
D
RA
FT

Advanced continuous processes

2023 - 2024

François Simenhaus
Office B 640

simenhaus@ceremade.dauphine.fr

1



D
RA
FT

Contents

1 Revisions 5
1.1 Dynkin’s Lemma . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Other Measure Theory Reminders . . . . . . . . . . . . . . . . 8
1.3 Gaussian Variables and Vectors . . . . . . . . . . . . . . . . . 9

2 Generalities on random processes 13
2.1 Definitions. Sigma-algebra and law. . . . . . . . . . . . . . . . 13

2.1.1 Random processes as random functions . . . . . . . . . 13
2.1.2 Law of a random process . . . . . . . . . . . . . . . . . 15
2.1.3 Independence of two random processes . . . . . . . . . 16
2.1.4 Canonical process . . . . . . . . . . . . . . . . . . . . . 16
2.1.5 The Daniell-Kolmogorov Theorem . . . . . . . . . . . . 17

2.2 Continuous Processes . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.1 σ-algebra(s) . . . . . . . . . . . . . . . . . . . . . . . . 20
2.2.2 Continuous Modification and Kolmogorov Criterion . . 21

3 Brownian Motion 24
3.1 Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.2 Existence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Wiener Measure and Canonical Process . . . . . . . . . . . . . 26
3.4 First Properties . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Strong Markov Property . . . . . . . . . . . . . . . . . . . . . 30
3.6 Donsker’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . 32

4 Continuous Martingales 33
4.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Convergence and Regularization . . . . . . . . . . . . . . . . . 34
4.3 Doob’s Stopping Theorem . . . . . . . . . . . . . . . . . . . . 35
4.4 Doob’s Maximal Inequalities . . . . . . . . . . . . . . . . . . . 36

5 Stochastic Integral - Itô (1950) 37
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Translated by ChatGPT with almost no human control so far...

One lecture of 1.5 hours per week and a tutorial session of the same
duration. The grade is determined by

Grade = max(Exam ; 0.4 Midterm + 0.6 Exam).

These lecture notes are largely inspired by the notes and books of Fabrice
Baudoin [1], Francis Comets [5], Jean-François Legall [7], Marc Yor and
Daniel Revuz [8]. I also invite you to consult the lecture notes of Djalil
Chafäı [4], Philippe Bougerol [3], and Nadine Guillotin [6], which you can
easily find online.

Throughout this course, we consider a probability space (Ω,F ,P).
All random objects considered are constructed on this space unless
explicitly stated. We will denote E as the associated expectation.
If X is a random variable and A ∈ F an event, we will sometimes
use the notation (standard)

E(X,A) := E(X1A).

Definition 1. A random process indexed by a set of indices T and taking
values in a measurable space (E, E) is a family (Xt)t∈T of random variables
defined on (Ω,F ,P) and taking values in (E, E).

Examples of common index sets:

1. T = N and we then talk about discrete processes. This is the framework
of the course you took in the first semester. The most important exam-
ples of such random processes are, of course, discrete-time martingales
and Markov chains.

2. T = R2 and we then talk about random fields. 1

In this course, we will mainly focus on continuous-time processes taking
values in R:

T = R+ and (E, E) = (R,B(R))

1See, for example, the Wikipedia page on the Gaussian free field for a famous example.
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(sometimes T = R and (E, E) = (Rd,B(Rd)) with d ≥ 1 an integer).
We will also mainly focus on random processes with continuous

paths. We will, in particular, define, construct, and study the Brownian
motion (Bt)t≥0. One of our objectives is to give meaning to the stochastic
differential equation:

dXt = b(Xt)dt+ σ(Xt)dBt.

This equation can be understood as follows: the infinitesimal displacement
of the particle X at time t is the sum of two terms,

1. a term corresponding to the velocity field b: b(Xt)dt. If we only had
this term, our equation would be an ordinary differential equation X ′t =
b(Xt) similar to those you studied last year in your third year;

2. a term accounting for microscopic collisions due to thermal agitation
σ: σ(Xt)dBt.

To make sense of this equation, we will need to construct the Brownian mo-
tion and also construct the stochastic integral with respect to this Brow-
nian motion.
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1 Revisions

In this chapter, we propose some review points that will be very useful in
the rest of the course. There are two main sections: the first one allows us to
review the concept of the ”monotone class argument” (in frecnh) or Dynkin’s
lemma, which is often invoked in the study of random processes; the second
one includes some reviews on Gaussian variables and vectors, which will be
very useful since Brownian motion is a Gaussian process. Some results from
measure theory, which we will also use during this semester, complete this
part.

1.1 Dynkin’s Lemma

This lemma is particularly useful in the context of random process theory.
In general, in what context is it used?

To show that a property P is true for any event A in a sigma-algebra F ,
we often proceed as follows:

1. We find a class (i.e., a collection of subsets of Ω) I generating F (i.e.,
σ(I) = F) such that P(A) is true for all A ∈ I;

2. We show that the class {A such that P(A) is true} forms a sigma-
algebra;

and we conclude that P is true (at least) on σ(I) = F . The problem is
that in some cases, the second point is false because the class we consider is
not closed under countable union but only under countable increasing union.
This is the case, for example, when considering µ and ν as two probabilities
on (Ω,F) and focusing on the class {A such that µ(A) = ν(A)}. It is in
these cases that Dynkin’s lemma is useful.

Definition 2. A class M⊂ P(Ω) is a λ−system if

1. Ω ∈M

2. For all A,B ∈M with A ⊂ B, B \ A ∈M

3. For any increasing sequence (An)n≥0 in M,⋃
n≥0

↑ An ∈M.
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There are other equivalent definitions of a λ-system in the literature2. We
define λ(C) as the λ−system generated by a class I using the same idea as
for the σ-algebra generated by I, denoted as σ(I). Recall that:

σ(I) =
⋂

T sigma-algebra s.t. I⊂T

T .

Thus, we define

λ(I) =
⋂

M monotone class s.t. I⊂M

M.

To ensure that this definition makes sense, it is necessary to verify that any
arbitrary intersection of λ−system is still a λ−system and that the inter-
section is non-empty since P(Ω) is λ−system and contains I. Note that a
sigma-algebra is also a λ−system, and thus, we always have

λ(I) ⊂ σ(I). (1)

Returning to our initial problem: we find ourselves in a case where the
second part of the proof does not work because the class

{A such that P(A) is true}

is not a sigma-algebra but only a λ−system. Therefore, we obtain that
property A is true on λ(I). The purpose of Dynkin’s lemma is to show, with
an additional assumption, the converse of (1), and thus λ(I) = σ(I).

Lemma 1 (Dynkin’s Lemma). Let I ⊂ P(Ω) be a class closed under finite
intersection. Then,

σ(I) = λ(I).

Proof. The idea of the proof is to show that with the additional assumption
of closure under finite intersection, λ(I) is, in fact, a sigma-algebra. This is
the subject of Exercise 1 in Tutorial 1.

Here are some important applications:

1. Let µ and ν be two probability measures that coincide on a class I ⊂
P(Ω) closed under finite intersection and such that σ(I) = F (which
means µ(A) = ν(A) for all A ∈ I). Then µ = ν, i.e.,

µ(A) = ν(A), for all A ∈ F .
2See, for example, the English Wikipedia page on the monotone class lemma
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Indeed, the class M = {A such that µ(A) = ν(A)} is a λ−system
(verify this!) and contains I. Therefore, M ⊃ λ(I). Moreover, I
is closed under finite intersection, so according to Dynkin’s lemma,
λ(I) = σ(I). Thus, µ = ν.

It is important to note that µ and ν do not necessarily coincide if
we remove the assumption ”I is closed under finite intersection” as
demonstrated by the following example: consider Ω = {1, 2, 3, 4, 5}, the
sigma-algebra F = P(Ω), and the class I = {{1, 2, 3}, {2, 4}, {3, 4, 5}},
which is not closed under finite intersection. It can be easily verified
that σ(I) = F . Let µ be the uniform probability and ν be the probabil-
ity such that ν({1}) = 3/10, ν({2}) = 1/10, ν({3}) = 1/5, ν({4}) =
3/10, ν({5}) = 1/10. It can be checked that µ and ν coincide on I but
not on P(Ω).

Here are two important examples where we use this property:

(a) Consider (R,B(R)). If two measures µ and ν coincide on open
bounded intervals (i.e., µ(]a, b[) = ν(]a, b[) for all a < b), then they
are equal. This is how the uniqueness of the Lebesgue measure is
ultimately proved, although the existence is a different story!

(b) The cumulative distribution function characterizes the distribu-
tion because the class {] − ∞, a], a ∈ R} is closed under finite
intersection and also generates the Borel sigma-algebra.

2. Consider a family (Xt)t∈T of random variables. By definition, σ(Xt, t ∈
T ) is the smallest sigma-algebra making all Xt, t ∈ T , measurable
[verify that this definition makes sense and that, when |T | < +∞,
σ(Xt, t ∈ T ) = {(Xt)t∈T ∈ A, A ∈ B(R)|T |}. See Exercise 5 in Tutorial
1 on this point]. Also, consider G a sub-sigma-algebra of F . Then the
following two propositions are equivalent:

(a) G and σ(Xt, t ∈ T ) are independent.

(b) For every S ⊂ T finite, G and σ(Xt, t ∈ S) are independent.

Proof. Fix A ∈ G and introduce

M = {B ∈ F , P(A ∩B) = P(A)P(B)}.

We want to show thatM = σ(Xt, t ∈ T ). To do this, we show thatM
is a λ−system. According to the assumption, this class contains

C =
⋃

|J |<+∞

σ(Xj, j ∈ J).
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This class is closed under finite intersection because if A ∈ σ(Xj, j ∈
J1) and B ∈ σ(Xj, j ∈ J2) where J1 and J2 are two finite subsets of J ,
then A ∩B ∈ σ(Xj, j ∈ J1 ∪ J2).

Therefore, λ(C) = σ(C), and we deduce that M contains σ(C). Since
σ(C) makes all Xt, t ∈ T , measurable, we deduce that M contains
σ(Xt, t ∈ T ).

As a corollary of this property, it can also be shown (Exercise 3 Tu-
torial 1) that two families of random variables (Xt)t∈T and (Ys)s∈S
are independent if and only if for all finite families t1, . . . , tn ∈ T and
s1, . . . , sm ∈ S, the vectors (Xt1 , . . . , Xtn) and (Ys1 , . . . , Ysm) are inde-
pendent.

In this course, we will encounter many other applications of this Dynkin’s
lemma. I recommend mastering this concept thoroughly.

1.2 Other Measure Theory Reminders

Here are some results that you need to know how to prove and use.

Lemma 2. Let X be a function taking values in a set E, and C ⊂ P(E).
Then, X is a random variable from (Ω,F) to (E, σ(C)) if and only if, for
every B ∈ C, {X ∈ B} ∈ F .

Proof. Exercise!

For any random variable X, we denote φX as the characteristic function
of X, defined for any ξ ∈ R by

φX(ξ) = E(eiξX).

Now, we recall the fundamental theorem due to Paul Lévy:

Theorem 1 (Lévy’s Theorem). 1. A sequence (Xn)n≥1 of random vari-
ables converges in law to the random variable X if and only if, for
every ξ ∈ R, (φXn(ξ))n≥1 converges to φX(ξ).

2. Suppose there exists a function φ such that for every ξ ∈ R, (φXn(ξ))n≥1

converges to φ(ξ). Then, the following three points are equivalent:

(a) (Xn)n≥1 converges in law;

(b) φ is a characteristic function;

(c) φ is continuous;
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(d) φ is continuous at 0.

This is a challenging theorem (which does not mean you should give up
studying its proof).

1.3 Gaussian Variables and Vectors

It is essential to review all concepts related to Gaussian variables and vectors
as they will be very useful in the study of Brownian motion.

A Gaussian random variable with parameters m ∈ R and σ2 > 0,
denoted asN (m,σ2) (also called normal distribution), is either (when σ2 = 0)
a constant random variable equal tom or (when σ2 > 0) a real-valued variable
with the density function

p(x) =
1√

2πσ2
e−

(x−m)2

2σ2 , x ∈ R,

with respect to the Lebesgue measure. It is called centered if m = 0 and
standardized if σ2 = 1 (it follows a N (0, 1)), in which case

p(x) =
1√
2π
e−

x2

2 , x ∈ R.

It can be verified that if X follows aN (m,σ2), then E(X) = m and Var(X) =
σ2. If U follows a N (0, 1), then for any m,σ ∈ R, the variable m+σU follows
a N (m,σ2).

The characteristic function of a centered standardized variable U is
given by

φU(ξ) = e−ξ
2

, ξ ∈ R,
(this can be proven easily, for instance by solving a simple ODE). More
generally, for any z ∈ C,

E(ezU) = ez
2/2.

It can be easily derived from the expression of φX when X follows aN (m,σ2):

φX(ξ) = eiξme−
ξ2σ2

2 , ξ ∈ R.

Consequently, if X1 and X2 are two independent Gaussian variables with
respective distributions N (m1, σ

2
1) and N (m2, σ

2
2), according to Lévy’s char-

acterization, X1 +X2 follows a N (m1 +m2, σ
2
1 + σ2

2).
Moments of the standard Gaussian can be easily computed from the

characteristic function φU . For any p ≥ 1, E(U2p) = (2p)!
2pp!

and E(U2p−1) = 0.
The following proposition is a classic result that one should know and be

able to prove (see Exercise 6 Tutorial 1).
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Proposition 1 (A limit (even a weak limit !) of a sequence of Gaussians is
a Gaussian). Let (Xn)n≥0 be a sequence of Gaussian variables such that for
every n ≥ 0, Xn follows a N (mn, σ

2
n). Suppose also that (Xn)n≥0 converges

weakly to a random variable X. Then:

1. X follows a N (m,σ2) where m = limn→+∞mn and σ2 = limn→+∞ σ
2
n.

2. If, moreover, (Xn)n≥0 converges in probability to X, then (Xn)n≥0

also converges in Lp for every 1 ≤ p < +∞.

Proof. This is Exercise 5 of Worksheet 1. It is a classic, but not an easy
exercise.

We now move on to Gaussian vectors.

Definition 3. A random vector (X1, . . . , Xn) is a Gaussian vector if, for any
(t1, . . . , tn) ∈ Rn, the variable

t ·X =
n∑
i=1

tiXi

is Gaussian.

If the vector (Xi)i=1,...,n is Gaussian, it implies, of course, that for any
i = 1, . . . , n, the variable Xi is Gaussian. However, the converse is not true.

Starting from the one-dimensional case, we can easily find the charac-
teristic function of a Gaussian vector: for any vector ξ in Rn,

φX(ξ) = E(ei
tξX) = φtξX(1).

Now, tξX follows a N (tξm, tξΓξ) with

m = E(X) and Γ = E((X −m)t(X −m)),

the mean and variance-covariance matrix of X. Consequently, we finally
obtain

φX(ξ) = ei
tξm−

tξΓξ
2 ,

and note that the distribution of a Gaussian vector is characterized by its
mean vector and variance-covariance matrix.

An important consequence is the characterization of independence
between the coordinates of a Gaussian vector:

10



D
RA
FT

Proposition 2. If X is a Gaussian vector, then its components are inde-
pendent if and only if Γ is diagonal, i.e., if the covariances are zero.

More generally, if (Xi)i∈I is a Gaussian vector and I = ∪(disjoint)
j=1,...,m Ij, then

the subvectors (Xi)i∈Ij , j = 1, . . . ,m, are independent if and only if, for any
1 ≤ k < ` ≤ m and any a, b ∈ Ik × I`, Cov(Xa, Xb) = 0 (i.e., Γ is block-
diagonal with blocks corresponding to the partition of I into Ij, j = 1, . . . ,m).

Proof. The direct implication is always true: there is nothing specific in the
Gaussian case. For the converse, it is necessary to show that the characteristic
function factors.

As in the one-dimensional case, any centered Gaussian vector can be
written as a linear transformation of a centered standard normal
gaussian vector (i.e., m = 0 and Γ = In). Indeed, for any positive sym-
metric matrix Γ, there exists an orthogonal matrix P (i.e., tPP = P tP = In)
and λ1, . . . , λd > 0 (d ≤ n) such that

tPΓP =



λ1

. . .

λd
0

. . .

0


.

It follows that Γ = AtA with

A = P



√
λ1

. . . √
λd

0
. . .

0


.

If U is a centered standard normal vector (i.e., U follows a N (0, In)), then
we can easily verify that

X
(law)
= AU.

This is also a simple way to see that for any positive symmetric matrix Γ,
there exists a N (0,Γ), as it can be constructed explicitly from U centered re-
duced (and which is only a vector of independent centred standard Gaussian
variables, hence easy to construct).

Density. For any random vector X taking values in Rn, the following
two points are equivalent:
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1. X follows a N (m,Γ) and rank(Γ) = n

2. X has a density with respect to the Lebesgue measure on Rn given by:

fX(x) =
1√

2π
n √

detΓ
e−

1
2
t(x−m)Γ−1(x−m).

It can be proven, for example, by writing X “ cleverly ” as the sum of
independent Gaussian vectors.

12
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2 Generalities on random processes

2.1 Definitions. Sigma-algebra and law.

Definition 4. A random process indexed by a set of indices T and taking
values in a measurable space (E, E) is a family (Xt)t∈T of random variables
defined on (Ω,F ,P) and taking values in (E, E).

Examples of common index sets:

1. T = N, and we then talk about discrete processes. This is the frame-
work of the course you took in the first semester. The most important
examples of such random processes are, of course, discrete-time mar-
tingales and Markov chains.

2. T = R2, and we then talk about random fields.

In this course, we are interested in continuous-time processes taking val-
ues in R:

T = R+ and (E, E) = (R,B(R))

(sometimes T = R or (Rd,B(Rd)) with d ≥ 1 an integer).

2.1.1 Random processes as random functions

Remark that, for a fixed ω ∈ Ω, a random process (Xt)t∈T (here T = R+)
defines a function:

X(ω) : R+ → R
t 7→ Xt(ω).

One way to consider the random process X is to see it as a random func-
tion. Is this possible? What sigma-algebra T should be considered on the
set A(R+,R) of functions from R+ to R so that

X : (Ω,F ,P)→ (A(R+,R), T )

is measurable?

Definition 5 (Cylindrical sigma-algebra). A cylinder is defined as a subset
of A(R+,R) of the form

{f ∈ A(R+,R) such that f(t1) ∈ B1, . . . , f(tn) ∈ Bn}

13



D
RA
FT

where n ≥ 1 is an integer, t1, . . . , tn are positive real numbers, and B1, . . . , Bn

are in B(R). The cylindrical sigma-algebra, denoted by T , is the sigma-
algebra on A(R+,R) generated by the cylinders:

T = σ(C, C cylinder of A(R+,R)),

meaning it is the smallest sigma-algebra that contains all cylinders.

In fact, the same sigma-algebra is defined by replacing, in the definition of
cylinders, the Borel sets Bi, i = 1, . . . , n with open intervals Ii, i = 1, . . . , n
or even intervals open on only one side (see Exercise 3 of TD 2). Another
common and useful definition of this sigma-algebra is noted:

Proposition 3. The sigma-algebra T is the smallest sigma-algebra that
makes all coordinate maps measurable. That is

T = σ(πt, t ≥ 0)

where for t ≥ 0, πt is the coordinate map at t defined by:

πt : A(R+,R) → R
f 7→ f(t).

Proof. For any t ≥ 0, note that πt is T − B(R)-measurable, since for any
B ∈ B(R),

{πt ∈ B} = {f ∈ A(R+,R), f(t) ∈ B}
is a cylinder and thus in T .

Conversely, let T̃ be a sigma-algebra that makes all coordinate maps
measurable, and show that it contains all cylinders. Consider a cylinder

C = {f such that f(t1) ∈ A1, . . . , f(tn) ∈ An}.

It can be rewritten as

C =
n⋂
i=1

{πti ∈ Ai}

and it follows that C ∈ T̃ . Thus, we have shown that T ⊂ T̃ .

We can now consider a random process as a random function:

Proposition 4. If (Xt)t∈R+ is a random process, then

X : (Ω,F ,P) →(A(R+,R), T )

ω →
(
t 7→ Xt(ω)

)
is measurable from (Ω,F ,P) to (A(R+,R), T ) and thus defines a random
function.

14
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Proof. Since T = σ(C, C cylinder of A(R+,R)), it suffices to verify that for
any cylinder C, {X ∈ C} ∈ F . Consider a cylinder

C =
n⋂
i=1

{πti ∈ Bi}

and verify that

{X ∈ C} = {ω such that
(
t 7→ Xt(ω)

)
∈ C} =

n⋂
i=1

{Xti ∈ Bi}

belongs to F .

It has just been shown that

σ(X) = X−1(T ) ⊂ σ(Xt, t ∈ T).

The reverse inclusion is also true (it is easier! see TD 2), and thus, for any
random process (Xt)t∈T,

σ(Xt, t ∈ T) = X−1(T ). (2)

Also note (see again TD 2) that for any finite family (X1, . . . , Xn) of
real random variables, σ(X1, . . . , Xn), the smallest sigma-algebra making all
Xi (i = 1, . . . , n) measurable, coincides with σ((X1, . . . , Xn)), the sigma-
algebra generated by (X1, . . . , Xn) seen as a random vector taking values
in (Rn,B(Rn)). By equipping A(R+,R) with the cylindrical sigma-algebra
T , this property of finite families of random variables can be extended to
random processes.

Furthermore, T allows us to consider X as a random function. Note also
that (2) shows that T is rich enough for its inverse image to fill the entire
σ(Xt, t ∈ T).

2.1.2 Law of a random process

We can define the law of the random process (Xt)t∈T as the image law
on (A(R+,R), T ) of P by the random function X: for all A ∈ T ,

PX(A) = P((Xt)t∈T ∈ A).

Proposition 5. Probability measures on (A(R+,R), T ) are characterized by
their values on cylinders. In other words, if µ and ν are two probabilities
on (A(R+,R), T ) such that for every cylinder C in A(R+,R), µ(C) = ν(C),
then µ = ν.

15
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Proof. This is another application of Dynkin’s lemma. Indeed, since T =
σ(C, C is a cylinder of A(R+,R)), it is enough to verify that the set of
cylinders forms a class stable under finite intersection (which is not very
difficult).

For a random process (Xt)t∈T, a finite-dimensional marginal refers to
any finite family of marginals (i.e., any finite subset of (Xt)t∈T):

(Xti)i=1,··· ,n n ≥ 1, ti ∈ T for all i = 1, · · · , n.

And finite-dimensional laws refer to the laws of finite-dimensional marginals.
From Proposition 5, it follows that two random processes (Xt)t∈T and (Yt)t∈T
with the same finite-dimensional laws also have the same law:

If for every n ≥ 1, all t1, · · · , tn ∈ T, and all B1, · · · , Bn ∈ B(R),

P(Xt1 ∈ B1, · · · , Xtn ∈ Bn) = P(Yt1 ∈ B1, · · · , Ytn ∈ Bn),

then PX = PY (i.e., X
(law)
= Y ).

2.1.3 Independence of two random processes

According to Dynkin’s lemma (again! see Exercise 3 TD 1), two random
processes (Xt)t∈T and (Yt)t∈T are independent if and only if, for all
n,m ≥ 1, all t1, · · · , tn ∈ T, and all s1, · · · , sm ∈ T,

(Xt1 , · · · , Xtn) ⊥⊥ (Ys1 , · · · , Ysm).

2.1.4 Canonical process

Now, we are interested in the question of the existence of law onA(R+,R).
First question is: if I consider a probability measure µ on (A(R+,R), T ), does
there exist a random process with law µ? To warm up, you can try to answer
the same question for (R,B(R)) (Exercise 4 TD 2). To answer this question,
we introduce the canonical process. It consists of the coordinate maps
(πt)t∈≥0 viewed as random variables on the probability space (Ω,F ,P) =
(A(R+,R), T , µ): for all t ≥ 0,

πt :(A(R+,R), T , µ) →(R,B(R))

ω → ω(t)

Note that by the very definition of T (see Proposition 3), πt is measurable
for all t ≥ 0. It is important to note that, viewed as a random function, the
random process π is actually the identity:

π : (A(R+,R), T ) → (A(R+,R), T )

ω → (t→ πt(ω))
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We can verify that for any A ∈ T , µπ(A) = µ(π ∈ A) = µ(A), which
means that π has law µ! Therefore, for any probability on (A(R+,R), T ),
I can construct a random process that has this probability as its law by
considering the canonical process.

2.1.5 The Daniell-Kolmogorov Theorem

We have already seen that the finite-dimensional distributions character-
ize the law of a random process. Is it true that, for any family of finite-
dimensional distributions, there exists a random process whose marginals
correspond to these distributions? It is clear that we cannot expect this to
be true in general: if we consider the finite-dimensional projections of a law
on A(R+,R), they clearly have the following compatibility property (which
is therefore a necessary condition):

Let’s consider a probability µ on (A(R+,R), T ). To make things a bit
more concrete, we can imagine that µ is the law of a random process (Xt)t≥0

(so µ = PX , but we will also sometimes use µ = X(P) for clarity). For
any I ⊂ R+ finite, let µI denote the image law of µ under the restriction
application to I:

πI :(A(R+,R), T ) →(RI ,B(RI))

ω → (ωt)t∈I

Thus, µI = µπI . Equivalently, we could have defined µI as the law of (Xt)t∈I
since for any A ∈ B(RI),

µI(A) = µ(πI ∈ A) = P((Xt)t≥0 ∈ {πI ∈ A}) = P(πI◦(Xt)t≥0 ∈ A) = P((Xt)t∈I ∈ A).

Thus, µI is the projection of the law µ onto RI , and the set of laws µI ,
I ⊂ R+ finite, is the set of finite-dimensional laws of (Xt)t≥0. We also define,
for all subsets J ⊂ I ⊂ R+ finite:

πIJ :(RI ,B(RI)) →(RJ ,B(RJ))

(ωt)t∈I → (ωt)t∈J .

We have πIJ ◦ πI = πJ , and thus for all A ∈ B(RJ),

πIJ(µI)(A) = µI(π
I
J ∈ A) = µ(πI ∈ {πIJ ∈ A}) = µ(πJ ∈ A) = µJ(A).

We have just verified that πIJ(µI) is the law of (Xt)t∈J . It seems complicated
to write, but we haven’t said anything very spectacular: I can obtain the law
of (Xt)t∈J in two ways: either by directly extracting the vector (Xt)t∈J from
the random process (Xt)t≥0 or by first extracting the vector (Xt)t∈I and then
from this vector the sub-vector (Xt)t∈J . The family of finite-dimensional
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laws µI therefore satisfies the compatibility condition: for all subsets
J ⊂ I ⊂ R+ finite

πIJ(µI) = µJ . (3)

We have thus already identified a necessary condition, which is ultimately
quite trivial, for a family of finite-dimensional laws to be derived from a
common law on A(R+,R) (i.e., a family of laws obtained by image measures
from a measure µ by the associated restriction applications to finite subsets
of R+). What is remarkable is that the converse is true:

Theorem 2 (Daniell (1918) - Kolmogorov (1933) Theorem). For any I ⊂ R+

finite, let’s suppose that a probability µI is given on (RI ,B(RI)). We further
assume that these probabilities satisfy the compatibility condition (3). Then,
there exists a unique probability measure µ on (A(R+,R), T ) such that for
all I ⊂ R+ finite

µI = µπI .

We accept the proof of this theorem for this year (and probably next
year too). We deduce that for any compatible family of finite-dimensional
probabilities, there exists a random process that has these finite-dimensional
laws. Indeed, the Daniell-Kolmogorov theorem provides us with a probability
on A(R+,R), and then we construct the desired random process using the
canonical process.

An important example of using this theorem is the existence of Gaussian
processes.

Definition 6. A random process (Xt)t∈T is said to be Gaussian if all its
finite-dimensional distributions are Gaussian: for all n ≥ 0, for all t1, · · · , tn ∈
T and all λ1, · · · , λn ∈ R,

λ · (Xt1 , · · · , Xtn) =
n∑
i=1

λiXti

is a Gaussian variable.

Proposition 6. The law of a Gaussian process is characterized by:

1. its mean function:
m :T → R

t → E(Xt).

2. its covariance function:

R :T× T → R
(s, t) → Cov (Xs, Xt) = E

(
[Xs − E(Xs)][Xt − E(Xt)]

)
.
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Indeed, according to Proposition 5, the law of a random process is charac-
terized by its finite-dimensional laws, and as here the finite-dimensional laws
are Gaussian, they are characterized by their means and covariances (which
determine the characteristic function). Note that the covariance function is

1. symmetric: for all s, t ∈ T, R(s, t) = R(t, s),

2. positive semidefinite : for all n ≥ 1 and all t1, · · · , tn ∈ T, the matrix
(R(ti, tj))1≤i,j≤n is positive semidefinite since for all λ ∈ Rn,

tλRλ = E
( n∑
i=1

λi(Xti −m(ti))
2
)
≥ 0

Proposition 7 (Existence of Gaussian processes). Let m : R+ → R and
R : R+ ×R+ → R be positive semidefinite and symmetric. Then there exists
a Gaussian process (Xt)t≥0 with mean m and covariance R. It is uniquely
determined in law.

Proof. Use Theorem 2, see TD2.

Here is an important example of a Gaussian process that will occupy
us for a good part of the semester. We seek to construct a Gaussian pro-
cess centered with independent and stationary increments and with
variance t at time t ≥ 0.

We say that a random process (Xt)t≥0 has

1. independent increments if for all n ≥ 1 and all real numbers 0 ≤
t1 ≤ · · · ≤ tn, the random variables Xt1 − X0, · · · , Xtn − Xtn−1 are
independent.

2. stationary increments if for all 0 ≤ s < t the random variables
Xt −Xs and Xt−s −X0 have the same distribution.

Let’s go back to our problem: if such a random process exists, it satisfies for
all 0 ≤ s < t,

R(s, t) = E(XsXt) = E((Xt−Xs)Xs)+E(X2
s )

(PAIS)
= E(Xt−Xs)E(Xs)+E(X2

s ) = s.

The function (s, t)→ s ∧ t is indeed positive semidefinite and symetric, and
therefore we can define the Gaussian process associated with this covariance
function R and mean function m = 0. We have almost constructed the
Brownian motion: what remains is the continuity, which we will address in
the next section.
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2.2 Continuous Processes

We have worked so far in the very general framework (A(R+,R), T ). Since
this space is enormous (or the σ-algebra T is too small), we note that certain
sets we would like to study are not events. We can, for example, show (TD2)
that the sets

{f ∈ A(R+,R), sup
t∈[0,1]

f(t) < 1} and

{f ∈ A(R+,R), ∃t ∈ [0, 1] f(t) = 0},

are not in T (and the set of continuous functions either... another exercise!).

2.2.1 σ-algebra(s)

In this course, we are mainly interested in continuous processes. So we will
work in the space of continuous functions C (R+,R). We define on this space
the cylindrical σ-algebra C, the smallest σ-algebra making the coordinate
applications measurable. In this context, the coordinate applications are
defined for all t ≥ 0 by

πt : C (R+,R) → R
ω → ω(t)

Equivalently, we can define the σ-algebra C as the smallest σ-algebra con-
taining the cylinders of C (R+,R), that is, a set of the form

C : {f ∈ C (R+,R) such that f(t1) ∈ B1, · · · , f(tn) ∈ Bn},

where t1, · · · , tn are positive real numbers and Bi, · · · , Bn are Borel sets of
R.

Definition 7. We say that a random process (Xt)t≥0 is continuous if for
all ω ∈ Ω, the function

t ∈ R→ Xt(ω)

is continuous.

Here again we can view X as a random function

X : (Ω,F ,P)→ (C (R+,R), C).

However, there is another natural σ-algebra on C (R+,R): that of uniform
convergence on compacts. We will be content to study these different σ-
algebras when T = [0, 1] and not R+ to bring it back to the topology of
uniform norm. We lose little in understanding by limiting ourselves to this
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framework, and we can study the general framework in exercise 10 of TD2.
So we remind you that the uniform norm on C ([0, 1],R) is defined for any
function f of this space by

||f ||∞ = sup{|f(t)|; t ∈ [0, 1]}.

This norm defines a distance, which itself defines a topology (=a set of open
sets). We can therefore consider the Borel σ-algebra B on C ([0, 1],R), the
smallest σ-algebra containing all the opens for the uniform norm.

Proposition 8. The cylindrical and Borel σ-algebras on C ([0, 1],R) coin-
cide:

B = C.

Proof. B ⊃ C. We will show that B makes all coordinate applications mea-
surable. Indeed, for all t ≥ 0,

πt : (C (R+,R), || · ||∞)→ (R, | · |)

is continuous, thus measurable.
B ⊂ C. Since C ([0, 1],R) equipped with the uniform norm is separable,

the Borel σ-algebra is generated by open balls or, equivalently, by closed balls
(Exercise 13 of TD2). It suffices for us to show that all closed balls are in
C. We consider a function f ∈ C ([0, 1],R) and ε > 0. Using continuity, we
obtain

Bf(f, ε) = {g ∈ C ([0, 1],R) such that ||g − f ||∞ ≤ ε}
= ∩t∈[0,1] {g ∈ C ([0, 1],R) such that g(t) ∈ [f(t)− ε, f(t) + ε]}
= ∩t∈[0,1]∩Q{πt ∈ [f(t)− ε, f(t) + ε]}.

We deduce that Bf(f, ε) ∈ C, concluding the proof.

It will be noted that (C ([0, 1],R),B) constitutes a more comfortable space
to work with than (A(R+,R), T ): for example, the sup function on this space
is this time measurable (Exercise 6 TD 2).

2.2.2 Continuous Modification and Kolmogorov Criterion

We consider two random processes (Xt)t≥0 and (Yt)t≥0 (not necessarily con-
tinuous). We say that

1. (Yt)t≥0 is a modification of (Xt)t≥0 if for all t ≥ 0

P(Xt = Yt) = 1.
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2. (Xt)t≥0 and (Yt)t≥0 are indistinguishable if

P(∀ t ≥ 0, Xt = Yt) = 1.

This means that the random processes are equal as random functions.

Is the set we consider in the definition of indistinguishable indeed an event?
We can verify (exercise!) that it is indeed an element of C but that it is not
an event of T . The way this definition is stated is therefore a small abuse: we
must understand that the complement of this part is negligible, i.e., included
in an event of zero probability or equivalently: there exists Ω′ ∈ T such that
P(Ω′) = 1 and for all ω ∈ Ω′ and all t ≥ 0, Xt(ω) = Yt(ω).

Proposition 9. Consider two random processes (Xt)t≥0 and (Yt)t≥0

1. If X is a modification of Y then X and Y have the same law.

2. If X and Y are indistinguishable then X is a modification of Y .

3. If X is a modification of Y and X and Y are continuous (either here
or there) then X and Y are indistinguishable.

Proof. 1. If X is a modification of Y then the two random processes have
the same finite dimensional laws and therefore the same law.

2. It’s easy: ∩t≥0{Xt = Yt} ⊂ {Xt = Yt} for all t ≥ 0.

3. Using continuity we get ∩t∈R+{Xt = Yt} = ∩t∈Q+{Xt = Yt} and there-
fore

P(∃t ≥ 0, Xt 6= Yt) = P(∃t ∈ Q+, Xt 6= Yt) ≤
∑
t∈Q+

P(Xt 6= Yt) = 0.

Consider a random process (Xt)t≥0. Under what (sufficient) condition
does there exist a continuous modification of this random process? In other
words, can we make X continuous by changing, for all t ≥ 0, the values of
Xt only for an event of probability zero.

Theorem 3 (Kolmogorov’s Criterion). Let (Xt)0≤1 be a random process.
Suppose there exist q, ε, C > 0 such that for all s, t ∈ [0, 1],

E(|Xs −Xt|q) ≤ C|t− s|1+ε.
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Then there exists a modification Y of X whose paths are Hölder continuous
with exponent α ∈]0, ε/q[ : for all α ∈]0, ε/q[ and all ω, there exists a constant
Cα(ω) such that for all s, t ∈ [0, 1],

|Ys(ω)− Yt(ω)| ≤ Cα(ω)|t− s|α.

In particular Y is a continuous modification of X (unique up to indistin-
guishability).

Remark 1. If we work with random processes on R+ and not [0, 1], we
only obtain that the modification is locally Hölder continuous (that is, Hölder
continuous on every compact) as the constants could diverge.

Proof. At the board! We will follow the proof of [7].

23



D
RA
FT

3 Brownian Motion

[Intro]

3.1 Definitions

In this section, we present several definitions of Brownian motion (and demon-
strate their equivalence!). Review the definition of a random process with
stationary increments before exploring these definitions.

Definition 8 (B1). A Brownian motion is defined as any continuous
random process (Bt)t≥0 (i.e., for every ω ∈ Ω, the function t ∈ R+ → Bt(ω) is
continuous) with independent Gaussian increments, such that B0 = 0
almost surely, and for all 0 ≤ s ≤ t

Bt −Bs  N (0, t− s).

Note that the variance at time t of the Brownian motion reflects the
diffusive behavior of this random process.

Definition 9 (B2). A Brownian motion is any continuous random pro-
cess (Bt)t≥0 that is centered Gaussian with the variance function defined
for all 0 ≤ s ≤ t by

R(s, t) = s ∧ t.

Definition 10 (B3). A Brownian motion is any continuous random
process (Bt)t≥0 such that B0 = 0 almost surely, and for all 0 ≤ s ≤ t

Bt −Bs ⊥⊥ σ(Br; 0 ≤ r ≤ s),

Bt −Bs  N (0, t− s).

Proof of Equivalence of the three Definitions. B1 =⇒ B2. For any t ≥ 0, E(Bt−
B0) = 0, and since B0 = 0 almost surely, we have that (Bt)t≥0 is centered.
We now show that this random process is Gaussian. For any n ≥ 1 and
0 ≤ t1 ≤ · · · ≤ tn, we have

n∑
i=1

λiBti =
n∑
i=1

µi(Bti −Bti−1
)

with t0 = 0 and

µi =
n∑
j=i

λj, i = 1, · · · , n.
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Since the increments are independent and Gaussian, the linear combination
is Gaussian, and therefore (Bt)t≥0 is Gaussian. Finally, for all 0 ≤ s ≤ t,

R(s, t) = E(BsBt) = E((Bt −Bs)Bs) + E(B2
s ) = s.

B2 =⇒ B3. Since (Bt)t≥0 is centered and E(B2
0) = R(0, 0) = 0, we con-

clude that B0 = 0 almost surely. Let 0 ≤ s ≤ t. By a monotone class argu-
ment, it suffices to show that for any n ≥ 1 and any 0 ≤ r1 ≤ · · · ≤ rn ≤ s,
Bt−Bs is independent of (Br1 , · · · , Brn). Since (Bt)t≥0 is a Gaussian process,
we only need to verify that the covariances are zero. For any 1 ≤ i ≤ n

E((Bt −Bs)Bri) = ri − ri = 0.

Finally, the increment Bt − Bs is indeed a centered Gaussian, and we verify
that its variance is

E((Bt −Bs)
2) = t+ s− 2(s ∧ t) = t− s.

B3 =⇒ B1. We need only show the independence of increments. So, we
consider a family 0 = t0 ≤ t1 ≤ · · · ≤ tn and bounded continuous functions
φ1, · · · , φn. Since Btn −Btn−1 ⊥⊥ σ(Br; 0 ≤ r ≤ tn−1),

E(φn(Btn−Btn−1) · · ·φ1(Bt1−Bt0)) = E(φn(Btn−Btn−1))E(φn−1(Btn−1−Btn−2) · · ·φ1(Bt1−Bt0))

and we easily conclude by iteration.

3.2 Existence

We now address the question of the existence of such a random process.
Fortunately, we have already done the work! We use Definition B2. We have
already seen how the Daniell-Kolmogorov theorem (Theorem 2) allows us to
construct a Gaussian process (Bt)t≥0 with mean m = 0 and variance function
R(s, t) = s ∧ t (s, t ∈ R+). We need to ensure the existence of a continuous
modification of such a random process (which will therefore have the same
distribution!). To do this, we will use the Kolmogorov criterion (Theorem
3): for all 0 ≤ s < t, Bt − Bs follows a Gaussian distribution with variance
t − s, hence has the same distribution as

√
t− sN where N is a standard

centered Gaussian. So for any q > 0,

E(|Bt −Bs|q) = |t− s|q/2E(|N |q) = cq |t− s|q/2,

where cq denotes the q-th moment of the standard centered Gaussian. We can
therefore apply the Kolmogorov criterion by taking for all q > 2, ε = q/2−1.

25



D
RA
FT

It follows that B has a modification B̃ that is locally Hölder continuous with
exponent α for all

α <
q/2− 1

q
=

1

2
− 1

q
.

We thus obtain a modification that is locally Hölder continuous with expo-
nent arbitrarily close to 1/2 by letting q tend to infinity. In particular, B̃
is continuous, which concludes the proof of the existence of the Brownian
motion. In passing, we also proved the

Proposition 10. Let (Bt)t≥0 be a Brownian motion. Then almost surely,
the trajectories of (Bt)t≥0 are locally Hölder continuous for all γ ∈ [0, 1

2
[.

Proof. We have just seen that B has a modification X that satisfies this
property. Now, B and X are both continuous, so these two random processes
are indistinguishable.

3.3 Wiener Measure and Canonical Process

We call the Wiener measure and denote it by W the law of the Brown-
ian motion as a random function on the space (C (R+,R),B). We call the
canonical construction of the Brownian motion or the canonical Brownian
motion, the canonical process on this space:

Bt : (C (R+,R),B,W ) →(R,B(R))

ω 7→ Bt(ω) = ω(t) = πt(ω)

3.4 First Properties

Proposition 11. Let (Bt)t≥0 be a Brownian motion. Then

1. [Symmetry] (−Bt)t≥0 is also a Brownian motion;

2. [Invariance under Diffusive Scaling] for any λ > 0, (Bλ
t )t≥0 de-

fined for all t ≥ 0 by

Bλ
t =

1

λ
Bλ2t

is also a Brownian motion;

3. [Simple Markov Property] for all s ≥ 0, the random process (B
(s)
t )t≥0

defined for t ≥ 0 by
B

(s)
t = Bs+t −Bs

is a Brownian motion independent of σ(Br, r ≤ s).
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Proof. For all three points, note that continuity of the trajectories poses no
problem. Point 1. is straightforward with Definitions B1 or B2. For the
second point, we can use the second definition and calculate the covariance
function Kλ of (Bλ

t )t≥0: for all s, t ≥ 0

Kλ(s, t) =
1

λ2
E(Bλ2sBλ2t) =

1

λ2
(λ2s ∧ λ2t) = s ∧ t.

For the last point, we again use Definition B2: the random process is indeed
centered Gaussian, and we only need to calculate the covariance K(s): for all
t, u ≥ 0,

K(s)(t, u) = E((Bs+t −Bs)(Bs+u −Bs)) = (s+ t) ∧ (s+ u)− s = u ∧ t.

To continue our study of the Brownian motion, we rely on the following
property (see [7] for this part of the course sequence)

Theorem 4 (Blumenthal’s 0 − 1 Law). Let (Bt)t≥0 be a Brownian motion.
For all t ≥ 0, let

Ft = σ(Bs; s ≤ t) and

F0+ = ∩s>0Fs.

Then for any A ∈ F0+, P(A) ∈ {0, 1}.

Intuitively, F0+ represents some information: it is what we can infer by
observing an arbitrarily small piece of the Brownian motion. For example,

{∃ε > 0 such that for all 0 ≤ t ≤ ε, Bt ≥ 0} ∈ F0+ .

[proof?]

Proof. We will show that F0+ is independent of itself, which implies the
result. Let A ∈ F0+ , 0 < t1 < · · · < tk and g : Rk → R bounded and
continuous. As g is continuous,

p.s.

lim
ε→0

1A g(Bt1 −Bε, · · · , Btk −Bε) = 1A g(Bt1 , · · · , Btk)

and we have domination of the sequence by ||g||∞, we obtain by the domi-
nated convergence theorem,

lim
ε→0

E(1A g(Bt1 −Bε, · · · , Btk −Bε)) = E(1A g(Bt1 , · · · , Btk)).
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For any ε > 0, A ∈ Fε, and by the simple Markov property, for any t > ε,
Bt −Bε is independent of Fε. So for ε > 0 small enough,

E(1A g(Bt1 −Bε, · · · , Btk −Bε)) = P(A)E(g(Bt1 −Bε, · · · , Btk −Bε)).

Using again the dominated convergence theorem, we finally obtain

E(1A g(Bt1 , · · · , Btk)) = P(A)E(g(Bt1 , · · · , Btk)).

Since this holds for all k and all k-tuples, we have in fact proved that

F0+ ⊥⊥ σ(Bt, t > 0).

Now, σ(Bt, t > 0) = σ(Bt, t ≥ 0) because B0 = limt→0, t>0Bt, and moreover,
for any ε > 0,

F0+ ⊂ Fε ⊂ σ(Bt, t ≥ 0).

We have thus shown that F0+ is independent of itself.

This important (and interesting in itself) result allows for the development
of new properties for the Brownian motion.

Corollary 1. Let (Bt)t≥0 be a Brownian motion. Then the following prop-
erties hold:

1. a.s. for any ε > 0, sup0≤s≤εBs > 0 and inf0≤s≤εBs < 0.

2. a.s. for any ε > 0 (Bt)t≥0 has a zero on ]0, ε[.

3. a.s. (Bt)t≥0 is not monotone on any interval.

Proof. 1. A remark before starting the proof: the Brownian motion is
a continuous process, so {sup0≤s≤εBs > 0} is indeed an event. We
consider a decreasing sequence (εn)n≥1 tending to 0 and define

A = ∩n≥1 ↓ { sup
0≤s≤εn

Bs > 0},

and we must show that P(A) = 1. It is clear that for all t > 0, A ∈ Ft
since A ∈ Fεn for all n and particularly for n large enough such that
εn < t. We deduce that A ∈ F0+ and thus, using Blumenthal’s 0 − 1
Law, P(A) ∈ {0, 1}. Now

P(A) = lim
n→+∞

↓ P( sup
0≤s≤εn

Bs > 0)

and since for all n ≥ 1,

P( sup
0≤s≤εn

Bs > 0) ≥ P(Bεn > 0) ≥ 1

2
,

we conclude that P(A) = 1.
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2. From the previous point, it follows that a.s. for any ε > 0, there is a
zero of (Bt)t≥0 on ]0, ε[. This of course implies that a.s. (Bt)t≥0 has
infinitely many zeros in the neighborhood of 0.

3. From point 1. it follows that a.s. for any ε > 0, (Bt)t≥0 is not monotone
on [0, ε]. We now consider an interval with rational endpoints [s, t].

According to the simple Markov property, the random process (B
(s)
t )t≥0

is a Brownian motion and thus is not monotone on [0, t− s]. We have
thus shown

∀ 0 < s < t ∈ Q a.s. (Bt)t≥0 is not monotone on [s, t],

and since Q is countable,

a.s. ∀ 0 < s < t ∈ Q (Bt)t≥0 is not monotone on [s, t],

finally, by density of Q in R and continuity of the trajectories of (Bt)t≥0,

a.s. ∀ 0 < s < t ∈ R (Bt)t≥0 is not monotone on [s, t].

We note, for any a ∈ R, Ta the hitting time of a:

Ta = inf{s ≥ 0 such that Bs = a}.

Corollary 2 (of the corollary). Let (Bt)t≥0 be a Brownian motion. Then
a.s. for any a ∈ R, Ta < +∞.

Proof. Let’s start by showing that T1 < +∞ a.s. As {sup0≤s≤1Bs > 0} =
{∃ n ≥ 1; sup0≤s≤1Bs > 1/n}, it follows from Corollary 1

lim
n→+∞

↑ P( sup
0≤s≤1

Bs > 1/n) = 1.

Now for any n ≥ 1, using scaling,

P( sup
0≤s≤1

Bs > 1/n) = P( sup
0≤s≤n2

nBs/n2 > 1) = P( sup
0≤s≤n2

Bs > 1).

Now limn→+∞ ↑ P(sup0≤s≤n2 Bs > 1) = P(sups≥0Bs > 1) and we deduce
that a.s. sups≥0Bs > 1. Using scaling again, for any a > 0,

P(sup
s≥0

Bs > a) = P(sup
s≥0

1

a
Ba2s > 1) = P(sup

s≥0
Bs > 1) = 1.

We obtain a similar result for the inf by considering (−Bt)t≥0.
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We have thus shown that a.s. lim supt→+∞Bt = − lim inft→+∞Bt = +∞.
Indeed, since the trajectories are continuous, {lim supt→+∞Bt < +∞} ⊂
{supt→+∞Bt < +∞} which has probability zero. We easily deduce (using
trajectory continuity):

Corollary 3 (of the corollary of the corollary). Let (Bt)t≥0 be a Brownian
motion. Then a.s. the set of zeros of the Brownian motion is unbounded.

3.5 Strong Markov Property

In this section, we aim to replace, in the strong Markov property, the deter-
ministic time by a random time. Of course, there is no chance that this is
true in general (why? Give an example!) and we first introduce the notion
of stopping time (in continuous time here... but the definition is similar to
what you have seen in the first semester in discrete time). We define for all
t ≥ 0,

Ft = σ(Bs, s ≤ t)

F∞ = σ(Bs, s ≥ 0).

The family of sigma algebras (Ft)t≥0 is a filtration, meaning that for all
0 ≤ s ≤ t,

Fs ⊂ Ft.

Definition 11. A random variable T taking values in [0,+∞] is a stopping
time if for all t ≥ 0,

{T ≤ t} ∈ Ft.
If T is a stopping time, we define the sigma algebra

FT = {A ∈ F∞ such that for all t ≥ 0, A ∩ {T ≤ t} ∈ Ft}.

It is necessary to show that the above definition is relevant, i.e., that FT
is indeed a sigma algebra (Exercise!). Now we can state the strong Markov
property:

Theorem 5 (Strong Markov Property). Let (Bt)t≥0 be a Brownian motion
and T a stopping time such that P(T < +∞) > 0. We define the random
process

B
(T )
t = 1{T<+∞}(BT+t −BT ), t ≥ 0.

Then, under P(·|T < +∞), (B
(T )
t )t≥0 is a Brownian motion independent of

FT .

Remark 2. Note that on the event {T = +∞}, we have B
(T )
t = 0 for all

t ≥ 0.
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Proof. (see [7]) We content ourselves with the case T < +∞ almost surely.
Our goal: to show that for all A ∈ FT , all 0 ≤ t1 ≤ · · · ≤ tp (p ≥ 1), and all
bounded continuous function F : Rp → R,

E(1A F (B
(T )
t1 , · · · , B(T )

tp )) = P(A)E(F (Bt1 , · · · , Btp)). (?)

This allows us to prove everything we need:

1. by a monotone class argument, that the random process B(T ) is inde-
pendent of the sigma algebra FT ,

2. by taking A = Ω, that the random process (B(T ))t≥0 has the same
finite-dimensional laws as (Bt)t≥0, and thus, again by the monotone
class lemma, that (B(T ))t≥0 has the same law as (Bt)t≥0. This indeed
proves that (B(T ))t≥0 is a Brownian motion since the continuity of the
trajectories is not a problem.

It remains to prove (?) and for that, we discretize T to reduce it to simple
Markov. We denote by Tn the smallest rational number of the form k/2n

greater than or equal to T (thus Tn = dT2ne/2n and we can show that it is
also a stopping time). For all t ≥ 0, using the continuity of the Brownian

motion, we have B
(Tn)
t → B

(T )
t and since F is continuous, we obtain

lim
n→+∞

F (B
(Tn)
t1 , · · · , B(Tn)

tp ) = F (B
(T )
t1 , · · · , B(T )

tp ),

and by the dominated convergence theorem

lim
n→+∞

E
(
1A F (B

(Tn)
t1 , · · · , B(Tn)

tp )
)

= E
(
1A F (B

(T )
t1 , · · · , B(T )

tp )
)
.

Now for all n ≥ 1

E
(
1A F (B

(Tn)
t1 , · · · , B(Tn)

tp )
)

=
+∞∑
k=0

E
(
1A1 k−1

2n
<T≤ k

2n
F (B k

2n
+t1
−B k

2n
, · · · , B k

2n
+tp
−B k

2n
)
)
.

Since A ∈ FT , A∩{k−1
2n

< T ≤ k
2n
} ∈ Fk/2n and according to simple Markov,

we obtain for all k ≥ 0,

E
(
1A1 k−1

2n
<T≤ k

2n
F (B k

2n
+t1
−B k

2n
, · · · , B k

2n
+tp
−B k

2n
)
)

= P
(
A ∩

{
k − 1

2n
< T ≤ k

2n

})
E(F (Bt1 , · · · , Btp)).

Summing over k yields (?).
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3.6 Donsker’s Theorem

An important property of the Brownian motion, and in fact another way to
introduce and construct it, is to see it as the limit of a random walk on Z
after a relevant scaling change. This is the subject of Donsker’s theorem.

Let’s start by recalling the definition of the simple random walk on Z.
We consider a family (Xi)i≥1 of i.i.d. random variables with a common
distribution, the uniform distribution on {−1, 1}. We then define the walk
by

S0 = 0 and

Sn =
n∑
i=1

Xi, n ≥ 1.

The variance of Sn is n and the order of magnitude of the distance to the
origin of the walk at time n is therefore

√
n. If we want to observe something

non-degenerate on a large scale, we must therefore normalize the walk by
considering a diffusive scaling : contract for large n the time by n (i.e., bring
the interval [0, n] to the interval [0, 1]) and the space by

√
n (i.e., bring the

interval [−
√
n,
√
n] to the interval [−1, 1]). This leads us to define for all

n ≥ 1 the random process

S
(n)
t =

1√
n


bntc∑
i=1

Xi + (nt− bntc)Xbntc+1

 , t ≥ 0.

By this operation, we have also transformed the discrete walk into a
continuous process by simply connecting the points with straight lines! The
Brownian motion then appears as the limit of this sequence (in n) of random
processes:

Theorem 6 (Donsker’s Theorem). The sequence of random processes (S
(n)
t )0≤t≤1,

n ≥ 1 converges in law for the topology of uniform convergence to the random
process (Bt)0≤t≤1, i.e., for any function F : C ([0, 1],R)→ R, continuous (for
the uniform topology) and bounded,

E(F (S(n))) −→
n→+∞

E(F (B)).

Proof. The convergence of the finite-dimensional marginals is easy to see
since it is nothing but the multidimensional central limit theorem. Another
ingredient is missing to obtain the convergence in law of the sequence of ran-
dom processes, which is the tightness of this sequence of laws on C ([0, 1],R).
This is beyond the scope but you may see it next year! A classic reference
on these convergence issues is [2].

[Add a picture]
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4 Continuous Martingales

This chapter is intentionally short. Its purpose is to learn about continuous
martingales only what we need to study stochastic integrals and stochastic
differential equations in the next two chapters. The stopping theorem is also
often a useful tool for studying Brownian motion (we will see this in many
exercises). Many results are assumed, as the proof often involves reducing to
the discrete case and using results you have proven in the first semester in the
course Discrete Processes. For those who wish to learn more, I recommend
[7].

4.1 Definition

Definition 12 (Filtration). A filtration (Ft)t≥0 is an increasing sequence of
sub-σ-algebras of F .

An important example is the filtration generated by the random
process (Xt)t≥0: for all t ≥ 0,

Ft = σ(Xs, s ≤ t).

The sigma-algebra Ft contains information about the trajectory of X up to
time t. A random process (Xt)t≥0 is said to be adapted to the filtration
(Ft)t≥0 if for all t ≥ 0, Xt is Ft-measurable.

Now we need to state a technical condition that will be useful in many
theorems:

Definition 13 (Usual Conditions or Habitual Conditions). A filtration (Ft)t≥0

satisfies the usual conditions if

1. the sigma-algebra F0 contains the negligible sets (which implies that for
all t ≥ 0, Ft contains the negligible sets);

2. for all t ≥ 0, Ft+ := ∩ε>0Ft+ε coincides with Ft (we say the filtration
is right-continuous).

It is recalled that a subset of Ω is negligible if it is included in an event
(an element of F hence) of probability zero. In practice, one can always
transform a filtration to satisfy the usual conditions by considering (and
completing) Ft+ instead of Ft. This condition notably allows us to ensure
that a modification of an adapted process is still adapted. This will be
particularly useful for regularizations of martingales.
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Definition 14 (Sub/Super/∅ Martingales). A random process (Mt)t≥0 is an
(sub/super/∅) (Ft)-martingale (where (Ft) is a filtration) if it is

1. adapted to (Ft)t≥0,

2. integrable, i.e., for all t ≥ 0, E(|Mt|) < +∞,

3. for all 0 ≤ s ≤ t, E(Mt|Fs) = Ms (resp ≤, ≥).

4.2 Convergence and Regularization

In this section, we study asymptotic behavior and regularization.

Proposition 12 (Almost Sure Convergence). Let (Mt)t≥0 be a martingale
with càdlàg paths and bounded in L1. Then there exists M∞ ∈ L1 such that

Mt
a.s.−→M∞.

Some ideas for the proof. We actually look at limsup and liminf for t in D
where D is a countable dense set in R. We can then apply the convergence
theorem for discrete martingales. We return to the continuous case using
right-continuity. To show that M∞ is in L1, we use Fatou’s lemma (exercise!).
In general, remember to review the results from the first semester on discrete
martingales.

We recall the two possible (and of course equivalent) definitions of a family
of uniformly integrable random variables:

Definition 15. A family (Xi)i∈I (where I is any set) of random variables is
uniformly integrable if

lim
a→+∞

sup
i∈I

E(|Xi|1|Xi|>a) = 0.

Definition 16. A family (Xi)i∈I (where I is any set) of random variables is
uniformly integrable if

1. the family (Xi)i∈I is bounded in L1 and

2. for all ε > 0 there exists δ > 0 such that for all A ∈ F such that
P(A) < δ and all i ∈ I,

E(|Xi|1A) < ε.

Proposition 13 (L1 convergence). Let (Mt)t≥0 be a martingale with càdlàg
paths. The three conditions are equivalent:
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1. (Mt)t≥0 converges in L1 and almost surely to M∞,

2. (Mt)t≥0 is closed,

3. (Mt)t≥0 is uniformly integrable.

Proof. Recall that a martingale (Mt)t≥0 is said to be closed if there exists a
variable M∞ ∈ L1 such that for all t ≥ 0, Mt = E(M∞|Ft). The proof works
as in the discrete case you have seen in the first semester. Exercise!

Theorem 7 (Doob’s Regularization Theorem). Let (Mt)t≥0 be a martingale
satisfying the usual conditions. Then there exists a modification (M̃t)t≥0 of
(Mt)t≥0 such that

1. (M̃t)t≥0 is a martingale

2. (M̃t)t≥0 has locally bounded and càdlàg paths.

Proof. The proof is omitted. It relies on the almost sure convergence theo-
rem. As an exercise, you can show that when the filtration satisfies the usual
conditions, a modification of a martingale is still a martingale.

4.3 Doob’s Stopping Theorem

Throughout this section, we consider a filtration (Ft)t≥0.

Theorem 8 (Doob’s Stopping Theorem). Let (Mt)t≥0 be a martingale with
càdlàg paths and uniformly integrable. Let S and T be two stopping
times such that S ≤ T . Then

1. MS and MT are integrable,

2. MS = E(MT |FS),

3. MS = E(M∞|FS).

In particular, in this case, E(MS) = E(M∞) = E(M0).

Note that in this theorem, the variable MT is well-defined even if T is not
supposed to be finite almost surely, since the variable M∞ is well-defined.
On the event {T = +∞}, we have MT = M∞. Again, we will not detail
the proof of this theorem which is based on a similar theorem in the discrete
case. To reduce to the discrete case, we introduce the sequence of stopping
times Tn = d2nT e/2n, which converges almost surely decreasingly to T . We
note the other useful forms of the stopping theorem:
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Theorem 9. Let (Mt)t≥0 be a martingale with càdlàg paths and S and T be
two bounded stopping times such that S ≤ T . Then

1. MS and MT are integrable,

2. MS = E(MT |FS),

Proof. This theorem is easily deduced from the previous one, since, noting
C an upper bound of T , we have that (Mt∧C)t≥0 is a martingale closed by
MC , therefore uniformly integrable.

Theorem 10 (Doob’s Stopping Theorem). Let (Mt)t≥0 be a martingale with
càdlàg paths and T be a stopping time. Then

1. the random process (Mt∧T )t≥0 is a martingale,

2. if (Mt)t≥0 is uniformly integrable then (Mt∧T )t≥0 is also uniformly in-
tegrable and for all t ≥ 0

Mt∧T = E(MT |Ft).

4.4 Doob’s Maximal Inequalities

These inequalities are very useful and important to know. They will be
particularly useful for the study of stochastic integrals.

Theorem 11. Let (Mt)t≥0 be a càd martingale. Let M∗
t = sup0≤s≤t |Ms|.

Then

1. For all p ≥ 1 and all t ≥ 0, for all λ > 0,

P(M∗
t ≥ λ) ≤ E(|Mt|p)

λp
.

2. If p > 1 and t > 0

||M∗
t ||p ≤

p

p− 1
||Mt||p.

The proof is a classic exercise that you have probably seen in the first
semester in the discrete case. To recall the first inequality (which leads to
showing the second one), we can notice that it is actually a ”super” Markov
inequality: instead of controlling the probability that only the final variable
Mt is large, we can actually (and this is because (Mt)t≥0 is a martingale)
control the supremum of the entire trajectory between 0 and t. Note also
that the control in the second point is valid only for p > 1 (or rather, it yields
nothing for p = 1 since the right-hand side is infinite).
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5 Stochastic Integral - Itô (1950)

We aim to integrate with respect to Brownian motion, that is, to give mean-
ing, when (us)s≥0 is a random process and (Bt)t≥0 is a Brownian motion, to
the expression ∫

us dBs.

The first idea (which will not work!) is to define this integral ω by ω, that
is, to give meaning for every ω to∫

us(ω) dBs(ω).

This amounts to asking in what framework we can give a satisfactory defini-
tion of a function with respect to another.

5.1 Stieltjes Integral

The Stieltjes-Riemann theory allows us to construct the integral of a con-
tinuous function f with respect to another function g, provided that g has
bounded variations. Here, we present only a summary of the construction of∫ t

0

f(s) dg(s),

and we refer to [7, 4, 6] for different and much more comprehensive exposi-
tions (which we used for this chapter).

1. The case where g is positive, right-continuous, and non-decreasing
on [0, t]. The function g then defines a measure µ on [0, t] by µ({0}) = 0
and µ(]a, b]) = g(b) − g(a) for all 0 ≤ a ≤ b ≤ t. In other words, g is
the distribution function of µ (although the term is usually used for a
probability measure in general). We can then define∫ t

0

f(s) dg(s) =

∫ t

0

f(s) dµ(s),

for any non-negative function f or in L1(µ). Note that if f is continuous
on [0, t], then for any partition sequence 0 = tn0 ≤ tn1 ≤ · · · ≤ tnpn = t
with step size going to 0,∫ t

0

f(s) dg(s) = lim
n→+∞

pn∑
i=1

f(tni−1)(g(tni )− g(tni−1)). (4)
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Indeed, for any n ≥ 1,
∑pn

i=1 f(tni−1)(g(tni ) − g(tni−1)) =
∫ t

0
fn(s) dg(s)

where fn is the piecewise constant function defined by f(t) = f(tni−1) if
t ∈]tni−1, t

n
i ], and we conclude using the dominated convergence theorem.

2. The case where g has finite variations. The total variation of a
continuous function g : [0, t]→ R is defined as:

V (t) = sup
n≥1

t0≤···≤tn

{
n−1∑
i=0

|g(ti+1)− g(ti)|

}

where the supremum is taken over all partitions 0 = t0 ≤ · · · ≤ tn = t
of [0, t]. When V (t) is finite, we say that g has finite variations. We
will denote V (g, t) when we want to specify the function under consid-
eration. We say that g : R→ R has finite variations when t→ V (g, t)
is finite. It can be shown that when a function has finite variations,
the sup involved in the definition of the variation is also a limit as we
consider any sequence of subdivisions with step size approaching 0.

If functions with finite variations are of interest here, it is because of
the following result:

Proposition 14. Let g be a continuous function on [0, t]. The following
propositions are equivalent:

(a) g has finite variations;

(b) g is the difference of two continuous, non-decreasing, positive func-
tions.

Proof. The reverse implication (b) =⇒ (a) is the easiest. Indeed, one
can verify that a non-decreasing function indeed has finite variations.
Moreover, using the triangle inequality, one can show that the sum of
two functions with finite variations is still of finite variations.

Let’s prove the converse, first in the case where g(0) = 0. It is easy to
verify that V : s→ V (g, s) is non-decreasing on [0, t] and non-negative.
Let’s show that it is also the case forW = V−g. So, let 0 ≤ s1 ≤ s2 ≤ t,
and we want to show that V (s1)−g(s1) ≤ V (s2)−g(s2). This is indeed
the case since

V (s1) + g(s2)− g(s1) ≤ V (s1) + |g(s2)− g(s1)| ≤ V (s2).

Furthermore, for any 0 ≤ s ≤ t and any subdivision (si)i=1,··· ,n of [0, s],

g(s) ≤
n∑
i=1

|g(si)− g(si−1)| ≤ V (s),
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so V − g is non-negative. When g(0) is non-zero, we add it according
to its sign to V or W . It remains to show that V is continuous (which
implies that W is also continuous): an exercise (not so easy)!

With this proposition, we can construct the integral with respect to a
function g with finite variations. We decompose it into g = g+ − g−
using Proposition 14. We associate g+ and g− with two measures µ+

and µ−, and we define the signed measure µ = µ+ − µ− (a signed
measure is the difference of two positive measures). The decomposition
of g into g+ and g− is not unique, and therefore, the associated pair of
measures (µ+, µ−) is not unique either, but it can be shown that the
measure µ does not depend on this choice (we admit it for this time!).
We then define the positive measure |µ| = µ+ +µ− and for f ∈ L1(|µ|),
we set∫ t

0

f(s)dg(s) =

∫ t

0

f(s)dµ(s) =

∫ t

0

f(s)µ+(ds)−
∫ t

0

f(s)µ−(ds).

When f is continuous, (4) still remains valid.

The problem is that this theory of integration does not work
with Brownian motion, whose trajectories, almost surely, do not
have finite variations:

Proposition 15. Let (Bt)t≥0 be a Brownian motion and t ∈ R+. For any
sequence of subdivisions 0 = tn0 ≤ · · · ≤ tnpn = t with step sizes approaching
0,

pn∑
k=1

(Btnk
−Btnk−1

)2 L2

−→ t.

It follows that almost surely, the trajectories of Brownian motion have un-
bounded variations.

Proof (see [5]). Let Wn =
∑pn

k=1(Btnk
−Btnk−1

)2 and ∆n be the step size of the
n-th subdivision (we omit the superscript n to lighten the notation). Since
the increments are stationary, for any n ≥ 1,

E(Wn) =

pn∑
k=1

(tk − tk−1) = t.

Thus, as the increments are independent,

||Wn − t||22 = Var(Wn) =

pn∑
k=1

Var[(Btk −Btk−1
)2].
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Now, for any 1 ≤ k ≤ pn,

Var[(Btk −Btk−1
)2] = (tk − tk−1)2Var(B2

1) = 2(tk − tk−1)2,

which leads to

||Wn − t||22 = 2

pn∑
k=1

(tk − tk−1)2 ≤ 2∆nt,

concluding the proof of the first point since ∆n → 0 as n tends to infinity.
We thus infer that there exists a subsequence of the subdivision sequence

such that (Wφ(n))n≥1 tends to t almost surely. We then notice that

Wφ(n) ≤ sup{|Btk −Btk−1
|, 1 ≤ k ≤ pn}V (B, t).

As sup{|Btk−Btk−1
|, 1 ≤ k ≤ pn} → 0 almost surely since Brownian motion

is continuous and thus uniformly continuous on [0, t], we deduce from the
first point that almost surely V (B, t) = +∞.

Remark 3. It can be shown that the quadratic variation (which consists of
taking the square of the increments rather than their absolute values) of a
C1 function is zero (see Exercise ?). The preceding proposition tells us that
the variations of Brownian motion over small times are much larger than for
smooth functions. Intuitively, for small δ > 0, Bt+δ − Bt is of order

√
δ,

which is much larger than δ when δ is close from 0.

Thus, it is not possible to define the integral with respect to Brownian
motion trajectory by trajectory, and we will need to change strategy!

5.2 Itô Integral

The general idea is to define the integral as the extension of an isometry
between two Hilbert spaces. If we consider a ”simple” process of the form

ut =
n∑
i=1

Fi1]ti−1,ti](t) t ≥ 0,

with the Fi being random variables, it is natural to want∫
ut dBt =

n∑
i=1

Fi(Btni
−Btni−1

).

One could then approximate a general random process by a sequence of sim-
ple processes and take the L2 limit (the previous part tells us that almost sure
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convergence is not possible). However, be careful: the way we approximate
the random process can change the limit, as shown by the following example:
what is

∫ T
0
Bt dBt? We can approximate (Bt)0≤t≤T in an anticipative way by

φn:

φnt =
n−1∑
i=0

Btni+1
1]tni ,t

n
i+1](s)

or in a non-anticipative way by ψn:

ψnt =
n−1∑
i=0

Btni
1]tni ,t

n
i+1].

If we’re not careful in the definition of the integral, then we obtain∫ T

0

φnt dBt −
∫ T

0

ψnt dBt =
n−1∑
i=1

Btni+1
(Btni+1

−Btni
)−

n−1∑
i=1

Btni
(Btni+1

−Btni
)

=
n−1∑
i=1

(Btni+1
−Btni

)2.

This last quantity converges in L2 to T according to Proposition 15, so we
see that the choice of approximation is not trivial! We will choose a non-
anticipative approximation, which will ensure, among other things, that
the stochastic integral is a martingale.

In this section, we consider a filtration (Ft)t≥0 that satisfies the usual con-
ditions (see Definition 13), and (Bt)t≥0 a F -Brownian motion, i.e., a Brown-
ian motion adapted to F and such that for all 0 ≤ s ≤ t:

Bt −Bs ⊥⊥ Fs.

Definition 17. A random process (Xt)t≥0 is said to be:

1. measurable if

X : (R+ × Ω,B(R+)⊗F)→ (R,B(R))

is measurable.

2. progressively measurable if for all t ≥ 0

X : ([0, t]× Ω,B([0, t])⊗Ft)→ (R,B(R))

is measurable.
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We note that if (Xt)t≥0 is progressively measurable, then it is adapted
and measurable:

1. Adapted. Let t ≥ 0 and A ∈ B(R). Since (Xs)s≥0 is progressively
measurable, {X|[0,t] ∈ A} = {(s, ω) ∈ [0, t] × Ω such that Xs(ω) ∈
A} ∈ B([0, t]) ⊗ Ft. We recall that if E and F are sigma-algebras on
E and F , then for all A ∈ E ⊗ F and all x ∈ E, the section of A at x,
Ax = {y ∈ F such that (x, y) ∈ A} belongs to F . Here we deduce that
{Xt ∈ A} = {X|[0,t] ∈ A}t ∈ Ft.

2. Measurable. We verify that for all A ∈ B(R),

{X ∈ A} = {(s, ω) ∈ R× Ω such that Xs(ω) ∈ A}
= ∪n≥1{(s, ω) ∈ [0, n]× Ω such that Xs(ω) ∈ A}.

Now, since the random process is progressively measurable, for all n ≥
1, {(s, ω) ∈ [0, n]×Ω such that Xs(ω) ∈ A} ∈ B([0, n])⊗Fn ⊂ B(R+)⊗
F .

Proposition 16 (to demystify). Let (Xt)t≥0 be an adapted process with càd
trajectories. Then (Xt)t≥0 is progressively measurable.

Proof. Exercise: see TD 5.

Now we can define the set of random processes that we will be able to
integrate with respect to the Brownian motion:

Definition 18. We denote by L2(Prog) the set of progressively measurable
processes (us)s≥0 such that

E

∫
u2
s ds < +∞.

Proposition 17. The space L2(Prog) is a Hilbert space.

Proof. The line of the proof is to show that L2(Prog) is in fact a ”normal”
L2, and this is a consequence of the following lemma:

Lemma 3. We define

P = {A ∈ B(R+)⊗F such that X : (t, ω)→ 1A(t, ω) is progressively measurable}.

Then P is a σ−algebra (called progressive σ−algebra) and a random pro-
cess (Xt)t≥0 is progressively measurable if and only if the function

(t, ω)→ Xt(ω)

is P-measurable.
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Proof. Let’s first verify that P is a σ−algebra. For A ∈ B(R+) ⊗ F , we
denote I(A)|t the function defined on ([0, t]×Ω,B([0, t]⊗Ft) by I(A)|t(s, ω) =
1A(s, ω). With these notations, A ∈ P if and only if for all t ≥ 0, I(A)|t is
measurable.

1. We easily deduce that R+ × Ω ∈ P .

2. Let A ∈ P and t ≥ 0. Since I(Ac)|t = 1−I(A)|t, it is also a measurable
function. Hence Ac ∈ P .

3. Let (An)n≥1 be a sequence in P and t ≥ 0. We have I(∪n≥1An)|t =
1− limN→+∞

∏N
n=1 I(Acn)|t. We deduce that ∪n≥1An ∈ P .

Now we consider a random process (Xt)t≥0 and B ∈ B(R). We assume X
is progressively measurable. We must show that {X ∈ B} ∈ P , i.e., for
all t ≥ 0, I(X ∈ B)|t is measurable. Now {I(X ∈ B)|t = 1} = {(s, ω) ∈
[0, t] × Ω such that X(s, ω) ∈ B} ∈ B([0, t] ⊗ Ft because X is progressively
measurable. Conversely, if X is P-measurable, fixing t ≥ 0 with the estab-
lished equality shows that X is progressively measurable.

In any case, this allows us to see progressively measurable processes as
square integrable random variables on (R+ × Ω,P): L2(Prog) is therefore a
Hilbert space like any L2,

L2(Prog) = L2(R+ × Ω,P ,Leb⊗ P).

The associated inner product is defined for all random processes u, v ∈
L2(Prog) by

< u, v >= E

∫
utvt dt,

and the norm by

||u||2L2(Prog) = E

∫
u2
t dt.

We now focus on a subset of random processes in L2(Prog) for which
stochastic integration will be easily defined.

Definition 19. A random process (ut)t≥0 is called step process or pre-
dictable simple process if it is of the form

ut :
n−1∑
i=0

Fi 1[ti,ti+1[(t) t ≥ 0,
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where n ≥ 0 is an integer, 0 = t0 ≤ · · · ≤ tn, and for all i = 1, · · · , n, the
variable Fi is Fti-measurable and square integrable. We denote by E the set
of step processes.

Note that a step process is càdlàg. We will be able to define stochastic
integration easily on E , but to extend it, we need to ensure that E is large
enough:

Proposition 18. The set E is a dense linear subset of L2(Prog).

Proof. It is easy to verify that E has a vector space structure. We then
verify E ⊂ L2(Prog). Let 0 ≤ t1 ≤ t2 and F be a Ft1-measurable random
variable. We must show that the random process u : F1[t1,t2[ is progressively
measurable. For all T ≥ 0,

{u|[0,T ] ∈ A} = {(t, ω) such that t < t1, t ≤ T, 0 ∈ A}
∪ {(t, ω) such that t1 ≤ t < t2, t ≤ T, F ∈ A}
∪ {(t, ω) such that t2 < t, t ≤ T, 0 ∈ A}

Only the middle set is a bit more delicate: it is equal to ([t1, t2[∩[0, T ])×{F ∈
A}, which belongs to B([0, T ]) ⊗ FT . Note that this is not the case if F is
only Ft2-measurable.

We now need to prove density. Two methods (at least!) are possible.
The first one consists of approximating u ∈ L2(Prog) by a sequence of ran-
dom processes in E (passing through bounded processes, then bounded with
compact support, then adding continuity and finally arriving at an approxi-
mating sequence in E); it can be found in [1, 5, 4] and I recommend referring
to it as it is instructive. Here we will follow another approach found in [7]
which consists of showing that E⊥ = {0}. For this, we need two lemmas
(which are interesting on their own).

Lemma 4. Let u ∈ L2(prog) such that for all t ≥ 0 and all ω ∈ Ω,∫ t
0
|us(ω)| ds < +∞. Then t→

∫ t
0
us ds is of finite variations and adapted.

Proof. (see also [7] for this proof) Adapted. We fix t ≥ 0. We recall that u|[0,t]
is B([0, t])⊗Ft-measurable and we must show that

∫ t
0
us ds is Ft-measurable.

If u is of the form 1A1[α,β[ with 0 ≤ α ≤ β ≤ t and A ∈ Ft, we easily

verify that
∫ t

0
us ds = 1A(β − α) is Ft measurable. We now consider the

class M = {Γ ∈ B([0, t]) ⊗ Ft such that
∫ t

0
1Γ ds is Ft-measurable}. It is a

λ−system containing all Γ of the form [α, β[×A, and by the Dynkin’s lemma,
we deduce that M contains all B([0, t])⊗ Ft). So, we have treated the case
of u = 1Γ where Γ ∈ B([0, t])⊗Ft. Next, we easily obtain the case of a step
process u, then of any B([0, t])⊗Ft-measurable process by approximation by
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step processes and the dominated convergence theorem with respect to the
Lebesgue measure on [0, t].

Finite variations. Moreover,
∫ t

0
us, ds =

∫ t
0
u+
s , ds−

∫ t
0
u−s , ds can be writ-

ten as the difference of two non-decreasing functions, so it is indeed of finite
variations.

Lemma 5. Let (Mt)t≥0 be a continuous martingale, of finite variations, and
such that M0 = 0 a.s. Then (Mt)t≥0 is indistinguishable from 0.

Proof. (see also [5] for this proof) Let us first suppose that (Mt)t≥0 has
bounded variations almost surely, i.e., almost surely, for all t ≥ 0, V (M(ω), t) <
K. For any subdivision of [0, t],

E(M2
t ) = E

(
n−1∑
i=0

M2
ti+1
−M2

ti

)
Mart.
=

n−1∑
i=0

E
[
(Mti+1

−Mti)
2
]
≤ KE

(
max |Mti+1

−Mti|
)
.

Let δn be a sequence of subdivision steps tending to 0. Then, by uniform
continuity, we have almost sure convergence of max |Mti+1

−Mti | to 0. Fur-
thermore, |M | is bounded by K, so we can use the dominated convergence
theorem, and we deduce that E(M2

t ) = 0, hence almost surely Mt = 0. By
using the fact that M is a version of the null process and continuity, we
obtain that M is indistinguishable from 0.

If M only has finite variations, we introduce the sequence of stopping
times

τk = inf{s such that V (s) ≥ k}, k ≥ 1.

The stopped martingales (Mτk∧t)t≥0 have bounded variations, and using what
we have just proven, we deduce that for all k ≥ 1 almost surely Mτk∧t = 0
for all t ≥ 0. We then exchange the quantifier that applies to a countable set
and almost sure convergence to conclude.

With these two lemmas in hand, let’s go back to our proof of the density
of E in L2(Prog). We consider u ∈ E⊥ and we want to show that u = 0. For
this purpose, we define the random process

Mt =

∫ t

0

us ds t ≥ 0.

This is a well-defined integral almost surely since

E|Mt| ≤ E

∫ +∞

0

|us| 1[0,t](s) ds
C.S.

≤
√
tE

(∫ +∞

0

|us|2 ds
)1/2

< +∞.
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We even note that Mt ∈ L1. Let’s show that the random process (Mt)t≥0 is a
martingale. We have just seen that it is integrable, and Lemma 4 assures us
that it is adapted. To show the martingale property, we consider 0 ≤ s ≤ t
and F a Fs-measurable random variable. We set v = F1[s,t[. Since v ∈ E , we
have < v · u >L2(Prog)= 0. However,

< v · u >L2(Prog)= E

∫ +∞

0

vrur dr = E(F

∫ t

s

ur dr) = E(F (Mt −Ms)).

We deduce that (Mt)t≥0 is a martingale.
Moreover, (Mt)t≥0 is also a random process of finite variation according to

Lemma 4. Therefore, by Lemma 5, almost surely, for all t ≥ 0, Mt = 0. So,
almost surely, for all t ≥ 0,

∫ t
0
ur, dr = 0, and we deduce that ur = 0 almost

everywhere and almost surely. To show this last point, we can, for example,
show that almost surely u is in the orthogonal of the set of step functions,
which is dense in L2(R) (but perhaps we can find a shorter argument).

We now have everything we need to define the stochastic integral.

Theorem 12 (Itô Stochastic Integral). There exists a unique linear mapping

I : L2(Prog)→ L2(Ω,F ,P)

such that

1. For every random process u =
∑n−1

i=0 Fi 1[ti,ti+1[ in E,

I(u) =
n−1∑
i=0

Fi (Bti+1
−Bti). (5)

2. For every u ∈ L2(Prog),

||I(u)||2L2(F) = ||u||2L2(Prog)

in other words,

E(I(u)2) = E

∫
u2
s ds

or equivalently, I is an isometry.

Proof. The idea is to use the theorem of extension of isometries between two
Hilbert spaces. Since we have already proven the density of E in L2(Prog) in
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Proposition 18, it remains to show that the relation (5) defines an isometry
from E into L2(F). We verify that

||I(u)||2L2(F) = E[(
n−1∑
i=0

Fi (Bti+1
−Bti))

2]

= E(
n−1∑
i=0

F 2
i (Bti+1

−Bti)
2) + 2

∑
0≤i<j≤n−1

E(FiFj (Bti+1
−Bti)(Btj+1

−Btj))

= A+B.

Now

A =
n−1∑
i=0

E( F 2
i︸︷︷︸

Fti−meas.

(Bti+1
−Bti)

2)︸ ︷︷ ︸
indep. of Fti

=
n−1∑
i=0

E(F 2
i )(ti+1 − ti)

= E

∫ t

0

u2
s ds

= ||u||2L2(Prog).

Moreover, B is zero because for all i < j,

E(FiFj (Bti+1
−Bti)︸ ︷︷ ︸

Ftj−meas.

(Btj+1
−Btj))︸ ︷︷ ︸

indep. of Ftj

= 0.

We note, in passing, some initial properties of the stochastic integral.
Since I is an isometry, for all u, v ∈ L2(Prog)

< I(u), I(v) >L2(F)=< u, v >L2(Prog),

which can be rewritten as

E

(∫
us dBs

∫
vs dBs

)
= E

∫
usvs ds.

Furthermore, for all u ∈ E ,

E(I(u)) =
n−1∑
i=0

E
(
Fi (Bti+1

−Bti)
)
.
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Now for every i, Fi is Fti-measurable and since (Bt)t≥0 is an F -Brownian
motion, we deduce that Fi ⊥⊥ Bti+1

− Bti , and thus E(I(u)) = 0. We extend
this property to all u ∈ L2(Prog) by approximating u by a sequence (un)n≥1

of simple predictable processes. We then obtain that (I(un))n≥1 converges in
L2(F) and therefore in L1(F) to I(u), which implies the convergence of the
expectations. Thus, we have successfully shown that for all u ∈ L2(Prog),

E

∫
ut dBt = 0.

Consider a random process u ∈ L2(Prog). Note that for every t ≥ 0, the
random process u1[0,t] is also in L2(Prog) (it is P-measurable as a product
of measurable variables, and being square-integrable poses no problem), and
thus we can define its integral

Xt =

∫ t

0

us dBs =

∫
us1[0,t](s) dBs.

The choice of a non-anticipative definition of step processes allows us to
obtain the following property

Proposition 19. Let u ∈ L2(Prog). Then the random process

Xt =

∫ t

0

us dBs t ≥ 0,

is a bounded martingale in L2 continuous (i.e. which admits a continuous
modification). For all t ≥ 0,

||Xt||22 = E
∫ t

0

u2
s ds.

We note that this proposition would be false if we had not made the
choice of a non anticipative definition of the stochastic integral.

Proof. The line of the proof to show both continuity and martingale character
is to show first these properties when u ∈ E then to show that they are
preserved by approximation.

Noting to start that for all u ∈ L2(Prog) and all t ≥ 0,

||Xt||22 = ||I(u1[0,t])||22 = E
∫
|us1[0,t](s)|2 ds = E

∫ t

0

u2
s ds.

We deduce that for all t ≥ 0, Xt is in L2 (thus in L1) and even that the
random process (Xt)t≥0 is bounded in L2 by E

∫
u2
s ds which is well finite

since u ∈ L2(Prog).
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Let’s now show that (Xt)t≥0 is a martingale. We thus assume in a first
step that u =

∑n−1
i=0 Fi 1[ti,ti+1[ is a random process of E . We check that for

all t ≥ 0,

Xt =
n−1∑
i=0

Fi (Bti+1∧t −Bti∧t) (6)

and we deduce that Xt is Ft-measurable and thus (Xt)t≥0 is adapted. Let’s
now show the martingale property and fix for that 0 ≤ s ≤ t. If s and t are
in the same interval, i.e. for a certain k, s and t are in ]tk, tk+1] then∫ t

0

ur dBr −
∫ s

0

ur dBr = Fk(Bt −Bs).

We easily conclude because Fk is Ftk-measurable thus Fs - measurable thus
E(Fk(Bt − Bs)|Fs) = FkE(Bt − Bs|Fs) = 0. We now move on to the case
where s and t are not in the same interval: t` < s ≤ t`+1 ≤ tk < t ≤ tk+1.
We then have∫ t

0

ur dBr−
∫ s

0

ur dBr = F`(Bt`+1
−Bs)+

k−1∑
i=`+1

Fi(Bti+1
−Bti)+Ftk(Bt−Btk).

When considering the conditional expectation with respect to Fs, we can
handle the first term as in the previous case, and for i ∈ {`+ 1, · · · , k − 1},

E(Fi(Bti+1
−Bti)|Fs) = E[E[Fi(Bti+1

−Bti)|Fti ]|Fs]
= E[FiE[(Bti+1

−Bti)|Fti ]|Fs]
= 0,

where we used that Fi is Fti-measurable. It should be noted that this cal-
culation is no longer possible if the random process we are integrating is
anticipative. We treat the last term similarly.

We no longer assume that u ∈ E but only that it is in L2(Prog) and we
consider an approximating sequence (un)n≥0 in E . For all t ≥ 0

||un1[0,t] − u1[0,t]||L2(Prog) ≤ ||un − u||L2(Prog)

thus (un1[0,t]) converges in L2(Prog) to u1[0,t] and we deduce that (
∫ t

0
uns dBs)

converges in L2(F) to
∫ t

0
us dBs. As for all n ≥ 1,

∫ t
0
uns dBs is Ft-measurable

(since un ∈ E) we deduce that
∫ t

0
us dBs is also Ft-measurable. We have well

proved that (Xt)t≥0 is adapted. We move on to the martingale property. We
fix 0 ≤ s ≤ t. For all n ≥ 1, as un ∈ E ,

E
(∫ t

0

unr dBr|Fs
)

=

∫ s

0

unr dBr.

49



D
RA
FT

We have already seen using the fact that the stochastic integral is an isom-
etry that (

∫ s
0
unr dBr) converges in L2(F) to

∫ s
0
ur dBr. Furthermore, as

conditional expectation is a continuous operator on L2(F), we obtain that
(E(
∫ t

0
unr dBr|Fs)) converges, still in L2(F), to E(

∫ t
0
ur dBr|Fs). We have

thus shown the martingale property.
We now need to show the continuity of (Xt)t≥0. Again, when u ∈ E , it

is easy to conclude using (6) because the paths of the Brownian motion are
continuous. For the general case, we fix T > 0 and consider an approximating
sequence (un). According to Doob’s inequality (which we can use because
we have the continuity of the martingale for processes in E), for all n,m ≥ 0,

P
(

sup
0≤t≤t

|
∫ T

0

uns − ums dBs| > ε

)
≤

E(|
∫ T

0
uns − ums dBs|2)

ε2

Iso.
=

E(
∫ T

0
(uns − ums )2 ds)

ε2

=
||un − um||2L2(Prog)

ε2
.

We can thus extract a subsequence (nk)k≥1 such that for all k ≥ 1

P
(

sup
0≤t≤T

|
∫ t

0

unks − unk+1
s dBs| >

1

2k

)
≤ 1

2k

and by the Borel-Cantelli lemma we obtain that almost surely for large
enough k

sup
0≤t≤T

|
∫ t

0

unks − unk+1
s dBs| ≤

1

2k
.

We deduce that almost surely the sequence of functions (t →
∫ t

0
unks dBs)

converges uniformly to a limit which is thus continuous. This limit is in-
deed t →

∫ t
0
us dBs because for all 0 ≤ t ≤ T , we have L2 convergence of

(
∫ t

0
unks dBs) to

∫ t
0
us dBs.

We have made progress... but for now, we can only integrate processes
that are in L2(Prog) thus satisfying, in addition to the progressive mea-
surability condition, the condition E

∫
u2
t dt < +∞. This is actually quite

restrictive and we can do better at a lower cost.

Definition 20. We denote L2
loc the set of progressively measurable processes

such that for all t ≥ 0,

a.s.

∫ t

0

u2
s ds < +∞.
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It should be noted that in this definition we could exchange “a.s.” and
“∀” since

∫ t
0
u2
s ds is non-decreasing in t and thus it is sufficient to check

that these quantities are finite for integer t. It is clear that L2
loc * L2(Prog)

but the interest of considering this set lies in the localization property as
follows:

Lemma 6. Let u ∈ L2
loc. Then there exists an non-decreasing sequence of

stopping times (Tn)n≥1 such that

1. a.s. Tn ↗ +∞ (n→ +∞),

2. E
∫ Tn

0
u2
t dt < +∞ for all n ≥ 1.

Proof. We consider for all n ≥ 1,

Tn = inf{t ≥ 0 such that

∫ t

0

u2
s ds ≥ n}. (7)

We check that it is indeed a stopping time because for all r ≥ 0

{Tn ≤ r} =

{∫ r

0

u2
s ds ≥ n

}
,

and, reasoning as in Lemma 4, we check that
∫ r

0
u2
s ds is Fr-measurable. It

is also clear that Tn is non-decreasing and its limit is +∞ by definition of
L2
loc.

We deduce that if u ∈ L2
loc then for all n ≥ 1, u1[0,Tn] is in L2(Prog)

(exercise: verify the progressively measurability by showing that for any
stopping time T the random process t→ 1[0,T ](t) is progressively measurable)
and thus we can define∫ Tn

0

us dBs =

∫
us1[0,Tn](s) dBs

and for all t ≥ 0,

M
(n)
t :=

∫ t

0

us1[0,Tn](s) dBs =

∫
us1[0,Tn](s)1[0,t](s) dBs.

For all m ≥ n and t ≥ 0, we verify that M
(m)
t∧Tn = M

(n)
t , implying that almost

surely for n large enough (such that Tn ≥ t) M
(n)
t is constant and this limit

is by definition ∫ t

0

us dBs=
a.s.

limn→+∞

∫ t

0

us1[0,Tn](s) dBs.

Here are the first important properties of this stochastic integral defined on
L2
loc:
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1. When u ∈ L2(Prog), the two definitions coincide. Indeed, in this
case the sequence of processes (s→ us1[0,t](s)1[0,Tn](s))n≥0 converges in
L2(Prog) to s→ us1[0,t](s) by the dominated convergence theorem, and

we deduce that (
∫ t

0
us1[0,Tn](s) dBs)n≥0 converges in L2(F) to

∫ t
0
us dBs

2. The random process (
∫ t

0
us dBs)t≥0 is adapted and continuous.

For all n ≥ 1,
∫ t

0
us1[0,Tn](s) dBs is Ft -measurable as it is the integral

of a random process in L2(Prog), and we deduce that it is the same
for
∫ t

0
us dBs that is the a.s. limit of the sequence. Moreover, for all

0 ≤ v ≤ t, almost surely as soon as Tn ≥ t,
∫ v

0
us dBs coincides with∫ v

0
us1[0,Tn](s) dBs which gives the continuity of our random process on

[0, t].

3. The random process (
∫ t

0
us dBs)t≥0 is not necessarily a bounded mar-

tingale in L2 nor even necessarily a martingale. However, it is a local
martingale:

Definition 21. An adapted and continuous process (Mt)t≥0 is called a
local martingale if there exists an non-decreasing sequence of stopping
times (Tn)n≥1 such that

(a) almost surely Tn ↗ +∞ (n→ +∞),

(b) for all n ≥ 1, (Mt∧Tn)t≥0 is a uniformly integrable martingale.

Such a stopping time sequence is said to be reducing (Mt)t≥0.

It should be noted that this definition does not imply that (Mt)t≥0 is
integrable.

Thus if u ∈ L2
loc, by using the (Tn)n≥1 defined in (7), for all n ≥ 1 and

t ≥ 0, ∫ t∧Tn

0

us dBs =

∫ t

0

1[0,Tn]us dBs

is a bounded martingale in L2 and thus uniformly integrable. We obtain
that (

∫ t
0
us dBs)t≥0 is indeed a local martingale.

4. The integral defined on L2
loc is no longer an isometry and we only have

the inequality

E

[(∫ t

0

us dBs

)2
]
≤ E

(∫ t

0

u2
s ds

)
. (8)
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Indeed, if E
(∫ t

0
u2
s ds

)
< +∞, then u1[0,t] ∈ L2(Prog) and we have the

equality. And if E
(∫ t

0
u2
s ds

)
= +∞, there is nothing to prove!

Now that we have defined the stochastic integral we can define an impor-
tant class of random processes:

Definition 22 (Itô Process). A random process (Xt)t≥0 is an Itô process if
it can be written as

a.s. for all t ≥ 0 Xt = X0 +

∫ t

0

vs ds+

∫ t

0

us dBs, (9)

where

1. X0 is F0-measurable;

2. the random process v is progressively measurable and satisfies
∫ t

0
|vs| ds <

+∞ for all t ≥ 0,

3. the random process u belongs to L2
loc.

For an Itô process u, we will often use the notation

dXt = vt dt+ ut dBt,

which means nothing but (9).

5.3 Itô’s Formula

Let’s start with a somewhat informal calculation to understand the necessity
of Itô’s formula. Consider a function φ of class C2 on R and x of class C1 on
[0, t]. We then obtain the following expansion:

φ(x(t)) = φ(x(0)) +
n∑
i=1

(
φ(x(

it

n
))− φ(x(

(i− 1)t

n
))

)
= φ(x(0)) +

n∑
i=1

φ′
(
x(

(i− 1)t

n
)

)(
x(
it

n
)− x(

(i− 1)t

n
)

)
+

n∑
i=1

1

2
φ′′
(
x(

(i− 1)t

n
)

)(
x(
it

n
)− x(

(i− 1)t

n
)

)2

+ Remainder.

As n tends to infinity, the first sum converges to
∫ t

0
φ′(x(s))x′(s)ds =

∫ t
0
φ′(x(s))dx(s).

The second sum converges to 0 because the second derivative is bounded and
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the quadratic variation of x is null. Therefore, we finally obtain the classical
formula:

φ(x(t)) = φ(x(0)) +

∫ t

0

φ′(x(s))dx(s).

This calculation becomes incorrect if we take Brownian motion for x because
the quadratic variation is no longer null and the second term cannot be
neglected. Thus, Itô’s formula proposes a corrected version that takes this
term into account:

Theorem 13 (Itô’s Formula). Let φ ∈ C2(R) such that φ, φ′, and φ′′ are
bounded. Then almost surely, for all t ≥ 0,

φ(Bt) = φ(B0) +

∫ t

0

φ′(Bs)dBs +
1

2

∫ t

0

φ′′(Bs)ds.

Proof. (This presentation comes from [5]) Let ti = ti
n

for i = 0, · · · , n and
write the Taylor expansion to order 2 at each time step:

φ(Bt) = φ(B0) +
n∑
i=1

φ′(Bti−1
)(Bti −Bti−1

) +
1

2

n∑
i=1

φ′′(Bθi)(Bti −Bti−1
)2,

where for each i, θi is an appropriate point in [ti−1, ti] (we used the interme-
diate value theorem).

First step. Interpret
∑n

i=1 φ
′(Bti−1

)(Bti − Bti−1
) as

∫ t
0
Xn
s dBs where

Xn
s =

∑n
i=1 φ

′(Bti−1
)1[ti−1,ti [(s) for s ∈ [0, t]. Show that (Xn

s )s ≥ 0 con-
verges in L2(Prog) to (φ′(Bs))s ≥ 0. This follows from the continuity of φ′

and convergence P-a.s. and a.s. for Xn
s to φ′(Bs). Also, since φ′ is bounded,

we deduce from the dominated convergence theorem

E
∫

[Xn
s − φ′(Bs)]

2
ds→ 0.

Using the fact that the Itô integral is an isometry, we obtain

n∑
i=1

φ′(Bti−1
)(Bti −Bti−1

)
L2

−→
∫
φ′(Bs) dBs.

Second step. To study the second sum

Un =
n∑
i=1

φ′′(Bθi)(Bti −Bti−1
)2,
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make two substitutions: replace θi with ti−1 to define

Vn =
n∑
i=1

φ′′(Bti−1
)(Bti −Bti−1

)2,

then replace (Bti −Bti−1
)2 with ti − ti−1 and define

Wn =
n∑
i=1

φ′′(Bti−1
)(ti − ti−1).

Firstly, control the L1 distance between Un and Vn:

E|Un − Vn| ≤ E

(
sup
i
|φ′′(Bθi)− φ′′(Bti−1

)|
n∑
i=1

(Bti −Bti−1
)2

)
C.S.

≤ E[sup
i
|φ′′(Bθi)− φ′′(Bti−1

)|2]1/2E

(
(
n∑
i=1

(Bti −Bti−1
)2)2

)1/2

For the first term in the product: it tends to 0 a.s. by uniform continuity
and is dominated by 2 times the supremum of φ′′. Thus, this term tends to 0
by the dominated convergence theorem. For the second term of the product,
note that

∑n
i=1(Bti −Bti−1

)2 tends to t in L2, and it follows that this second
term converges to t. Finally, it is proved that

Un − Vn
L1

−→ 0.

Third step. Now control the L2 distance between Vn and Wn:

E(|Vn −Wn|2) = E

∣∣∣∣∣
n∑
i=1

φ′′(Bti−1
)[(Bti −Bti−1

)2 − (ti − ti−1)]

∣∣∣∣∣
2


=
n∑
i=1

E
(∣∣φ′′(Bti−1

)
∣∣2 [(Bti −Bti−1

)2 − (ti − ti−1)]2
)

≤ ||φ′′||2∞
n∑
i=1

E
(
[(Bti −Bti−1

)2 − (ti − ti−1)]2
)

where the second equality follows from the fact that the expectations of the
crossed terms cancel out. For i = 1, · · · , n, using X as a random variable
with distribution N (0, ti − ti−1),

E
(
[(Bti −Bti−1

)2 − (ti − ti−1)]2
)

= E((X2 − E(X2))2) = Var(X2) = (ti − ti−1)2Var(U2),
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where U is a standard normal random variable. It follows that Vn − Wn

converges to 0 in L2.
Fourth step. Finally, study the convergence of Wn: it is a Riemann sum,

thus a.s.

Wn →
∫ t

0

φ′′(Bs) ds.

Furthermore, since the sequence (Wn) is bounded by ||φ′′||∞t, convergence
in Lp for all p ≥ 1 follows from the dominated convergence theorem. This
concludes the proof for fixed t. To exchange almost sure convergence and
t ≥ 0, it suffices to restrict to rationals and use continuity.

To conclude this section, we provide other more general versions of Itô’s
formula. We will not prove them this year, but it is important to know them
as they are very useful in exercises.

Theorem 14 (Itô’s Formula for an Itô Process). Let

Xt = X0 +

∫ t

0

us dBs +

∫ t

0

vs ds

be an Itô process with u in L2
loc and v progressively measurable such that for

all t ≥ 0 a.s.,
∫ t

0
|vs| ds < +∞. Let φ be a C2 function. Then almost surely,

for all t ≥ 0,

φ(Xt) = φ(X0) +

∫ t

0

φ′(Xs) dXs +
1

2

∫ t

0

φ′′(Xs)d < X >s

= φ(X0) +

∫ t

0

φ′(Xs)us dBs +

∫ t

0

φ′(Xs)vs ds+
1

2

∫ t

0

φ′′(Xs)u
2
sds.

Theorem 15 (Function of Time and an Itô Process). Consider an Itô process
(Xt)t ≥ 0 as in the previous theorem and φ : R+ × R → R a C2 function.
Then almost surely, for all t ≥ 0,

φ(t,Xt) = φ(0, X0) +

∫ t

0

∂sφ(Xs) ds+

∫ t

0

∂xφ(Xs) dXs +
1

2

∫ t

0

∂xxφ(Xs)d < X >s

= φ(0, X0) +

∫ t

0

∂xφ(Xs)us dBs +

∫ t

0

∂sφ(Xs) + ∂xφ(Xs)vs +
1

2
∂xxφ(Xs)u

2
s ds.
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6 Stochastic Differential Equations

See [7] for a reference used in this section.
The aim of this section is to provide meaning and solve the following

stochastic differential equation (SDE):

dXt = b(Xt)dt+ σ(Xt)dBt

X0 = Z
(10)

where:

• Z is a random variable called the initial condition,

• b is a locally bounded measurable function from R to R called the drift,

• σ is a locally bounded measurable function from R to R called the
diffusion coefficient,

• (Bt)t≥0 is a Brownian motion.

Let (Ft) denote the filtration generated by (Bt)t≥0 (which we assume com-
pleted).

6.1 Existence and Uniqueness of Strong Solutions

Definition 23 (Strong Solution). A strong solution of our stochastic dif-
ferential equation is a process (Xt)t≥0 with continuous trajectories such that:

1. (Xt)t≥0 is adapted to (Ft)t≥0,

2. Almost surely, for all t ≥ 0,

Xt = Z +

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dBs. (11)

The solution is called strong because it depends on the initial condition
and the Brownian motion, which are given data of the problem.

Theorem 16. Suppose Z ∈ L2 and b and σ are Lipschitz. Then the
stochastic differential equation

dXt = b(Xt)dt+ σ(Xt)dBt

X0 = Z
(12)

admits a unique strong solution.
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Proof. Uniqueness. Let (Xt)t≥0 and (Yt)t≥0 be two strong solutions. Fix
M > 0 and let τ be the first time the distance M is reached by either (Xt)t≥0

or (Yt)t≥0:
τ = inf{t ≥ 0 | |Xt| ≥M or |Yt| ≥M}. (13)

Fix T > 0 and consider 0 ≤ t ≤ T . We have

E(|Xt∧τ − Yt∧τ |2) = E

(
|
∫ t∧τ

0

b(Xs)− b(Ys)ds+

∫ t∧τ

0

σ(Xs)− σ(Ys)dBs|2
)

≤ 2

{
E

(
|
∫ t∧τ

0

b(Xs)− b(Ys)ds|2
)

+ E

(
|
∫ t∧τ

0

σ(Xs)− σ(Ys)dBs|2
)}

C.S.+(8)

≤ 2

{
E

(
t

∫ t∧τ

0

(b(Xs)− b(Ys))2ds

)
+ E

(∫ t∧τ

0

(σ(Xs)− σ(Ys))
2ds

)}
≤ 2K2(T + 1)

∫ t

0

E(|Xs∧τ − Ys∧τ |2)ds.

(14)
By defining u(s) = E(|Xs∧τ − Ys∧τ |2) for 0 ≤ s ≤ T , we obtain u(0) = 0 and
for all 0 ≤ t ≤ T ,

u(t) ≤ 2K2(T + 1)

∫ t

0

u(s)ds. (15)

We can use the

Lemma 7 (Gronwall’s Lemma). Let u be a positive function locally bounded
on R+ such that for all t ≥ 0,

u(t) ≤ a+ b

∫ t

0

u(s)ds, (16)

where a and b are positive constants. Then for all t ≥ 0,

u(t) ≤ aebt. (17)

Proof of Gronwall’s Lemma. By induction for all n ≥ 1,

u(t) ≤ a+ ab+ · · ·+ a
(bt)n

n!
+ bn+1

∫ t

0

∫ t1

0

· · ·
∫ tn

0

u(tn+1)dtn+1 · · · dt1. (18)

Since u is bounded on [0, t] (say by a constant C), the last term is bounded

by C (bt)n+1

(n+1)!
and tends to 0. Hence the result.

In our case, a = 0 and u is bounded by 4M2 by definition of τ . We
conclude that u(t) is zero for all t ≥ 0, almost surely, and therefore Xt∧τ =
Yt∧τ . We let M tend to infinity to conclude that X and Y are modifications
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of each other. Since these two processes are continuous, we also conclude
that they are indistinguishable.

Existence. We establish existence using a Picard iteration method (i.e.,
a fixed-point argument). We define the process

X
(0)
t = Z for t ≥ 0, (19)

and for all n ≥ 0,

X
(n+1)
t = Z +

∫ t

0

b(X(n)
s )ds+

∫ t

0

σ(X(n)
s )dBs for t ≥ 0. (20)

Fix T ≥ 0. We want to use Doob’s inequality for (
∫ t

0
σ(X

(n)
s )dBs)0≤t≤T and

for that we have to check before that it is a true martingale. For this, we
show by induction (see [7]) using a calculation similar to the one we just did
for uniqueness, that for all n ≥ 0,

sup
0≤t≤T

E((X
(n)
t )2) < +∞. (21)

We then deduce that (X
(n)
t )0≤t≤T is in L2(Prog, [0, T ]), and, using the Lip-

schitz property of σ, that (σ(X
(n)
t ))0≤t≤T is also. For all n ≥ 1, the process

(
∫ t

0
σ(X

(n)
s )dBs)0≤t≤T is therefore a true martingale bounded in L2, and we

can use Doob’s inequality. We obtain for all t ≤ T ,

E( sup
0≤s≤t

|X(n+1)
s −X(n)

s |2) ≤ 2E

(
sup

0≤s≤t

∣∣∣∣∫ s

0

b(X(n)
u )− b(X(n−1)

u )du

∣∣∣∣2
)

+ 2E

(
sup

0≤s≤t

∣∣∣∣∫ s

0

σ(X(n)
u )− σ(X(n−1)

u )dBu

∣∣∣∣2
)

Doob

≤ 2E

((∫ t

0

|b(X(n)
u )− b(X(n−1)

u |du
)2
)

+ 8E

(∣∣∣∣∫ t

0

σ(X(n)
u )− σ(X(n−1)

u )dBu

∣∣∣∣2
)

C.S.+(8)

≤ 2(4 + T )K2 E

(∫ t

0

|X(n)
u −X(n−1)

u |2du
)

≤ C

∫ t

0

E( sup
0≤v≤u

|X(n)
v −X(n−1)

v |2)du,

(22)
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where C = 2(4 + T )K2. For n = 1, we obtain

E( sup
0≤s≤t

|X(2)
s −X(1)

s |2) ≤ C

∫ t

0

E( sup
0≤v≤u

|X(1)
v −X(0)

v |2)du ≤ Ca t, (23)

where a = E(supt≤T |X
(1)
t −X

(0)
t |2) (which is finite since Z ∈ L2). By itera-

tion, we deduce that for all n ≥ 1, and all 0 ≤ t ≤ T ,∥∥∥∥ sup
0≤t≤T

|X(n+1)
t −X(n)

t |
∥∥∥∥2

2

= E

(
sup

0≤s≤t
|X(n+1)

s −X(n)
s |2

)
≤ aCn t

n

n!
, (24)

which implies ∑
n≥0

∥∥∥∥ sup
0≤t≤T

|X(n+1)
t −X(n)

t |
∥∥∥∥

2

< +∞. (25)

We conclude that ∑
n≥0

sup
0≤t≤T

|X(n+1)
t −X(n)

t | (26)

is the almost sure limit of an increasing sequence of positive variables, and
also converges in L2. In particular, the limit is almost surely finite:∑

n≥0

sup
0≤t≤T

|X(n+1)
t −X(n)

t | < +∞ almost surely. (27)

This implies that almost surely, the sequence (X
(n)
t )0≤t≤T is Cauchy in the

space of continuous functions on [0, T ] endowed with the uniform norm.
Hence, almost surely, this sequence converges uniformly to a limit that we
denote (Xt)0≤t≤T . The trajectories of (Xt)0≤t≤T are continuous as uniform
limits of continuous functions. Moreover, (Xt)0≤t≤T is adapted to the Brow-

nian filtration as the limit of (X
(n)
t )0≤t≤T , which are adapted to the same

filtration (we even have better than almost sure convergence of X
(n)
t to Xt).

The next step is to demonstrate that this process is a solution to our
SDE. For this, let’s return to the recurrence equation (20). First, we notice,
by a calculation similar to (22), that

E( sup
0≤t≤T

|X(n)
t −Xt|2) →

n→+∞
0, (28)

which implies that for all 0 ≤ t ≤ T , X
(n)
t converges in L2 to Xt. Using

the fact that σ is Lipschitz, we obtain

E

∫ T

0

(σ(X(n)
s )− σ(Xs))

2ds ≤ K2 E

∫ T

0

(X(n)
s −Xs)

2ds,
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from which, by using (28), we deduce that for all 0 ≤ t ≤ T , (
∫ t

0
σ(X

(n)
s )dBs)n≥0

converges in L2 to
∫ t

0
σ(Xs)dBs. Similarly,

E

∣∣∣∣∫ T

0

b(X(n)
s )ds−

∫ T

0

b(Xs)ds

∣∣∣∣2 ≤ K2T E

(∫ T

0

∣∣X(n)
s −Xs

∣∣2 ds) ,
which also tends to 0. Therefore, we have L2 convergence of (

∫ T
0
b(X

(n)
s )ds)n≥0

to
∫ T

0
b(Xs)ds. Consequently, we can pass to the L2 limit in (20), and we

indeed obtain that (Xt)0≤t≤T is a strong solution to our SDE. Since T is
arbitrary and there is uniqueness, this concludes the proof.

In fact, we can prove with the same tools the following stronger theorem,
which also deals with the non-homogeneous case in time.

Theorem 17. Let Z ∈ L2. We assume that σ and b are continuous on
R+ × R and Lipschitz in the spatial variable (i.e., for any fixed t ≥ 0, b(t, ·)
and σ(t, ·) are Lipschitz). Then there exists a unique strong solution to the
equation

Xt = Z +

∫ t

0

b(s,Xs)ds+

∫ t

0

σ(s,Xs)dBs.

6.2 Langevin Equation and Ornstein-Uhlenbeck Pro-
cess

[Refer to [5] for a detailed exposition in this section]. In 1908, Paul
Langevin proposed an equation to account for the displacement of a particle
suspended in a fluid based on the laws of Newtonian mechanics. It is assumed
that the particle is subject to a frictional force in the fluid (proportional to
its velocity) and to collisions due to the thermal agitation of the liquid. If
(x(t))t≥0 denotes the displacement of a particle with mass 1, then for all
t ≥ 0,

x′′(t) = −bx′(t) + F (t)

where b is the coefficient of friction and F is the external force acting on the
particle. The velocity v = x′ of the particle thus satisfies

v′(t) = −bv(t) + F (t).

Considering that the force F represents independent collisions, it is reason-
able to assume that

∫ b
a
F (t)dt = σ(B(t)−B(a)) where (Bt)t≥0 is a Brownian
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motion and σ is a real number measuring the agitation of the medium. This
leads to the following stochastic differential equation (SDE) for the velocity:

dXt = −bXtdt+ σdBt

with initial condition Z ∈ L2 independent of (Bt)t≥0. To determine the
solution of this equation, we apply Itô’s formula to (ebtXt)t≥0:

ebtXt = Z +

∫ t

0

bebsXsds+

∫ t

0

ebs dXs

= Z + σ

∫ t

0

ebs dBs.

The process

Xt = Ze−bt + σ

∫ t

0

e−b(t−s) dBs, t ≥ 0

is thus a solution of the Langevin equation. This process is called the
Ornstein-Uhlenbeck process. The integral part is a Wiener process (see TD
5) since the integrated process is deterministic, making it a Gaussian process.
For all 0 ≤ r ≤ t,

E(Xt) = E(Z)e−bt

and

Cov(Xr, Xt) = e−b(t+r)Var(Z) + σ2

∫ r

0

e−b(t−s)e−b(r−s) ds

= e−b(t+r)Var(Z) +
σ2

2b
(e−b(t−r) − e−b(t+r)).

Thus, we obtain the following asymptotics: E(Xt)→ 0 as t tends to infinity,
and for all h ≥ 0,

lim
r→+∞

Cov(Xr, Xr+h) =
σ2

2b
e−bh.

In particular, E(X2
t ) tends to σ2

2b
, meaning that the average kinetic energy

converges. The process (Xt)t≥0 converges in law to a Gaussian N (0, σ
2

2b
) since

a limit of Gaussians is Gaussian. This probability is invariant in the sense
that if Z follows the law N (0, σ

2

2b
), then for all t ≥ 0, Xt follows the same

law: indeed, Xt is Gaussian, and its mean (zero) and variance (σ
2

2b
) can be

explicitly calculated. More generally, in this case, the process (Xt)t≥0 is a
centered Gaussian process with covariance

KX(r, t) =
σ2

2b
e−b(t−r), 0 ≤ r ≤ t.
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This process is stationary: for all t0 ≥ 0, the process (Xt0+t)t≥0 has the same
law as (Xt)t≥0.

Finally, considering the position (Yt)t≥0 of the particle itself rather than
its velocity, in the case where the velocity is given by the Gaussian process
above, and where the particle starts from a deterministic position x ∈ R, we
obtain for all t ≥ 0,

Yt = x+

∫ t

0

Xs ds.

The process (Yt)t≥0 is Gaussian (since X is Gaussian and we can view the
integral as a sequence of Riemann sums), centered at x, and with covariance
defined for all 0 ≤ r ≤ t by

KY (r, t) =

∫ r

0

∫ t

0

Cov(Xs1 , Xs2)ds1ds2

=
σ2

b2
r − σ2

2b3
(2− 2e−bt − 2e−br + e−b(t−r) + e−b(t+r)).

If we let the friction and agitation coefficients b and σ tend to infinity simulta-
neously in such a way that the ratio σ/b converges to a constant κ ∈]0,+∞[,
then

KY (r, t)→ κ2r.

In this limit, our process converges in law to (x+κBt)t≥0 where B is a Brow-
nian motion since in the Gaussian case it suffices to verify the convergence
of means and variance functions. Thus, in this limit, we recover the process
proposed by Einstein to describe a particle suspended in a liquid.
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