,u)G (u) (2.52)
0
Note that for G = 1 we have
1 2
<py 1> (r) =+ m%ngg(zv ) (2.53)

which is the mean density. To compute the evolution of < py,G > (7) we
use 2.40 which gives

d
%EHT <pn,G>=E, L<py,G > (7) (2.54)

where E,_is the expectation value over the evoluted i, at time 7 = tN? of
the initial measure. Therefore, using definition (2.51) and result (2.40) and
integrating twice by parts we find

d 1 9 T
By <py, G >=E, % h(ne(N*1) AG() (2.55)

In the SSEP case, where h(n) = 7,, above equation yields

d
EEMT <pn,G>=E, <py,AG > (2.56)

which integrating twice by parts and using the fact that G is a generic test
function, corresponds to heat equation for the density. For different models,
if one could substitute Y 1/Nh(n,(N?t) with h(p(g,7)) in the right hand
side of (2.55), this would give again a closed differential equation for the
density

d

2P 7) = Alh(p(a, 7)) (2.57)

i.e. equation (2.50) would hold with

D(p) = Vh(p) (2.58)

Note that this form for D(p), together with equation (2.44) give Fick’s law
(2.49). However, substituting the argument of A in (2.55) with density is
possible only under some proper conditions which guarantee that the system
is locally in equilibrium at any macroscopic time and therefore the mean over
an observable can be substituted by Bernoulli measure with spatially varying
density. This condition holds when the rates do not degenerate with respect
to those of SSEP which allows to establish the parabolic (2.57) for these
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models. On the other hand, for kinetically constrained models the rates
degenerate and therefore the system can get trapped locally in a blocked
configuration rather than reaching Bernoulli measure correspondent to the
local density. Therefore it is possible that local equilibrium does not survive
during evolution if the constraints are too strict (which usually correspond
to high density). Therefore the substitution above is not a priori allowed and
in general one cannot find a closed equation for density evolution.

2.6 Spin facilitated Ising models

Spin facilitated Ising models or kinetically constrained spin models, are mod-
els of spins on a lattice A. A configuration is defined by giving for each site
x € A the state of a spin 0, = {—1, 1} which represent an up or down spin
respectively. The dynamics is given by a continuous time Markov process on
the configuration space 4 = {—1, 1}l which consists of a sequence of spin
flips. More precisely, the spin at site x attempts to flip with a fixed rate ¢, (n),
which depends both on x and on the configuration 7 over the entire lattice.
In other words, the discretized time version of the process is the following.
At time t choose at random a site x. At time ¢+ dt, the spin in x has flipped
with probability ¢, (n(t)), while with probability 1—c,(n(t)) the configuration
has remained unchanged. These models can be easily reformulated as non—
conservative particle system introducing variables n, = {0,1}, with 1 and 0
representing and up and down spin, respectively and a dynamics composed
of a sequence of birth and death of particles. With this convention, which
we will adopt in the following, the dynamics is given by a continuous time
Markov process on the configuration space €, = {0, 1}/*! with generator

LEm) =Y cln)(f(n") = () (2.59)

{z}CA

where we recall that n® is configuration n with n, — 1 — 7, (see (2.34). The
flip rates ¢,(n) are chosen in order to satisfy detailed balance with respect
to the product Gibbs measure 15 7 with non-interacting Hamiltonian H =
>, f(ng) at a given temperature 7', namely

pnnl) = H( exp(Bf(1)) )( exp(3/(0)) )
’ s \exp(Bf(1)) + exp(8/(0)) exp(6f(1)) + exp(8/(0))

(2.60)

with 8 = 1/T. The definition kinetically constrained refers to models in

which rates impose some constraints in order for the flip to be allowed, i.e.
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c.(n) degenerates to zero for some choices of 7). As for kinetically constrained
lattice gases, the degeneracy of the rates usually implies that p, 7 is not the
unique invariant measures, i.e. the system is not ergodic on €2,.

Spin—facilitated Ising models where introduced by Friedrickson and An-
dersen in the early eighties. The original idea was to mimic the fact that
in a supercooled liquid there can be low—density regions that facilitate re-
arrangements and high—density regions that block the dynamics. Indeed, as
for kinetically constrained lattice gases, despite their simplicity such models
could provide a mesoscopic descriptions which contains the key ingredients
of glass transition (for a further discussion on the connection with glassy
dynamics we refer to the introduction and to section 2.5). Again, numeri-
cal simulations show that with a proper choice of kinetic constraints, these
models display a slow and heterogeneous relaxation dynamics which is very
reminiscent of the behaviour of supercooled liquids in the vicinity of glass
transition. Therefore, understanding the mechanisms which induce the slow-
ing down of dynamics for these spin models can be a useful ground towards
a deeper understanding of real systems. The natural questions one would
like to answer and the mathematical techniques which are used are essen-
tially those explained in previous sections. Of course, since there is not a
locally conserved quantity there is no analogous for the hydrodynamic equa-
tion which gives the macroscopic evolution of density profiles (see section
2.5.4) and since particles can be created and destroyed there is no analogous
of the self diffusion coefficient for a tagged particle (see section 2.5.2).
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Chapter 3

Sharp results: velocity of
convergence to equilibrium and
tagged particle

In this chapter we introduce two classes of kinetically constrained models
and consider them on a finite hypercubic lattice A € Z? of linear size ¢ in
contact with particle reservoirs at the boundary. We prove that, as for SSEP,
the inverse of the spectral gap and the logarithmic Sobolev constant grows
as (2. However, the density dependence of both velocities, is different from
the SSEP case. Then we analyze the process on the infinite lattice. First
we prove that such process is ergodic, then we study the displacement of a
tagged particle on the stationary process. In dimension larger than two we
prove that, in the diffusive scaling limit, it converges to a Brownian motion
with non—degenerate diffusion coefficient.

3.1 Definition of the models

We define two kinetically constrained models on an hypercubic d-dimensional
lattice, A := [1,£]? N Z4, where ( is a positive integer.
The first model has jump rates c%)(n) = 0 if {z,y} are not nearest neigh-

bors and

Q) (1) = { 0 if Nye, + Nur2e;, =2, {2 —e€j, 2,2 +€,e+2e} €A
zate\'l) * 1 otherwise
(3.1)
where we let e;, ¢ = 1,...,d be the coordinate unit vectors. In other words,

the exchange across the bond {z, z+e;} is suppressed if the neighboring sites

41
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in the 7th direction are both occupied. Note that exchanges across the bonds
{z,xz + €;} such that either z — e; € A or x + 2¢; € A° are not suppressed,
where we denote by A¢ the complement of A on Z%, i.e. A®=Z%\ A.

The second model has jump rates c\y (n) = 0 if {x,y} are not nearest
neighbors and

&2 () = d({z}h{zyh)=1 (3.2)

T,y wen
1 otherwise

where we let d(A, B) be the distance among set A and B, i.e. d(A,B) =
inf{|z —y|, z € A,y € B}. In other words, the exchange across bond {z, y}
is suppressed if more than one half of d(2d— 1) neighboring sites of the couple
{z,y} are occupied. Note that for d = 1 we have CS; = 65022,

Note that such dynamics preserves the total number of particles in A and
satisfies detailed balance with respect to flat measure v, 5 on hyperplanes
Q) n with fixed number of particles, which is therefore stationary. However -
since the rates degenerate - blocked configuration exist and the generator is
not ergodic on all the hyperplanes of €2, with fixed total number of particles.
For instance, if d = 1, all configurations 7 in which the distance between
all the empty sites is three or more do not evolve. On the other hand, by
adding sources of birth and death of particles at the boundary, i.e. by adding
a term of the form (2.33), it is not difficult to show that the generator for
both the models is irreducible, namely there is positive probability of going
from any configuration to any other. Therefore the process is ergodic and
the unique invariant measure is f , i.e. Bernoulli product measure with
density p. As explained in section 2.5.3, an interesting issue is to study
the gap and logarithmic Sobolev constant for such processes. An estimate
of such quantities, and therefore of the typical velocity of convergence to
equilibrium for the model with boundary sources, will be given in section
3.2. On the other hand, in section 3.3 we address the study of the model
on the infinite lattice. First we prove that ergodicity holds at any density
(no ergodic—non/ergodic transition), then we prove that the self diffusion
coefficient of a tagged particle is always strictly positive (no diffusive/non—
diffusive transition). In this chapter we will use a mathematical language
that will be replaced in next chapters by a less rigorous formulation of results.
Indeed we believe that, writing explicitely proofs and results for these models,
will provide a useful ground to understand the tools and ideas used in future
chapters where we deal with more complicated models for which the results
of this chapter cannot be readily extended.



3.2. Models on finite lattices 43

3.2 Models on finite lattices

In this section we prove a lower and upper bound on the spectral gap and
logarithmic Sobolev constant of the generator of both the models in Lo (f4,,).
We show that, for any p € (0,1), the asymptotic behavior for ¢ — oo is,
respectively, £72 and ¢2. This is the same behavior as for SSEP (see section
2.5.3). On the other hand, a different density dependence arises.

3.2.1 Spectral gap

Let us recall that the generators we are considering are the operators which
acts on local functions f:n € Q2 — R as

k

0= Y dmValf+ D amVeft)  (33)

{zy}CA rEANYZA

d(z,y)=1 d(z,y)=1
where we have introduced Vg, f = T, f — f and V,f = T, f — f, with
exchange and birth/death operators 7T}, and 7, acting on configuration as
Tpy(n) =n"Y and T,n = 1" (recall that jump rates ) (n) have been defined
in (3.1), (3.2) and birth/death rates ¢,(n) in (2.35)). We use the suffix A in
the generator to indicate that it is defined on the lattice A and distinguish

with the generator on infinite lattice Z¢ which we denote simply by L.

Our first results is a lower bound on the spectral gap of LXC), k=1,2.

Let us define the Dirichlet form associated to EE\’C) as

k k
EOW) = =, (FLYf)
1
S DRV T oL

{z,y}CA rENyEA

d(zy)=1 d(z,y)=1
(3.4)

therefore variational definition of the spectral gap can be rewritten as
gap(L) = inf & u(f — p(f))? (3.5)
fet

Theorem 3.2.1. For any p € (0,1) and k = 1,2 there exists a constant
C =C(d, p, k) such that for any € and for any function f : Qy — R we have

inp(fi ) < CEER () (3.6)
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Remark 1. 'Thanks to the variational characterization of the spectral gap,
the bound (3.6) is equivalent to gap(L\)) > C 102,

Remark 2. By taking as test function f(n) = > .\ (7. — p) cos 57 and using
cg’?, <1 for any z,y and k = 1,2, a simple computation shows that for each
p € (0,1) there exist a constant C' = C(d, k, p) such that gap(LE\k)) < Cr2.

Hence gap(LXc)) = (72 as in the case of the simple exclusion.

Remark 3. As discussed in the introduction, the correct dependence of the
spectral gap on the density p has some interest. For simplicity we discuss
it only in the case £ = 1, namely for the rates chosen as in (3.1). It is a
corollary of our analysis that the gap goes to zero as p T 1 as a power law
of exponent between 1 and 2. More precisely the following two inequalities
hold. There exists a constant C; = C(d) such that for any p € (0,1) and
any ¢ we have gap(L{) > (1 — p)2Cy /2. For each integer ¢ > 5, there exists
a constant Cy = Cy(d, £) such that gap(Ls\l)) < Cy(1 — p). The lower bound
follows from the proof of Theorem 3.2.1; the upper bound is obtained easily
by using as test function f(n) = n, with = € A such that d(z, A®) > 3.

Remark 4. As previously discussed, the process generated by Ly is not
irreducible on the hyperplanes with fixed number of particles, 2y x := {77 €
Qp erA Ny = N}. In the one-dimensional case, d = 1 (recall that in such
a case c) = ¢?)) is however not difficult to check that Ly is irreducible
on the set

QAyN = {nEQAyN : dz,y € A, x#y,d(z,y) <2 such that nx:nyzo}

and Ly, satisfies detailed balance w.r.t. the conditional measure vy y(-) :=
MA7P(~|SN2A7N). A natural question is then the asymptotic behavior of the
spectral gap of Ly in Lo (Vs n), a reasonable guess is that for each N < £—2
we still have gap(Lpyk) < ¢72. This conjecture is supported by the fact that
if N =|A|—2=/¢-2,i.e. in the highest density case, we have a single pair
of neighboring empty sites which performs a random walk. We are not able
to prove the above conjecture in general, but only in the trivial situation
in which N < |A|/3 = ¢/3. In such a case, for ¢ large enough, we have
(NZA,N = Qy n; therefore the statement follows easily by a comparison with
the exclusion process with long exchanges, see [38, Lemma 8.1], and a minor
modification of the argument in Lemma 3.2.2 below.

Remark 5. By considering the same models with the strength of the sources
slowed down of a factor 1/¢ (i.e. by multiplying rates ¢, by 1/¢ in (3.3), our
proof gives the same estimate for both gap and logarithm Sobolev constant.
This come from the fact that a factor £ in the second term would not modify
the the passage from (3.9) to (3.6).
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The key step in the proof of Theorem 3.2.1 is the following lemma, which
is in the same spirit of the path lemmata in [37,38,41].

Lemma 3.2.2. For k = 1,2 and each x € A let
U;k) = {yEA 1<y <z —1, |yi—xi|§r(k),i:2,...,d}

where V) := 0 and r® := 1. Then, for each k = 1,2 and p € (0,1), there
exists a constant A = A(d, k, p) such that for any ¢

HA,p (Cw(vxf)2) < A{E Z KA, (Célfzz+el(vy,y+elf)2)+ Z MA,p(Cy(vyf)2)}

k) yry1=1
cuy
y=te yeu®

(3.7)
for any x € A and any function f on Q4.

Postponing the proof of the lemma above, let us first show how it im-
plies, together with a comparison argument with Glauber dynamics, Theo-
rem 3.2.1.

Proof of Theorem 3.2.1. Let us introduce the product (Glauber) dynamics
in 2, defined by the generator

LEf(n) == ca(n)Vaf () (3.8)

TEA

where ¢, has been defined in 2.35. The generator L§ is self-adjoint in
Ly(pip p); since it is a product dynamics, it is immediate to check its spectral
gap is 1. For each function f on 2, we thus get

a7 £) < ~mo(FLEF) = 5 37 ia g eV f )

TEA
A
< 9 Z {6 Z MAvP(Cz(/I?;+el(Vyyy+61f)2) + Z MA,p(Cy(vyf)2)}
TEA yEUé.k) ZeyUlEk;
A
< SO+ 13T () (Vo)) +
{z,y}CA
d(z,y)=1
Z MA,p(Cx(me)2)
zEN,yZA
d(l‘,y):l

(3.9)
where we used the variational characterization of the spectral gap, Lemma
3.2.2 and elementary inequalities. We thus get the bound (3.6) with C' =
A@2r® 4+ 1)d-1, O
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We are left with the proof of the lemma. The basic idea is to use first
Lyouna. to empty a few sites at the boundary. Then - via careful moves -
we show how this cluster of holes can be shifted, using exchanges with non
zero rate, and used to flip the occupation number in z. Finally we shift the
cluster back to the boundary and use again Lyoung. to reconstruct the initial
configuration near the boundary.

Proof of Lemma 3.2.2. We discuss first the case of k£ = 1 which corresponds
to the rates (3.1). We assume also that x; > 4, otherwise the proof is much
easier.

Given € Qj and = € A let us define S,n € Q) as the configuration
given by

0 it y=(1,29,...,2q)
)0 if y=(2,29,...,24)
(Szn)y =9 | _ Ne if y=(3,22,...,74) (3.10)
Ty otherwise
Moreover, for y € Z¢ we define
Ty = Tyreryize Tyyre Ty—ery (3.11)

Y
R
Ty T Ty,y+e1Ty+e1,y+2elTy+2el,y+3e1

Note that TyL moves the occupation number in y — e; to y + 2e; while the
configuration in y,y + e1,y + 2e; is shifted by one in the direction —e;.
Analogously TyR moves the occupation number in y + 3e; to y while the
configuration in y, y + ey, y + 2e; is shifted by one in the direction e;.

For z € A, we let v, := (ie;, xo,...,2q), i = 1,... 27 — 1 and define

Sy = (T Ty )T e u(Ty - T00) Sum (3.12)

It is not difficult to check that (S.n), = 0if y =y or y = v, (Sum)y = 0. if

y =13, (Sun)y =1—n, if y =2z, and (S,n), = n, otherwise.
For z € A with z; > 4 we write

Vo fm) = [f(") = [(Sem)] + [f(Sen) — f(Sem)] + [f(Sem) = f(n)] (3.13)

We start by considering the second term in decomposition above; we claim
that

> sinp)esm) [fGan) — F(Sen)]’ (3.14)

r1—1

<18(1—p)2e =) Y |, (Vo )] (3.19)

=1
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To prove the above bound, let us introduce the path

R, . TR S _
(= T%' Tgl%n R Z 1,...,2¢—4
T:z:—el,:v T’Yzlfzx' ’ 'T’Yl)Smn 1=x1—3
L L R R .
(T'7211757i‘ ) ‘T"/ml—:’,)Tm*elam (T'Yacl—ZL. : 'T'yl)SIn 1 =21 — 3 + 1, ey 21'1 — 7

(3.16)
By (3.12) we have (b, 7 = S,n. Note also that, for each n € Q, and
0 < i < x; — 4, the configuration (; is guaranteed to be empty at the sites
Yiv1 and v, 9. Moreover, for each n € 2, and 0 < j < x1—4 the configuration
Cz1—3+; is guaranteed to be empty at the sites v,,_o_; and 7,,_3—;. This will
allow us to move the configuration (; to the configuration (;; using exchanges
with non zero ¢(!) rate.

By telescopic sums and Cauchy-Schwartz, we get

[f(gm)—f(sm)f:(i[f(@)—f(@ﬁ}) Ca-1) 3 G -G

i=1 i=1
(3.17)
We consider only the case 1 < < x; —4, the others are analogous. We then
have ¢; = TI*(;_y; recalling (3.11), again by telescopic sums and Cauchy-
Schwartz, we get

FGo)]” = [FTEG) = £(Gmn)]”

(G) —
<3 [f( Yiyvitel %+61,%+261T%+281m+381CZ ) - f(T71+81,7¢+261T'n+261m+3e1gi—1)]
2

[/

2

f %+61,%+261T%+261m+3elcz ) B f(T7¢+261m+361 Ci—l)}

[
[f Yi+2e1 %+381<z ) f(<7,71)} }
1)

2
3{ Cyi, "/z+81(T7i+8177i+261T7i+26177i+361§-7:_1) [V%m-ﬁ-elf( %+61,%+281T%+281m+381<z )}

+
+

(1) 2
+ 07 +e1,7i+2e1 (T%+281,’Yi+3e1 Cz?l) [V%+81,%+281f(T’Yi+281,’Yi+3e1 Ci—l):|

1 2
+ Cg/iLZel,fyi+3el (Ci_l) [V7i+261,7i+381f(<i—1):| }

(3.18)
where we used that

(1) _
C’)/i+281,’)/i+381 (Cifl) - C’yi—&—el,’yi—l—Qel (T%+281,’Yi+3e1ci71)

_ _
= Cyivite (T’Yi+e1,%+281T’Yi+281,%+381Cifl) =1

by construction of the path (;, see the remark below (3.16).
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In order to prove the bound 3.14 we consider only the last term on the
r.h.s. of (3.18), the other can be analyzed in the same way. Given A C A,
§€Qy, €A and g: Q) — R we observe that, since p, , is a product
measure and ¢, is given in (2.35),

o nece(n) gomad) = Y pap(n) (1 =na) cx(n) g(nayaé)

LIS USUN
= p(1 = pha,(g]na =€)
(3.19)
Recalling definitions (3.10) and (3.16), we thus get

2
Z MA,p(n)Cm(77)05)/21-261,%—1—3@ (gifl) [V’Yi+281,’yi+3e1 f(<zfl)]

ned

1 2
= Z MA,p(n)nmcx (77) Cgi)+2e1,yi+3e1 (gifl) [V%+281,%+3e1f(@?1)}
ned
1 2
+ 3 oD = e ger ves (G 1) [Viber yosen [ (Go1)]
nesd

1 2
= p(l - p){:u/\,ﬂ (Csyi)+2e1,7i+3e1 [V’Y¢+281,’Y¢+381f} Ne =1, Nvi = Thyigr = Mhige — 0)

Ne = Ny = Ny = 00y, = 1)

(3.20)
We now observe that for any positive function ¢ : 2y — R we have

(1) 2
+,UA,P (C’Yi-l-?el,’yi—l—?)el [V%+281,%‘+381 f]

pno(9) > Bap(e = 1,0y = Ty = Thags = 0) tiap(9 | e = 170y = iy = Ty, = 0)
+ ,u/\,p(nm =Ny =Ny = 07 Myiye = 1) HAp (g ‘ Ne = TNy = My = 07 Mg = 1)
= p(l - p)3{:u/\,p(g ‘ Ny = 1, Nyi = Myigr = Myigs = 0)

ot (9 [0 = 1 = s = 01, = 1) |
so that from (3.20) we get

2
> bap (M) 201 ier (Giot) [V s2es 36 f (i)
neQn (3.21)

_ 1 2
<(1-p) ? HA,p (Cgilzel,yimel [V7i+281a7i+381 f] )

The bound (3.14) follows from (3.17), (3.18), and (3.21). Note that the extra
factor 2 comes from the return path, x1 — 4 <¢ <2z, — 7.

Let us now consider the last term on the r.h.s. of (3.13); we claim that
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> i) [F(Sem) = )]

neN

6
< (1 — p)Q {3MA,P (C% [V“ﬂ f]2) + 2pA, (071,72 [V“ﬂ,vz f]z) + HAp (0’72,’)/3 [Vw,yng)}

(3.22)

To prove the above bound let us define 7,77 as the configuration given

by (I;n), = 1 and (T,fn), = n, for y # x; analogously we let T, 1 be the

configuration given by (7, n), = 0 and (T, n), = n, for y # x. Recalling
(3.10) we then have

F(Sam) = F0) = e 1 Vs F(0) + Vs (1) + 12,55, F (T T )
+ V“/z,v:sf(TﬁTvszﬁn) + V71772f(T727’Y3T’Y71T71 ,7277177)
+ 11 Vo f (L1 .1 s Ly Ty e T 77)}
+ (1 =) [(1 = 1) Vou ) + Vo o f (T550) 4 1125 Vo f (T 2, T )
+ ngf(Tijme;n) + vazf(TvmstﬁTvszmzn)
+ 1 Vo f (L1 15 Ly s L0 T 1y T,;; 77)}

(3.23)

By using Schwartz inequality and the fact that the telescopic decomposi-

tion in (3.23) has been arranged so that all the exchanges have non zero ¢(!)
rate, we get

[F(Sam) = £ < 6 me [V PP + (1= ) (1= 1,) [V, £ ()]
+ 00 (L) [V o F (L) 2+ (1= 1) S0 (L) [V o (L)
+ a7 (Vo S Ty s Tr P 4 (1= 100) 100 [V o f (T . Tm) P
0ol (T T o Ty [V g f (L T T )

V2,73 1,727 7 17277

+(1— 77:1:)0%),73 (Tv: Ty, T;; 1) [v“yz,'ys f (T{l Ty, T’yt 77)]2
+ %C(l) (T2 T, 71, T, MV f (Lya s T, 71, T, )R

V1,72 Y72 71

+(1— 77:1:)0(1) (Tw,'ysTw_lTme;n)[Vw,'mf(T T T+77)]2

V1,72 Y2,Y3 1 T YLyY2

+ Nz Nys [V% f (Tvl 2 Tw 73 T’y: T’Yl 2 T{l 77)]2

+ (1 - 771:)7773 [Vvl(f(T%,72T72,73T£T71,72T~y+177)]2}
(3.24)
By recalling the definition (2.35) we have 1 —n, < p~'¢,(n) and n, <
(1= p)~tey(n) for any n € Q4 and y € A. We next estimate separately each
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term on the r.h.s. of (3.24). Let us consider only the last two terms, the
others are easier. We have

Z 1in,p(1) Cw(n){nw Ths [V%f(TmnszrysTy_lTwmTw_ﬂ])]?

ne
+ (1 —ng) Mys [V’Yl (f(TM,'YzT'yzw:any_le,wT;m)]z}

S(1—-M’1{U~—p)umAnﬁqu@wJwaV\anZLﬁw==Ww=:0)
+p pap(l — Wm)MA,p(Cw [wa]z ‘ Ny =Ty, = 0,7y, = 1)}

< (1 - p)iz/vLA,p (071 [V’Yl f]2)
(3.25)
where we used that, as in (3.21), for any positive function g : 2y — R

MA,p(g ‘ Ne = 177772 =Ty = 0) + :u/\,P(g ‘ Nae = Ty, = 077773 - 1) £3‘26)
1
o= pp o) 2

By analogous computations for the other terms, (3.22) follows.

Finally, to bound the first term on the r.h.s. of (3.13), it is enough to
change variable n — n®. Indeed, noting S,n* = S,n, we get

S mapmea ) [FO7) = F(Sem)]” =3 map(mesm) [F(n) = £(Sem)]”
SN IS OIN
(3.28)
For x such that z; > 4, the bound (3.7), with the constant A given by
A = 180(1 — p)~2 now follows from (3.13), (3.14), (3.22), and (3.28). The
case in which 1 < 27 < 3 can be proven directly by the same steps leading
to (3.22).

In the case k = 2, namely for the choice (3.2) of the exchange rates, we
give only a rough sketch of the proof, which is very similar to the case k = 1.
Indeed, it is enough to define the configuration S,7, analogous to (3.10), as

0 if yEQl((?),ZEQ,...,Z'd))
(Sem)y =% 1—mp if y=(1,2q,...,24) (3.29)
Ty otherwise

where Qq(z) = {y € Z% : max,—1, _q4|z; — y;| < 1} is the cube of side 3
centered in z. The configuration S,n can then be shifted using exchanges
with non zero ¢® rates by means of a suitable path, depicted in Fig. 3.1 for

d = 2. The proof is finally completed by the same arguments given for the
choice (3.1). O
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OO0 - 000 CRONC OO0 -0 OO0 -0
® OO C— ®O0OC— O ®eO 00 ® O 00 ® O 00
OO0 - 000 OO0 - OO0 GC— cO060— 0O
O G— 0O ) (0@ (@] (0@ - O (0@ (@] (0@
®O 00 ®0O 00 o O -0 O o -0 OO e&— O
O 00 ) (0@ (@] (0@ ) (0@ (@] (0@
o -00 ) (0@ (@] (0@ +G— OO -+ - 000
O O LS OGc—0e G— 00 e 000 ® 000 e
(@] (0@ ) (0@ (@] (0@ ) (0@ -+ G— OO
(O eNe] (O eNe] (O eNe] - - 000
OO0 Cce O CceO0 [C _ONE] - @000
(O eNe] (O eNe] (O eNe] - - 000

Figure 3.1: The shifting path. o denotes sites guaranteed empty, e denotes
1 — 7, - denotes an arbitrary occupation number, and — denotes the bond
exchanged in the next move.

3.2.2 Log—Sobolev inequality

In this section we show how the techniques introduced in the proof of the
spectral gap can be used to prove a logarithmic Sobolev inequality for the
same processes.

Recall that a Markov process with reversible measure p and Dirichlet
form £ is said to satisfy a logarithmic Sobolev inequality with constant cq
iff for any function f we have

2

f

2

u(f 8 ()
(we used definition (3.3) and (3.4)).

Theorem 3.2.3. For each k = 1,2 and p € (0,1) there exists a constant
C = C(d,k,p) such that for any € and for any function f : Qy — R we have

(105 L) <ce el (331)

’ fin,o(f?) "

Proof of Theorem 3.2.5. Let L§ be the generator on 2, introduced in (3.8);
then, see e.g. [21], for any p € (0,1) it satisfies the logarithmic Sobolev
inequality (3.30) with ¢ given by Ci(p) := (1 — 2p)~! log[(1 — p)/p] (we
understand C4(1/2) = 2) uniformly in ¢. By (3.7) and (3.9) the bound
(3.31), with C' = Cy(p) A (2r®) + 1)~ (recall A = A(d, p, k) is the constant
in Lemma 3.2.2), follows. O

) <casé(f) (3.30)
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3.3 Models on infinite lattices

In this section we consider the models in infinite volume. We first introduce
the infinite volume dynamics and prove that the correspondent generators
L®) | = 1,2 are ergodic for each p € [0,1] in Ly(y,), where p, is the
Bernoulli measure on 2. Then, for d > 2, we prove the invariance principle
for the position of the tagged particle, namely that ez(s7%t) converges in
distribution, as € — 0, to a Brownian motion with strictly positive diffusion
coefficient.

3.3.1 Ergodicity

In order to discuss the diffusive behavior of the tagged particle we need to
introduce the infinite volume dynamics, i.e. to define the process on A = Z¢.
The configuration space is then 2 = {0, I}Zd, a function f : ) — R is called
a local function if it depends only on finitely many 7,. The generator of the
process acts on local functions as

LYfmy= > BVt (3.32)
{zy}cz?
d(z,y)=1

where ¢, k = 1,2 has been defined in (3.1),(3.2). Note that c¢*) are trans-

lationally covariant in the sense that cg?y’ﬂyﬂ(ﬂyn) = cgfg)ﬁ+e(n). Moreover,
for each p € [0,1] andk = 1,2, the generator L) is self adjoint in Ly(s,),
where 11, is the Bernoulli measure in {2 with density p. In the following we
prove that, for each p € [0,1] and k = 1,2, the generator L% is ergodic in

Lo(p,), namely that 0 is a simple eigenvalue of £*)(see section 2.5.1).

Proposition 3.3.1. For each p € [0,1] and k = 1,2 we have that zero is a
simple eigenvalue of the generator L*) considered on Ly ().

Proof. Let
1
EVN =5 D molel)(Vayf)’] (3.33)
{z,y}cz?
d(Iry)zl

be the Dirichlet form of the generator £*). To show that zero is a simple
eigenvalue of £*) we should check that ngk)(f) = 0 implies f constant g,
a.s. This is trivially true for p = 0,1. For p € (0,1) it is enough to show
that E,Sk)(f) = 0 implies 1,(V,,f)? = 0 for each {z,y} C Z with d(z,y) =
1. Indeed, this implies that fi(n) = f(n)u(n) is an exchangeable measure
and using DeFinetti’s theorem (see [43] and [42]) on the decomposition of
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exchangeable measures into product measures we conclude that g coincides
with p, i.e. f is indeed constant u,—a.s.
We discuss in some detail the case k = 1. Let 2 € Z% and consider the

bond {z,z +e¢;},i=1,...,d. Forn=1,2,... we introduce the events
Bg,i = {77 € Q: Netne; = 77x+(n+1)ei = 0} Bxﬂ; = U BZ"Z
n>1

By noting that p,(B;,;) = 1, we have

Mp(vm,m+e¢f)2 = M/) ([V:l:,:z:-l-eif]Q]IBw,i) S Z PJ/) ([V:z:,:z:—I—eif]Q]IB;,i) (334)
n=1

Let 74 := x + he;;, h = 0,1,...; given n € B}, we can find a path

n = Co,...,¢n = ™" where (j11 = C}h’%*l for some h = 0,1,... and

c%)%+1(gj) = 1. It is in fact possible to construct a path analogous to the

one introduced in the proof of Lemma 3.2.2; note that the two sites 7, and
Yn+1 are empty by the definition of the event Bf ;. Since Sp(l)(f) = 0 implies

Ly (c%)mwrl (Ve /T) =0 forany h=0,1,...
by telescopic sums and Cauchy—Schwartz in (3.34) we get 11,(Vipie, f)? = 0.

Recalling Figure 3.1 it is straightforward to modify the argument given
above to cover also the case k£ = 2. U

3.3.2 Diffusion of the tagged particle

We now turn to the discussion of the asymptotic behavior of a tagged particle.
Consider the process 7)(t) generated by £*) and condition that at time zero
the origin is occupied; tag the particle at the origin and denote by x(t) its
position at time ¢. The pair (n(t), z(¢)) is then a Markov process on the state
space {(n,z) € OxZ? : n, = 1} with generator

AR E (n,z) = Z cgck;(n)(l — ) [F(nx,y7 y) — F(n, w)}
yezd
A= (3.35)
+ > B[P0t e) - F(p,w)]
{y,2}CZN\{z}
d(y,z)=1

Let Q) == {n € Q@ :ny = 1} and p, be the Bernoulli measure on
Qo with marginal p,o(n. = 1) = p, € Z*\ {0}. We shall consider the
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process (1(t),z(t)) generated by A® with initial condition z(0) = 0 and
7n(0) distributed according to p,o. Let (t) := ¥_,n(t) be the process as
seen from the tagged particle, we have that £(¢) is itself a Markov process on
the configuration space €y with generator

AP = Y O &) [F-,E%) - £(9)]

yezd
d(0,y)=1

+ Y AN OVaf©) (3.36)

{z,y}cz\{o}
d(z,y)=1

A straightforward computation shows that A(()k) is self-adjoint in La(p,0);
moreover, by the same argument as in Proposition 3.3.1, it is also ergodic in
Ly (j1p,0). We can therefore apply the same proof as the one given in [18,19] for
non—degenerate rates and conclude that the rescaled position of the tagged
particle, ex(s%t), converges in distribution, as ¢ — 0, to a d-dimensional
Brownian motion with diffusion matrix 2 Défl)f, where Défl)f = Défl)f(p) satisfies
the variational formula

r-Diil)r =
L inf /up,o(dg){ Y OO =g)[ry+ F-,) — f(9)]

2 f local
yezZd
d(O,y):l
Y AN r)

{z,y}cz\{o}
d(z,y)=1

2

(3.37)
where r € R? and - is the inner product in RY.
The main result of this Section is that, for d > 2 and each p € [0, 1), the

diffusion matrix Dgfl)f(p) is strictly positive as in the case of simple exclusion

[18,19].

Theorem 3.3.2. For each d > 2, k = 1,2 and p € [0,1) there exists a real
c=c(d, k,p) >0 such that T'Défl)f(p)T > crer for any r € R,

As discussed in section 2.5.2, the behavior of Défl)f(p) as p T 1 has some
interest. Note that for SEP it vanishes linearly. For these models, an upper
bound of the form Défl)f(p) < Cy(1—p)?Tis easily obtained by using a constant
test function f in (3.37). In the case k = 1, the best lower bound we have
found is Défl)f(p) > (1 — p)* where ¢, does not depend on p. This can be
obtained with the same strategy of Theorem 3.3.2 and some further efforts,
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i.e. with a more complicated path (the path described above gives indeed a

worst upper bound Défl)f(p) > (1 —p)t.

Let us fix a direction in RY, say e, and define the following subsets of

z\ {0}
R(()l) = {ZL’EZd\{O} . H_l?}2(|xz| :]_, ZEZZO,Z::_)),,d}
RY = {oez\{0} : &y =42, || <1,2,=0,i=3,...,d}
(3.38)
and
R(()Z) = {ze€Z\{0}: z; =0, 'II21aXd|$i| <3}
o 3.39
R(ﬁ = {2 e€z\{0} : 2y ==£1, 'gaxd|xi| <3} (3.39)

=Ldyeey

Given & € €, we next define £&+(*) as the configuration obtained from &
by exchanging the occupation numbers in RS{CI) with the corresponding ones

in Rﬂ?, namely

: (1) (1)
(e-0), =4 & B TERGUES (3.40)
and
@y ) & it ¢ R%URY)
TFzen +1

We finally introduce the events

BY = {€€ Q1 & =0, & =0}, B® .= BH UBY  (3.42)

and note that & € Bgf) iff ¢+ ¢ B¥),

Lemma 3.3.3. For each d > 2, k = 1,2, and p € [0,1) there ezists a real
a = al(d, k,p) > 0 such that for any r € R we have

r-DGHpr 2 (re)” 5 inf / tpo (d€[BY) { [F(€+¥) = f(©)]*
+ 3 Mg o)1+ S04 €)= 1]}

y==+1

(3.43)
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Proof. We discuss in some detail the case k = 1. We note that if £ € B
and y = +1 we have

Bper (Ol = ] > Ty =y (6

since 11, 0(BY) > (1 — p)!t, by the same argument as in (3.21), from (3.37)
we then get

Do = e’y ot { [nolde) Y YOl OF

2 f local
{zy}Cz\{0}
d(z,y)=1
ey 2
+(1=p)" / Hpo (d€BY) D L, =0t (E) [y + F(0-yer &) = F(&)] }

y==%1

(3.44)
Let Ti,..., T be the chain of exchanges depicted in F1gure 3.2, T; ex-
changes the occupatlon numbers in the bond b;. Note that if £ € B Y the path
F=E6 G = L G = Tl = €87 s such that cb (C+ ) =
1=1,...,16. For & 6 BY we define analogously (; =&, ¢ = Ti6(y, --
Cio := ThCpy = €7 which is such that ¢} (¢7,)=1,i=1,...,16.

We then have

[F(e7M) = £(6)] Ty (€)
< Ly (§) [f(é“*’ W) — £(O)] + Ly (&) [f(§+""”) - f(f)]2

Lo (€ ch FGED) + L (€) Zf G’

§16Z{cbf GV F G + e (G0 [V lf<<‘1>}2}

(3.45)
By integrating w.r.t. u,o the above inequality and taking into account that
in the chain of exchanges T}, 7 = 1,...,16 each bond is used at most twice
we get

‘)

o0 (BY) / o0 (d€|BY) [F(&77D) = F(9)]
- / oo (d€) [F(ED) = F(6)]) T (€)

< 64 / o(de) Y ., FO)]

{z,y}czZ\{0}
d(z,y)=1

(3.46)
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., T1¢ for k = 1. The picture represents

sites in the plane ey, €5, ® denotes site 0 and — in the —th figure denotes the
bond exchanged by T;. If the sites denoted by o are empty then the starting
configuration is in BS:). In such a case 1,2, and 3 denote the occupation

numbers in R which, step by step, are moved to RS:) by using only allowed
exchanges.
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Figure 3.3: Chain of exchanges T}, ..., T35 for k = 2. e denotes site 0 and
— in the ¢—th figure denotes the bond exchanged by T;.

which inserted in (3.44) concludes the proof with a(d, 1, p) =27° (1 — p)'L.

The case k = 2 is proven by the same arguments; in this case, for d = 2,
the required chain of exchanges T, ..., T35 is depicted in Figure f:path3. [

Proof of Theorem 3.3.2 (sketch). Thanks to Lemma 3.3.3, it is enough
to prove that the right hand side of (3.43) is strictly positive for r-e; # 0.
By the variational formula (3.37), it can be interpreted as the self diffusion
coefficient of a one dimensional auxiliary process which we next describe in
the fixed frame of reference.

The configuration space is {(y,1) € ZxQ : V_ye,n € BM}. Let y(t) € Z
be the position of the tagged particle and 7n(t) be the particles configuration.
At time ¢ = 0 the tagged particle is at the origin, y(0) = 0, and 5(0) € B®) is
distributed according to up,o(-‘B(’“)). Then the tagged particle jumps to the
right, resp. left, with rate one if ¥_, ., 7(t) € BSf), resp. if U_y (e, n(t) € BY.
Moreover, with rate one, n(t) is exchanged to Vye, [(I—ywye,n(t)) " ®],
(k)

namely the occupation numbers in 9, )., R are exchanged with the ones in

9 R(k)
y(t)er 244 -
The proof of the Theorem can now be completed as in the case of non—
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degenerate rates, see [17][I1.6.3], by showing that there exists a real ¢ > 0
such that for any ¢t > 0 and n € B%®) we have Eo,7) (y(t)Z) > ct. Here E)
denotes the distribution of the auxiliary process with initial condition (0, ).
UJ

3.4 A conjecture for hydrodynamic limit

Another relevant issue is the evolution of macroscopic density profiles. As
already mentioned in section 2.5.4, for models with degenerate rates estab-
lishing the hydrodynamical limit [17] is not a trivial task. For these models
a natural candidate for the hydrodynamic limit is a parabolic equation of
porous media type degenerating when the density approaches one. In partic-
ular, though neither the first nor the second model are of gradient type, the
former can be turned into a gradient models by slightly changing the rates,
i.e. defining new rates &y () as 6;17;+ei(77) =1—1/2(Ny—e; + Nut2e;)- Note
that this is a slight modification, in the sense that it does not modifies the
degeneracy of the rates (it modifies the value of the positive rates but when
czy(n) is zero also ¢,,(n) is zero and viceversa). It is immediate to check
that with this choice of the rates the model is gradient and, by the arguments
in 2.5.4, if the initial state is a local equilibrium state and if local equilib-
rium is conserved by temporal evolution, the following parabolic differential
equation holds for density evolution

d

P 7) =V((1-p)Vp) (3.47)

which is a porous media equation with diffusion coefficient vanishing at unit
density. Equations of this form have been widely studied in different contexts.
Note that this equation cannot holds for any choice of the initial condition
admitting a density profile. Consider for instance the models described above
in d = 1 with periodic boundary conditions and take an initial configuration
given by a sequence of two occupied sites and one empty on = € [0, N/2] and
three occupied and one empty in the rest of the lattice. This configuration
has a density profile is invariant for the microscopic dynamic, however the
associated density profile

win

for ¢ €[0,1/2]

p(q,0) = (3.48)
2 for g€ [1/2,1]

evolves diffusively reaching for infinite time p(g, o0) = 17/12 according to
(3.47). Indeed, the initial density profile is bounded away from 1 and there-
fore is not affected by the degeneracy. Therefore, at variance with exclusion
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processes with non—degenerate rates, the hydrodynamic behavior cannot hold
for any initial state. On the other hand such phenomenon is somehow ex-
ceptional and we expect a hydrodynamic behavior (3.47) for a suitable large
class of initial conditions.

Our conjecture is that (3.47) holds provided the initial state has a density
profile and moreover has a density of double holes, i.e. couples of vacancies
at a distance less or equal to two. Indeed, (3.47) holds if one can substitute
a mean of a function of local occupation variables with the same function
evaluated on the local value of density (see section 2.5.4)'. In other words
(3.47) holds if the measure relaxes in any macroscopically small volume A
into a superposition of canonical measures vy ,. Therefore, we should rule
out the possibility that the system is locally blocked in a different stationary
measure. Recalling remark 4 in section 3.2.1, this is guaranteed if there is
at least a double hole in the volume A. Therefore, our conjecture is quite
reasonable and to turn it into a proof one should prove that the initial local
density of double holes is conserved at any subsequent time. Note that double
holes are created and destroyed by the dynamics, therefore even if they can
move freely they do not perform a random walk and proving above statement
is not trivial.

A different connection of these models with the (3.47) and with more
degenerate porous media equations is derived in appendix A.

3.5 Conclusions

The models introduced in this chapter do not display at any density p < 1
a dynamical ergodic/non—ergodic transition. The key ingredient behind all
the results is that for these models there exists a finite cluster of vacancies
that can freely move into an otherwise totally filled lattice. Therefore the
mechanism underlying diffusion is the same as for SSEP, with the role of
vacancies substituted by finite clusters of vacancies. Indeed, these models
behave like a renormalized SSEP model with a different density dependence
in typical times and diffusion constant. Though dynamics for these models
becomes slower at higher density, the lack both of a dynamical transition?
and of a crossover among different diffusion or relaxation mechanisms renders
them not suitable to study glass transition. In this respect, the study of

! Technically, the point that is missing with respect to the non degenerate case, is the
proof of the replacement lemma [22]

2We did not analyze the behavior of density density fluctuation, but we believe there
are no further difficulties to generalize SSEP results to these models. In other words no
stretched exponential relaxation should appear.
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these models can be regarded as a preliminary work in order to develop
the necessary tools for the analysis of more difficult kinetically constrained
modeel, e.g. the ones considered in next chapters. On the other hand, the
models we have introduced in this chapter can be interesting by themselves
in the context of stochastic interacting particle systems and in connection

with the study of porous media equation (see previous section and appendix
A).
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Chapter 4

Kob Andersen model on
hypercubic lattices: ergodicity

After defining Kob Andersen (KA) model on d-dimensional hypercubic lat-
tices A € Z? and recalling previous results, we prove that an ergodic / non-
ergodic transition cannot take place at any finite density p € [0,1]. In other
words, in the thermodynamic limit A — Z? a single ergodic component
covers the whole configuration space. On the other hand, on finite lattices
of linear size L, the system is not ergodic at any density. However, we esti-
mate a density dependent characteristic size Z(p) which separates the regime
(L > =Z(p)) in which the maximal ergodic component has probability almost
one from the regime (L < Z(p)) in which finite size effects are important and
there is not a dominant ergodic component.

4.1 Definition of the model

Let A € Z? be an hypercubic d—dimensional lattice and m = 0,...,2d — 1,
KA model is a kinetically constrained lattice model with jump rates

d(z,z)=1 d(y,z)=1 (41)

( ) 1 if ZzEA,z#y Uz <m and ZZEAVZ#I M <m
Coy(n) =
o 0 otherwise

namely a particle can move only if both before and after the move it has no
more than m neighboring particles. Note that for m = 2d — 1 the trivial
symmetric simple exclusion case is recovered. For future purposes it is useful
to reformulate the rule in term of motion of vacancies. Indeed, as can be
easily verified, the above definition corresponds to vacancies moving only if
the initial and final sites have at least s = 2 — m — 1 neighboring vacancies,

63
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with 2z = 2d the coordination number of the lattice. Therefore the model is
completely defined by the choice of the couple d, m or equivalently d, s.

Note that the rates satisfy detailed balance with respect to v w, i.e.
uniform measure on the hyperplanes with fixed number of particles. However,
as for the models introduced in previous chapter, there exist configurations
that are blocked under the dynamics, v, x is not the unique invariant measure
on the hyperplane and the process is never ergodic. For example, in the case
d = 2 s = 1, a configuration which has a double row of sites completely
filled belongs to a different ergodic component with respect to any other
configuration which does not contain such structure. Indeed, one can directly
check that the particles belonging to the double row can never move.

4.2 Previous results

KA model was introduced in [1] to test the conjecture that cage effect (see
section 2.5) can induce in glass forming liquids a dynamical arrest responsi-
ble for glass transition. Indeed, the jump rates (4.1), are devised in order to
mimic the geometric constraints imposed by sourrounding particles on the
possible rearrangements of a given molecule. In [1] numerical simulations
were performed for the three—dimensional case with s = 2. The self-diffusion
coefficient of a tagged-particle was analyzed and the results were fitted with
good agreement with a power law vanishing at a finite density, D; x (p— p)*
with v ~ 3.1 and p ~ 0.881. The time relaxation of density-density correla-
tions was well fitted with an inverse power law diverging at the same density.
Moreover the form of such relaxation, which is exponential at low density,
becomes stretched exponential when approaching such density from below.
Since both results are strongly suggestive of a dynamical glass transition at
p = p, later works were performed to investigate whether other typical fea-
tures of “glassy dynamics” are present (indeed in all the results cited below
the same case d = 3, s = 2 was considered).

In [47] numerical simulations were performed showing that the dynamics
of this model has an heterogeneous character at high density. More precisely,
the four point correlation function plotted as a function of time displays a
maximum that grows as an inverse power of p — 0.881. The position of the
maximum also grows for large times as a power of the same quantity thus
indicating that dynamics remain correlated for longer and longer times at
high density. In [48] the same model with the addition of boundary sources
of particle was studied. In this case, by quenching the density of the sources
above p, a non-equilibrium regime was reached and aging effects similar
to those arising in glasses were detected. In [49] the relationship between
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configurational entropy of blocked configurations and effective temperature
was investigated to test Edward’s hypothesis (see section 2.3). The numerical
results are compatible with this hypothesis.

From above described results it emerges that the dynamics of three—
dimensional KA model with s = 2 is sluggish and heterogeneous at high
density and displays a whole range of behavior which is very reminiscent of
glassy dynamics. At first sight this could seem strange since KA model is
very similar to the models we have introduced in previous chapter and for
which we established a rescaled SSEP behaviour (see section 3.5). Further-
more the degeneracy of KA and previous models is not comparable, indeed
there are moves that are allowed for KA and not for the other models and
viceversa. However, there is an important difference we emphasize from now
and whose relevance will become clearer in the rest of the work. While in the
models of previous chapter it was possible to identify a proper finite cluster
of holes that can freely move into an otherwise totally filled lattice, this is not
true for three—dimensional KA model with s = 2. Therefore, all the previous
results cannot be readily extended to this model. Note that this is not only
a technical difficulty, indeed we will find that KA model displays a different
relaxation dynamics due to the fact that diffusion involves the cooperative
motion of large clusters of vacancies.

4.3 Open issues and outline of results

Despite the above mentioned numerical investigations, many issues remain
open in understanding the behaviour of KA models. In particular it is not
clear if the slowing down of dynamics is related to the existence of a dynamical
ergodic/non—ergodic transition occurring at a finite density or to a different
form of dynamical arrest (e.g. a vanishing of the diffusion coefficient or a
divergence of the relaxation time for the density density correlation function)
or else a simple crossover in typical time scales occurs. More generally, one
would like to understand the nature of the cooperative mechanism which
induces the slowing down of dynamics.

The first issue we have addressed is whether an ergodic/non—ergodic tran-
sition for the d = 3 s = 2 model or for other choices of the parameters. The
result is that, for any spatial dimension d and any choice of the parameter
s, an ergodic/non—ergodic transition cannot take place at any finite density
p € 10,1]. In other words, the sluggish behavior detected by previous sim-
ulations in the original cubic case with s = 2 cannot be the mark of an
ergodic/non-ergodic transition.

On the other hand, on finite size systems the process is never ergodic. More-
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over, at any fixed size L the probability p,(£) of the maximal ergodic com-
ponent goes to zero for p — 1. Therefore, since limy_, lim, 3 1,(€) = 0
and lim, ,; limy_,o p,(€) = 1, by sending simultaneously L — oo and p — 1
the limit will depend on the relative speed convergence. By analyzing the
probability of the maximal ergodic component we identify a threshold which
separates the two regimes. The form of the threshold depends on the spatial
dimension d and on the choice of the parameter s. For the original cubic
case with s = 2 it is L ~ expexp (¢/(1 — p)) = Z(p). Therefore, by fixing
the density p and varying the size of the system, =(p) is the size at which
a crossover occurs which separates two different regimes: for L > Z(p) the
maximal ergodic component has probability almost one, while for L < Z(p)
no single component dominates. In other words in the former regime the
system is almost in the thermodynamic limit, while in the latter finite size
effects become important. Therefore, the knowledge of the crossover length
is a key ingredient when studying numerical results since it gives the order of
magnitude of the typical size one should consider (once the density has been
fixed) in order to avoid finite size effects. On the other hand, by considering
a system of fixed size L and varying its density, ergodicity almost holds in
the regime p < p.(L) = 1 — (¢/loglog L), namely for smaller sizes finite size
effects become relevant at lower values of density.

The fact that ergodicity holds does not rule out the possibility of different
kinds of dynamical arrests (see chapter 2). In particular, a diffusive/sub—
diffusive transition could occur at a finite density, thus explaining the diver-
gence of typical times and the vanishing of self diffusion coefficient detected
by the above mentioned numerical results [1]. In order to investigate this
possibility we have studied the large time behaviour of the tagged particle
displacement. The result of this analysis is that the self diffusion coefficient
Dy is strictly positive at any density p < 1, i.e. a diffusive/sub-diffusive can-
not take place. Moreover, this analysis unveils the presence of the collective
processes which are responsible for diffusion at high density. The character-
istic time scale of this slow cooperative dynamics can be calculated, with the
result that it increases for p — 1 faster than any inverse power of 1 — p. On
the other hand, by percolation—type arguments, we predict that a crossover
to a different diffusion mechanism occurs at a finite density. This crossover
should give rise to a substantial range of critical dependence of the diffusion
coefficient in the vicinity of an apparent transition at a finite density. This
could explain the vanishing of the self diffusion coefficient and divergence
of relaxation times claimed by the above mentioned numerical results (see
previous section).

Another open issue is understanding the root of the dynamical hetero-
geneities detected by numerical simulations. From the above described sce-
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nario, we expect that in the large time limit dynamics is dominated by the
slow relaxation of rare dense regions and we give a possible explanation of
the heterogeneous relaxation.

Finally, it would be interesting to establish the connection, if any, of KA
model with the scenarios proposed by other theoretical approaches to glass
transition. As already mentioned, mode coupling theory [11] and results for
fully connected spin glasses [12] predict the existence of an ergodicity break-
ing transition at a finite temperature T;. Since these approaches are both
mean field, to establish a possible connection we have studied KA model on
a Bethe lattice, which is usually a good realization of mean field approxima-
tion and whose tree like structure enables analytic calculations. The scenario
which emerges for this mean field approximation (namely in infinite dimen-
sions) is completely different from the one on hypercubic lattices (namely in
finite dimensions). Indeed, at a finite critical density p. < 1 an ergodic/non—
ergodic transition takes place which corresponds to the transition from a
diffusive to a partially frozen phase. However, even if this transition is de-
stroyed in finite dimension by cooperative rearrangements, a ghost of such
transition survives in the dynamics. This corresponds to above mentioned
cross—over in typical diffusion times. Furthermore, by analyzing the mean
field transition we find that it has aspects of both first order and second order
transition and is analogous to the one found in the mode coupling approxi-
mation and for p-spin models. The knowledge of both mean field and finite
dimensional results for KA could be a useful ground to develop new ideas on
the nature of the so called activated processes that should smooth the mean
field mode coupling or p—spin transition in real systems.

In the rest of this chapter we will focus on the ergodicity proof for the
finite dimensional case. The analysis of KA on the Bethe lattice will be
developed in chapter 5, while diffusion coefficient, typical time-scales and
dynamical heterogeneities will be discussed in chapter 6.

4.4 Ergodicity for d=2, s=1

In this section we analyze the model on a two—dimensional hypercubic lattice,
namely a square lattice, with parameter s = 1. We prove that, for any
density p € [0, 1], an ergodic/ non—ergodic transition cannot take place (see
section 2.5.1 for a precise definition of such transition). This is also true for
a generic choice of d and s, as we will prove in next sections. Indeed the only
two possibilities are the following. The process in the thermodynamic limit
is ergodic at any finite density, i.e. p. = 1, else it is never ergodic, i.e. p. = 0.

Let us outline the strategy of the proof. First, we consider the model on
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a finite square lattice A? and identify a component of the configuration space
Q =0, 1}A2 which is irreducible, i.e. any two configuration belonging to such
component can be connected one to the other by a sequence of elementary
moves with positive rate. Then we prove that in the thermodynamic limit
the probability of this component, w.r.t. Bernoulli product measure p2 , at
any density, goes to one. By applying an argument similar to one in section
3.3.2, it is then easy to prove that this implies ergodicity for the infinite
volume system A? = Z2. In this and next three sections we outline the first
and second step of the proof for all the possible choices of d and s, leaving
to section 4.8 the last step, which is independent from the choice of the
parameters.

Consider KA model on a square lattice A2 € Z? with linear size L and
periodic boundary conditions. Let framed configurations be those with all the
boundary sites empty (see figure 4.1) and frameable those that by an allowed
sequence of elementary moves can reach a framed configuration. Any two
framed configurations with the same number of particles can be connected
one to the other by a sequence of moves allowed by the dynamical rules. This
can be checked as follows. Consider a couple of neighboring sites {7, j}. To
prove above claim it is enough to show that for any choice of the framed
configuration, there exists a sequence of moves which allows the exchange of
occupation variables in sites ¢ and j. Let j = i + e;. Starting from bottom
right corner and top right corner it is possible to raise the bottom and top
rows of holes respectively, as shown in figure 4.2. This procedure can be
iterated till the row which contains sites ¢ and j is “sandwiched” between
two rows of holes (see figure 4.3). At this point one can perform the initially
chosen jump, since the number of neighboring vacancies for 7 and j is greater
or equal to two, therefore the jump is allowed. Then the initial configuration
in the rest of the lattice can be restored by moving backward the two rows
of holes. Therefore all the framed configurations with the same number of
particles belong to the same irreducible component. However, this is not
the set of configurations we are looking for, since the probability of such
component goes to zero in the thermodynamic limit. Indeed the requirement
of having the external frame empty is very restrictive and the probability to
fulfill it, w.r.t. Bernoulli measure py2 ,, is (1 — p)*~, which goes to zero for
L — oo. However, there is a larger irreducible component which contains the
previous one, namely the set F of above defined frameable configurations.
Indeed, any two frameable configurations can be connected by a path which
goes through the two correspondent framed configurations. Therefore, next
step is proving that the probability of frameable configurations with density
P, paz,,(F), goes to one in the limit L — oo.

Consider a four by four configuration which has at the center a two by
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Figure 4.1: A generic 6 by 6 framed configuration. Filled dots stand for
occupied sites; empty dots for vacant sites. We indicate with ¢ and j a
couple of neighboring sites where the jump from 7 to j cannot be directly
performed. In figure 4.2 and 4.3 we draw a sequence which allow to perform
the move
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Figure 4.2: Sequence of allowed elementary moves connecting configuration
in figure 4.1 to a configuration with the bottom row of holes raised of one
unit.

two square of holes and in the next shell at least two holes adjacent to each
side of the inner square. It is easy to check (see figure 4.4) that such four by
four configuration is frameable. This procedure can be iterated to grow an L
by L frameable configuration starting from a two by two nucleus of vacancies
and requiring at least two vacancies in each side of any subsequent shell.
Therefore jup2 ,(F) is bounded from below by the probability, pz2 ,(F°), of
frameable configurations constructed with the above growing procedure from
a two by two nucleus of vacancies centered in the origin (see figure 4.5):

(L—2)/2
ineo(F) = e o (FO) = (L= p)* [T (1 =p" =200 (1= p))"  (42)
1=1
Note that the large L behaviour of log (ux2 ,(F°)) is determined by 4 log(1 —
p)+437 . log(1—p* —=21p* (1 —p)) = 4log(1—p) =437, (' +20p" (1~
p)), which is a converging series for any p < 1. Therefore, j152 ,(F°) converges
to a well defined limit when L — oo at fixed density. Due to the divergence
of the series in p = 1, some additional care is required in order to analyze the
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Figure 4.3: Configuration which can be reached from the one in figure 4.1
by the sequence in figure 4.2 and analogous moves lowering top row of holes
by two units. Sites ¢ and j are now “sandwiched” between two rows of holes
and the jump can be performed. Then the initial configuration of figure 4.1
can be restored on the other sites.
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Figure 4.4: Growing procedure: form a 2 by 2 to a 4 by 4 framed configuration

behavior when p — 1 and L — co. Let a(x) = log(1 — p** — 2zp**~ (1 — p)).
Since a(x) is increasing in z, the following inequality holds:

4a(1) + 4/ dllog(1 — p* — 21”7 (1 — p)) <
1

log f1a2,,(F") — 4log(1 — p) <

L
4 / dllog(1 — g — 22 (1 - p)) (4.3)
2

where the last term can be rewritten by using the changes of variables y = p?
and developing for p >~ 1 as

L
_ N B 1 b log(l —y+ylogy)
lim [ dllog(1— p* —20p*'(1—p :7/ dy
J, J, Hos( ==5a=7 ), "
(4.4)

Therefore, combining (4.3) and (4.4) and using lim,,; (1 — p) log(1 — p) =0
yields

b log(1 - 1
lim lim (1 — p) log pip2 ,(F°) = / dy og(l =y +ylogy) (4.5)
0

p—1 L—o0 Y
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Figure 4.5: An 8 by 8 frameable configuration obtained with the growing
procedure. The dashed square indicates the position of the initial two by
two seed. Note that, due to the requirement of having two vacancies in each
side of any subsequent shell, the density of the configuration should be very
small near the seed where the shell is small, but can be high far enough.

i.e.,, when p — 1 and L — oo,

e 7) = exp — (2222 (4.6)

0 (2 and 1 stands for the values of

parameters d and s, respectively).
Moreover it is possible to determine a characteristic length £(p,2,1) such
that p1p2 ,(F°) depends weakly on L for L >> £(p). Indeed, since

with C(2,1) = — fl dyw ~ 4.48

2 " log(l—y+ylo
108 fioo p(FO) — log pipz p(FY) =~ —— [ dy g(l —y+ylogy)

L=p /s Y
I )
~ dy(—1+logy
L—p )y
2 L L L
= = (pt1 —2
1_p(p oglp"] —2p")
—4pL
~ P (4.7)
L—p

1002 p(F°) 2 pioo o (FP) for L > —log(1 — p)/(1 — p) = &(p,2,1). Therefore
¢ is the minimal linear size of a square such that, if the configuration is
frameable inside this region, with probability almost one the requirements
on each subsequent shell needed to grow it frameable till infinite size are
satisfied. In other words, ¢ is such that with probability almost one there
are always at least two vacancies on any line of length [ > &.
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By considering all the possible positions for the initial nucleus of the
growing procedure!, it follows that the probability that a square of size L is
frameable, 52 ,(F), goes to one for L — co. The proof of this statement will
be illustrated in section 4.8, let us sketch since now the key ideas. From above
definition of &, the requirements needed to further expand a frameable square
of size L > ¢ are satisfied almost with probability one. Therefore, events
that on different squares of size £ one can grow frameable configurations,
are almost independent. By considering the possible O (L?/£?) squares of
size ¢ inside A, it is immediate to conclude that p ,(F) is almost one for
L > &/ p(F°) = Zu(p,2,1) and goes to one for L — oo. Since the
events that A is frameable starting from different nuclei at distance & are not
independent, some additional work is required to turn this argument into a
proof (see section 4.8).

Note that the whole proof is simply based on two ingredients: fact that
configurations with a special frame of holes belong to the same irreducible
component; this frame can be created by starting from a finite nucleus of
vacancies and expanding to larger sizes by satisfying a requirement that
becomes less and less severe at each step. Therefore, the strategy is not
very specific of the above choice of the rules and can be readily extended to
different models. In particular, in next sections we will show that it can be
adapted to all the different KA models. In the following we will refer to core
of a frameable region as the region of linear size ¢ centered around the initial
nucleus of the growing procedure. Note that, due to the constraint of having
at least two vacancies on rows of length [ < &, such regions have a density
which is lower than the mean density of the whole configuration and are
therefore very rare. Nevertheless, the density of cores 1/pz2 ,(F°) ~ 1/Z2 is
always positive at any p. From above proof, it emerges that this rare regions
with vacancies configured in special ways are at the root of the mechanism
which restores ergodicity in the thermodynamic limit. Moreover, as will
be elucidated in chapter 6, their cooperative motion is the only effective
mechanism for diffusion in the high density regime.

As already noticed in section 4.1, KA model in not ergodic at any density
on a finite lattice. However, as a by—product of the ergodicity proof, we have
obtained that if the linear size L of the lattice is such that L > =,(p,2,1)
the maximal ergodic component has probability almost one (in section 4.23
we will prove that the convergence to one for L > =Z,(p) is at least expo-
nential). In other words in this regime, though the model is not ergodic,

'Recall that we are considering the model on a finite lattice with periodic boundary
conditions. Therefore any point can be considered as the starting point for the growing
construction.
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a single ergodic component dominates. By explicitating above definition of
Eu(p,2,1), its density dependence can be rewritten as

=.(5,2,1) ~ exp (C;(Q’ ”) (4.8)
—p

On the contrary, it is immediate to check that for L < =, the probability
that a configuration is frameable is almost zero. However, from above ar-
guments we cannot exclude the existence of a different ergodic component
with probability almost one (which would correspond to a different ergodicity
restoring mechanisms which is not taken into account by previous procedure).
We will come back to this issue in section 4.9, where we will outline a dif-
ferent argument establishing a characteristic length =;, which has the same
density dependence as =,, such that for L < =, we are guaranteed that the
configuration space is broken into exponentially many ergodic components
and none of them dominates.

4.5 Ergodicity for d=3, s=2

In this section we prove that in the case d = 3 s = 2, namely for the choice
originally made by Kob and Andersen, ergodicity holds in the thermodynamic
limit at any density p < 1. This case is also included in the proof we will
give in section 4.7, which holds for any d and s. However the analysis of this
three-dimensional case can be useful since it introduces in a relatively simple
case the technique we use to extend ergodicity results from smaller to larger
values of d and s.

Consider a cubic lattice A*> € Z3 with linear size L. Let framed configura-
tions be those with all the boundary sites empty and frameable those that by
an allowed sequence of elementary moves can reach a framed configuration.
Again, frameable configurations with the same number of particles belong to
the same irreducible component and the probability pas ,(F) that a config-
uration belongs to this component goes to one in the thermodynamic limit.
This can be checked by noticing that in a framed configuration the bottom
and top planes of vacancies can be raised and lowered whatever the internal
configuration. Therefore one can again “sandwhich” any couple of neigh-
boring sites among two planes of vacancies and exchange their occupation
numbers. In other words, with a procedure analogous to the one previously
devised for the case d =2 s = 1, one can directly check that frameable con-
figurations belong to the same irreducible component (the role of empty rows
in previous proof is now played by empty planes). Moreover, also in this case
one can define a growing procedure which enables to construct a frameable
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configuration of linear size L starting by an initial nucleus of vacancies and
satisfying at any subsequent shell a requirement which is less and less re-
strictive for larger sizes. Consider a cube of linear size four, which has at the
center an empty cube of linear size two. If adjacent to each side of the inter-
nal cube there is a four by four square which is frameable according to the
definition for the d = 2 s = 1 case, the whole cube of size four is frameable.
This procedure can be iterated to grow an L by L by L frameable configu-
ration starting from an empty cube of size two and requiring that in each
subsequent shell all the squares are frameable Therefore, letting uAs,p(}"O)
be the probability of frameable configurations grown from a nucleus in the
origin, the following lower bound for yss ,(F) follows

(L—L")/2 6

s p(F) 2 s o(F0) = (1= )" ] (mpl®) VL (49)

where A? is a square lattice of linear size L' + 2I. From results in previous
section we know that py2 ,(F) is almost one for L' > =, (p,2,1) and goes to
one for |A;| — oo. If the convergence to one were sufficiently fast, from (4.9)
we would conclude that for L > Z,(p,2,1) the probability ps ,(F°) does
not depend on L and

Hias (F0) = (1= p)Felo2) (4.10)

Let £(p,3,2) = Z.(p,2,1), we can again divide the cubic lattice A® in
(L/&(p,3,2))? smaller cubes of linear size £(p, 3,2). Since the probabilities of
growing frameable configurations starting with nuclei inside different cubes
are almost independent, we conclude again that i ,(F) is almost one for
L > £(p,3,2)(1 — p)=2)° = Z,(p,3,2) and goes to one for L — oc.
Therefore, in the thermodynamic limit the irreducible component of frame-
able configurations has unit probability. We postpone to section 4.23 the
prove of the fast convergence to one of the probability of the frameable set
for d = 2 s = 1 (the proof will be given for the case s = 1 and any d) and
to section 4.7 the proof of the above argument on independent frameable
configurations. Note that we have found as for the two-dimensional case a
typical size £ such that if a configuration is frameable inside a cube of linear
size &, with probability almost one it can be grown frameable to infinite size.
Again, we let the core of a frameable region be the cube of size £ around the
initial empty nucleus of the growing procedure.

As for the square lattice case, though on finite lattices the process is not
ergodic, we find that for L > =,(p, 3, 2) the ergodic component of frameable
configurations has probability almost one (in section 4.7 we will prove that
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for L > =,(p, 3,2) the convergence to one is at least exponential). Note that
above expression for Z,(p, 3,2) can be rewritten, up to log corrections as

(2,1
Zu(p,3,2) = exp Zu(p,2,1) =expexp< 1( : )> (4.11)
—p

The fact that the three dimensional length is the exponential of the two—
dimensional one is not a pure coincidence. Indeed, it is a consequence of
the fact that on each step of the three-dimensional growing procedure we
require a two—dimensional frameable configuration. Again, the fact that for
L < Z,(p,3,2) the probability of a frameable configuration is almost zero
is not sufficient to conclude that in this regime all ergodic components have
small probability and none dominates. However, the argument outlined in
section 4.7 will allow us to conclude that this is ture and there exists a
crossover length separating the two different regimes.

4.6 Ergodicity for any d, s=1

Consider KA model on an hypercubic d-dimensional lattice A% with param-
eter s = 1. Let framed configurations be those with all the hyperedges of
dimension 1 empty and frameable be again those reachable from a framed
one. In the case d = 3, for example, they correspond to the hyperplanes
rn=1Lx=1Lxry=Lxs=1z,=1,00=0L;x1 =L,x5 = L;
rw=lrs=Lzy,=Lzs=10,=1,03=L;ox, =L,x3 = L;
vo=1l,a3=129=L,xs5=1;00=1,03=L;zo =L, 23 =L
Again, all frameable configurations belong to the same irreducible com-
ponent. Consider for example a framed configuration in the case d = 3 and
chose a permutation of two particles in neighboring sites {i, j} belonging to a
plane parallel to the upper one. By starting from corners, the bottom frame
can be raised till framing the plane which contains the couple {7, j}. Then,
after applying on this plane the same sandwich technique as ford =2 s =1
, the permutation can be performed.

The generalization of the growing technique which enables to construct
larger and larger frameable configurations starting form an empty nucleus,
can be done by using the following observation. Given a frameable hypercube
of linear size L, the number of vacancies needed in the subsequent shell to
expand it to size L + 2 is 297! for each of the 2¢ faces. Therefore, the
probability jiya ,(F) that a system is frameable can be bounded from below



76 4. Kob Andersen model on hypercubic lattices: ergodicity

by fira ,(F°), with

od

. d—1_, i
fina o (F°) = 2dH Z (=T Z_)mpl (1—p) (4.12)
where the product is just on 1 even. In the limit p — 1, L — oo (4.12) gives:

fiad ,(FP) =~ exp (—C(id)l> (4.13)

(1—p)ir
where
L dy S —logy
c(d) = —2‘“(d—1)/ ——log [1—-y | > (4.14)
0 y(logy)drt 0
Let
log(1 — p)\ /Y

by using (4.12), one can directly check that pa,(F°) remains almost con-
stant with L for L > £. Therefore, by considering the O (L%/¢?) possible
positions for the starting nucleus of 2d vacancies, it seems reasonable to
conclude that for L > Z(p,d, 1) with

- c(d)
Zul(p,d, 1) oc ex - 4.16
(p.d, 1)  exp (d = p)m> (1.16)

the probability that a configuration is frameable is almost one and goes to
one in the thermodynamic limit. Above statement comes from considering
that the probability that the whole configuration is frameable is given by the
number of possible sub-lattices of linear size & multiplied by the probability
that a the configuration is frameable by starting with an empty nucleus inside
such sub-lattice. Therefore, this argument is not completely correct since
events that the configuration is frameable by starting from two different sub-
lattices are not independent. However it is possible to turn this argument into
a proof thanks to the fact that the frameability requirements become more
and more weak on larger sizes and therefore, if a configuration is frameable
till size £, the probability of growing it frameable till infinity is almost one.

Let us sketch the above argument in some detail. Consider the A¢ hyper-
cubic lattice of linear size L and divide it in (L/l5)? hypercubes of linear size
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[5. At the center of each of these hypercubes consider a smaller hypercube A,
of size [; = l5/2. The probability that the lattice is frameable can be bounded
using the probability that the lattice can be made frameable starting from
one of the L?/1¢ hypercubes of linear size [;. Therefore pind p(F) > PP, Ps,
where P; the probability that at least one of the hypercubes of size [; is
frameable, P, is the probability that this frameable hypercube can be ex-
panded until the size I, (requiring 2¢-! vacancies for each shell from size [; to
size ly), Pj is the probability that the frameable hypercube of size [, can be
expanded until the size L (requiring 2?~! vacancies on each shell from size [,
to L except in the region of space occupied by the other hypercubes of size
[1). The following equations hold:

Ld L
= 1-(1- uA(li’p(]:O)) % ~1—exp <_/’LA‘li,p(F0)l_d>
2

d
& Qi 11 -1 . i
1=l i=0
d
e S (S TC R it I i
Py o= 1- 2 57 (1 - p)
’ ll_l[ ; (14-1(1 - by - i)!i!p =7
—1 s
(4.17)
By choosing I; ~ £(p, 1,d), above equations give
d L¢
P, ~ 1—exp| —exp —70()1 7
(1-pzr) b
PQ ~ 1

therefore jina ,(F) ~ 1 by requiring the second term in the right hand side
of P; to be zero, which is equivalent to condition L > Z,(p,d,s), with
Eu(p,d, s) defined in (4.16).

Exponential convergence

In this section we prove that the probability for a configuration to be frame-
able approaches one (at least) exponentially fast in the linear size L, i.e.

L
pinp(F) 21— Cexp (—75 od 1)> (4.19)
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for L > Z,(p,2,1). Indeed, as already mentioned in the end of section 4.5,
such exponential convergence is a necessary ingredient to extend to higher
dimensions the ergodicity proof established for the square lattice case.

We sketch two possible ways of doing the proof of (4.19) in the case d = 2
s = 1, which can be easily extended to any other dimension d for s = 1, by
noticing that in order for such configuration to be frameable it is sufficient
that the d — 1-dimensional boundary is framed and so on.

(1)The first way of doing the proof is through a percolation-like argument,
in the same spirit as the one in [27]. Consider a square lattice A% of
linear size L, divide it in smaller squares of sizes [ and focus on one
of this sublattices, A?. If the four neighboring squares of A? along all
the independent directions are framed, then the smallest square which
includes all these squares can be framed (see figure 4.6). In these way
we can grow frameable objects. Moreover, one can directly check that
if the non frameable squares of size [ on the boundary of A% form only
finite clusters, the whole configuration can be framed. Therefore

L

I MAZ,/)(?) S Pperc(Tv MA%,p(f)v 2) (420)

where we let P,,.(l,p,2) be the probability of conventional site perco-
lation for a square lattice of linear size [, when occupation probability
1 — p. Standard site-percolation estimates yeld following inequality for

Poere [27]
S -1 460 —p)
Poove(l,p,d) <Y 4(1 —p)i4i—t = =77 4.21
pere(l, )_;( p) 31-30—7) (4.21)
If condition
1
g o(F) > 1= o (4.22)
holds, by using (4.20) and (4.21) we find
[z )(F) > 1 — Ce /! (4.23)

with a proper positive constant C. Since (4.22) holds for | = =(p, 2, 1),
inequality (4.19) is proven for the case d = 2.
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Figure 4.6: The two configurations above can be connected by a sequence
similar to the one in figure 4.2: starting by the corners which connect two
empty edges one can move the latter up, down, right and left till reaching
the final configuration.

(ii)A different way to establish inequality (4.19) for the two—dimensional
case is through a sort of renormalization group approach. Consider a
square lattice A2, of linear size 2L and divide it in four squares of linear
size L. If all the four squares, or at least three of them, are frameable,
then the whole lattice is frameable too. Therefore the following iterative
inequality holds:

ity o) 2 (g o) 1 (g o)) (0= ias f(F)) (4.20)

Moreover, if condition

(1= a3 ,(F)) < = (4.25)

holds, then

piaz, o (F) 2 1= 10(1 = pupg ,(F)) (4.26)

which also implies condition (4.25) when L goes to 2L. Therefore, we
can iterate inequality (4.26) finding

2" 1 e
g, o (F) 2 1= 1/10 (1001 = g () 21— e 25 (427)
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Since for L > Z(p,2,1) condition (4.25) holds, inequality (4.27) is es-
tablished for any integer n. Therefore, we have riderived inequality
(4.23)? in the case d = 2.

4.7 Ergodicity for any d,s

Consider KA model with parameter s on a d—dimensional hypercubic lat-
tice A%, It is immediate to check that in all the cases s > d, the system
is not ergodic in the thermodynamic limit at any density p > 0. Indeed,
all d-dimensional hypercubes of any size which are completely occupied by
particles are forever blocked (for example in the case d = 2 s = 2 the jumps
rates impose that any two by two square of four particles can never move).
Therefore, a configuration chosen at random with probability zixa ,, has with
unit probability a finite fraction of forever blocked particles. This implies
that two configurations have with probability one a finite fraction of sites
on which they cannot be rendered equal, thus they belong to different irre-
ducible components. In other words, at any density p > 0 ergodicity does
not hold. For the s = 1 case we already established in previous section that
ergodicity holds in the thermodynamic limit at any density p < 1. On the
other hand the cases s = 0 corresponds to SSEP, where ergodicity trivially
holds at any density (note that SSEP process is ergodic at any density even
on finite size lattices). Therefore, the only cases left to be considered are
those with 1 < s < d, for which we will prove that in the thermodynamic
limit ergodicity holds at any density p < 1. The proof of ergodicity will be
performed through a generalization of the idea used in section 4.5 to extend
the results from the case d =2 s=1tod =3 s = 2.

Let framed configurations be those having all hyperedges of dimension s
empty. In a more formal way they are defined as the configuration having
all the sites empty on the hyperplanes:

{wp, =1, L}x{xp, =1,L}x...{wp, =1L} (4.28)

where Py, ... P;_sis a generic (d—s)-uple obtained from 1, ..., d. For example
the s = 2,d = 3 case corresponds to the planes:

ry=Lxy=Lixo =129 = L;x3 = 1,23 = L.
It’s easy to show that, inside a frameable hypercube, any jump of a particle
to a neighboring empty site can be achieved by the generalization of the
"sandwich technique” discussed previously. Consider an hypercube of size

2By this second argument we have obtained the result only for L = 2"Z(p, 2, 1). How-
ever there is nothing special with these values, they just come from our iterative procedure.
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[ + 2 which is frameable till size [. If adjacent to each side there is a d — 1
-dimensional hypercube which is frameable for the d — 1 s — 1 model, than
the d-dimensional hypercube is frameable till size [ 4+ 2. Therefore, to bound
from below the probability that a d-dimensional hypercube is frameable for
the choice s, fipa ,(F(s)), we can estimate the probability MAd,p(f(Os)) that an
hypercube of linear size [ centered in the origin is empty and that starting
from it any subsequent shell is frameable for the d — 1, s — 1 model:

L
aip(F) 2 maap( Fo) = = )" T aer (Fimy)  (4.29)
k=l+1

where A%"!is the (d — 1)-dimensional lattice of linear size k. If there exists
a length =,(p, d, s) such that

Ld
pind p(Fis—1)) > 1 —Cexp <—§> for L>=,(p,s—1,d—1) (4.30)
—u
then, by choosing [ > =Z,(p,d — 1,s — 1) the product on k in (4.29) would
become close to one and uAdyp(]:(Os)) would be approximatively given by the
probability of finding a starting empty nucleus of linear size =,(p,d—1, s—1),

namely

= —1.5s—1)¢
piad p(Fyy) == (1 = p)=epdtot) (4.31)

Therefore, by considering all the possible positions for the empty nucleus
and applying an argument analogous to the one used in the two—dimensional
case, we would find that p1ya ,(F(s)) goes to one for L — oo and is almost
one for L > =,(p, d, s) where

1
Zulprd,s) = (1= )=t (4.32)

From results in previous section, in the case s = 1 and for any d > 2, condi-
tion (4.30) hold with Z,(p,d, 1) given by (4.16). Therefore above argument
can be applied iteratively and ergodicity in the thermodynamic limit is proved
for the generic case s,d with 1 < s < d®. Moreover, even if on finite lattices
the configuration space is always broken into many disconnected components,
(4.32) defines a length above which a single ergodic component (frameable
configurations) dominates, i.e. has probability almost one. By iteratively

3Note that the iterative arguments starts from s = 1, d > 1 and does not cover the
cases s > d. As already explained in the beginning of the section, in this cases ergodicity
does not hold at any density.
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solving this equation with initial condition (4.16), we find for =,(p, d, s) the
following density dependence

- C(d, s)
Zulp,d,s) = exp”® ———— 4.33
(o) = exp™ (4.33)

where exp®® is the exponential iterated s times.

4.8 Irreducibility vs ergodicity

In previous sections we have proved that irreducibility holds in the thermo-
dynamic limit for the generic case s,d with 1 < s < d, i.e. there exists an
irreducible component (frameable configurations) which has unit probability.
However, as we recalled in section 2.5.1, this is not sufficient to establish er-
godicity for the infinite volume system. In this section we prove that for this
models irreducibility implies ergodicity (third step of the strategy outlined in
section 4.4). We will follow the same strategy as in section 3.3.2. Since the
proof is the same for any choice of d and s, in the rest of this section we drop
indices d and s. Recalling the definition in section 2.5.1, proving ergodicity
corresponds to show that for each p € [0, 1], zero is a simple eigenvalue in
Ly (p,) for the generator £ defined in (2.12) and (4.1). In other words, we
should prove that if f is eigenvector with zero eigenvalue of L, then f is
constant almost surely with respect to p,. For this purpose it is sufficient
to prove that f(n) = f(n™¥) for any z,y almost surely with respect to p,,
ie. p,(f(n™) — f(n)) = 0. Indeed, this implies that the measure i = fu
is exchangeable (i.e. invariant under exchange of finitely many variables)
and DeFinetti’s theorem on the decomposition of exchangeable measures on
product measures ( [42,43]) allows us to conclude that g = p, i.e. f is
constant almost surely with respect to p,,.

By enumerating frameable configurations as ni,...,ny, and using the
result ju,(F) = 1 established in previous sections, the following inequality is
readily established

Mp(vx,yf)2 = MP([ T yf ]IT Z MP :yf ) (4.34)

where V., f = f(n™¥) — f(n). From the properties of frameable configu-
rations, for any configuration 1 € F one can always find an allowed path
N =1,...,nn = 7% connecting 7 to %Y, i.e. such that n;,, = n;"" for some
couple of neighboring sites {z,w} and ¢,,(n;) = 1. Therefore, by telescopic
sums and Cauchy—Schwartz inequality, each term in the sum can be bounded
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from above by a sum of terms 1, (¢, w[V.wf]?), i.e. elementary exchanges
multiplied by the correspondent rate. On the other hand, the hypothesis
that f is eigenvector of £ with zero eigenvalue, implies that py ,(fLf) is
zero. Moreover, using the symmetry of jump rates ¢, ,(n) = ¢,.(n)

pap(fLf) = —3 ZMA,p Z Cry (1) (V:v,yf)z (4.35)

{zy}cA

therefore

1p(Coy[Viyf)?) =0 for any z,y (4.36)

By combining this equation with (4.34) and above observation, we conclude
that 11,(Vy,,f)? = 0, which ends the proof.

4.9 Bootstrap percolation and crossover length

In previous sections we have proven that for any choice of parameters d and
s, with s < d, ergodicity holds in the thermodynamic limit. On the other
hand the model on finite lattice is always non ergodic. However, we have de-
termined a density dependent characteristic length =,(p,d, s) such that for
for L > =(p, s,d) the probability that a configuration is frameable is almost
one (more precisely it goes to one at least exponentially fast, see inequality
(4.30)), therefore the ergodic frameable component almost covers the con-
figuration space. On the other hand, for L < Z(p, s,d) the probability of a
frameable configuration is almost zero. However, this is not by itself suffi-
cient to rule out the possibility that another ergodic component dominates.
In this section, by using known results for a different problem, we prove that
indeed there exists a size =;(p,d, s) with the same density dependence as
Eu(p,d, s), such that for L < =Z(p,d, s) the number of ergodic components
is exponential in the system size and each of them have probability almost
zero. In other words there exists a density dependent length Z(p, d, s) with
Zip,d,s) < Z(p,d,s) < Z,(p,d,s) which separates two different regimes.
Let us state more clearly what we mean by crossover length. Consider the
probability pis ,(€) of the maximal ergodic component for a system A of finite
size L and density p. The ergodicity proof implies that lim,_,; limy,_, ()
is one, while if one takes the limits in the inverse order the result is zero. On
the other hand, by sending L. — oo and p — 1 simultaneously, the result de-
pends on the relative speed of convergence and the threshold regime is given
by L ~ =(p). Since numerical simulations are always performed on finite size
lattices, the knowledge of the crossover length is a useful information in the
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interpretation of numerical results. Indeed, this means in some sense that
for L > = we are almost in the thermodynamic limit while for L < =, even
if L is large, finite size effects are important and the system do not behave
as the infinite volume one (for further discussion on this subject and on the
consequences on dynamics, see chapter 6).

Let us explain how the lower bound for the crossover length can be ob-
tained. We recall that according to KA rules a particle can move only if it has
no more than m nearest neighbors occupied both in the initial and final posi-
tion, which corresponds to a vacancy moving if it has at least s = 2d —m —1
neighboring vacancies both in the initial and final position. Consider a d-
dimensional hypercubic lattice A and sort a configuration at random with
Bernoulli measure at density p. Then remove all the particles that have no
more than m neighbors and iterate the procedure until no more particles can
be removed. As already noticed by Kob and Andersen for the d =3 s = 2
case, all the particles that eventually remain at the end of the procedure are
forever blocked with respect to KA rules, namely starting from the same ini-
tial configuration and running dynamics they can never move since they will
always have more than m neighbors. The procedure defined above is nothing
else but bootstrap percolation * [23], [24], [25] and rigorous results have been
established for the probability ufd,p that a cluster of particles remains at the
end of the procedure. Indeed, from the recent results in [27], the following
behavior holds: pf , is very small for L < L¥(p,d,s) = exp"s(}ig“f’f)); 1y,
converges exponentially fast to one for L > L%(p,d,s). Moreover, for the
values of s and d we are focusing on, if something remains at the end of
the procedure it should be a system-spanning cluster (i.e. connecting two
boundaries of the system). Therefore, for L < L?(p, d, s) a randomly sorted
configuration has with probability almost one a system spanning cluster of
forever blocked particles and no ergodic component can have probability al-
most one. As a consequence, the lower bound

E(p,d,s) > Eilp,d,s) = L"(p, d, s) (4.37)

follows. Note that the density dependence of such lower bound is the same
as for the upper bound (4.33), the difference being that constant K(d, s)
replaces C'(d, s).

For the d = 2 s = 1 case, it has recently been established [28] the exact
value of the bootstrap percolation constant, K(2,1) = 72/6. On the other

4To related this procedure with usual bootstrap percolation we should exchange variable
p with 1 — p. Indeed usual bootstrap procedure correspond to start form a configuration
at density p, iteratively injecting particles in empty sites having less than m neighbors
and looking for eventual remaining clusters of empty sites.
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Figure 4.7: A 7 by 7 optimally framed configuration.
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Figure 4.8: The basic moves by which the three vacancy corner can move
along the row.

hand, from (4.6), C'(2,1) ~ 4.48. Therefore inequalities K(2,1) < C'(2,1)
and Z,(p,2,1) > Zi(p,2,1) hold. In next section we will explain how, by
devising a different framing technique, it is possible to determine a smaller
upper bound for Z(p,2,1) which turns out to be equal to the above lower
bound from bootstrap percolation. In other words, we establish the exact
value of the crossover length =(p,2,1) = Z,(p, 2,1).

4.10 Optimal framing and exact crossover length
in d=2, s=1

Consider KA model on a square lattice A with parameter s = 1. Define a
W x H rectangle (with W + H even) to be optimally framed if it has (W +
H)+1 vacancies arranged along alternate sites of two perpendicular sides with
an additional one in the corner, plus any number of additional vacancies, see
figure 4.7. Optimally frameable configurations are those that, with allowed
moves, can be reached from an optimally framed one. Optimally frameable
configurations belong all to the same irreducible component, since any nearest
neighbor jump within an optimally frameable rectangle can be accomplished
with all other particles returned to their starting positions. The sequence
of moves allowing a generic exchange can be constructed by considering the
basic moves in figure (4.8) which allow both to move the group of three
vacancies along the row containing the alternated vacancies and those in
figure (4.9) which enable to lower and raise this particular row trhogh the
lattice.
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Figure 4.9: The basic move by which the row of alternating vacancies and
particles can be lowered.

Consider a framed W x H rectangle. The following statements can be
checked by direct inspection: if there is a vacancy in a line next-nearest
neighbor to one of its edges parallel to direction x or y, the rectangle can be
expanded to a Wx(H + 2) or (W + 2)x H framed rectangle, respectively; if
there is a vacancy next nearest neighbor along a diagonal from a corner it
is expandable to a (W + 1)x(H + 1) framed rectangle; if there is a vacancy
in the line segment next to one of its edges parallel to direction x or y it is
expandable into a W x(H +1) or (W +1)x H framed rectangle, respectively.
Therefore, starting from a nucleus of three vacancies in a two-by-two square,
this procedure can be iterated to grow larger frameable rectangles as long as
the needed vacancies are present. Let Q% be the probability that, given a
(k — 2)x[ optimally frameable rectangle, it can be expanded to an optimally
frameable kx[ rectangle including (k — 1)th and kth columns. From above
observations and developing p’ in the large density limit as pf ~ e 19) we
obtain the following recursive equations

bz = Qrpa (1 =€) + Qpe ™™ (1 — ™) (4.38)
Defining the ratios of successive (Js by
Qkir
RE = ZhE (4.39)
equation (4.38) gives
—ol 1— —ol
f¢+1:(1-eW6-%9——£——fl—l (4.40)

Ry
Since the least unlikely way to expand a rectangle is roughly isotropic, at any
scale k =~ [. Moreover, the ratios of probabilities for successive expansions
along the same axis will vary slowly in the dominant range of length scales,
therefore a reasonable ansatz is

Ry, ~ Rj, ~ R(() (4.41)
By substituting (4.41) in (4.40), we find

R(f) ~ % 4 %\/1 128 — 3¢ (4.42)
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where

E=¢" (4.43)

By considering that the rectangle has to be expanded to infinity in all four
directions, we find the following estimate for the probability i ,(O) that a
nucleus of three vacancies can be expanded to an infinite frameable rectangle

ﬁ R(2n)| =~exp [2§:ln R(¢)

which, by replacing the sum over ¢ by an integral and changing variables,
gives

fhoo,0(O) =~ (4.44)

2C
IL—p

Hoo,p(O) = exp — (4.45)

where

1
d€ 1-& 1
o = — —1 —V142E —3&? 4.46
c /0 < n [ SV (4.46)
The knowledge of ji ,(O) gives, as in previous sections, an upper bound for
the crossover length Z(p, d, s)

= < exp 2 .

(p,2,1) <exp =) (4.47)
Now the constant c¢,, (4.46) has exactly the same value as the bootstrap
constant K'(1,2) in [28]. Thus, since the upper bound obtained by the above
framing procedure coincides with the lower bound provided by bootstrap
results, this gives the exact value of crossover length. Therefore, this framing
seems to capture the real mechanism which restores ergodicity and for this
reason we refer to it as optimal framing.

4.11 Conclusions

In this chapter we have proved that KA model on an hypercubic lattice in
any dimension d and for any choice of the parameter s does not display an
ergodic/non-ergodic transition at a finite density p € [0,1]. For the choice
s = 0, the SSEP case is recovered and ergodicity trivially holds at any fi-
nite density. On the other hand, for s > d at any density there exists with
finite probability a set of particles that are forever blocked. Therefore, it is
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immediate to establish that the model is always non—ergodic. The interest-
ing cases correpond to the intermediate choice 0 < s < d. By constructing
an irreducible component and proving that its probability with respect to
Bernoulli measure at any density goes to one in the thermodynamic limit,
we establish that for this choice of the parameters the system is always er-
godic. These cases include the d = 3 s = 2 model originally introduced by
Kob and Andersen for which previous numerical results (see section ?77) sug-
gest the possibility of an ergodic/non—ergodic transition at a finite density.
Since we construct explicitely the irreducible component, the proof unveils
the rare processes which guaranty ergodicity in the thermodynamic limit.
This will be a key ingredient to establish the typical relaxation and diffusion
time scales and to understand the mechanism which induces the slow and
heterogeneous dynamics at high density (see chapter 6). We also emphasize
that the proof is not too specific of the considered rules and the same strat-
egy can be easily extended to other models with different choices of the local
kinetic constraints. The key ingredients we use are the following: on a finite
lattice one can define a particular configuration of vacancies at the boundary—
a frame-which enables any pair exchange inside a configuration; this frame
can be constructed by starting from an empty nucleus and imposing on each
subsequent concentric shell (from the nucleus to the boundary) a require-
ment which becomes less and less restrictive on larger shells. Therefore, the
probability of continuing such construction till the boundary becomes inde-
pendent on the size of the system after a certain typical size and does not
vanish in the thermodynamic limit.

Furthermore, since on any finite lattice there exist blocked configurations
and the model is not ergodic, we have analyzed the probability of the maximal
ergodic component at a fixed density p for different system sizes L. The result
is that there exists a crossover length L ~ Z(p) with Z(p) = exp® ¢/(1—p)?¢*
(with exp® the s-times iterated exponential). This separates the large size
regime in which the configuration space is covered almost entirely by a single
ergodic component and the small size regime in which it is decomposed into
many disjoint parts. A comparison with bootstrap percolation results allows
us to explain the latter regime with the arising of system—spanning clusters
of forever blocked particles.



Chapter 5

KA model on a Bethe lattice

In this chapter we analyze KA model on a Bethe lattice, i.e. a random graph
with fixed connectivity. The scenario in this mean field model is completely
different from that of the hypercubic lattice case discussed in previous chap-
ter. Indeed, we prove that there exists a finite critical density p. at which
an ergodic/non—ergodic transition takes place in the thermodynamic limit.
More precisely, p. separates the regime (p < p.) in which the configuration
space is covered by a single ergodic component and all particles can diffuse,
from the regime (p > p.) in which configuration space broken into an expo-
nential number of different ergodic components and the system is partially
frozen, i.e. there exist infinite clusters of forever blocked particles. An anal-
ysis of this dynamical transition, which has aspects of both first and second
order transition, follows. Finally, we extend above results to KA model on
decorated Bethe lattices, i.e. on random graphs with finite size loops.

5.1 Bethe lattices

Bethe lattice is defined as a random simple graph with N sites and fixed
connectivity z = k + 1 [29]. “Simple” means there are neither multiple
edges (no two edges joining the same sites) nor trivial loops joining a site
to itself. Since the typical size of the loops is of order log N, when N is
large typical random graphs look locally (on finite length scale) like Cayley
trees with a fixed branching ratio'. The presence of loops is crucial since
it induces geometric frustration which assures a statistically homogeneous
structure and prevents the problems arising in the Cayley lattice case [30]
due to sensitivity to boundary conditions. In other words, working on the

!Recall that a Cailey tree with connectivity k& + 1 is constructed by taking k + 1 rooted
trees and connecting a new site, the origin, to the k + 1 roots.

89
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Bethe lattice would be equivalent to considering a Cailey tree of size L and
focusing on a core of size [ around the origin in the limit L — oo, | — oo
with % — 0. On the other hand, the tree—like local structure allows analytic
calculation trough the solution of recursive equations.

The main motivation for studying KA on the Bethe lattice is that such
lattice is considered to be a good approximation of the hypercubic lattice in
the limit of high dimensionality, therefore a good mean field approximation.
As we will explain in detail, results are completely different from those ob-
tained in previous chapter for the model on an hypercubic lattice. Indeed,
in the Bethe lattice case an ergodic/non—-ergodic transition takes place at a
finite density. The possibility of comparing results both for the finite (hyper-
cubic lattice) and infinite (Bethe lattice) dimensional case could be a useful
ground for the extension of other mean field scenarios to real glasses.

5.2 Dynamical transition

Consider a Bethe lattice with connectivity k£ + 1. KA model is defined as in
section 4.1, with the only difference that now 0 < m < k and s = k —m. As
usual, one arranges the lattice as a tree with k£ branches going up and one
going down. Consider one node, call it 7, and define following events:

(i) site ¢ is occupied by a particle which can never move up. Call P, the
probability that this event occurs, conditioned to the fact that the site
below is occupied;

(ii) site 7 is empty. Call P, the probability that this event occurs and, if
there were a particle on the site below, it could never move to ;

(iii) site ¢ is occupied by a particle which can never move up. Call Ps the
probability that this event occurs, conditioned to the fact that the site
below is empty.

By using the tree-like structure, one can write iterative equations for these
probabilities
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j=k—s+1
k . k . .
P = p< S PPt (’;)+ZP5P{“*J (’;)) (5.1)
j=k—s+1 Jj=s

which can be reduced to independent polynomial equations for P, P, and
P3 with p dependent coefficients.

5.2.1 Existence of the transition

In this section we present an argument which guarantees that a dynamical
transition takes place for all the choices of £ and s with s > 0 (s = 0
corresponds to the trivial lattice gas case, for which no transition takes place).
Consider a node 7. Let 7 be occupied and the outgoing bond occupied too.
If all the k£ ingoing bong, or at least £ — 1 of them, are occupied by forever
blocked particles, then the particle in ¢ can never move up. Therefore

P > p(Pf 4+ kP (1 - P)) (5.2)

Let C = 1 — Py, former inequality is equivalent to C' < f(C') with f(z) =
1—p(1 —2)* — pk(1 —2)*=1. Since C =1 is a fixed point for f at p =1, at
sufficiently large density there exists a C' < 1 such that f(C') = C. Let C =
G(C) < f(C) be the iterative equation for C' (i.e. the polynomial equation
which can be determined from (5.1)). If one iterates on this equations starting
from an initial condition Cy = C — ¢ < C, then all the subsequent C’s,
C, = G(Cy),Cy = G(C)),. .., satisfy inequality C; < C. Indeed, since f(x)
is increasing monotone in z, C; = G(Cy) = G(C —¢) < f(C—¢) < f(C)=C
and the same is true at any subsequent step. Therefore, also the fixed point
C* with C* = G(C*), satisfies C* < C < 1. Thus P, = 1 — C* > 0 at
sufficiently high (but finite) density. Since for low density the solution is
P, = 0, this implies that at a finite density a dynamical transition occurs.

5.2.2 Discontinuity of transition for s < k£ — 1

Consider KA model with s < £ —1 and focus on a node 7. Let ¢ be occupied
and the outgoing bond occupied too. If all the sites above 7 and also those
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one level up in the tree are empty, or if the above is true except in one of the
sites, then particle on site ¢ can move up. Therefore

P <1—(1—=P)** — (k+ k)P (1 — Pkt (5.3)

Above inequality cannot be true for P, arbitrarily near to zero, since for
0 < P, < 1it becomes 1 < (k + k? — 1)(k + k?) P, which cannot hold when
P, is too small. Therefore, P, cannot go continuously to zero and it has a
finite jump at the critical density.

Note that former argument does not apply to the case s = k — 1. Indeed it
is not true that if the sites above 7 and those one level up in the tree are all
empty except one, then the particle can move (inequality (5.3) is true only
with second term in r.h.s. dropped, and the rest of the argument is no more
valid). We will come back to this case in section 5.2.4, where we will prove
that the transition is continuous.

5.2.3 A boostrap percolation procedure

Before analyzing in detail the character of the dynamical transition, we define
a bootstrap procedure which helps understanding the physical mechanism
underlying this phenomenon.

Consider the following procedure: pick at random an initial configuration
on the Bethe lattice with Bernoulli product measure at density p, then remove
all the particles that can move according to KA rules and iterate the process
until no more particles can be removed. Note that, if some particles survive at
the end of the procedure, then they are necessarily blocked forever when one
starts from the same initial configuration and let the system evolve according
to KA dynamics. Let p? be the probability that at the end of the procedure
an infinite particle cluster remains. By above observation, if p? > 0 KA
model at density p is not ergodic. Let p? be the critical density, if any,
at which a bootstrap percolation transition takes place, namely p® = 0 for
p < pB and p? > 0 for p > pZ. If there exists a bootstrap transition, a
dynamical transition for KA model also takes place and the correspondent
critical density satisfies p. < pg. Moreover, a reasonable ansatz, is that the
two transitions and therefore the correspondent critical densities coincide. In
the rest of the section we present an argument supporting this conjecture.

Let 7 be a particle blocked forever with respect to KA dynamics, i.e. a
particle which is blocked on any time scale after the thermodynamic limit
has been taken. Than ¢ must have more than z — s — 1 neighbors blocked
forever, or else all the neighboring empty sites should have more than z—s—1
neighbors blocked forever, otherwise one could move the not forever blocked
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neighbors (or next to nearest neighbors) at the same time and then move i.
Moving the neighbors at the same time is possible because there should be no
correlation between them, since typically there are no finite loops in a Bethe
lattice, as discussed in section 5.1. In other words, moving a particle should
not affect the ability of the others to move and a neighboring particle will
move provided a proper set of particles that are up in the tree have moved.
If the number of particles in this set is finite, this will not affect the ability
to move of the other neighbors (of the particle on which we are focusing on)
because there are no finite loops. Then one can repeat the same procedure
and show that the neighbors must have z — s — 2 neighbors up in the tree
occupied by particles blocked forever or all the empty neighbors with more
than z — s — 1 neighbors forever blocked and so on and so forth. Therefore,
the probability P that a given site is occupied by a particle blocked forever,
can be expressed in terms of P; and P, as

k+1 k+1

Jj=k—s+1 j=s+1

This implies that particles blocked forever coincide with those remaining
after the bootstrap procedure. More precisely, last statement holds under
the hypothesis that to pick away a particle during bootstrap procedure one
doesn’t have necessarily to pick away before an infinite (diverging with the
system size) number of particles. This should be equivalent to the hypothesis
that the correlation length is always finite, which seems reasonable except
at the transition 2. From (5.4) and (5.1) is then immediate to conclude that
the bootstrap percolation transition, corresponding to P from changing from
zero to a finite value, coincides with the dynamical transition discussed in
previous sections, correspondent to P, going from zero to a positive value.

5.2.4 Continuity of transition for s=k-1

Consider the choice s = k — 1. Equation (5.4) implies that a particle blocked
forever belongs to an infinite cluster of particles with two or more neighbors,
i.e. to a percolating cluster (where “percolating” refers here to conventional
nearest neighbor percolation). Critical density should be therefore the same
as for percolation, p. = 1/k, and the transition should be continuous. By

2By numerically running bootstrap procedure in the case k = 2, s = 1, we have checked
that the density above which a cluster of particles remains at the end of the process is
compatible with the critical density above which P becomes finite. This confirms above
hypothesis.
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solving equations (5.1) in the cases k = 2 and k = 3, we have checked with
positive result this conjecture.

5.2.5 Cases k=3, s=1 and k=5, s=2: analogy with p-
spin dynamical transition

Let me consider in detail cases k =2 s =1 and k£ = 5 s = 3, which mimic the
only interesting bi-dimensional case and the three-dimensional case originally
introduced by Kob and Andersen, respectively.

In the case k =2 s = 1, equations (5.1) give

P = p(PP+3P}(1—P)+ P} +3P;P)
P = (1- P)P??
Py = p(P+ P)? (5.5)

from which it is immediate to recognize that, when P, > 0 also P, > 0 and
P; > 0. Therefore one can look at the transition by studying equations for
G = P, + P», which can be written as

G[—143pG —2pG* +vp*G® —6vp* (G? —G'°) + 302" (G —G*®)] = 0 (5.6)

By direct analysis one can see that there is a critical density p. such that:
for p > p. there are two physical solutions for GG, the larger one being stable
and the other G = 0 unstable; for p < p. only the solution G = 0 survives.
At p = p., the two solutions annihilate in a saddle-node bifurcation signaled

by
0Q(G, pe)
15,6

where we let Q(G, p) be the left hand side of equation (5.6).
The values of critical density p. and critical G. = G(p,) are:

=0 (5.7)

pe~ 0888  G,~0.758 (5.8)

At p = p. the value of G jumps discontinuously from the low density value
G = 0 to G. and then decreases with a square root cusp G = Ge++/p — pe 2/ pe,
see figure 5.1. The same behavior holds for the probabilities P of having a
site occupied by a particle forever blocked, which can be obtained by using
equations (5.4) and (5.5). Therefore, though the transition is discontinuous,
it has a marginal behavior.
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In the case k = 5 s = 2, by solving equations (5.1), an analogous transi-
tion can be detected at a critical density p. ~ 0.915 (see figure 5.2).

Recalling the discussion in previous section, the interpretation of the first
order/marginal behaviour of this transition should be that the cluster of for-
ever blocked particles arising for p > p. contains a finite fraction of particles
and, at the same time, is fragile (i.e. removing by hand a selected tiny frac-
tion of particles can unblock the cluster). Note that this phenomenon is
analogous to the one occurring for random quenched p-spin models at the
dynamical transition, with cluster of forever blocked particles playing the
same role as threshold TAP states in p-spin models. It is also natural to
expect, for p — p. from below, a diverging correlation length £ ~ (p — p.) "2
associated with the rate - in tree levels - of approach to the fixed point. This
should be roughly the distance over which vacancies have to be moved to
make a given particle mobile.

In order to analyze in more detail the character of this transition, we
have performed numerical simulations of KA dynamics on Bethe lattice in
the case k = 3 s = 1, for a lattice with N = 10* sites. In particular we have
computed the local density-density equilibrium correlation function

)=~ > < ”i(t)p”i_(ogf s (5.9)

and the corresponding dynamical susceptibility

valt) = N < (% > mi(t)n(0) - O(t)) > (5.10)

introduced in [50] to unveil the possible existence of an increasing dynamical
correlation length for glass forming liquids (here < > stands for the average
on Bernoulli product measure at density p). The results of numerical simula-
tions indicate the existence of a transition for p. ~ 0.89, which is compatible
with value found analytically, see (5.8). Indeed, approaching the transition
from low density C'(t) displays a two step relaxation which gradually evolves
in an infinite plateau for p > p. (see figure 5.3). This behavior is the same
as the one experimentally detected for glass forming liquids (see section 2.3)
and for p-spin glasses. In analogy with the p-spin case, we call Edwards An-
derson parameter or gz 4 the finite hight of the plateau. From the knowledge
of the number of forever blocked particles at the critical density, NP, we can
separate the contribution of these and remaining particles and obtain the
following approximation for ¢z
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NP
L o1 < n;(t)n;(0) > —p?
tpa =l O = fm oy )
i%iﬂmmwmm>—f
N 1=1 P p2
P—p*P (p— P)? p’(1-P)

=7 Tomma-n e O
where the approximation consists in neglecting density density fluctuation in
the second term of last expression. The approximation seems to work pretty
well, as it is shown in Fig. 5.3 where we have drawn the approximated value
of the Edwards-Anderson parameter with a straight line.

The plots of x4(t) for various densities is in figure 5.4. The dynamical
susceptibility seems to diverge approaching the critical density from below.
More precisely, what is diverging is the height of the peak and the char-
acteristic time scales at which the peak develops. This is analogous to the
behaviour occurring for p—spin fully connected models when approaching the
dynamical critical temperature from above [50]. Note that in principle there
could be another mechanism, beside the one considered in previous sections,
inducing a dynamical transition before p.. Above numerical results show
that this is not the case.

5.2.6 Configurational entropy

In previous section we have mentioned that the emergence at p. of fragile
clusters of forever blocked particles is analogous to the emergence of frag-
ile sets of threshold TAP states for quenched random p-spin models at the
dynamical transition, which have been conjectured to be related to glass tran-
sition [53]. Indeed, in both cases this phenomenon gives rise to a dynamical
first order/marginal transition and the above numerical results for C(¢) and
X4(t) in the case k = 3 s = 1 are very reminiscent of those for p-spin models.
For p-spin model dynamical transition is due to ergodicity breaking, which
is quantified by a finite jump of configuration entropy S.(T) = InN,/V,
where V' is the size of the system and N, the number of different ergodic
components. The evaluation of such entropy is performed by approximating
N, with the number of TAP states (free energy valleys) giving the leading
contribution to the partition function Npap. Indeed, In Nyap/V jumps at a
critical temperature from zero to a finite value and then decreases by lower-
ing the temperature until it reaches zero at the thermodynamic transition.
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Figure 5.1: G as a function of density for £ = 3, s = 1. Dots are from the
stable solution of equations 5.6; solid line is the curve G' = G.+ (p—p.)(1/2),
which gives the right behavior in the vicinity of p. from above.

For KA model one can find a lower bound for configurational entropy by ob-
serving that all the configurations belonging to the same ergodic component
must have the same cluster of particles blocked forever, therefore N, has to
be larger than or equal to the number N of different sets of forever blocked
particles. Furthermore, by means of a saddle point evaluation, the entropy
at the density p can be expressed as

S(p) = max (S (p, p) + 5'(p, p)) (5.12)
where pp is the density of forever blocked particles for an equilibrium con-
figuration at density p, S*(p, pg) is 1/N times the logarithm of the number
of configurations with the same cluster of Npp particles blocked forever and
S¢(p, pg) is 1/N times the logarithm of AV,. An upper bound on S*(p, pg) can
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Figure 5.2: P as a function of density for £ = 5, s = 2. Dots are from
the solution of equations 5.4 and 5.1; solid line is the curve P, + (p — p.)/?,
P. ~0.725 which gives the right behavior in the vicinity of p. from above.

be readily calculated by considering that exp N.S*(p, pp) is smaller than the
number of ways of putting Np — Npg particles on N — Npg sites, therefore

S'(p,p) < (1=pp) In(1=pp) = (p—pp) In(p—pp) — (1 —p) In(1—p) (5.13)

where we have used Stirling formula. Since S(p) = —plnp— (1 —p)In(1 - p)

and the value of pp which maximizes (5.12) is the typical one, i.e. P, we find
the following lower bound on configuration entropy

S(p) = 8°(p, P) = —plnp — (1 = P)In(1 = P) + (p — P)In(p — P) (5.14)

which is zero when P = 0, i.e. for p > p.. In figure 5.5 we plot this lower
bound as a function of density in the case £ = 3, s = 1. Since, from above
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Figure 5.3: C(t) as a function of time (in 50 MCS) for densities
0.85,0.86,0.87,0.875,0.9 (N=10000) (from down to up). The dynamical
transition takes place clearly between the densities 0.875 and 0.9. The

straight line is the value of the Edwards-Anderson parameter obtained by
the approximation discussed in the text.

numerical results, there seems to be no transition before p,, it is reasonable
to think that S¢(p) is zero for p < p.. Therefore, this hypothesis and above
lower bound imply that the configurational entropy jumps form zero to a
finite value at p.. Then, for p > p., the configurational entropy decreases
and goes to zero at p = 1. Note that this is exactly what happens in p-spin
models, except that now there is no thermodynamic transition for p < 1.

5.3 Bethe lattice with loops

In order to investigate whether the absence of loops is the essential reason
for the existence of a phase transition on Bethe lattices, one can consider a
tree structure with loops.

Consider the rooted tree composed of triangles with one vertex pointing
downwards and the other two vertices each being the bottom vertex of an-
other triangle and hence the root of a tree. Then define Bethe lattice with
triangular loops as the graph obtained by taking two such lattices and con-
necting the free vertices of the two roots (see figure 5.6). The coordination
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Figure 5.4: x4(t) as a function of time (in 50 MCS) for densities
0.85,0.86,0.87,0.875 (N=10000) (from down to up).

number of such tree is z = 4 and the branching ration £ = 2. In other words,
we consider a cactus tree (Husimi tree) [31] with main clusters of three vertex
and three branches departing from each cluster.

Consider KA model with s = 1 on above defined lattice and focus on the
set &; including configurations for which the bottom vertex of triangle ¢ and
at least one of the top ones are occupied by particles which can never move,
knowing that the other two sites of the triangle below 7 are occupied too.
Let P be the probability of such event. If a configuration n has all the three
sites of i occupied and n € Nj_ &/, where i', ..., i* are the triangles two level
up with respect to ¢, then n € &£,. The same is true for any configuration n
with the three sites of 7 occupied and 7 € NI_,&;, where i*,...i% is any of
the permutation of all the triangles two level up except one. Therefore

P> p* (P*+4P*(1 - P)) (5.15)

which is equivalent to C' < f(C) with C = 1-P and f(x) = p* (2* + 423(1 — 2)).
The same argument as in section 5.2.1 allows to prove that there exists a tran-
sition at a finite density from a region where P = 0 to a region where P is
finite. More naturally, the critical density can be defined as the value of
density at which the probability P that a given site is occupied by a particle
blocked forever goes from zero to a finite value. Such transition exists be-
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Figure 5.5: Dots indicate the lower bound S%(p) on configurational entropy
as a function of density for £ = 5 s = 1 obtained from equation (5.14)
and numerical solution of equations (5.4), (5.5). Below the critical density

pe =~ 0.888, this lower bound jumps to zero. Straight line is the equilibrium
entropy.

cause P > P! > P, where Pj is the probability that the bottom vertex of a
triangle is occupied and the particle can never move, knowing that also the
remaining two vertex of the triangle below are occupied.
Let £ be the complement of & on the configuration space. If € ﬂ;*:lgfj
C

orn € ﬂ?zlﬁgj, a vacancy can be taken to the bottom vertex in ¢ without

making use of branches below. Therefore
P<1-(1-P)*-3P(1—-P)! (5.16)

which implies (see section 5.2.2) that P has a finite jump at the transition.
The same arguments can be extended to KA model with any choice of s
on Bethe lattices with n-polygonal loops for any n, i.e. trees composed by
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Figure 5.6: Branch of a Bethe lattice with triangular loops. Dots denotes
sites, lines denotes edges of the lattice.

polygons of n vertex, each being the vertex of another polygon.

To prove the existence of the transition, it is sufficient to define the set of
configurations &; for which the bottom vertex and at least other n — 2 vertex
of polygon 7 are occupied, knowing that the other n — 1 sites of polygon
below are occupied too. By the same argument as above, we can bound the
probability P of such event as

P> p" (P" +2"P¥ 11— P)) (5.17)

which implies again that P > 0 for sufficiently high density.

To prove that the transition is discontinuous we focus on the event that the
bottom site of the polygon is occupied and the particle cannot move, knowing
that all the sites of the polygon below are occupied too. The probability P;
of this event, in all the cases s < k — 1 can be bounded as

P<1—(1-P) =2"P" 1 (1-P) (5.18)

which implies again that the transition is discontinuous.

We could also introduce loops in a different way. Consider for example a
Bethe lattice with connectivity 4 in which each site is replaced by a square
lattice A € Z? with linear size L. As before, arrange the lattice as a tree
with 3 branches going up and one going down. Then consider a square, I,
and focus on the event that there are no vacancies at the vertices of I and,
without taking advantage of the configuration in the bottom square, one
cannot bring any vacancy on such vertices. Let P be the probability of such
event. If all the L? sites of square I are filled and at least two of the squares
above have all the vertices always occupied, than I will have for sure all the
vertices occupied. Therefore

P> p (P +3P%(1 - P)) (5.19)

and, by an argument analogous to the one in section 5.2.1, the existence of a
transition follows. Consider than the event that, without taking advantage of
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possible vacancies in the bottom square, one cannot frame the configuration
in I, i.e. reach a configuration with all the boundary sites of I empty. Call
Py the probability of such event. If at least two of the three squares one level
above I can be framed, then square I can be framed too. Therefore

P;r<1—(1-P;)®=3(1—P)°P; (5.20)

which is incompatible with a continuous transition. Therefore, also for this
kind of lattices, we have proven the existence of a discontinuous transition.
Note that this way of introducing loops interpolates between the simple Bethe
lattice, for L = 1, and the square lattice A = Z?2, for L = co. Therefore, in
the limit L — oo, the critical density p.(L) should go to one.

In general, the existence of finite loops can make the motion of particles
more easy. Indeed, there are configurations in which a collection of two
or more vacancies ejected from one branch can be absorbed into another
and trigger the ejection of a larger number of vacancies from the second
branch. This process can depend on configurations arbitrarily far up in the
two branches. The ejected vacancies could in principle extend their influence
arbitrarily further down the tree and render any chosen particle mobile, even
when the density is above the critical value for the Bethe lattice without loop.
Nevertheless, above results show that for low enough vacancy concentration
this is not the case and the system is in a partially frozen state like that of
the simple Bethe lattices.

5.4 Conclusions

In this chapter we have analyzed KA model on an infinite tree-like graph
with fixed connectivity £ 4 1. This corresponds to the mean field version of
the usual KA model on hypercubic lattices. The tree-like structure of the
lattice enables analytic calculations by iteration, from which we find that at a
finite critical density p. a dynamical ergodic/non—ergodic transition occurs,
which corresponds to the transition from a diffusive regime to a partially
frozen state. Indeed, by bootstrap percolation arguments we establish that
at p. an infinite cluster of forever blocked particles emerges. More precisely,
below p. the fraction of forever blocked particles is zero and jumps at p.
to a finite value® which goes to one for p — 1, therefore the transition is
discontinuous. However, for p — p. from above, the fraction of blocked

3We have proven that these results hold for any choice of the parameter s and the
connectivity, even for Bethe lattices with finite size loops. The only exception is the
case s = k — 1 for which, as explained in section 5.2.4 the transition corresponds to a
conventional percolation transition and it has a continuous character.
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particles (i.e. the discontinuous order parameter) decreases with a square
root cusp, which is indicative of a diverging length and time scales. This
probably means that, though for p > p. there exists with finite probability
an infinite cluster of blocked particles, such cluster is very fragile near p.. In
other words it can be unblocked by a small perturbation, like removing by
hand a tiny fraction of particles. Therefore, this mean field transition has
both aspects of first and second order transition. This is reminiscent of the
character of the putative ideal glass transition at Kauzmann temperature (see
section 2.1) and of the behaviour of p—spin models with quenched disorder
at the dynamical transition (see section 2.4) *. In order to analyze in more
detail this analogy, we have performed numerical Monte Carlo simulations
focusing on the behaviour of the density density correlation function C(t)
and on the corresponding dynamical susceptibility x4(¢). By approaching
the transition from below C(t) displays a two step relaxation and develops
an infinite plateau for p — p., while x4 seems to diverge. Again, these results
have the same features as for p—spin models.

The results of previous chapter establish that such mean field dynamical

transition is completely destroyed in finite dimensions. Moreover, the ergod-
icity proof allows us to identify the exponentially rare processes that restore
ergodicity on the hypercubic lattice. In other words, these corresponds to
the activated processes that allow the jump of the mean field dynamical bar-
riers in finite dimensions (see section 2.4). This knowledge, together with
the above observation that the mean field transition is analogous to the one
for p—spin models, could be a useful ground to a further investigation of how
the mean field results for these disordered model are modified in finite di-
mensions.
Note that there does not exists an upper critical dimension above which mean
field theory gives the exact result. However, in next chapter we will explain
how a ghost of the mean field transition survives on the hypercubic lattices.
More precisely, we will show that the Bethe lattice transition is substituted
by a dynamical crossover which is possibly very sharp for high spatial dimen-
sions (this in some sense confirms the natural idea that Bethe lattice should
crudely approximate the high dimensional hypercubic lattice).

“In this analogy, the cluster of forever blocked particles has the same role as the thresh-
old TAP states for p—spin models.



Chapter 6

KA model on hypercubic
lattices: dynamics

In this chapter we consider dynamics of KA model on hypercubic lattices.
First we prove that there is no dynamical diffusive/non-diffusive transition
at any finite density, namely the self diffusion coefficient Dg of the tagged
particle is strictly positive at any p € [0,1]. Then we analyze the density
dependence of Dg, focusing on the bi-dimensional case with s = 1. In the
high density regime, diffusion is guaranteed by the cooperative slow motion
of mobile cores and Dg vanishes for p — 1 as the density of these rare regions,
which goes to zero faster than any power law of (1 — p). For lower densities,
a different diffusion mechanism is also present and a crossover to a power law
behaviour for Dg takes place. Finally, we discuss a possible explanation of
the stretched exponential relaxation of correlation functions which occurs in
the high density regime.

6.1 Self diffusion coefficient

In section 2.5.2 we have discussed the behaviour of a tagged particle on an
infinite lattice. In the diffusive rescaling, the position of the tracer converges
to a Brownian motion provided the density dependent diffusion coefficient,
Dy, is strictly greater than zero. In the following we analyze KA model to
establish whether a transition from a positive to a zero value of Dg takes place
at a finite density. Indeed, such diffusive/non—diffusive transition has been
advocated by previous numerical simulations [1] for the case d = 3 s = 2.
Note that both the key ingredients for diffusivity in the SSEP case, namely
that a single vacancy can move freely in an otherwise totally filled lattice and
that the tagged particle can move to any empty neighboring site (see section
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2.5.2), do not hold. However, one can identify a different mechanism related
to the cooperative motion of cores, which guarantees diffusivity.

Let us first recall the definition of cores given in chapter 4 and show
that cores are mobile. Consider a frameable region constructed from an
initial nucleus of empty sites through the growing procedure. The core is the
hypercube of linear size £ centered around the empty nucleus. The density
dependent value of &, given in chapter 4 for different d and s, is chosen in
order that the probability to extend the core to infinity in a frameable way
is almost one. For example in the two—dimensional case with s = 1, £ is such
that there are with almost unit probability at least two vacancies on any row
of length & adjacent to the core. Therefore, since to move a frameable square
of one step it is sufficient to find at least two vacancies on the subsequent
row in the step direction, we expect that cores can diffuse in typical regions
of the system. The same argument holds in any dimension with the result
that cores are always mobile. In other words, the typical diffusion time 7¢ for
a core is finite. Moreover, from the properties of frameable configurations,
if the tagged particle is inside a frameable core it can be moved to any
of its nearest neighbor sites through a path of at most O(£%) moves which
involve only occupation variables inside the square. Therefore, inequality
Dgs > ny &)1 1/€4 > 0 holds, where ny ~ 1/Z4, 7¢ and € are respectively
the density, the typical relaxation time and the size of mobile cores!. In other
words, Dg > 0 at any density p < 1 and the tagged particle diffuses.

Above argument is turned into a proof in the following section, where we
establish a lower bound for Dg which is strictly positive at any p < 1. The
proof is given for the d = 2 s = 1 case, but it can be generalized to higher
dimensions. In section 6.1.2 and 6.1.3 we estimate the density dependence
of 7¢ and discuss the behaviour of Dg for p — 1. The result is that Dg
goes to zero faster than any power law of 1 — p, the dominant factor being
the density of mobile cores. By running Monte Carlo simulations for the
case d = 2, s = 1 we find a good agreement with the predicted form of Dg.
Finally, in section 6.1.4, we discuss a different diffusion mechanism which is
effective at low densities and gives rise to a crossover to a different behavior
for Dg.

!Note that here 1/£¢ is an adimensional number (more precisely we should write it
as a?/¢? with a the lattice step) which comes from the number of exchanges in the se-
quence needed to move the tagged particle. Therefore the diffusion coefficient has the
right physical dimensions.
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6.1.1 Proof of positive lower bound for d=2 s=1

In this section we consider KA model on a square lattice with parameter
s = 1 and establish a lower bound for Dg which is strictly positive at any
finite density p < 1. This rules out the possibility of a diffusive/non-diffusive
transition. As already mentioned, one cannot readily generalize the proof
outlined in section 2.5.2 for the SSEP case, nor the modified version of section
3.3.2. Difficulties arise from the fact that neither single vacancies, nor any
finite number of vacancies can freely move trough the lattice. However, the
diffusion mechanism described in previous section allows us to introduce a
proper auxiliary process and then proceed by two steps. First, by using the
knowledge of paths connecting any two frameable configurations, we show
that the diffusion coefficient of KA is bounded from below by the diffusion
coefficient of the auxiliary process, namely Dg > D&"*c with ¢ > 0. Then
we prove that the auxiliary process is diffusive at any density, i.e. D& >
0, which allows us to conclude Dg > 0. This second step is performed
through the mapping of the auxiliary process to a random walk in random
environment. The choice of the auxiliary process is based on the following
observation.

Consider a configuration on the infinite lattice Z? sorted at random with
Bernoulli measure at density p and focus on a sublattice Az of linear size
Z(p). From the results in section 4.4, we know that the restriction of the
configuration to Az is frameable with probability almost one. Therefore
in the initial configuration the tagged particle is with very high probability
inside a frameable region of size Z. Moreover, if one divides the infinite lattice
in sublattices of linear size =, there exists with unit probability a percolating
cluster of sublattices such that the initial configuration restricted to each
sublattice is frameable. Thus, if we define an auxiliary process such that
during the dynamics frameable sublattices remain frameable and the tagged
particle remains always inside the percolating cluster, we can reconstruct
any move of such process through a finite sequence of moves allowed by KA.
Indeed, any nearest neighbor move in a frameable configuration of linear size
= can be performed through a sequence of elementary moves allowed by KA
rules and the length of such path is at most of order Z2. Therefore, through
a path argument we would obtain a bound on the self diffusion coefficient for
KA with the one of the auxiliary process, i.e. inequality Dgs > ¢D** with
¢ > 0. The main difficulty lies in choosing an auxiliary process such that the
above condition is true and at the same time the rates are not too restrictive,
so that the auxiliary process itself has positive diffusion coefficient.

Let us introduce some notation. Consider the following subsets of Z?
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R! are the eight possible couples of neighboring sites {y, z} such that y, 2 # x
and |y—z| = 1 or |z—z| = 1, in other words one among y and z is neighboring
site to  and the couple does not contain z; Q" are the four possible choices of
three sites that, together with z, form a two by two square (see figure 6.1.1).
We next define nf =" for i € {£1,...,44} as the configuration obtained
from 7 by exchanging the occupation numbers in R} with the corresponding
ones in R*

RELREY [ e, if 2 € R
(77 )z T { 1, if z¢ R;—i U Rm—i (6.2)

Then, for i € {£1,42}, we introduce the events

Al ={neQ:n, =0v2€Q.} (6.3)

i.e. configurations having all the sites of set @’ empty and
B,:={neQ:n=1VzeR, neF.} (6.4)
for i € {£1, 42, £3,+4}, where

Fir={neQ:3NeS: R, CA, §R, 0N >3, ns € Fr} (6.5)
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and S is the set of squares in Z? of linear size at most =. Recall that OA is the
boundary of square sublattice A, 5|, is the restriction of a configuration to
A, Fy is the set of frameable configuration in A and d(A, B) is the minimum
over the Euclidean distance of all the couples {x,y} with x € A and y € B.
In other words, Bt is the set of configurations in which a pair of sites adjacent
to z (region R.) is filled and is internal to a frameable square of linear size
at most Z. Let 7(0) be the configuration and (0) the position of the tagged
particle at time zero, we define 77(0) as

ﬁ(O)Z:{ 1 if z€e Q! Vi (6.6)

7, otherwise

The dynamics of the auxiliary process is chosen as follows:

(i) The tagged particle can move from = to  + e;. The jump has rate one
if n € A and 77(0) € B! or n € A? and 7(0)B;?, zero otherwise;

xr

(ii) The tagged particle can move from x to  — e;. The jump has rate one
if ne A;! and 7(0) € B! or n € A% and 77(0) € B;?, zero otherwise;

x 7

(iii) The tagged particle can move from x to & + e. The jump has rate one
if n € Af" and 7(0) € B! or n € A;" and 7(0) € B!, zero otherwise;

(iv) The tagged particle can move from x to z — es. The jump has rate one
itne A,% and 7(0) € B;% or n € A}* and 77(0) € B,}?, zero otherwise;

(v) Configuration 7 can be transformed in 5 +#z' namely the exchange

of occupation variables in Rf' and R;' can be performed. The move
has rate one if n € AF" and 7(0) € B;' or n € A7 and 7(0) € B!,
zero otherwise.

vi) Configuration n can be transformed in 7% F<” namely the exchange
g n n y g

of occupation variables in R}? and R,? can be performed. The move
has rate one if € A}? and 7(0) € B;? or n € A;? and 7(0) € B}?,
zero otherwise.

(vii) Configuration 7 can be transformed in 7% %" namely the exchange

of occupation variables in R} and R;?® can be performed. The move
has rate one if n € A} and 7(0) € B,? or n € Af? and 7(0) € B,}?,
zero otherwise;

viii) Configuration 7 can be transformed in 7% *E=' namely the exchange
g n n y g

of occupation variables in R}* and R;* can be performed. The move
has rate one if n € A7 and 7(0) € B;* or n € A;? and 7(0) € B*,
zero otherwise.
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In the following we will show that the above choice of the rates is a suitable
choice to perform the proof of diffusivity, since the auxiliary process have a
positive diffusion coefficient and any move can be reconstructed by a finite
sequence of elementary moves allowed by KA.

Consider an initial configuration such that the tagged particle is inside a
frameable square of size = and such all the sites in at least one of the sets
Q(Jol)), Q(JOZ)) (see figure 6.1.1) are empty , where z(0) is the position of the
tagged particle (i.e. n(0) € A’ for some i). Then, both conditions will hold
at any subsequent time. Indeed, moves (i)—(iv) are such that the tagged
particle remains always inside the empty two by two square. On the other
hand, moves (v)—(viii) are devised in order that the only vacancies that are
moved during the process are those which belong at time zero to this two
by two square, therefore sublattices of size = that are frameable at time
zero remain frameable at later times?. The fact that moves for the auxiliary
process occur always inside frameable regions of size at most = implies that
any move can be performed through a finite sequence of elementary moves
allowed by KA. Indeed, by the properties of frameable configurations, any
move inside a configuration of size = can be performed by a sequence of order
O(=?) moves with positive rate for KA dynamics. By using path arguments
analogous to those in section 3.3.2 it is then possible to establish inequality
Dg > cDg"*, with ¢ positive. Let us shortly recall how this argument works
and emphasize an important difference occurring in this case. In section 3.3.2
we have defined an auxiliary process such that any move of the latter can
be performed by a finite path of at most n nearest neighbor moves allowed
for the considered model (for example n = 16 for the first class, £ = 1, of
models). Such path does not dependent on the choice of the configuration.
Then, we have rewritten each term of the variational formula (2.15) of D%"* as
a telescopic sum on the exchanges along this path. Finally, by using Cauchy
Schwartz inequality, the fact that each possible move is used at most twice
in the path and by performing an exchange of variables, we concluded that
D&* < 2n*Dg. Here things can be done analogously, with the length n of
the paths at most Z?. However, the path depends on the whole configuration
(indeed the sequence of allowed move to connect a frameable configurations
to the framed one in order to perform a pair exchange depends on the position
of the vacancies, see section 4.4 and figure 4.2). This yields in the inequality
among D% and Dg an overall factor Z2! besides the factor n? = =% Let
us explain in some detail this statement. With a path argument analogous
to the one done before, we rewrite each term in D$"* corresponding to the

ZMore precisely, sublattices that are frameable in 7j(0) are frameable also for n(t) at
any t.
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exchange of particles in RY, R, " as a telescopic sum over allowed exchanges
for KA, namely

(P = 1) £ 223 ) (P (T aeyy) = £1)° (67)

where ¢, , are the jump rate of KA model, o = n,m1,...,7, = R

RIVRG!

is
the path of allowed elementary moves which connects 1 to n and such
that n; = 1" for a couple of nearest neighbors {z;, z; 1 }. To obtain above
inequality we used Cauchy Schwartz inequality and the fact that n < Z2. In
order to obtain from left and right hand side the terms which appear in the
variational formula (2.15) for the auxiliary process and for KA, respectively,
we should average inequality (6.7) over Bernoulli measure conditioned to
have a particle in zero. As we already emphasized, the sequence xy ...z, of
sites in which the exchange is done, depends on the positions of vacancies in
configuration 1. Therefore, if we do the change of variable n; — 7 in (6.7)
and use the invariance of measure under exchange of variables, many different
terms on the left can give rise to the same term on the right. Actually, the
crucial thing to know is the following. To each configuration 5 for which
the exchange is allowed by the auxiliary process, associate the correspondent
path 79, ...,7, in configuration space®. Then, for each elementary nearest
neighbor jump e, denote by N, the number of different configurations n
that use such exchange and let N = maxz, N,. Therefore N is the overall
factor coming from possible overcounting of configuration when going from
the mean of the left hand side of (6.7) to the terms in the variational formula
(2.15) for Dg. Moreover, since each path is composed of moves internal to
the frameable region of size £ < Z which contains the tagged particle, N is
for sure less or equal to the total number of configurations inside a square of
size Z, namely inequality N < 2= holds. Therefore, we finally obtain

1 aur
Ds > (1—p)* pp=(F) = Dy (6.8)
The term (1 — p*)p,=(F) comes from the condition that the configuration
at time zero should have the tagged particle with three vacancies around
and be inside a frameable square of size at most = and D" is the diffusion
coefficient of the auxiliary process subject to this condition. This ends the

first part of the proof.

30f course there could be different sequences to perform the same move. However, one
can always give a prescription associating one of them for any choice of n and any give
exchange.
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Let us now prove that Dg"* > 0, i.e. that diffusivity holds for the auxiliary
process. In this case, the mechanism which guarantees diffusivity is different
from the one of both SSEP and the processes considered in section 3.3.2.
For SSEP, the possible moves of the auxiliary process are the following. The
tagged particle can move from x to x +e; or x — e; provided the final site is
empty; the occupation variables of sites © —e; and x + e; can be exchanged.
It is immediate to check that, by starting with at least a vacancy in the sites
adjacent to the tagged particle in direction e, this condition will be always
fulfilled at later times. Therefore it is possible to move the tagged particle
in both direction e; and —e; either directly or via a previous exchange 1 —
prtenr—er This implies that the auxiliary process has a strictly positive self
diffusion constant, which can be proved by mapping it to a unidimensional
random walk. Analogously, the auxiliary process we introduced for KA is
such that if the tagged particle is at time zero in a two by two square of
vacancies (i.e. n(0) € Afc(o) for some i) and inside a larger frameable square
of size at most =, both conditions will be always fulfilled at later times.
However, it is not true that the tagged particle can always be moved in a
chosen direction e; through a proper path. For example, if we want to move
it in direction e; this is possible only if € Af! or n € Af2. Otherwise,
if n € A;' or n € A;?, the move is allowed only if before one makes the
exchange n — nfe Bl or  — R Ee=2 pespectively. However these
exchanges (which are the analogous of exchange n — n*~¢**¢ for SSEP)
are not always allowed. Indeed (see rules (v)—(viii)) they have positive rate
only if in the initial configuration the rectangular regions R, ', respectively
R_;?, do not contain vacancies and are inside a frameable square of size at
most =. Note that the rate of such exchanges (i.e. the rate of the exchange
n — pf Bl and  — pf7He=2 conditioned to the fact that n € AZ!
or n € A_? respectively) does not depend on the configuration n, but is
fixed once for all by the choice of the initial configuration 1(0). In other
words the choice of the initial configuration fixes the good rectangles, i.e.
the rectangle for which this rate is one. This observation will allow us to
map the motion of the two by two square of three vacancies plus tagged
particle as a random walk in a random environment corresponding to the
cluster of good rectangles. We emphasize that this cluster does not changes
during dynamics, therefore the randomness of the environment is quenched.
Note that the probability p, for a given rectangle to be good is greater than
p* (the probability that both the sites inside the rectangle are occupied)
multiplied for the probability that it is inside a frameable region of size at
most = (which is almost one). Therefore in the high density regime p, is
well above the threshold of conventional site percolation. This implies that
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with unit probability the initial configuration has a percolating cluster of
good rectangles. By recalling that above the percolation threshold random
walk on random environment has a positive diffusion coefficient [35], we will
therefore prove that the diffusion coefficient of the auxiliary process is strictly
positive, which ends the proof. In the following we will sketch the proof of
above argument in some detail.

Let 1,0y = 1(0) be the initial configuration. Let us define the following
sequence of configurations 7y, n) for (m,n) € Z*

7 T,x+eq

T/(man) lf n(mrn) S A.;?Fl U A;27 ’f](O) € B+1 N B+2

41 p—1
Mm+1,n) § 77(%,7{;% if N(m,n) € AL Y n(0) € Ba—cH (6.9)

L A i € A7 0(0) € B

7 T,x+es

T/(man) lf n(mrn) S A;1 U A;17 ’f](O) € B+3 N B+4

+3 p—3
Nomni) & Moy A Nmany € AT 7(0) € B (6.10)

BB S i € AZ2 7(0) € BH

\ n(m,n)

( Nommy” 1 Ny € AP UAZ, 7(0) € BN B

+1 p—1
Nim—1,n) < 7’](122,75)1% if T(m,n) A—H 77](0) c B_l (611)

\ néfiif S gy € AL, 7(0) € B

( Ny 1 Ny € AFZUAZ, 7(0) € BN B
(m,n—1) RI% R;? if —I—l = -3
DS gy iy € AT, 7(0) € B (6.12)

\ 77(1;2;;)1%7 if Nmmy € Ay', 7(0) € B~

where x = x(m, n) is the position of the tagged particle in configuration 7, »)
(we drop the dependence of x on m and n to get a more readable notation).
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Note that given 7, ) and z(m, n) for a couple (1m, n), using above definitions
one can reconstruct the whole sequence.
Let us define a Markov process on Z? with generator G acting on functions

f:(mn) —Ras

Gf(m,n) = Z)\lmn f(m+i,n)— f(m,n)) +
Z X (m,n) (f(m,n+ i) = f(m,n)) (6.13)

namely a two dimensional random walk with rates A%, for the jump in di-
rection d=e;. We can now chose these rates in order that 1) n) = n(t) for
the auxiliary process. More precisely, we chose the rates in order that for
any function f(7) the expectation value over the probability y; evoluted with
the generator of the auxiliary process coincides with the expectation over the
measure on (m(t),n(t)) generated by (6.13). By considering the dynamics of
the auxiliary process and definition (6.13), one can directly check that the
choice of \’,; which satisfy above requirement is the following

B“mzs”( 00)) +
B+1m3+2( 00)) +
L1 (n0,0)) +
B*Z(

)

)‘}i—l(mvn) = A+1 nmn)

]IA+ )

1y (emm))

L2 ((mm))

(6.14)

A (myn) = I
1

(6.15)
)\il(m,n) = ]IA2 (U(mn) B3N B+4(77(0,0)
][Agl(”(m ) B+3mB+4(n( ) +
Lz (Mm,m)) L2 (100,0)) +
]IA;2 (U(m,n)) ]IB# (77(0,0))
(6.16)
)‘Zl(m n) = ][Ag(W(m,n))][zs;3mzs;4(77(0,0))+
472 (Memm) L34 (M0,0)) +
1 (Nem,n)) Iys (100,0))
A 1(77(m,n))]IB;4(77(0,0)) (6.17)

I
]I;
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Let us define also

AMa(myn) = Tgige(n0,0)
)\1—1(m:”) = ]IB;lnB;Z(U(Oyo))
)\frl(m,n) = H8j308j4(n(0,0))
)\1+1(m>”) = ]IB;3HB;4(77(0:0))
(6.18)
and
Gf(m,n) = > MN(m,n)(f(m+in)— f(m,n))+
1==+1
i=+1

From definitions (6.14) and (6.18) it is immediate to check that A\, > i,
therefore

E (m(t)* +n(t)?) > E (m(t)* + n(t)?) (6.20)

where we let E(f(t)) and E(f(t)) be the expectation value of f(m,n) over
the process n(m(t),n(t)) started at time zero from the same configuration
and evoluted with generator (6.13) and (6.19), respectively. By recalling
definition (6.4) and results on crossover length, we know that for sufficiently
high density the probability w.r.t. Bernoulli measure of events

BN B2,
B, 'nB.7,
B n B,
B, nB,",

is almost one, and therefore greater then threshold probability for conven-
tional percolation on the square lattice. Hence, by using the result in [35]
which establish a central limit theorem for random walk in random environ-
ment when bond probability is greater than percolation threshold, inequality

E (m(t)* + n(t)?) > 0 (6.21)
follows. Above inequality, together with (6.20), implies
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E (m(t)* +n(t)?) > 0 (6.22)

Moreover, since when m goes to m+2 (n to n+2) the first (second) coordinate
of the tagged particle position increases at least of one unit, inequality

p (21(8)? + 22(t)?) > —E (m(t)* + n(t)*) > 0 (6.23)

| =

holds, where i, is the evoluted of initial measure ji,o under the auxiliary
process. This allows us to conclude that D* > 0 at any p < 1 which,
together with inequality (6.8) implies Dg > 0 for KA model.

6.1.2 High density regime

As we discussed in the introduction to section 6.1, the cooperative motion of
frameable cores guarantees diffusivity and the existence of this mechanism
implies inequality Dg > 1/£% &2/7¢ ny, where ny = 1/2% € and 7¢ are
respectively the density, the size and the relaxation time of cores. In the high
density limit, vacancies will be typically far apart or in small clusters that
cannot move. Therefore, the tagged particle can move only when a frameable
core passes by and we expect that the above lower bound gives in this regime
the right dependence of the diffusion coefficient, i.e. 1/Dg ~ £(d — 2) 7 =4.
The density dependence of = and & is known from results in chapter 4; the
behaviour of 7¢ will be discussed in this section. The result is that £2/7¢ 1/&¢
goes to zero for p — 1 slower than 1/Z%, therefore the dominant factor in the
self diffusion coefficient comes from the decreasing density of mobile cores,
namely Dg ~ 1/2% .

In order to estimate 7¢ we evaluate the time needed to reach the most
severe bottleneck in configuration space which, since all configurations are
equiprobable, corresponds Nz /Npg, where N and Ny are the number of
all possible configurations in the core and in the bottleneck, respectively®.
The worst scenario, i.e. the case in which all configurations must go through
the same one in order to equilibrate, yeld Nz = 1 and therefore we obtain
the upper bound 7. < N for the relaxation time of cores. Recalling the
requirements needed to grow a frameable core starting from an empty seed,
we can obtain a rough estimate of Np. For example, in the case d = 2,
s = 1, the conditions one should satisfy to grow an optimally frameable
configuration imply N ~ K &! and therefore

4This corresponds to the factor 1/A that appeared trhough the path argument per-
formed in previous paragraph.
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e <K ~K exp{%lp_p)} (6.24)
with K and ¢ positive constants. However, we expect &! to be only an upper
bound on 7¢. Let us give an argument which supports last statement, which
will be confirmed both by an alternative calculation (see section 6.1.3) and
by numerical simulations (see section 6.1.3).

Let 7, be the relaxation time for a frameable ¢ by ¢ square. We expect
that a recursive equation of the form

Tev2 = To + kTe (6.25)

holds, with ¢ < 1 and £ > 1 and both of order one. Indeed, to equilibrate an
{42 by £+ 2 square, one can equilibrate the ¢ by ¢ square and then use paths
that give rise to framed squares of size ¢/. If constant ¢ in (6.25) were equal
to one, we would obtain 7, of the order e, therefore 7¢ ~ exp{—In(1—p)/(1—
p)}, i.e. equal to the upper bound (6.24). However, since typically ¢ is less
than one, we expect the behaviour to be less rapid than an exponential with
¢. This implies that 7 < £! < Z2 and therefore in the high density regime
Dg should be dominated by ny, = 1/=Z2, i.e.

Ds ~ exp{—cs/(1 —p)} (6.26)

with ¢o, >~ 1.1 (4.46). In order to check this prediction, we have run standard
Montecarlo simulations for a 400 by 400 lattice. The result, drawn in figure
6.2, is that at high densities Dy fits well with the predicted exponential form
(6.26). Moreover, by fitting In Dg with A/(1 — p), we find A = 0.9 — 0.95
which is in good agreement with the expected ¢, = 1.1.

For the other KA models, analogous arguments suggest that the behavior
of Dg in the high density limit should again be dominated by ny, = 1/=¢.
Hence, by using formula (4.11) for =, for the original cubic lattice with s = 2
we find

Inln Dg' oc 1/(1 = p) (6.27)

a result which has been confirmed by a recent finite size scaling analysis [56].

Note that these predictions on the density dependence of the self diffusion
coefficient rely on the hypothesis that cores do not interact. Indeed, besides
the hypothesis that in the high density regime the effective diffusion mech-
anism is due to the motion of cores, we are considering that the diffusion
coefficient is given by the diffusion coefficient of cores £*/7¢ multiplied by
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Figure 6.2: (In D)~! plotted as a function of p obtained for KA on a 400 by
400 square with s = 1. The straight line is a guide for the eye to see the
In Dg o< 1/v behavior.

their density 1/2% and the length 1/£¢ of the sequence needed to move of
one step a tagged particle once it is inside a core. In other words, we are
neglecting the possible corrections coming form the interactions of different
cores. This is true for the SSEP case, with simple vacancies playing the role
of cores. Indeed, the diffusion coefficient is simply proportional to their den-
sity (the diffusion coefficient for a vacancy is density independent, since they
can freely move). Part of this result was discussed in section 2.5.2 where we
outlined the proof [17] of a lower bound for the self diffusion coefficient of
the form 1 — p. To complete the argument one should establishing an upper
bound of the same form. This can be easily derived by using as a test func-
tion in the variational formula (2.15) the function f(n) = n,. For KA model,
finding a suitable test function which gives the right upper bound is not a
trivial task and we do not have a proof of above statement. However, we
believe that no different interaction mechanism between macrovacancies (i.e.
cores) should occur. This is confirmed by the good agreement of numerical
results with the prediction Dg ~ nj,,. Moreover, for a particular version of
KA model we are able to prove a lower bound which confirms the hypothesis.
Consider KA model on a triangular lattice with s = 2. In this case pairs of
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two vacancies can freely move on the lattice, therefore they play the same
roles as cores in the hypercubic case and one can prove Dg > (1 — p)? with
q = 2. By using the same test function as for SSEP, we find a lower bound of
the same form and conclude that in this case the interaction among the clus-
ter of vacancies that allow diffusion does not modify the predicted scaling.
Therefore, considering that for KA at a fixed density diffusion is guaranteed
by the cooperative motion of clusters of ¢ = O(&) vacancies we expect that
Dg ~ (1 — p)¢ should hold, which gives again the scaling Dg ~ 1/Z% up to
log corrections.

6.1.3 Diffusion of mobile cores: estimate of the diffu-
sion times in the case d=2, s=1

In this section we consider the case d = 2, s = 1 and evaluate the typical
diffusion times of cores, 7¢. More precisely, via an ansatz on the nature of
the bottleneck and a transfer matrix technique, we perform the calculation of
the number of configurations in the core and in the bottleneck, Nz and Np,
whose ratio gives an estimate of 7¢ (see previous section). The ansatz consists
in assuming that the bottleneck is composed by all frameable configurations
with the seed in a corner of the square. Let us outline the idea behind this
assumption, which will be confirmed by the successfull comparison of our
prediction for 7¢ with numerical results (see section 6.1.3).

Consider the core of an optimally frameable region (see section 4.10).
From the properties of cores, we know they are expandable into frameable
larger squares and therefore there are vacancies in next lines in any direction.
The presence of such vacancies enable the motion of the core itself. In order
to incorporate these vacancies in an effective manner, i.e. to move the core, it
is not necessary to go through the framed configuration with all the vacancies
in the l-shaped configuration of figure 4.7. Indeed, using the basic moves in
figures 4.8, 4.9, one can easily check that it is sufficient to bring the seed on
the border in correspondence of the external vacancy. Therefore the worst
case (the case which requires the longest path to bring the central empty seed
near the external vacancy) is when the external vacancy is near the corner
of the core. Thus, it is reasonable to assume N = N4, where A/“ is the
number optimally frameable configurations with seed on a corner®.

In the rest of this section, using a transfer matrix technique and scaling

A priori it could be possible that all configuration must go trough the same config-
uration with seed in the corner. However, due to symmetry reasons, it is more likely to
assume that we can divide the overall number of frameable configurations in N'< sets of
Np /N4 configurations, each set equilibrating through a different bottleneck.
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arguments, we find the density dependent values of both A and N4. The
result for 7¢ is subdominant with respect to ny; =1/ =4, as already predicted
in section 6.1.2 through a different argument. Indeed, N and N'“ have the
same exp“® factor and therefore the suppression factor in moving the seed
in the corner is subexponentially small with respect to n,,. The reason why
we expect the exponential factor to be the same for N and N, is easily
understood by considering that the number of configurations with nucleus in
the corner and in the center is roughly (2x4x8x ...x/)* (expanding only
two sides) and (2x6x10x ... x/)* (expanding on four sides), respectively.
Therefore, since 7z < njy, the exact density dependence of 7, does not modify
the diffusion coefficient which is dominated by n,,.

Estimate of Np: Transfer matrix technique

Let us consider a W x H rectangle. The number of frameable configurations
with seed of three vacancies in the center corresponds to the number of ways
vacancies can be put in the rectangle in order that, starting form the nucleus
and using any sequence of growing steps, one can reach an optimally framed
configuration. We recall that the possible growing steps, defined in section
4.10, are the following:

(i) expansion from a wxh to a wx(h + 2) framed rectangle if there is a
vacancy in a line next-nearest neighbor to one of its edges parallel to
direction x;

(ii) expansion from a wxh to a (w + 2)xh framed rectangle if there is a
vacancy in a line next-nearest neighbor to one of its edges parallel to
direction y;

(iii) expansion from a wxh to a (w+ 1)x(h + 1) framed rectangle if there
is a vacancy next nearest neighbor along a diagonal from a corner;

(iv) expansion from a wxh to a wx(h + 1) framed rectangle if there is a
vacancy in the line segment next to one of its edges parallel to direction
X5

(v) expansion from a wxh to a (w + 1)xh framed rectangle if there is a
vacancy in the line segment next to one of its edges parallel to direction

y.

To count the number of frameable configuration expanded form a seed in the
center proceed as follows. Given a frameable configuration of size W x H
with seed in the center consider first the length of the maximal expansion
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performed from the seed by using steps only in the horizontal direction (i.e.
steps (i) and (iv) above), let jo be half such length plus one, the one rep-
resenting half the original width of the seed. If no horizontal expansion at
all is possible, but an initial expansion from a corner or from two diagonally
opposite corners is possible (step (iii)) carry out these and then expand as
far as possible horizontally. For these cases define j, as one plus half the
total expansion in the corner plus half the horizontal expansion.

Second expand as far as possible in the vertical directions. Again, if no
vertical expansion is allowed but an initial corner expansion or a diagonally
opposite pair of corner expansions is possible, carry these out and then ex-
pand as much as possible vertically. Define ky = 1 as half the initial vertical
height, and k; as half the total expansion in this first vertical stage.

Third, expand again in the horizontal direction (or if not possible corner(s)
plus horizontal), to increase the width by j; and proceed iteratively expand-
ing by ko, jo, k3, J3, - - - Jn, kn until the width and height are W and H.
Therefore, with the above described procedure we associate in a unique way
a sequence jo...Jn, ko...k, to each frameable configuration with seed in
the center . The overall number of frameable configurations in the W x H
rectangle is obtained by summing the number N (jo ... jn, ko - .. k,) of config-
urations with sequence jg...J,, ko ...k, over all the possible choices of the
sequence. Note that, the condition that the configuration has overall size
W x H imposes the constraints >  2j, =W and >  2k; = H.

In order to count the numbers of configuration correspondent to the differ-
ent sequences, we find the recursive relation among the number of frameable
configuration for different sizes. Let W,, and H,, be the width and height till
which the core has been framed at step n, B,, half the deviations from square
shape and s, the running sum of {j,} and {k,}, namely B, = 1/2(W,,— H,)
and s, = Y0 (ji+k;). In order to calculate N (jo, j1, - - jns ko, k1, - . - kn) we
should count the number of possible ways of expanding at each stage, which
requires keeping track of the expansions at the previous stage in the same
direction. Indeed, consider the n—step in vertical expansion starting form
a framed rectangle of size W, xH,,_; and leading to size W,,x H,, with an
upward expansion. If the previous horizontal expansion, from W, _xH,_;
to W, xH, | with W,, = W,,_| + 2j,, did not begin with corner expansions
(no use of step (iii)), the number of possible positions for a vacancy in the
first step of the upward expansion is only 27, rather than the full width, W,,.
Indeed, since the previous vertical expansion had stopped, we know that the
other potential sites for upwards expansion are occupied. Then, any further
upward expansion has W, possibilities per step. Downward expansion is sim-
ilar. On the other hand, if the previous horizontal expansion had began with
a single corner expansion (step (iii)), the behavior is asymmetric for upwards
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and downwards expansion. If the corner expansion in the earlier stage was
in the upper left or upper right, then the potential sites for a first upwards
expansion step in the next stage are the full width W, = W, | + 25, — 1
as there was a small vertical expansion associated with the corner expansion
and thus the previous stopped condition does not imply anything about sites
two above the new top edge. On the bottom, however, the possible first
step is limited to 2j,, — 1 sites. Finally, if the previous horizontal expansion
had begun with a double corner expansion, both upwards and downwards
expansions are unrestricted so that W, possible sites are available for each.
Therefore, we will end up with a tranfer matrix which gives the number of
frameable configurations of a certain size as a function of frameable configu-
rations in smaller squares.

Let us define

N°(j,B,s), C’(j, B, s) and D°(j, B, s) (6.28)

as 1/s! multiplied for the number of configurations of vacancies after an
horizontal expansion which stopped after length 25 and started from w x h,
with w = s+ B and h = s — B given, respectively, that the expansion
was normal (involving no corners), started with a single corner, or started
with double corners. We choose the normalization factor 1/s! to isolate the
dominant factor which we expect to be the same for the case of configurations
with seed in the corner (see the rough argument in the end of section 6.1.3).
Let also

Nk, B, s), C’(k, B, s) and D'(k, B, s) (6.29)

be 1/s! multiplied for the number of configurations of vacancies after an
vertical expansion which stopped after increasing the hight by 2k and started
from w x h, with w = s+ B and h = s— B. Again, NV, C'V, D" correspond to
the case in which the expansion was normal (involving no corners), started
with a single corner, or started with double corners.

Consider a normal vertical expansion for a wxh rectangle. This will have
w possibilities except possibly for the first step in each of the up and down
directions. If the previous expansion was normal, then there are only 2j
possibilities for each of the first steps. Therefore, if vertical expansion is by
k steps in only one of the directions, this gives rise to an overall factor of

ko1 (s — K)!

2(25)(s + B) o

with the initial factor of two from the two possible directions and the final
factor accounting for the change in normalization by s!. If the expansion is
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both up and down, the corresponding factor is

w‘Jﬂ%V@+BV4§:£X

s!

with the k£ —1 arising from the possible ways of dividing the k£ — 2 subsequent
steps between up and down. If the previous expansion stage started with one
corner, then expansion in that direction only involves

p (s —k)!

(s + B) o

while expansion in both directions includes a factor

2j — 1 [s+B]’“‘1 (s —k)!

S

k

s s!

If the previous expansion stage started with two corners, then the corre-
sponding factor is

— k)!
(k+n@+BV“S‘)
We thus have the recursion relation
NY(k,B,s) = 6(A,B+k)Q(k, A S—k)i N(j,Ays —k) |2 2 +
7 ) ) ) 7 ]:1 .]7 ) S+B
27 \? . 2j — 1
(k—1) (s+B> > +C%j, A, s — k) <1+kS+B> +
D°(j, A, s — k)(k+1)] (6.30)
where the overall factor () is
—k)!
Q@ngz(a+BV“ ) (6.31)

s!
If no normal vertical expansion is possible, then corner expansion must be
performed for the process to continue. If only one corner has a vacancy to
expand into, this will make W +1 = s+ B + 1 possible sites for each further
expansion, yielding a factor Q(k, B + 1, s) for expansion in this direction.
The opposite side can, by the assumption that it was otherwise blocked,
only expand if there is a vacancy the row two away from the corresponding
edge and in the column of the new corner vacancy; if this does occur, then
any remaining k£ — 2 further vertical expansions will yield a factor of

k)!

(k—U@+B+&VZEir—
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from the possible ways of dividing these among up and down. Note that
neither of these two cases involves the previous expansion amount, j. The
contributions from previous stage expansions that themselves started with
one or two corners has exactly the same form. We thus find that

1

"(k,B = J0(A,B 4 —_—

TTE1 Qk,A,s) |1+ (k—1)

Z [N°(j, A, s — k) +C°(j, A, s — k) + D°(j, A, s — k)]
7=1

(6.32)

with the initial factor of 4 from the four possible corners.
Double corner expansions are similar except that once two diagonally oppo-
site corners have expanded, downwards and upwards expansions are possible
with s + B + 2 possible vacancy positions. For k — 2 such steps there is thus
a factor of

po (s — k)!

(k—1)(s+ B +2) .

We have therefore

D'(k,B,s) = 6(A,B+k) QQ(A+1>S)m

Z [N°(j, A, s — k) + C°(j, A, s — k) + D°(j, A, s — k)]
j=1

(6.33)

the initial factor of two for the possible pairs of corners. Iterating these
recursion relations, with j and k£ and B swapping after each stage, and sum-
ming over all the possible values of j and k at each step subject to conditions
Yot o2ji = W and Y. ,2k; = H yields the number of configurations for
any given rectangle W x H (with both W and H even). From the recursion
relations we see that the j dependence enters only via the zeroth first and
second j-moments of N, the zeroth and first of C' and the zeroth of D. In
next section, by using scaling techniques, we calculate such moments and
therefore obtain the value of Np.

Estimate of Np: Scaling Limit

On large length scales it is reasonable to expect deviations from square to be
small, i.e. B < w ~ h at any step. This can be seen from the behavior of
Q(k, B, s) for large s (recall that s = (w + h)/2):
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s"exp {In(1+ 2)} o oBk/s— ks
sh(L+1)...(1+12)
Indeed, the strong suppression of k from the gaussian factor together with the

two step recursion relation for B, B” = B+ j —k with positive B suppressing
k and negative B suppressing j, implies that for large s

Q(k,B,S) — (634)

k~B~/s (6.35)

We thus define the following rescaled variables

k=k/\s, n=j/\Vs, b= B/\s (6.36)

Let us consider the Laplace transforms of the p-th moments N,(k, B, s),
Cy(k, B, s) and D,(k, B, s) and rescale them as follows

N, (b, s,v) = s2Pp (b, 1) (6.37)
Cp(b,s,v) = s%pcp(b, V) (6.38)
Do(b, s,v) = 572 dy(b, v) (6.39)

From the recursion relations (6.30), (6.32), (6.33) the following relations holds

ny(b,v) = / d/f/ de 6(c— K —b) e " e TR [kP I (¢, v)] (6.40)
0 —00

¢ = / d/{/ de d(c—Kk—0) e " e e [4KPng(c, V)] (6.41)
0 —00

d (b, v) = / e / de S(c—k—b) e e [m2(e, )] (6.42)
0 —00

where

J(b,v) = 4n°(b,v) + 4kng(b,v) + c5(b, v) + 2rc] (b, v) + rdy(b,v)  (6.43)
Taking advantage of the simple form of the kernel, we pull a factor of e—a’/2
out of each distribution and then Fourier transform in b, defining

ny(C,v) =V 27r/ db e_ibcebz/znp(b, V) (6.44)
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and analogous transformed functions for the p-th moments of ¢ and d. By
carrying out the integrals over x in (6.40), (6.41), (6.42) we obtain

dy(¢,v) = 2y’ (—C, v) (6.45)

& (G v) = 4y iag(—Cy) (6.46)
for p=10,1 and

n(Cv) = plyPFAns(C,v) + dy(p + 1)ng(—C,v) + (¢, v) +

2y(p+ 1)&(—C,v) + y(p + 1)dy(—¢, v)] (6.47)
with
Y= - i ic (6.48)

For vertical stages, as above, define the six by six transfer matrix 7 such that
v’ = Tv°, where v = (ﬁg,ﬁg,ﬁg,&g,&g,dg) and v’ = (ﬁg,ﬁ‘f,ﬁg,ég,é‘f,(ig).
Note that such transfer matrix is a function only of y. On horizontal stages,
one can check by direct inspection that the transfer matrix, 7, satisfies T =

T (7) with

(6.49)

We are interested in N, namely on the total number of frameable configu-
rations a square of linear size &, with & the large size of cores. Therefore, we
are interested in the case of a given large s = £ and a = b = 0. We must thus
sum over the number of possible stages, the last one being either horizontal
or vertical and anti-transform in v and ¢ which gives

Nip ~ € /C V. 20 VE fo () (6.50)

211

where the &! factor comes from the normalization of functions N, C, D and

R(v) = v} / & Z Z+TTT]"v (6.51)

with v; a proper initial vectors and v projecting onto ng, g, cZg (the identity
matrix, Z, is needed if the last stage is vertical). The inverse Laplace trans-
form (6.50) to obtain A/ will be dominated for large £ by the singularity in
R(v) with the largest real part of v. The singularities will occur when y (v, )
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is such that 77 has an eigenvalue A = 1. For ( =0, 7 = 7 and one can
readily find the values of y at which 7 has an eigenvalue of unity. Defining
2z = 3% we find the condition

7(42)* — 17(42)* — 16(42) +8 =0 (6.52)
which has roots z = —1/4 and

3+,/11/2
r=ay = % (6.53)

The desired root with the smallest positive real part is z_ yielding a singu-

larity at v = o with
1 /
c=——=\6+V22 (6.54)

V2
For small but non-zero (, the singularity in v will only be shifted away from
o by of order ¢? and (6.50) therefore yields

N ~ e27Veg! (6.55)

with o given by (6.54) ®. There are many sources or power law multiplica-
tive corrections in addition to that from the integral over (. In particular,
there are the effects of the processes that are intrinsically smaller by 1/y/s
and corrections to the approximations (6.34). Since we expect the cumula-
tive effects of corrections to be of order 1/4/s at each stage and integrating
over steps is roughly equivalent to integrating over dy/s, this gives rise to
multiplicative factors of e*'"¢ = £%. We thus conclude that the number of
frameable configurations in an & by £ square is asymptotically

Ni ~ KE%e2Vee! (6.56)

with a computable in principle. Here K is a constant that should include the
effects of configurations that do not have the simple seed of three vacancies
in a two-by-two square; it could be obtained by fitting to intermediate sizes
using the exact transfer matrices. The relative corrections to (6.56) are
probably of order 1/4/€ and there will be other corrections suppressed by
factors of e ("7 )V€ arising from other v’s at which A = 1.

bIndeed, if we switch the order of integration in (6.50) this will result in a suppression
of the contributions from non-zero ¢ by a factor of e‘ccz\/g with some positive coefficient
c. The integral over ¢ will then be the same order as the integrand at ( = 0 except for
a factor of 1/ si. Note that the fact that the dominant values of ¢ are small implies that
the distribution of the asymmetry b (recall that b = (W — H)/(2y/s)), is asymptotically
—b%/2

simply the gaussian factor e that was pulled out before Fourier transforming.
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Estimate of N4

In this section we calculate the number of frameable configurations with
seed on the corner. The difference with respect to the analysis in the two
previous sections lye on the fact that now there is only one possible direction
for each of vertical, horizontal, and corner expansions. All we need are,
thus, Ny, N1 and Cj or, in the large s limit, the corresponding functions of
¢ and v: my, my; and fy. Taking into account the possible moves, we write
recursion relations analogous to (6.30), (6.32), (6.33), rescale variables and
finally Fourier transform. We thus obtaining

no(C,v) = y[2af(=¢,v) + 95(=¢, V)] (6.57)
n(Cr) = y2a(=C,v) +&(—Cv)] = y&(Cv) (6.58)
&G v) = yig(—=¢v) (6.59)

In this case, it is straightforward to work with 777 instead and obtain the
largest eigenvalue which yields for the total number of frameable configura-
tions with the seed in one corner of the square N4

NZ(€) m K22 20" Ve (6.60)
with

o“ =3 (6.61)

Note that the overall constants and the two power law terms are all different
then in previous case. Calculating the value of a“ — «, which is in possible
in principle, is difficult since one should take into account all the different
corrections.

Estimate of 7; and numerical results

We recall that the relaxation time of a core, 7¢, is given by the ratio of the
overall number of possible frameable configuration inside a square of size &,
N, and the number of those which are frameable and moreover have the
seed in the corner, N*“. Therefore, by using results (6.56) and (6.60) we
obtain

1 K% 2 o0z

oy e (04 —0)Ve 6.62

7'5 K§ ¢ ( )
with

Y =2(0 —0“) 2 3.075 (6.63)
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Note that above result on the relaxation time is independent on the choice
of £ and in general making in (6.62) the substitution & — ¢ we should obtain
the typical relaxation time of a frameable region of size £. In order to test this
result we have run numerical simulations. We start form an ¢ by ¢ frameable
configuration and measure the time needed to move a particle which is in the
top right position, which should correspond to 7,. Simulations are performed
for different sizes from ¢ = 4 to ¢/ = 16 on samples of about 1000 systems, in
order that the error bars on the results are small. Results for log 7, are plotted
in figure 6.3, which clearly shows a lower than linear variation in /. Moreover,
numerical data are in good agreement with the predicted square root law with
coefficient ¥ plus logarithmic corrections as can be seen from the result of
the fit drawn as a dashed curve in figure 6.1.3. The good matching between
our prediction and numerical data, suggests that our ansatz on the nature
of the bottleneck—i.e. the conjecture N¥ ~ N4 (see beginning of present
section)—should be correct. Note that calculation yielding to (6.62) rely on
the large ¢ approximation, this could explain why the fit is not optimal at
small system sizes.

Result (6.62) implies that 1/7¢ is subdominant with respect to n,,, there-
fore Dy is dominated by the low density of cores in the high density regime,
ie. Dg ~ ny = 1/2Z% and (see 6.26) holds. The same result was already
obtained in section 6.1.2 by a more qualitative argument. Note that, even if a
diffusive/non—diffusive transition does not take place (i.e. Dg(p) > 0 at any
p < 1 as proven in section 6.1.1), the self diffusion coefficient is very small at
high density. Indeed, for p — 1, Dg goes to zero faster than any power law
of 1 — p. This extremely slow dynamics is related to the cooperative motion
of rare frameable cores.

6.1.4 Dynamical crossover, avoided transition

In this section we discuss the behaviour of the self diffusion coefficient for
intermediate densities. By percolation type arguments, we establish that
below a finite density another diffusion mechanism — besides the one related
to the cooperative motion of cores — occurs. The reason why this mechanism
is effective only below a certain density is that it requires the existence of
a particular percolating cluster of vacancies. Since this new mechanism is
dominant over the cooperative one, a crossover from the high density formula
(6.26) to a different self diffusion coefficient takes place. This crossover can
be regarded as the signature of the dynamical ergodicity breaking transition
which takes place on Bethe lattices (see results in chapter 5). In other words,
even if in the finite dimensional case (i.e. on hypercubic lattices) neither
an ergodic/non—ergodic nor a diffusive/non-diffusive transition occurs (see
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2 L | L |
4 9 14

Figure 6.3: Results for logt, as a function of ¢ for system sizes
6,8,10,12,14,16. Simulations are performed on samples of 1000 systems.
The plot shows a variation of 7, which is clearly lower than linear in /. The
dashed line is the result of fitting data with formula Av/¢+ Blog/, the values
of parameters from the fit are A ~ 3.24794, B ~ —2.04878

results in chapter 4 and in section 6.1.1), a ghost of the mean field transition
survives.

Consider the square lattice case with s = 1. In this case one can directly
check (recall the moves in figures 4.7, 4.8) that a cluster of three vacancies
can move along a network of empty sites that are linked no more weakly
than via second neighbors along axes or diagonals. Let pop be the critical
density for second neighbor percolation along axes or diagonals (namely two
particles are connected if they are first, second or third neighbors one to the
other). If the density of vacancies is above such threshold, i.e. 1 — p > pyp,
there exists with unit probability in the initial configuration an infinite per-
colating cluster of vacancies on which a finite set of three vacancies can move
freely. Therefore, we expect a power law form for the self-diffusion coeffi-
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Figure 6.4: Fraction of sites p(p) on the percolating cluster. From left to right
curve correspond to second neighbor percolation along axes or diagonals (the
one we are interested in), along axes, and conventional percolation. In all
the cases the fraction of sites vanishes discontinuously at the threshold which
corresponds, respectively, to densities p. ~ 0.292, p, >~ 0.41 p. ~ 0.59

cient. More precisely, the contribution of this mechanism to the diffusion
coefficient should give a term proportional to (1 — p)® times the probabil-
ity p(p) of being on the infinite percolating cluster of vacancies. The latter
should go to zero for p — 1 — pop = pop from below (i.e. for 1 — p — pop
from above) like a power of p — pop. Indeed, we expect the second neigh-
bor percolation transition to be second order like standard 2d percolation,
therefore the probability of the infinite percolating cluster should vanish con-
tinuosly at the threshold. By running a simulation using the algorithm in [32]
we have successfully checked this prediction of a continuous transition and
found estimate pyp =~ 0.292 for the threshold probability (see figure 6.4).
Therefore, coming from low density, we expect a first regime in which the
diffusion slows down because the second-neighbor vacancy percolation giant
cluster, on which the three—vacancy elements can move, shrinks. On the
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other hand, for p > pyp (or slightly higher due to small scale processes), the
mobile elements have to grow in order to remain mobile and they become
continuously the cores of (minimal) frameable regions. In other words the
only effective diffusion mechanism at high density is the cooperative motion
of frameable cores which gives the predicted form (6.26) for the diffusion
coefficient. In two dimensions such crossover is not sharp enough in order to
determine an unambiguous power law of p — pop in the vicinity of pop. This
is probably because simulations are performed on finite size systems where
the percolation transition is substituted by a crossover. Therefore, above p,p
there are still large regions of the system where clusters of three vacancies
can move, while in other regions they must grow in order to be mobile.

Above argument can be generalized to other cases of KA, with the crossover
density determined by more complicated types of percolation. If the crossover
is sufficiently sharp—which we expect to be true at sufficiently high spatial
dimensions—one should observe a substantial range of critical dependence of
Dg near an apparent transition. This is a possible explanation of the nu-
merical results for the original cubic case with s = 2, where for more than
three decades Dg is well fitted by a power law vanishing at p ~ 0.881 [1].
Note that in this case the cooperative motion of cores in the high density
regime yields a diffusion constant which is too small to be detected in nu-
merical simulations (see equation (6.27)) . Therefor the crossover looks like
a diffusive /non—diffusive transition from numerical results.

In [55] the authors proposed that the diffusion coefficient near the dy-
namical arrest goes like v2, where v is the density of holes squared and a
hole is a vacancy in which a particle can move (for example, for KA model,
a vacancy with all the neighbors empty is not a hole but a vacancy with just
one nearest neighbor occupied by a particle that can move into the vacancy
is a hole). This conjecture is certainly wrong for KA model because there is
no dynamical arrest before p =1 and the diffusion coefficient does not scale
as the density of holes squared near p = 1. Indeed, for the case d =2 s =1
the density of holes is v = (1—p)(4(1—p)* +6(1 — p)?), which is much higher
compared to the density of frameable cores which gives the right scaling of
Dg (see formula (6.26) and figure figure 6.2). However, as can be seen in
figure 6.4, on a large density regime Dy is indeed proportional to v and the
proportionality breaks down above a finite density. In our frame, the validity
of the scaling in the intermediate regime should be due to the fact that 12
(which is a polynomial in 1 — p) approximates the density dependence of Dg
in the regime where the diffusion mechanism is related to the motion of finite
clusters of vacancies.

Note that the above discussed crossover between a power law to an expo-
nential regime for the diffusion coefficient, i.e. from a normal to a much slower
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dynamics, could be relevant for the study of the activated processes in super-
cooled liquids. As already recalled in section 2.4, mode coupling theory and
random first order scenario predict the existence of an ideal glass transition
at a finite temperature. This would correspond to an ergodic/non-ergodic
transition, i.e. to the appearance of infinite barriers separating different re-
gions of the configuration space. A widespread conjecture is that this mean
field transition is substituted in real systems by a crossover between a power
law to an activated regime. In other words for real systems a crossover would
occur from a flow like relaxation to a regime in which few particles hop in a
cooperative way over high (but finite) barriers. However, the nature of the
activated processes which transform the mean field dynamical transition into
a crossover is not clear. For KA model we have found both the mechanism
which induces the mean field dynamical transition (the emergence of infinite
clusters of forever blocked particles) and the cooperative processes which al-
low diffusion in the high density regime and replace the mean field transition
with a dynamical crossover (the motion of large density dependent cores).

6.2 Dynamical heterogeneities and stretched
exponential

As we already mentioned in section 2.3, the long time relaxation of the Fourier
transform of density density correlation at fixed wave nuber k is non expo-
nential for supercooled liquids in the vicinity of 7,. A possible explanation of
such form is that, since the spatial structure is very heterogeneous, relaxation
functions contain the superposition of many exponentials with different re-
laxation timescales related to an average over different local regions. Indeed,
both experiments [51] and numerical simulations [52] have detected the ex-
istence of dynamical heterogeneities, which correspond to finite regions with
correlated motion. The typical spatial extension and life time of these re-
gions increase as the temperature is decreased. In [50] it was proposed that
such inhomogeneous character could be detected by studying the four point
density dynamic correlation function y,. Such function, defined for a generic
model in [50] and corresponding for kinetically constrained models to defi-
nition (5.10), should display a maximum related to the existence of highly
correlated regions. More precisely, for mean field models the maximum di-
verges and its position is displaced to infinite timeswhen approaching the
ergodicity breaking transition (e.g., for T'— T}, from above for p—spin mod-
els). On the other hand, for real system some dynamical processes should
restore ergodicty and y4 is expected to display a maximum at a finite time.
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This time should correspondent to the lifetime of cooperative regions with
highly correlated motion. Indeed, such a maximum is detected is numerical
simulations of Lennard—Jones liquids [50] and both its position and its height
increase by decreasing the temperature.

As already mentioned in 4.2, both a stretched exponential relaxation [1]
and a cusp in y4 [47] were detected by numerical simulations on the three—
dimensional KA model with s = 2. However, it is not clear which is the
mechanism giving rise to the heterogeneous high density relaxation and to the
dynamical heterogeneities. In the following, by using the results on crossover
length derived in chapter 4, we discuss a possible explanation of stretched
exponential relaxation for KA models.

Consider a system at density p. Due to density fluctuations there will
be internal regions with unusually high density and the relaxation of these
rare regions will dominate the long time relaxation of correlation functions.
More precisely, from the analysis in previous sections and in chapter 4, we
expect that relaxation will be dominated by internal regions with linear size
¢; and density p; such that ¢; < Z(p;). Indeed, if such regions were isolated
from the rest of the system they would be blocked since their configuration
space is broken into an exponential number of disconnected configurations
and relaxation in this regime cannot occur because the system is too small
for the cooperative diffusion to take place (mobile cores are not present in
such regions). However, the environment act as a source allowing vacancies
to enter such regions from their boundary and unblock them. It is natural to
expect that the typical time-scale 7; of this relaxation will strongly depend
on the size of ¢;, besides depending on both the typical density p of the
environment and the density p; of the region. To find the right dependence
of 7; on ¢; we have run some numerical simulations which strongly suggest
the scaling 7; ~ 2 in the square lattice case with s = 1.

In particular we have made two different numerical checks. The first, which is
related to a sort of persistence problem, is the following. We have considered
a completely filled region of size ¢ embedded in a low density region of size
L with L > ¢ and we have measured the probability that the particle at
the center has remained in its initial position until time ¢. The result drawn
in figure 6.6 suggests that the mean persistence time 7,(¢), i.e. the time at
which such probability becomes different from one, scales with ¢2 when ¢ is
sufficiently large. Note that this behaviour is the same as for the normal
lattice gas. Since we are calculating the relaxation time of completely filled
regions (i.e. with choice p; = 1), for regions at finite internal density we will
have for sure 7;((;, p;) < (2.

Then we have calculated the density-density correlation inside a high density
region Ryp
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Cuan (k1) = % S eap(—ik(m1 — 22))a, (H)11a, (0) (6.64)
z1,22€RuD

More precisely, we have chosen Ryp to be a square of size ¢ with density

p = 0.98 embedded in a larger square L with a lower density p = 0.1. We have

run the simulations for different values of ¢, all in the range ¢ < Z(p = 0.98)

(recall that the exact dependence of = on p has been established, see section

4.10). The results can be summarized as follows

e the relaxation timescale of C'yp(k,t) increases with the linear size ¢ of
the region, see Fig. 6.7;

e the increasing of the relaxation timescale of the high density region
seems to follow a ¢% law. In fact in Fig. 6.8 we rescale the time to ¢/¢?
and all the curves collapse into the same one;

e the relaxation of Cyp(k,t) seems to be exponential in time. In Fig. 6.9
we plot the same curve that in Fig. 6.8 but using a logarithmic scale
for the y-axis. The curves are well described by a linear law (a fit in a
log-log scale gives back an exponent very close to one (1£0.001)).

Therefore, this confirms the prediction 7; o< ¢?, already suggested by the
above result on persistence times. Note that this is different from what
happens for the normal lattice gas, for which the relaxation timescale of the
Fourier transform of the correlation function (for k& # 0) inside any region of
density p # 1 is independent on the size of the region.

Let us present the scenario for the dynamical heterogeneity that follows
from these results. One can roughly rewrite the density-density correlation
function separating the contributes from internal regions of different size and
density as

C(k,t) ~ > plli, pi p)C (k. 151, pi, p) (6.65)

lispi

where p(l;, p;i, po) is the probability of regions of linear size [; and density
p; and C(k,t;1;, p;, p) is the average density-density correlation function in-
side these regions (6.64). On the basis of the previous numerical results we
conjecture that

t
C kat; liapiap ~ A K; liapiap exp (_7> 6.66
( ) = A e~ ) (660
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—_
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where the relaxation time 7(k,[;, p;, p) goes like I?7(k, p;, p) for [; << Z(p;)
and approaches a constant dependent on k,p for [; >> =Z(p;). Note that
7(k, pi, p) should approach a constant dependent on k, p when p; — 1 and it
should diverge when p — 1. On the other hand, we expect A(K,;, pi, p) to
increase like /¢ (because the contribution of a high density square is weighted
with its volume) and it should roughly be of the order p; — p? (which gives
the right value of C'(t) at t = 0).

For simplicity in the following we will take A as a constant and we shall
investigate the behaviour of (6.65) at large times. Considering that the be-
haviour of p(¢;, p;, p) should be roughly exp(—(¢F (p;, p)), we make a saddle
point evaluation to determine the terms which dominates the sum (6.65).
The result for the dominant length ¢; is

S (2t)dFF)YED i (2t /dFF)Y ) < E(p;)
bilt, pi) = { =(p;) otherwise (6.67)
In the former case the contribution to C(k,t) is proportional to
d+2
exp (— (2t/dF )7 ‘5 F> (6.68)

whereas in the latter we find

exp (— =i ! > (6.69)

=27

Since contribution (6.69) goes to zero at large times faster than (6.68) we
will focus just on (6.68) that should give the leading behaviour at long times,
provided the condition in the first line of (6.67) is satisfied. Such condition
can be inverted to obtain that all the densities that gives the saddle point
contribution (6.68) are larger than a certain value p(¢) which approaches one
very slowly as a function of time, i.e. like 1 — ¢4/ log(t) with cs ~ 1.1 in the
case d =2 s =1 and 1 — ¢/loglog(t) in the case d =3 s = 2 (where do not
know the numerical value of constant ¢). Combining this result with the fact
that 7(p;, p) and F(p;, p) shouldn’t diverge when p; — 1 but just approach a
constant, we find that the contribution of the high density, rare and almost
blocked regions behaves like

9(t, pi, p, k) exp (— (d%(l,p?jF(l,p))m d;QF(l,p)> (6.70)
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where ¢(t, p;, p, k) is a function of time going to zero slower than the other
term in (6.70) and, thus, it can be neglected in order to have the leading
behaviour at long times. As a consequence we have found that the relaxation
in the system is strongly heterogeneous and this dynamical heterogeneity is
responsible for the stretched exponential of the density-density correlation
function.

For the original three-dimensional case with s = 2, Kob and Andersen
reported a stretched exponential with an exponent very close to 0.6 at least
for £ = 270.5 which is therefore in agreement with our findings. For the
two—dimensional case with s = 1 our simulations are not conclusive about
this point. The exponent is close to 0.5 for £ = 270.1. However for larger
and smaller values of £ the exponent seems to be respectively larger and
smaller than 0.5. It’s not clear however if what one is able to extract from
the numerical simulations is the real asymptotic behaviour. The problem is
that at large time the noise on the curve is of the same order of the absolute
value of the curve (which is approaching zero). As a consequence we can have
the behaviour up to a certain time and not after. So if the rare and slow
high density regions give a very small contribution (smaller than the noise)
we could miss it. It could be also that the mechanism that we have unveil is
not the slowest one and there is another, much slower, physical mechanism
dominating the long time behaviour.

6.3 Conclusions

In this chapter we have analyzed the typical timescale of dynamics for KA
models on hypercubic lattices, focusing in particular on the density depen-
dence of the tagged particle self diffusion coefficient Dg. We have proved that
Dg > 0 at any finite density, ruling out the possibility that a diffusive/non—
diffusive transition occurs at a finite density. Moreover, we have identified
both the time and spatial scales of the cooperative processes which allow
diffusivity in the high density limit. This allows us to find the density depen-
dence of the self diffusion coefficient, which is proportional to the density of
the regions involved in the cooperative motion. The predicted form for the
self diffusion coefficient in the high density region (which is in good agree-
ment with numerical results) is Dg o 1/Z% with = the density dependent
crossover length identified in chapter 4, which goes to zero for p — 1 faster
than any power law of 1 — p. This is due to the fact that the number of
vacancies that have to move in a cooperative manner to allow diffusion is
larger at larger densities and diverges for p — 1 (recall that if a cluster of ¢
vacancies can diffuse the self diffusion coefficient should be proportional to
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(1—p)7).

The fact that Dg > 0 at any density seems at a first sight in disagreement
with numerical prediction which suggest for the case d = 3 s = 2 a diffusion
coefficient vanishing as a power law at a finite density. By percolation—type
arguments we find a possible explanation of this apparent dynamical tran-
sition. At low density there exists a diffusion mechanism which does not
require the cooperative motion of large density dependent clusters of vacan-
cies. Therefore, such mechanism is faster and its contribution to the diffusion
coefficient dominates on the previous one. However, this diffusion mechanism
is efficient only up to a certain density since it requires the underlying pres-
ence of a percolating cluster of vacancies. Moreover, its contribution to Dg
goes to zero at a finite percolation treshold where the fraction of sites on the
percolating cluster shrinks to zero. Therefore, at a finite density a crossover
occurs between the two different mechanism, which could explain the large
range of critical behaviour (power law decreasing of Dg near a finite den-
sity) numerically detected. Note that on the Bethe lattice the crossover is
substituted by a real diffusive/non—diffusive transition. Indeed the collective
processes which guarantees diffusivity at high density are related to the rear-
rangements that restore ergodicity in finite dimension and are absent in the
mean field case.

Finally, we have discussed a possible quantitative explanation of the
stretched exponential high density relaxation coming from the existence of a
crossover length separating the regime in which a finite size system is almost
ergodic from the regime in which collective rearrangements necessary in order
for the ergodicity restoring rearrangements cannot typically be performed.



6.3. Conclusions 139

Figure 6.5: Numerical results for the ratio among Dg and v? on a square

lattice with parameter s = 1. The prediction [55], that Dg scales with 12
breaks down at a finite density p ~ 0.8 above which Dg goes to zero more
rapidly than any power law of 1 — p, as predicted by (6.26).
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Figure 6.6: Numerical results for the persistence time. Here we plot the
probability that the particle at the center has remained in its initial position
until time ¢ as a function of time for squares of linear size ¢ = 10, 14, 20, 28, 40
(from left to right) with density p = 1. embedded in a square ¢ = 100 with
density p = 0. outside the high density square. The timescales has been
rescaled as t/(?. For large £ the scaling ¢* is rather well respected.
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Figure 6.7: Cyp(k,t) as a function of time on squares ¢ = 16,22,32,44
(from left to right) with density p

= 0.98 embedded in a square L =
100, 100,100, 150 with density p = 0.1 outside the high density square.
(k = 270.5)
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Figure 6.8: Cyp(k,t) as a function of time on squares ¢ = 16,22,32, 44
(from left to right) with density p = 0.98 embedded in a square L =
100, 100, 100, 150 with density p = 0.1 outside the high density square.

Now the time has been rescaled as (* (i.e. it has been rescaled as
(44/16)2, (44/22)?, (44/32)% for L = 16,22, 32).(k = 270.5)
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Figure 6.9: logCyp(k,t) as a function of time on squares ¢ = 16,22, 32,44
(from left to right) with density p = 0.98 embedded in a square L =
100, 100,100, 150 with density p = 0.1 outside the high density square
. Now the time has been rescaled as L? (i.e. it has been rescaled as
(44/16)2, (44/22)?, (44/32)* for L = 16,22,32).(k = 270.5)
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Chapter 7
FA model

After defining Fredrickson Andersen (FA) model on d-dimensional hypercu-
bic lattices A € Z? and recalling previous results, we prove that also for this
model irreducibility implies ergodicity. Therefore, an ergodic/non-ergodic
transition cannot take place at any finite temperature T > 0. Moreover,
we estimate typical relaxation times and check our predictions by numerical
simulations. Then we study the mean field approximation of the model, i.e.
FA on a Bethe lattice. In this case we find that there exists a critical tem-
perature 7, > 0 at which an ergodic—non ergodic transition occurs. Finally,
we study the character of this transition both by analytycal and numerical
investigations.

7.1 Definition of the model

Let A be an hypercubic d—dimensional lattice and f a parameter chosen
among 0,..2d. FA model [2] is a a spin facilitated Ising model (see section
2.6) with flip rates

ce(n) == d({z}{z})=1 (7.1)
ZEN
min (1, exp —A—;I) otherwise

AH = H(n*) — H(n) with H = —h)__n, and h a positive constant. Recall
that we represent up and down spins with an occupation variable taking
one and zero value respectively. With this notation the configuration space
is given, as for kinetically constrained model, by Q, = {0,1}/*l. However
> wea Nz 18 no more conserved. Indeed the flip of a spin at site x corresponds
to the birth or death of a particle at site x in the particle language. Note
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that in the case f = 0 we would recover Glauber dynamics with Hamiltonian
H = —h)_ n,. On the other hand, for the above defined rates a spin in
x can flip only if at least f of its nearest neighbors are in the down state
(i.e. their occupation variable equals zero). For this reason, we refer to down
spins as facilitating spins and to f as facilitation parameter. Since energy
favors up spin (i.e. zero occupation variables), in the low temperature regime
many moves will be rejected. Therefore we expect dynamics to be slow in
this regime, as for the high density regime of KA models. Note that rates
satisfy detailed balance with respect to equilibrium trivial product measure

HAT

) =] [ (1 ixii(f(hﬁ)h)>% (1 ¥ exlp(ﬁh)> (72)

TEA

with § = 1/T, which corresponds to Bernoulli measure with density equal
to the magnetization, i.e. the probability of a spin to be up. In other words
the change p — exp(fh)/(1 + exp(Bh)) transforms pr — p,. However, on
finite lattices this is not the unique invariant measure. Indeed, as for KA,
there exist blocked configurations and the process is not ergodic.

7.2 FA on hypercubic lattices

7.2.1 Irreducibility and ergodicity

Let us recall former results for FA model on hypercubic lattices A € Z¢
(see [15] for a review), starting by the proof of irreducibility in the thermo-
dynamic limit for the two and three-dimensional FA models [54]. Consider
a configuration sorted at random on the lattice with Bernoulli measure and
perform the boostrap procedure (see section 4.9) by removing at each step
particles which have less than 2d — f neighbors occupied. It is immediate to
check that, if at the end of such procedure no cluster of particles remains,
the initial configuration belongs to the irreducible component which contains
the configuration with all the spins down. Therefore, using the results for
bootstrap percolation in [23], it is immediate to conclude that in the ther-
modynamic limit irreducibility holds (since all configurations belong with
unit probability to the same irreducible component) at any temperature if
2 < f < d, while at any temperature irreducibility does not hold if f > d.
Actually, in [54] this result was proven for the two and three—dimensional
cases, but it is immediate to generalize it to higher dimensional cases using
the already mentioned recent results on bootstrap percolation [26]. Note
that for FA model all the moves that are allowed in bootstrap procedure are
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also allowed for the true dynamics. Therefore, spins that are forever blocked
up correspond to vacancies that remain after the boostrap procedure. This
implies that bootstrap results are sufficient to conclude irreducibility in the
thermodynamic limit, at variance with the KA case!. Moreover, the crossover
length L?(p) of bootstrap procedure is in this case not only a lower bounds
as for KA, but coincides with the one for FA model. In order to obtain the
temperature dependence of such crossover length it is sufficient to perform
the change of variables p — exp(Bh)/(1 4 exp(5h)) (see end of previous
section).

As we explained in section 2.5.1, irreducibility in the thermodynamic limit
is not a sufficient condition for ergodicity, which is the physically interesting
property. On the other hand, a sufficient condition to establish ergodicity
is proving that any eigenvectors with zero eigenvalue of the generator of the
Markov process is a constant. By using the same strategy as in section 4.8
and the fact that the invariant measure (7.2) is again a product measure, we
prove that for FA models irreducibility implies ergodicity. The key ingredient
is that pr(H) = 1, where H is the irreducible component which contains
the configuration with all spins down. Indeed, this allows us to establish
that if pp(fLf) = 0 then f(n™) = f(n) almost surely with respect to pur
for any couple of site x,y?. This, using again DeFinetti’s theorem on the
decomposition of exchangeable measures on product measures ( [42,43]), we
conclude that f is constant a.s. with respect to jp.

7.2.2 Relaxation

Let us turn to the relaxation behaviour. For FA model on a hypercubic d—
dimensional lattice it is well known from previous results and simulations
that the behaviour is strongly different in the case f = 1 and in all the other
cases. In the former case a single down spin can facilitate the flip of any
of its neighbors, therefore relaxation does not require cooperative processes
and times scale are proportional the density of down spins, as is confirmed by
numerics. In some sense, this version of FA model is analogous to the models
we have introduced in chapter 3: the single down spin plays the same role of

IThis is due to the fact that for KA models to perform a move a requirement on
the number of neighbors on the final position is also imposed and morever the dynamics
conserves the number of particles. Therefore a sequence correspondent to the bootstrap
procedure is not a sequence of allowed moves for KA.

2Note that now the generator of the process does not contain terms of the form
f(n®**e — f(n) corresponding to the exchange of neighboring occupation variables. How-
ever, such terms can be easily reconstructed by means of two spin flips, i.e. using equality

™) = f(n) = (F((*)Y = F(n") + (f(n¥) = f(n)-
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finite clusters of vacancies that can freely move in an otherwise totally filled
lattice. On the other hand, if f > 1 neither a single facilitating spin nor a
finite cluster of them can subsequencially flip down the other spins if they are
all up. Furthermore, it is natural to expect that cooperative processes are
involved in relaxation at low temperature since the relaxation time does not
scale as a power law of the density of up spins. However, the nature of the
cooperative mechanism which guarantees relaxation and the exact scaling for
the times is still an open issue (see [15]).

Consider again the cores of minimally frameable regions defined in chapter
4. Tt is immediate to check that using moves allowed by FA rules every
occupation variable inside the core can be set to zero, i.e. every spin can be
flipped to the facilitating state. Then, one can typically sequentially flip all
the spins in a row of length ¢ adjacent to such core. We conjecture that the
diffusion of these macro—defects is the dominant mechanism for relaxation in
the low temperature regime. Therefore, by the knowledge of the temperature
dependence? of size and relaxation times for such defects and neglecting as for
KA the interaction among two defects®, we find the temperature dependence
of relaxation times. As for KA model, these times are dominated by the large
distance among the defects. For the case d =2 f = 2, this yields

2C

e (7.3)

T ~ exp —
where ¢, >~ 1.1 (see equation (4.46)) and m(7T') is the magnetization, i.e.
1 —m(T) is the probability of finding a facilitating (i.e. up) spin. Therefore,
we expect typical relaxation times 7 to scale as

o (L(p)(2,2))° (7.4)

We have run numerical simulation on a lattice to check above prediction.
Relaxation time 7 is measured both as the integrated persistence time and
from the integrated correlation function. The two results are consistent and
they are both in good agreement with above prediction (7.4), as shown in
figure 7.1. Indeed, in this figure we report the logarithm of 7 multiplied by
(1 —m(T))/2 as a function of 1 — m(T") which converges to ¢, =~ 1.1 for
1—m(T) — 0, ie. for T— 0. We recall that (7.4) gives the time relaxation

3Rewriting the size of typical cores as a function of density simply means substituting
the particle density p with the temperature dependent magnetization, see section 7.1

41t is a priori possible that such interaction changes the typical relaxation times. Our
estimate for the time corresponds to an inverse power of the facilitating spin density with
the exponent given by the number of facilitating spins in a macro defect. Such interactions
could slightly change this exponent as has been claimed in [40] for the easiest case f = 1.
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Figure 7.1: Logarithm of typical relaxation time multiplied by 1—m(7")/2 as a
function of 1—m(7T), i.e. the probability for a spin to be down at temperature
T. For T'— 0, prediction 7.4 is fulfilled. The two curves correspond to times
obtained with the integration of persistence time (squares) and from the
decay of the correlation function (circles).

only in the low temperature limit, while at higher temperatures different re-
laxation mechanisms are present and we do not expect (7.4) to hold (therefore
our result is not in contradiction with the fact that numerical data do not
follow above law for higher temperatures). Indeed, the same percolation—
type arguments as for KA models assure the existence of a non—cooperative
relaxation mechanism at high enough temperature. In next section we will
show that this dynamical crossover is again related to the existence of a true
dynamical transition in the mean field approximation.

By using arguments analogous to those in section 6.2% and the knowledge

>Note that arguments in section 6.2 rely on the fact that the time to unblock a region
with size ¢ and density p goes like £? if £ < Z(p). In a non-interacting spin system, the
typical time to flip a given spin is usually independent on the size of the system. However,
for FA models with f > d, to flip a spin inside a low temperature region one must wait
until a macro—defect enters this region and ”propagates” to the chosen spin. Since the
diffusion of such defects involves mechanisms which are analogous to those for KA, it is
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of the temperature dependence of the crossover length (see previous sec-
tion), we derive a stretched exponential relaxation for spin autocorrelation
functions with a stretching exponent § = d/(d + 2). This prediction for the
exponent is in good agreement with previous numerical results, for example
in the two dimensional case with f = 2 a stretching parameter § = 0.5 has
been detected in [45].

7.3 FA on the Bethe lattice

Let us consider FA model on the Bethe lattice. As usual, one arranges the
lattice as a tree with k branches going up from each node and one going
down, and then proceeds downwards.

Let B be the probability that, without taking advantage of the configu-
ration on the bottom, a node is in the state 0 or can be brought in this state
rearranging sites above it. B verifies the iterative equation:

k—f
B =py+p (Z (k_kili)mBk_i(l — B)Z> (7.5)

1=0

where we let

o= plpp=1)= % (7.6)
Po = M(% = 0) = m (7.7)

Equation (7.5) can be recovered also through the bootstrap procedure. Take
a configuration at random on the Bethe lattice with the equilibrium measure
and then flip to 0 all the sites for which the kinetic constraint allows the flip.
The bootstrap percolation problem reduces to know if an (infinite) cluster
of 1 remains at the end of this procedure (this problem has been already
investigated a long time ago [25]). If this cluster exists then the FA dynamics
will be non ergodic for sure. Thus, bootstrap results provide a lower bound
on the temperature at which the dynamical transition takes place. We show
in the following that this is not just a lower bound but it coincides with the
one found solving equation (7.5) on B. Let P be the probability that a site is
blocked in the state 1 because it has more than k£ — f neighbors above blocked
in the state 1. Each of this neighbors has also more than k£ — f neighbors

reasonable to assume the same scaling for typical times. This can be checked by numerical
simulations on the persistence time.
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above blocked in the state 1 and so on and so forth. P verifies an iterative
equation

1
P=p (Z (k_ki!i)mpk_i(l - P)i) (7.8)

1=0

Making the change of variable B' =1 — P, ¢ =k — 1 and using py + p; = 1
we obtain that B’ verifies the same equation of B. Thus the two transitions
coincide. The reason is the following. If P > 0 then there will be sites
blocked forever and B < 1. On the other hand, if P = 0 there exists with
probability one a sequence of allowed moves that bring a random equilibrium
configuration to the configuration with all sites 0 by definition (this set of
configurations is the high temperature partition according to Fredrickson and
Andersen definition). Hence, each site can flip to 0 after a certain number of
allowed moves and B = 15,

By analogous arguments as in chapter 5 we can derive some general prop-
erties from the equation (7.8) on P. In particular at a finite temperature T,
(which depends on the value of £ and f) a transition occurs from a finite
to a zero value for P and such transition is discontinuous if £ > f. This
corresponds again to a transition from an ergodic regime (for 77 > T,) to a
non ergodic regime (for 7' < T,) with a finite fraction of frozen spins. Fur-
thermore, such transition has again a mixed character of first and second
order. Indeed, at the transition P has again a square root singularity.

Before focusing on the particular cases kK = 3, f = 2 and k = 5, f = 3,
let us obtain an approximate estimate of the Edwards-Anderson parameter.
After the dynamical transition the equilibrium measure is broken in different
components. For each of them all the configurations have sites whose occu-
pation variable is frozen under the FA dynamics. Therefore, at long times
the correlation function

1
C=+ > (na(t)ni(0)) (7.9)

i
can be divided in two pieces:
e the sites that are frozen give a contribution plif , where plif is the prob-

ability that a site taken at random is in the state 1 and is blocked
forever. This can be expressed in terms of P and p; as

6This corresponds to the observation of section 7.2.1 that spins that are forever blocked
in the up state correspond to particles that can never be removed in the bootstrap proce-
dure and not only vice versa.
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1
kE+1)!
plif:pl ( )

)

~

Gl =P (7.10)

Il
<)

e the sites not blocked forever give a contribution

1 2
N ;(nﬁ (7.11)

where (-) means the average within one of the ergodic component and
we are summing only on non blocked sites. Because of the breaking of
ergodicity the density profile is not flat and we do not know a priori how
to calculate it. In the following we will use the approximation (n;)? =

—2
(n;) for an unblocked site i, where the overline means the average
over the different ergodic components. The number of unblocked sites
is N(1 — p? — pb7), where p/ is the probability that a site taken at
random is in the state 0 and is blocked forever. It reads:

f-1
pgf =D (Z %(plpg)kﬂi(l - (plp?’)i) (7.12)

i=0
The number of sites in the state 1 that are not blocked is N(p; — .
Thus the fraction of unblocked sites in the state 1 ((n;)) is

bf
- P1r—DPy
Ph=——57 (7.13)
1 - p1f - pof
Collecting all the contributions together we find the approximate estimate

Coo = P + (1= pi = pi )} (7.14)
If the correlation function is defined in such a way that in the liquid phase
the long time value is zero and the value at time zero is one then
b b bfy ~
p + (1 =p —pi)p* - p}
p1L— P

qpA = (7.15)

7.3.1 Case k=3, f=2

Consider FA model with facilitation parameter f = 2 on a Bethe lattice with
k = 3 (which crudely mimics a square lattice). In this case the equation (7.8)
gives
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P =p, (P*+3P*(1 - P)) (7.16)

Pulling out a factor P we get the equation 1 = p;(3P — 2P?). The term
in the parenthesis is maximum for P = % and equals %. Thus the critical
value of p; at which the transition takes place is p{ = % which corresponds
to B, = 2.07944 and T, = 0.480898. By running numerical simulations we
have successfully checked this prediction. Indeed, as shown in figure 7.2, the
decay of correlation becomes slower and slower at lower temperature and it
develops a infinite plateau for " — T, from above.

Note that, using the approximate formula for the ¢qz4 we obtain that at the

transition ¢ ~ 0.32, which is not too far from the numerical value 0.4.

7.3.2 Case k=5, f=3

Consider FA model with facilitation parameter f = 3 on a Bethe lattice with
k =5 (which crudely mimics a cubic lattice). In this case the equation (7.8)
gives

P =p; (P°+5P*(1— P)+10P*(1 - P)?) (7.17)

Pulling out a factor P we get the equation 1 = p;(P*+5P3(1—P)+10P%(1—
P)?). The term in the parenthesis is maximum for P ~ 0.724022 and equals
1.19777. Thus the critical value of p; at which the transition takes place
is p{ =~ 0.834884 which corresponds to 5. = 1.62064 and 7, = 0.617038.
Using the approximate formula for the ¢z we obtain that at the transition
qpa ~ 0.407899.

7.3.3 Out of equilibrium behaviour

In previous sections we have argued that, as for KA model, FA on the
Bethe lattice has a dynamical ergodic/non—ergodic transition with a first or-
der/marginal character similar to p—spin transition. Therefore, we have run
some numerical simulations in the case £ = 3 f = 2 to investigate whether
this analogy extends also to the out of equilibrium behaviour. In figures 7.3,
7.4, 7.5 and 7.6 we draw the two—times response and correlation functions
obtained when quenching the model to a temperature 7' = 0.4 < T, ~ 0.48.
These results clearly show that the model displays the aging properties typ-
ical of disordered quenched spin models and experimentally valid for glass
forming liquids (see section 2.3).

Let us discuss a possible scenario for this out of equilibrium regime. The
irreducible component which contains the state with all spins in the facili-



154 7. FA model

tating state (the so called high temperature partition) has unit probability
with respect to equilibrium measure above the critical temperature. On
the other hand, for temperatures below the critical one there exists with fi-
nite probability an infinite cluster of forever blocked spins. Performing the
quench from an initial temperature 7; > 7, to a final temperature Ty < T,
corresponds to take g, as initial configuration and then evolve it with FA
dynamics with temperature 7' = T in the rates (7.1). Since the initial state
is concentrated on the high temperature partition it will remain there at any
later time, therefore no infinite cluster of forever blocked spins can occur
and the measure cannot relax to the equilibrium one at 7%. Consider the
model equilibrated with rates at temperature 17" = T, + € with ¢ > 0. For
€ — 0 we expect that the equilibrium measure is concentrated on configura-
tions with large clusters of up spin which are quasi blocked (the precursors of
the infinite forever blocked clusters that occur when sampling configurations
with pp with T' < T,), i.e. a very particular sequence of spin flips must be
performed to unblock the whole cluster. We conjecture that by lowering the
temperatures, i.e. for e — 0, such clusters will survive while the remaining
spins equilibrate and therefore the magnetization (concentration of up spins)
increases towards its equilibrium value at T,. If this conjecture is correct,
chosen the value of the dynamically attained magnetization, m, one could
calculate the value of other one time quantities by using a measure which is
flat over all the ergodic components at temperature 7, and distributes the
non-blocked spins with an equilibrium measure at a temperature such that
the overall magnetization equals m. A test of such conjecture could be ob-
tained by the numerical study of the violation of the fluctuation dissipation
relation in the non—equilibrium regime. If above hypothesis is correct, this
should give an effective temperature that corresponds to the derivative of
the configurational entropy calculated at the critical temperature (i.e. with
respect to g, ).

7.4 Conclusions

In this chapter we have studied a kinetically constrained spin model, namely
Friedrickson Andersen model. For such model bootstrap percolation proce-
dure is exact. Indeed, all the moves that are allowed during this procedure
can occur also for the real dynamics (at variance with what happens for KA
model). Therefore, by using bootstrap results it is immediate to establish
irreducibility in the thermodynamic limit. This, together with the fact that
the equilibrium measure is trivial, implies that ergodicity also holds at any
temperature. However, in the low temperature regime facilitating spins can



7.4. Conclusions 155

n.&

N.B

J D4

ne2

U 1 1 1 1 |.- -\""-\-\h\"‘"
oI B e T LU s SR 1 S s A [ O ¥ s
i

Figure 7.2: Correlation function in equilibrium in the case £ = 3 f = 2 at
different temperatures T'

diffuse only in a cooperative way which involves large regions and the typical
relaxation time diverges for 7' — 0 as the density of these macro-defects.
This scaling is confirmed by numerical results. In other words, some regions
remain blocked until mobility is propagated through the sequential flip of up
spins which occur in a cooperative way starting from a particular macro—
defect, i.e. a large region containing many facilitating spins. The slowness
of dynamics is due to the fact that such regions are very rare.

On the other hand, for FA model on a Bethe lattice we find that a dy-
namical ergodic/non-ergodic transition occurs at a finite density. As for KA
on the Bethe lattice, such transition is smoothed in a dynamical crossover in
finite dimensions. Moreover, the transition has again a first order/marginal
character analogous to those of p—spin fully connected disordered models.
Indeed, it is related again to the arising of fragile infinite clusters of for-
ever blocked occupation variables. Here the analogy with p—spin models is
strengthened by the investigation of the out of equilibrium regime, in which
the system displays aging phenomena.
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Figure 7.3: FA model on a Bethe lattice with £ = 3, s = 2. Two times
correlation function C(t,t,) after a quench at temperature 7' = 04 < T..
The different curves correspond to different values of the waiting time ¢, =
10%, with k =1,...,8 (from left to right).
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Figure 7.4: FA model on a Bethe lattice with £ = 3, s = 2. Two times
connected correlation function C.(¢,t,) after a quench at temperature 7' =
0.4 < T,. The different curves correspond to different values of the waiting
time t,, = 10%, with k = 1,...,8 (from left ro right).
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Figure 7.5: FA model on a Bethe lattice with £ = 3, s = 2. Two times
integrated response function x(¢,t,) after a quench at temperature 7' =
0.4 < T,. The different curves correspond to different values of the waiting
time t,, = 10* with k = 0,...3 (short waiting-time behaviour).
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Figure 7.6: FA model on a Bethe lattice with £ = 3, s = 2. Two times
integrated response function x(¢,t,) after a quench at temperature 7' =
0.4 < T,. The different curves correspond to different values of the waiting
time ¢,, = 10% with k = 4,...7 (long waiting-time behaviour).
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Chapter 8

Conclusions and perspectives

In this work we have investigated the dynamical behaviour of some kineti-
cally constrained particle and spin models. The dynamics is given through
a continuous time Markov chain which allows nearest neighbors moves of
particles and onsite spin flips, respectively. In particular, we focus on some
models which satisfy detailed balance with respect to a trivial product mea-
sure, namely Bernoulli measure at any density for particle systems and Gibbs
measure at any fixed temperature and with a non-interacting Hamiltonian
for spin systems. The principal aim of the work was to investigate the mech-
anisms which induce a sluggish and heterogeneous dynamics for some choices
of the rates in the high density (low temperature) regime. First we prove that
in the thermodynamic limit an ergodic/non—ergodic transition cannot occur
for such models on d-dimensional hypercubic lattices and typical relaxation
times are always finite at finite density (finite temperature). However, in the
high density (low temperature) regime relaxation occurs only through the co-
operative motion of large rare regions and typical times scale as the distance
of such regions which goes to zero faster than power law for p — 1 (7" — 0).
This is very reminiscent of the super—Arrhenius increase of relaxation times
in supercooled liquids at low temperature. On the other hand, the scenario
is different for the mean field version of such models obtained by considering
them on a Bethe lattice, i.e. a random graph with fixed connectivity. Indeed,
in this case an ergodic/non-ergodic transition takes place at a finite critical
density (finite critical temperature). The latter separates an ergodic regime
from a regime in which the system is partially frozen, namely there is a fi-
nite fraction of particles (spins) blocked forever. This transition has a first
order/marginal character that is very reminiscent of the dynamical transi-
tion for p—spin models. The above mentioned ergodicity proof on hypercubic
lattices allows us to identify the cooperative rearrangements which destroy
such mean field transition in finite dimensions. Moreover, by percolation—
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type arguments we find that the mean field transition is substituted in finite
dimensions by a crossover from a non—cooperative to a cooperative relax-
ation mechanism. This explains the apparent dynamical transition detected
by previous numerical simulations. In other words, our results unveil the co-
operative processes which transform the mean field transition into a crossover
in finite dimensional systems. Finally, we have discussed the heterogeneous
relaxation in the high density (low temperature) regime. More precisely, by
the knowledge of the density (temperature) dependent crossover length below
which finite size effects are relevant, we have given a possible quantitative
explanation of the stretched exponential relaxation of correlation functions.
Of course, many interesting issues remain open. In particular, the dynam-
ical crossover and the heterogeneous relaxation deserve a further analytical
and numerical investigation.
Concerning the crossover, we have run simulations for the KA model on a
square lattice to check our predictions. However, in this case the crossover is
not sufficiently sharp to detect an unambiguous power low of the self diffusion
coefficient in the vicinity of the percolation threshold. Therefore, it could be
interesting to analyze both hypercubic lattices in a higher spatial dimen-
sions and different lattices for which we expect a sharper crossover. Indeed,
gaining a further understanding of this mechanism, can be a useful ground
for understating how the results obtained in other mean field approaches
to glassy dynamics should be quantitatively modified in real systems. For
example, dynamics near the mean field ergodic/non-ergodic transition has
been extensively studied for fully connected disordered spin models and the
extension of these results to the finite dimensional models is still debated.
On the other hand, concerning the heterogeneous relaxation it could be inter-
esting to analyze the behaviour of the dynamical susceptibility y4 for these
models. In particular, since we have sharp predictions both on the typical
spatial and time scales of the cooperative processes involved in relaxation,
we wish to investigate how the latter are related to the form of the dynam-
ical susceptibility. This could be a very useful information in the study of
different models of glasses, since usually analytical results are out of reach
but the dynamical susceptibility can be obtained by numerical simulations.
Moreover, it would be interesting to establish the connection (if any) of our
results with the out of equilibrium phenomenology that takes place when su-
percooled liquids are quenched below the temperature where they can equi-
librate. Explaining such out of equilibrium phenomena and formulating a
suitable ensemble that enables to calculate avarages of physical quantities in
these regime is indeed a widely open problem. By running numerical simula-
tions for the mean field version of FA model, we detect an out of equilibrium
regime and aging features that are very similar to those of p—spin fully con-
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nected disordered models. This out of equilibrium regime would deserve a
further investigation. In particular, we conjecture that after a quench below
the critical temperature the system is blocked on the threshold states which
corresponds to the different possible ergodic components. In other words, we
expect the measure to be well approximated by a flat distribution over the
possible quasi—blocked clusters of up spins which dominates the equilibrium
measure near (above) the critical temperature while the spins on the other
sites equilibrate. Another relevant issue is to explain the aging phenomena
detected for finite dimensional KA models [49]. In this case, since ergod-
icity holds, the measure relaxes to the equilibrium trivial one in the long
time limit. However, typical diffusion times becomes very long above a finite
crossover density (see section 6.1.4) and we expect the same to be true for
the mixing time that controls the convergence of an initial measure to equi-
librium. Therefore, aging phenomena should occur above the crossover on
finite (long) times. By using the knowledge of the density dependence of time
and spatial scales for relaxation, it should be possible to derive quantitative
predictions on such phenomena.

Of course, it would also be interesting to extend our results to more re-
alistic models of the physical systems which undergoes a glass transition.
In this respect, one should investigate kinetically constrained models with a
non trivial equilibrium measure, i.e. with interactions among particles (be-
sides hard core constraint) or spins. Results on ergodicity should trivially
generalized to these models (as long as a thermodynamic transition in the
equilibrium measure does not occur), but density (temperature) dependence
of typical relaxation times could be different. More importantly, one should
try to extend the results to models of continuous character. The simplest
among such continuous generalization is the hard sphere model. By argu-
ments similar to those in chapter 4 and some additional work, we are able to
generalize the result of irreducibility for this model. However, in the absence
of an auxiliary procedure analogous to bootstrap percolation for discrete
models, extending the results on typical diffusion times is a non trivial task.
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Appendix A

Entropy decrease for the
porous media equation

In this Appendix, by a scaling limit of the logarithmic Sobolev inequality,
we deduce the exponential decrease of a suitable entropy for a nonlinear
degenerate parabolic equation (porous media equation).

Let us consider the following parabolic problem, called porous media

equation, on B := [0,1]¢ with Dirichlet boundary conditions
dwu(t,r) = V,-(D(u(t,r))V,u(t,r)) (t,7) € (0,00)xB
u(t,r)=p (t,r) € (0,00)x0B (A1)
u(0,7) = @(r) reB

where p € (0,1), the initial datum ¢ € C(B;]0,1]) satisfies ¢(r) = p for
r € 0B, and the diffusion coefficient D(u) > 0 is smooth and degenerates
linearly for v = 1, namely the exists a constant § € (0, 1) such that §(1—u) <
D(u) <6 H1—wu), u €[0,1]. Since we assumed 0 < ¢ < 1, by the maximum
principle, we have that u € C(R. x B; |0, 1]).

As discussed in the introduction, the equation (A.3) is the natural candi-
date for the hydrodynamic limit of the process with generator Lg\k), the diffu-
sion coefficient D(u) would be given by a Green-Kubo formula [17, §I1.2.2].
Note that the Dirichlet boundary condition is due to the particles’ reservoirs.
Although we do not prove any scaling limit of the microscopic dynamics to
(A.3), we show how the logarithmic Sobolev inequality (3.31) implies the
exponential decrease of a suitable entropy for the nonlinear evolution (A.3).

Given p € (0,1), we introduce the convex functional H, : C(B;[0,1]) —

R, as
u(r)

H,(u) := /Bdr [u(r) log - + (1 — u(r)) log T—u(r)

— (A.2)
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where we understand 0log(0 = 0. It is easy to show that H, is a Lyapunov
functional for the evolution (A.3), moreover if u(t,7) is a smooth solution of
(A.3) bounded away from 0 and 1 we have

_%Hp(u(t,-)) = /Bdru(t’r)[l_u(t7r)]D(U(t,T))(Vrlogu(ti’r)))z

1 —u(t,r
= Q(u(t, ")) (A.3)

The following theorem, which states a “logarithmic Sobolev inequality”
for the nonlinear evolution (A.3) is easily obtained as a scaling limit of (3.31).

Theorem A.0.1. For each p € (0,1) and 6 > 0 there exists a constant
C" = C'(d, 6, p) such that for any u € C*(B;[0,1]) with u(r) = p for r € 0B

Hp(u) < C'Q(u) (A.4)

Remark. The inequality (A.4) can be proven directly by reducing it to the
Poincaré inequality for the Dirichlet Laplacian on B. The probabilistic proof
given below, which somehow connects the evolution (A.3) to the microscopic
process, shows additionally that the Lyapunov functional H, is the macro-
scopic limit of a relative entropy.

Proof. We shall prove the bound (A.4) for D(u) = 1—u?; the generic case of
D degenerating linearly for v 1 1 follows by our hypothesis on the diffusion
coefficient D. By truncation, it is also enough to prove (A.4) when u is a
smooth function bounded away from 0 and 1.

We set € := ¢~ and apply inequality (3.31) for k¥ = 1 choosing f? = ¢.
where

g.() = [ ML el (A5)

prefl = p]t=m
Note that p3 ,, (1) == #1a,(n)g-(n) is a product probability measure on 4
with density profile u, namely y3 ,,(n.) = u(ex). By elementary computa-

tions which we omit, we have that the normalized relative entropy of pj ,,
w.r.t. pa , converges to H,(u) as ¢ — 0, namely

TEA

lim ey (gs log ) = H,(u A6
0 5P ILLA’p(gg) P( ) ( )
Moreover it is straightforward to check that

lim " £15(v6:) = Q) (A7)

Let C(d,1,p) be the constant such that (3.31) holds for £ = 1. By (A.6)
and (A.7) the bound (A.4), with C' = C(d, 1, p), now follows from Theorem
3.2.3. -
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The exponential decrease of the “entropy” H, along the flow of the porous
media equation (A.3) follows from equation (A.3) Theorem A.0.1, and a
straightforward truncation argument.

Corollary A.0.2. Let v € C(R.xB;[0,1]) be the solution of (A.3) and
C' =C"(d,d,p) be the constant in (A.4). For each p € (0,1) we have

Hy(u(t,-)) < e ' Hy(p) (A.8)
for any t € Ry and any ¢ € C(B;[0,1]) such that ¢(r) = p for r € 0B.

We have assumed that the diffusion coefficient D(u) degenerates linearly
for w = 1. One can also obtain the exponential decrease of the entropy H,
if D(u) =< (1 —u)™, n a positive integer. This can be shown by introducing
a microscopic model in which the exchange rate ¢, 4.,(n) is zero iff there
exists j = 1,...,n such that n,_j., = Nz 4(j+1)e; = 1. It is in fact possible to
prove that the logarithmic Sobolev constant for such a model is of the order
2.
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