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1 Introduction. Outils

Code teams : zuvzwai

1. Some examples (Sinäı RW, RWRE d ≥ 2, random conductances, ant
in the labyrinth,...).

2. Difficult problem...but easy to formulate. At the end of this course you
will know about many open problems ! (0− 1 law, characterisation of
ballistic RW when d ≥ 2, dynamics RWRE and Sinäı,...)

3. Modelisation : a general paradigm for system with random environ-
ments (DNA depinning modelisation,..)

4. Nice mathematical objects that exhibit strange behaviours as slowdown
due to traps produced by the random environment.

5. In this course we try to introduce interesting tools to study RWRE : po-
tential function, EVFP, renewal structure,...There are many other ones
(link with reinforced random walk for example) but only five lectures !

Many parts of this course are inspired (sometimes almost copy) from [2],
[12], [1] [COMPLETE] and from notes of the course by N. Enriquez at Paris
6 along time ago.

1.1 Reminders about Markov chains

Definition. A Markov chain (Xn)n≥1 is a family of random variables built
on the same probability and with values in a countable space E that satisfy
the Markov property:

for all n ≥ 0 and all (x0, · · · , xn−1, x, y) ∈ En+2 such that
P(X0 = x0, · · · , Xn−1 = xn−1, Xn = x) > 0,

P(Xn+1 = y|Xn = x, · · · , X0 = x0) = P(Xn+1 = y|Xn = x)

If moreover there exist p : E × E → [0, 1] such that

P(Xn+1 = y|Xn = x) = p(x, y)

we say that the chain is time homogenous. In the following we only con-
sider homogeneous Markov chain so we will not precise that each time.

An alternative definition of the Makov chains is to define them as random
iteration.
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Proposition 1. Let (ξn)n≥1 a sequence of i.i.d. random variables with values
in a set I (this sequence is called sequence of innovations), X0 a random
variable with value in E independent of the sequence of innovations, and
finally a function f : E × I → E. Then the random iteration defined by

Xn+1 = f(Xn, ξn+1), for all n ≥ 0,

is an homogeneous Markov chain with transitions :

p(x, y) = P(f(x, ξ) = y), x, y ∈ E.

As a direct consequence of Markov property we obtain Chapman Kol-
mogorov equation that is: if µ is the law of X0 then for all integer n ≥ 0 and
all x0, · · · , xn ∈ E,

P(Xn = xn, · · · , X0 = x0) = µ(x0)
n−1∏
i=0

p(xi, xi+1).

In particular the law of a Markov chain is fully characterised by the initial
law and the transition matrix p.

Canonical process. It is often convenient to work with the canonical
process (for example to vary the initial condition without changing the pro-
cess itself). We thus consider as measurable space the space of trajectories

EN

endowed with the product σ−algbra G. On (EN,G) one defines for all n ≥ 0,
Xn as the n−th projection:

Xn :(EN,G) →(E, E)

ω = (ωi)i≥0 → ωn

Using Daniell Kolmogorov theorem one can prove that given a law
µ on E and a transition matrix p there exists a unique law Pµ on
(EN,G) so that under Pµ the canonical process (Xn)n≥0 is markovian
with initial law µ and transition p. On the space (EN,G) one defines the
time shift

θ :(EN,G) →(EN,G)

(ωi)i≥0 →(ωi+1)i≥0

and for all n ≥ 0, θn = θ◦n. We endow the canonical space with the filtration
generated by the canonical process: for all k ≥ 0

FXk = σ(X0, · · · , Xk),

(or simply Fk when no confusion is possible) and one can reformulate the
simple Markov property:
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Proposition 2. For all bounded random variable Z on the canonical space,
all k ∈ N, all probability measure µ on E, it holds that Pµ-a.s.

E
(
Z ◦ θk|FXk

)
= EXk(Z).

This property actually implies the strong Markov property where the
deterministic time of previous proposition is replaced by a random time. We
remind that a random variable T : (Ω,F) → N ∪ {+∞} is a stopping time
for the filtration FX if for all n ≥ 0

{T = n} ∈ FXn .

One can then defined the σ−algebra associated to this stopping time by

FT =
{
A s.t. A ∩ {T ≤ n} ∈ FXn , for all n ≥ 0

}
.

Proposition 3 (Strong Markov property). For all bounded random variable
Z on the canonical space, all stopping time T , and all probability measure µ
on E, it holds that Pµ-a.s.

E
(
Z ◦ θT 1{T<+∞}|FT

)
= EXT (Z)1{T<+∞}.

Kernel. To a transition matrix one can associates a useful operator kown
as the kernel and define on B(E,R) the set of all bounded function from E
with values in R:

Q : B(E,R) → B(E,R)
f 7→ Qf

where Qf is defined for all x ∈ E by

Qf(x) =
∑
y∈E

p(x, y)f(y) = Ex(f(X1)) for all x ∈ Zd. (1)

This operator characterises the matrix transition p. One can check that for
all n ≥ 1

Ex(f(Xn)) = Qnf(x).

If Q acts to the right on B(E,R), it also acts on the left on the space of
(probability) measures where it is defined by

µQ(x) =
∑
y∈E

µ(y)p(y, x) = Pµ(X1 = x). (2)

(3)
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One can easily check that if µ0 is the law of X0 then for all n ≥ 0

µn = µn−1Q = µ0Q
n

In particular for all x, y in E,

Px(Xn = y) = δxQ
n({y}) =: Qn(x, y)

where this last notation is justified by the fact that Q may be understood as
an infinite matrix and Chapman-Kolmogorov equation states

Qn(x, y) =
∑

z1,··· ,zn−1∈E

n−1∏
i=0

p(zi, zi+1),

with the convention z0 = x and zn = y.
Recurrence and Transience. A Markov chain (Xn)n≥0 is irreducible

if for all x, y ∈ E there exists n ≥ 0 such that Px(Xn = y) > 0.
For all z ∈ E, we define the hitting time of z by

Tz := inf{n ≥ 1, Xn = z},

with the convention inf ∅ = +∞. We also introduce the number of visits
at z

Nz =
+∞∑
k=0

1{Xk=z},

and the number of visits at z before time n

Nz(n) =
n∑
k=0

1{Xk=z}.

From Fubini’s theorem, for all x, y in E,

Ex(Ny) = Ex(
+∞∑
k=0

1{Xk=y}) =
+∞∑
k=0

Px(Xk = y) =
+∞∑
k=0

Qk(x, y).

Définition 1. The state x ∈ E is said to be

1. recurrent if Px(Tx < +∞) = 1

2. transient if Px(Tx < +∞) < 1.

Point 2. is equivalent to Px(Tx = +∞) > 0, that is the escape proba-
bility is positive..
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Theorem 1. For all x ∈ E,

1. x is recurrent ⇔ Nx = +∞ Px − p.s.

2. x is transient ⇔ Nx  Geo(Px(Tx = +∞)) under Px

Proposition 4. 1. When the Markov chain is irreducible, all states are
of same type and we say the chain to be recurrent or transient.

2. When the Markov chain is (irreducible) recurrent, for all x, y ∈ E

Px(Ny = +∞) = 1 in particular Px(Ty < +∞) = 1.

3. When the Markov chain is (irreducible) transient, for x, y ∈ E,

Px(Ny < +∞) = 1.

For all k ≥ 0 one defines T
(0)
z = 0, T

(1)
z = Tz and for all k ≥ 2, one defines

the k−th visits at z by

T (k)
z = inf{n ≥ T (k−1)

z + 1, Xn = z}.

Remark that

1 ≤ Tz ≤ T (2)
z ≤ · · · ≤ T (k)

z ≤ T (k+1)
z ≤ +∞,

and {T (k)
z = T

(k+1)
z } = {T (k)

z = +∞}.

Proposition 5. For all k ≥ 0 and all x ∈ E, T
(k)
z is a stopping time for the

filtration (FXn )n≥0. Moreover if z is recurrent then for all k ≥ 1, T
(k)
z < +∞

Pz−a.s. and the excursions from z to z(
X(

T
(k)
z +n

)
∧T (k+1)

z

)
n≥0

k ≥ 0,

are i.i.d.

Harmonic functions and martingales. A function f : E → R is said
to be harmonic if for all x ∈ E,

f(x) =
∑
y∈E

p(x, y)f(y).

Proposition 6. The random process (f(Xn))n≥0 is a martingale (with re-
spect to its own filtration) if and only if f is harmonic.

More on Markov processes. [COMPLETE if necessary] reversible
measures, invariant measures
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1.2 Tools from ergodic theory

Définition 2. A measure preserving transformation (mpt) is a map T :
(Ω,F ,P)→ (Ω,F) that is

1. measurable

2. preserves the probability measure: T (P) = P

Définition 3 (Ergodicity). Given some mpt T , the system (Ω,F ,P, T ) is
said to be ergodic if the invariant σ−algebra I is trivial that is for any
A ∈ F such that {T ∈ A} = A, P(A) ∈ {0, 1}.

Proposition 7. The system (Ω,F ,P, T ) is ergodic if and only if any function
f a.s. invariant by T (that is f = f ◦ T a.s.) is a.s. constant.

Définition 4 (Strongly mixing). Given some mpt T , the system (Ω,F ,P, T )
is said to be strongly mixing if for all A,B ∈ F

lim
k→+∞

P(A ∩ {T k ∈ B}) = P(A)P(B)

Proposition 8. Strong mixing implies ergodicity.

Theorem 2 (Birkhoff’s ergodic theorem). Let (Ω,F ,P, T ) be a measure pre-
serving system and f in L1. Then a.s.

1

n

∑
i=1···n

f ◦ T i → E(f |I)

as n → +∞. In particular when the system is ergodic it satisfies the law of
large numbers

1

n

∑
i=1···n

f ◦ T i → E(f).

Utile ?

Theorem 3 (Tempelman). Let T1, · · · , Td be d pairwise commuting proba-
bility preserving maps on (Ω,F ,P) and suppose (Br)r≥1 is a sequence of in-
creasing boxes of Zd+ tending to Zd+ as r goes to +∞. Then for all f ∈ L1(Ω),
a.s.

1

|Br|
∑
x∈Br

f ◦ T x → E(f |I1 ∩ · · · ∩ Id) as r goes to +∞,

where for all j = 1 · · · , d Ij is the invariant σ−algebra of Tj and for all
x = (x1, · · · , xd) ∈ Zd+

T x = T x11 ◦ · · · ◦ T
xd
d .
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[ADD a version with Ti invertible] We say that the system is ergodic
when I1 ∩ · · · ∩ Id is a trivial σ−algebra.

[ADD] Ergodic process. An example : irreducible recurrent positive MC
are ergodic.

1.3 Reminders about SRW in Zd

Given d ≥ 1 the simple random walk (SRW) (Sn)n≥0 on Zd is the Markov
chain with value in Zd and transitions given by

p(x, y) =
1

2d
for all x ∼ y,

where x ∼ y if they are neighbours on the lattice Zd that is |x− y|1 = 1. Off
course this Markov chain is irreducible and we remind the famous

Theorem 4 (Polyà). The SRW on Zd is transient if and only if d ≥ 3.

Proof. There are many proofs. Most of them are not robust and will not be
very usefull once dealing with RWRE

Green function. We compute

G(0, 0) = E(
∑
n≥0

1S2n = 0) =
∑
n≥0

P(S2n = 0).

In dimension d = 1 an easy combinatorial argument and Stirling estimates
leads to

P(S2n = 0) ∼ 1√
πn

that implies that G(0, 0) = +∞ and the SRW is recurrent. We may adapt
the same argument for d = 2 and obtain

P(S2n = 0) ∼ 1

πn

and this estimate leads to the same conclusion. For d = 3 we still use the
same argument to obtain the following estimate

P(S2n = 0) ≤ C

n3/2

where C > 0 is a suitable constant. This time we obtain that G(0, 0) < +∞
and conclude that the SRW is transient. This implies that the SRW is
actually transient for all d ≥ 3.
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For d = 2 we may also deduce the result from the one dimensional case.
Remark that the projection (Xn)n≥0 and (Yn)n≥0 on the vector line directed
by e1 +e2 and e1−e2 are i.i.d. one dimensional random walk. It implies that

P(S2n = 0) = P(X2n = 0, Y2n = 0) = P(X2n = 0)P(Y2n = 0) ∼ 1

πn

Martingale argument (d = 1). Remind the definition of T1 the hitting
time of 1. It is a stopping time and (Sn∧T1)n≥0 is thus a martingale bounded
from above by 1. It implies that it converges a.s. and the only possible
limit is 1 that is T1 < +∞ P0 − a.s.. The same holds of course for T−1

the hitting time of −1. And one deduces easily that the escape probability
P0(T0 = +∞) = 0 that is the SRW is recurrent.

Using the characteristic function [ADD] A more robust method:
Chung-Fuchs Theorem

As a sum of bounded i.i.d. increments the SRW satisfies (ordered from
the weakest to the most general)

1. the law of large numbers

Sn
n

a.s.→ 0 as n→ +∞

2. the central limit theorem

Sn√
n

under P
=⇒ N (0, 1) as n→ +∞

3. the invariance principle(
Sbntc√
n

)
t≥0

=⇒ (Bt)t≥0

where the convergence is the weak convergence in the space of contin-
uous function from R in R endowed with the topology of the uniform
convergence on compact sets.

We typically try to check if these properties are still true or not for RWRE!
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1.4 Definition of RWRE

Let us first define the set of environments. Fix d ≥ 1. We say that x and
y in Zd are neighbours and write x ∼ y if |x− y|1 = 1. We denote by E the
set of 2d neighbours of 0. We introduce the set of all transitions vectors

S2d−1 = {(pe)e∈E ∈ [0, 1]2d,
∑
e∈E

pe = 1}.

Finally the set of environments is a collection indexed by Zd of transition
vectors that is Ω = SZd

2d−1.
Given some environment ω = (ωx(·))x∈Zd ∈ Ω and x ∈ Zd we consider the

canonical discrete time nearest neighbour Markov chain (Xn)n≥0 with law
Px,ω such that for all n ≥ 1 and all (x0, · · · , xn) ∈ Zd such that Px,ω(Xn =
xn, · · · , X1 = x1, X0 = x0) > 0 and all e ∈ E

Px,ω(X0 = x) = 1

Px,ω(Xn+1 = xn + e | Xn = xn, · · · , X1 = x1, X0 = x0) = ωxn(e).

We will often write Pω for P0,ω. We will need the space shift or translation
on the space of environments: define for all z ∈ Zd tz that associates to all
ω ∈ Ω

(tzω)x = ωz+x.

In the following we want to consider ω as a random object: this is what we
will call a random environment. We thus consider the probability space
(Ω,F ,P) where F is the product σ−algebra and P is a probability measure.
Here are first examples of such random environments :

1. Product measure. Consider a probability measure µ on S2d−1 en-
dowed with its Borel σ−algebra and define P = µ⊗Z

d
. Remark thats

such product probability P is invariant under any space translation tz,
z ∈ Zd.

2. Random conductances. We first associate a random conductance
to each non oriented edge of Zd: consider a probability measure µ on
[0,+∞) endowed with its Borel σ−algebra and define S = µ⊗E

d
where

Ed is the set of edges of Zd. Finally define P as the image law of S
by the application that associates to a collection c = (cx,y)x,y∈Zd of
conductances the set of transitions defined for all neighbours x, y in Zd
by

ωx(y − x) =
cx,y∑
z∼x cx,z

if
∑

z∼x cx,z > 0 and ωx(0) = 1 otherwise.
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3. The ant in the labyrinth (P.G. De Gennes). It is the simple random
walk on the infinite percolation cluster: in the previous example pick
µ = pδ1 + (1− p)δ0. The probability measure Q defines on E is known
as Bernoulli i.i.d. percolation. One can prove (see [4]) that for all d ≥ 2
there exists some critical pc(d) ∈ (0, 1) such that

• for all p < pc Q-a.s. all clusters (=connected components of the
weighted graph (Zd, c)) are finite

• for all p > pc Q-a.s. there exists a unique infinite cluster C

Consider the case p > pc(d) in dimension d ≥ 3. In this case the
environment is not irreducible and 0 is possibly not in C. We may
work with Q(·|0 ∈ C) and the environment defines then the simple
random walk on C. Does such ant come back to the origin infinitely
often [5]? Does it exhibits a annealed or quenched central limit theorem
? Invariance principle ?

Assumptions : we say that the environment satisfies the ellipticity as-
sumption (E) if

P-almost surely for all x ∈ Zd and all e ∈ E, ωx(e) > 0. (4)

This condition assures that P−a.s. Px,ω is irreducible. We say that the
environment satisfies the uniform ellipticity assumption (UE) if there
exists some ε0 > 0 such that

P-almost surely for all x ∈ Zd and all y ∼ x, ωx(e) > ε0. (5)

Quenched properties / Annealed probability measure. We can
now define the annealed law Px as the semi product of P and Px,ω that
intuitively corresponds to, first, pick randomly an environment in Ω according
to P and then a markovian path in Zd according to Px,ω. More formally for
all A ∈ F and B ∈ G

Px(A×B) =

∫
A

Px,ω(B) dP.

We will mostly consider only the second marginal of Px that is

Px(B) =

∫
Ω

Px,ω(B) dP.

The annealed law is in general not markovian. Suppose the environment
is i.i.d. with common law µ and denote for all x ∈ Zd, e ∈ E and n ≥ 0 by
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Nn(x, y) the number of visits of the edge (x, x+ e) by the walker before time
n

Nn
x (e) =

n−1∑
i=0

1(Xi,Xi+1)=(x,x+e)

Now for all n ≥ 1 and all (x0, · · · , xn) ∈ Zd and all e ∈ E

Px(Xn+1 = xn + e |Xn = xn, · · · , X1 = x1, X0 = x0)

=

∫ ∏n
i=0 ωxi(xi+1 − xi) dP∫ ∏n−1
i=0 ωxi(xi+1 − xi) dP

=

∫ ∏
x∈Zd

∏
e∈E ωx(e)

Nn+1
x (e) dP∫ ∏

x∈Zd
∏

e∈E ωx(e)
Nn
x (e) dP

i.i.d.
=

∫ ∏
e∈E ωxn(e)N

n+1
xn (e) dµ∫ ∏

e∈E ωxn(e)N
n
xn

(e) dµ

=

∫ ∏
e∈E ωxn(e)N

n
xn (e)∫ ∏

y∼xn ωxn(e)N
n
xn

(e) dµ
ωxn(e) dµ

One can imagine that the first visit at x ∈ Zd the walker as no information
about the value of ωx(·) and draw a transition vector according to µ. But for
successive visits the walker updates its knowledge about the environment at
x and use a transition vector drawn according to∏

e∈E ωxn(e)N
n
xn

(e)∫ ∏
y∼xn ωxn(e)N

n
xn (e) dµ

. (6)

If you know Bayesian statistics theory you may think that µ is the prior law
and at each visit you obtain a new posterio law given by (6). On can see
from the previous expression that walker under the annealed law favorises
the transitions it has already used. It is thus non markovian even if the
intersection with its own past is local (that is the probability to jump from x
to y does only depends on previous jumps from x to one of its neighbours).

As a consequence we should keep in mind that the walker under the
annealed law is slowdowned. The walkers favorises the transition it has
already used ! This can also be understood by the fact that the environment
creates traps where the walker can be blocked.

By opposition to the annealed law we will used the (improper at least for
the singular use) term quenched law that refers to the situation where the
environment in fixed. We say that

some property relative to the walker (Xn)n≥0 holds quenched if it is true
under Px,ω for P− almost all ω ∈ Ω.
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For example we say that the quenched central limit theorem holds if
P−a.s. under P0,ω

Xn√
n

=⇒ N (0, σ2).

This is a stronger result than the annealed central limit theorem that only
states that the same weak convergence holds under P0.

Recurrence / transience. In this paragraph we assume the ellipticity
condition (E) so that almost surely Pω is irreducible and is transient or
recurrent. However the annealed law is not markovian and it does not make
sense at first view to speak about recurrence or transience. However note
that the event (exercise : why is it an event ?) of F ,

Rec. = “(Xn)n≥0 is recurrent under P0,ω”

is invariant under any space translation tz, z ∈ Zd. As soon as the environ-
ment is ergodic, under P and for the family of space shifts {te, e ∈ E}, we
obtain that P(Rec.) ∈ {0, 1}. The same holds of course with the event that
the walk is transient under P0,ω. Thus with a slight abuse of language we
can say that the walker is transient or recurrent under the (non markovian)
annealed law.

2 One dimensional RWRE

Notation : in the one dimensional setting, we use the notation ωx instead of
ωx(1). This implies that ωx(−1) = 1− ωx.

In the following we mainly focus on the case where P is a product proba-
bility measure that satisfies the uniform ellipticity assumption (UE), see (5).
More precisely, we consider a probability measure µ on [0, 1] such that for
some ε0, µ(ω0 > ε0) = 1 and define P = µZd .

For this part I borrowed heavily from Nathanael Enriquez’s
notes and from Ofer Zeitouni’s notes [2].

2.1 Harmonic function and potential

Given ω ∈ Ω one defines the operator acting on the space of bounded func-
tions on Zd Qω : B(Zd)→ B(Zd) by

Qωf(x) = Ex,ω (f(X1)) = ωxf(x+ 1) + (1− ωx)f(x− 1) for all x ∈ Z.

We first identify harmonic functions for the walker under Pω. We remind
that a function f : Z→ R is harmonic if Qωf = f that is for all x ∈ Z

f(x) = ωxf(x+ 1) + (1− ωx)f(x− 1).
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Using the notation ρx = (1−ωx)/ωx and ∆fx = f(x)−f(x−1) for all x ∈ Z
this last equation leads to

∆fx+1 = ρx∆fx x ∈ Z.

and thus

∆fx =

{
∆f0

∏x−1
i=0 ρi for x ≥ 1

∆f0

(∏−1
i=x ρi

)−1
for x ≤ −1

Harmonic functions are thus the two dimensional vectorial space of functions
that write,

f(x) =

f(0) + ∆f0

∑x
i=1

∏i−1
j=0 ρj x ≥ 0

f(0)−∆f0

∑0
i=x+1

(∏−1
j=i ρj

)−1

x ≤ −1

We now focus on the unique harmonic function that satisfies f(0) = 1 and
f(−1) = 0 that is

f(x) =

1 +
∑x

i=1

∏i−1
j=0 ρj x ≥ 0

1−
∑0

i=x+1

(∏−1
j=i ρj

)−1

x ≤ −1

We introduce the so-called potential (the reason of this denomination
will be clear later, see below Lemma 2 for instance) as the only function
V : Z→ R defined by V0 = 0 and ∆Vi = ln ρi−1 that is

V0 = 0

Vi = ln ρ0 + · · ·+ ln ρi−1 i ≥ 1

Vi = − ln ρ−1 − · · · − ln ρi i ≤ 1

Note that (Vi)i≥0 and (Vi)i≤0 are both random walks on R that is sum of i.i.d
random variables. The increments of the second process is the opposite in
law of the increment of the first one.

Rewriting f using the potential we obtain

f(x) =


eV0 + · · ·+ eVx if x ≥ 0

0 if x = −1

−eV−1 − · · · − eVx+1 if x ≤ −2

(7)

Note that for all x ∈ Z, ∆xf = eVx .
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2.2 Transience / recurrence

We now use the harmonic function to study the recurrence / transience of
the one dimensional RWRE. Our goal is to prove

Theorem 5. Assume (E) and that ln ρ0 is in L1(P). Then

1. If E(ln ρ0) = 0 then P−a.s. lim supXn = − lim inf Xn = +∞ (and
(Xn)n≥0 is thus recurrent).

2. If E(ln ρ0) < 0 then P−a.s. limXn = +∞ (and (Xn)n≥0 is thus tran-
sient).

3. If E(ln ρ0) > 0 then P−a.s. limXn = −∞ (and (Xn)n≥0 is thus tran-
sient).

Proof.

Remark 1. When we establish an almost sure property A quenched and
annealed statements are equivalent as P(A = 1) means E(Pω(A)) = 1 that
implies that P−a.s. Pω(A) as the random variable Pω(A) is smaller than 1.

This is not the case anymore when we are considering for example con-
vergence in law as in the central limit theorme where the quenched statement
implies the annealed one but the converse implication may be false !

We use the harmonic function f defined in (7) that is an increasing func-
tion. In the case of 2. the law of large numbers implies that P−a.s. (Vi)i∈Z
is equivalent to E(ln ρ0)i at +∞ and −∞ thus P−a.s.

lim
x→+∞

f(x) < +∞ and lim
x→−∞

f(x) = −∞.

Now from Proposition 6 the random process (f(Xn))n≥0 is a martingale under
Pω and as it is moreover bounded from above it converges Pω−a.s. to a L1

random variable. The only possible limit is the supremum of f and it implies
that (Xn)n≥0 goes to +∞ as n goes to infinity Pω-a.s. Item 3. is of course
proven in the same way.

For Item 1. : Using Chung-Fuchs Theorem [COMPLETE] E(ln ρ) = 0
implies that (Vi)i∈Z is recurrent and that

lim
x→+∞

f(x) = +∞ and lim
x→−∞

f(x) = −∞.

We use now an argument similar to the one used for proving the recurrence
of 1d−SRW. For any k ≥ 0 define the hitting time of k by Tk = inf{n ≥
0; Xn = k} with the convention that inf ∅ = +∞. It is a stopping time and
thus (f(Xn∧Tk))n≥0 is a martingale under Pω and it is bounded from above.
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Thus again it converges Pω−a.s. to a L1 random variable and the only
possible limit is f(k) which implies that (f(Xn∧Tk))n≥0 is actually eventually
equal to f(k). As a consequence Tk < +∞ Pω−a.s and the same holds if
k ≤ 0 with a similar argument. It implies that Pω-a.s.

lim supXn = +∞ and lim inf Xn = −∞

and thus (Xn)n≥0 is recurrent.

Remark that Lemma 2 provides also formulas that lead to the same con-
clusions in a very classical way.

2.3 Law of large numbers

We now turn to the law of large numbers.

Theorem 6. (Somomon 1975) Assume (UE). Then P0−a.s.

Xn

n
−→
n→+∞

v =


1−Eρ
1+Eρ if Eρ < 1

0 if Eρ ≥ 1 and Eρ−1 ≥ 1

−1−Eρ−1

1+Eρ−1 if Eρ−1 < 1

Proof. We only focus on the case where the RWRE is transient to the right
or recurrent (that is E(ln ρ) ≤ 0) as the other case is easily obtained by
symmetry.

Define for all n ≥ 1 τn = Tn − Tn−1. As the RWRE is transient to the
right or recurrent all τn n ≥ 1 are P0-a.s. finite.

Lemma 1. Under P0, the sequence (τn)n≥1 is stationary and ergodic.

Proof. The fact that the sequence is stationary is a direct consequence of the
Markov property and the translation invariance property of the environment
: for all k,m ≥ 1 and all A1, · · · , Ak ⊂ Z

P0,ω (τm+1 ∈ A1, · · · , τm+k ∈ Ak) = Pm,ω (τm+1 ∈ A1, · · · , τm+k ∈ Ak)
= P0,tmω (τ1 ∈ A1, · · · , τk ∈ Ak)

and its is enough to conclude as tmω as same law as ω under P. We now prove
a stronger property than ergodicity (see Proposition 8) that is: the sequence
(τn)n≥0 is strongly mixing. We thus have to prove that for all k, l ≥ 1 and
all A1, · · · , Ak ⊂ Z, B1, · · · , Bl ⊂ Z

lim
m→+∞

P(τ1 ∈ A1, · · · , τk ∈ Ak ∩ τm+1 ∈ B1, · · · τm+l ∈ Bl)

= P(τ1 ∈ A1, · · · , τk ∈ Ak)P(τ1 ∈ B1, · · · τl ∈ Bl).
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First assume that B1, · · · , Bl are all bounded by some K. It implies that
Pm,ω(τm+1 ∈ B1, · · · τm+l ∈ Bl) is σ(ωx, x ≥ m − K)−measurable while
P0,ω(τ1 ∈ A1, · · · , τk ∈ Ak) is σ(ωx, x ≤ k)−measurable so for m > K + k,
P0,ω(τ1 ∈ A1, · · · , τk ∈ Ak) and Pm,ω(τm+1 ∈ B1, · · · τm+l ∈ Bl) are indepen-
dent. For such m

P(τ1 ∈ A1, · · · , τk ∈ Ak ∩ τm+1 ∈ B1, · · · τm+l ∈ Bl)

=

∫
P0,ω(τ1 ∈ A1, · · · , τk ∈ Ak ∩ τm+1 ∈ B1, · · · τm+l ∈ Bl)dP

Markov
=

∫
P0,ω(τ1 ∈ A1, · · · , τk ∈ Ak)Pm,ω(τm+1 ∈ B1, · · · τm+l ∈ Bl)dP

= P(τ1 ∈ A1, · · · , τk ∈ Ak)P(τm+1 ∈ B1, · · · τm+l ∈ Bl)

= P(τ1 ∈ A1, · · · , τk ∈ Ak)P(τ1 ∈ B1, · · · τl ∈ Bl)

For the general case, define for all K ≥ 1

(BK
1 , · · ·BK

l ) = (B1 ∩ [0, K], · · · , Bl ∩ [0, K])

and observe (Markov property + invariance of the environment under trans-
lation + monotone convergence theorem) that for all ε > 0 one can find K
large enough so that for all m ≥ 0∣∣P(τm+1 ∈ BK

1 , · · · , τm+l ∈ BK
l )− P(τ1 ∈ B1, · · · , τl ∈ Bl)

∣∣ < ε.

or equivalently∣∣P(τm+1 ∈ BK
1 , · · · , τm+l ∈ BK

l )− P(τm+1 ∈ B1, · · · , τm+l ∈ Bl)
∣∣ < ε.

This is enough to conclude that

P(τ1 ∈ A1, · · · , τk ∈ Ak)P(τ1 ∈ B1, · · · τl ∈ Bl)− ε
≤ lim inf P(τ1 ∈ A1, · · · , τk ∈ Ak ∩ τm+1 ∈ B1, · · · τm+l ∈ Bl)

≤ lim sup P(τ1 ∈ A1, · · · , τk ∈ Ak ∩ τm+1 ∈ B1, · · · τm+l ∈ Bl)

≤ P(τ1 ∈ A1, · · · , τk ∈ Ak)P(τ1 ∈ B1, · · · τl ∈ Bl)− ε

that gives the result as ε can be taken arbitrarily small.

From Lemma 1, using the ergodic theorem one deduces that there exists
some constant c = E0(τ1) ∈ [1,+∞] such that P0−a.s.

Tn
n
→ c as n→ +∞.
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It implies that P0−a.s.

Xn

n
→ 1

c
as n→ +∞.

Indeed : define for n ≥ 1, X∗n = max0≤k≤nXk, then by definition for all n ≥ 1

TX∗n ≤ n < TX∗n+1.

As X∗n goes to +∞ with n going to +∞ it implies that P0−a.s. X∗n/n→ 1/c
when n goes to infinity. Now observe that for all n ≥ 1

X∗n − (n− TX∗n) ≤ Xn < X∗n + 1

so that
X∗n
n
−
n− TX∗n

n
≤ Xn

n
<
X∗n + 1

n

and the result follows easily once noticed that
TX∗n
n
→ 1 P0−a.s. when n goes

to infinity.
It remains to compute E0(τ1). For that one can use a nice one to one

correspondance that maps to each excursion from 0 to 1 of the walk a tree
(picture on blackboard : glue the top face of the path and stick it !). We
obtain that

τ1 = 2|Edges≤0|+ 1 = 2|Nodes≤0| − 1 = 2
∑
i≤0

Wi − 1

where Wi is the number of nodes at level i. Now each node at level x has
a number of children at level x − 1 that is independent from the tree cut
at level x and follows a Geometric law starting at 0 with parameter ωx. It
implies that W0 = 1 and for all i ≤ −1

E0,ω(Wi) = E0,ω(E0,ω(Wi|Wi+1)) = E0,ω(Wi+1
1− ωi+1

ωi+1

)

and by iteration we obtain

E0,ω(Wi) = ρi+1 · · · ρ0

and

E0,ω(τ1) = 2

(∑
i≤−1

ρi+1 · · · ρ0 + 1

)
− 1

= 2

(∑
i≤0

ρi · · · ρ0 + 1

)
− 1

(8)
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As the environment is i.i.d. we obtain

E(τ1) = 2
∑
i≤0

E(ρ)|i| − 1 =

{
1+E(ρ)
1−E(ρ)

if E(ρ) < 1

+∞ if E(ρ) ≥ 1

Remark 2. 1. The asymptotic velocity is not the expectation of the drift
E(2ω0 − 1) ! It is not surprising and we will see later a way to correct
this wrong intuition.

2. There exists a regime where the RWRE is transient with null ve-
locity. In this case one can even have the annealed expectation of the
drift that is oriented in the other direction that the transience direction.
It is the case for example when

µ =
9

10
δ1/4 +

1

10
δ1−ε

and ε > 0 is chosen small enough.

3. When the walk is transient and ballistic (that is v 6= 0) the an-
nealed expectation of the drift is necessarily oriented in the
same direction than the transience direction as from Jensen
inequality E(1/ρ) ≥ 1/E(ρ) and thus E(ρ) < 1 implies E(2ω − 1) > 0.

4. Jensen’s inequality assures that case 1 and 3 in the theorem do not
occur simultaneously.

5. In the ballistic case, one can prove a refinement of this result by com-
puting the second order term.

2.4 Sinai regime

Sinai [11] provides a description of the RWRE in the recurrent case

Theorem 7 (Sinäı 1982). Assume E(ln ρ) = 0 and (UE). Then (Xn)n≥0 is
recurrent and

(Xn/ ln2 n)n≥0 converges weakly under P0.

Before entering the proof we need three lemma describing the behaviour
of the walker in a valley of the potential (see below for a precise definition).
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Lemma 2 (Exit side of a valley and lower bound on the exit time). Let
a < b < c be real numbers. Define T = Ta ∧ Tc and N =

∑T
i=0 1Xi=b. Then

Pb,ω(Ta < Tc) ≤ |c− b|
esup[b+1,c] V

esup[a+1,c] V

and
T ≥ N

where N has a geometric law with parameter

max(e− sup[a+1,b] Vi−Vb ; e− sup[b+1,c] Vi−Vb+1).

Proof. Using Doob’s stopping theorem for the martingale (f(Xn))n≥0 and
the stopping time T = Ta ∧ Tc we obtain

Pb,ω(Ta < Tc)f(a) + Pb,ω(Tc < Ta)f(c) = f(b)

so that

Pb,ω(Ta < Tc) =
f(c)− f(b)

f(c)− f(a)
=
eVb+1 + · · ·+ eVc

eVa+1 + · · ·+ eVc

and the first result follows easily. Moreover applying this last estimates to
b− 1, b, c and a, b, b+ 1 we obtain

Pb−1,ω(Ta < Tb) =
eVb

eVa+1 + · · ·+ eVb

Pb+1,ω(Tc < Tb) =
eVb+1

eVb+1 + · · ·+ eVc

We obtain the second part of the result as a consequence of strong Markov’s
property using only that T is larger than the number of visits to b before
exiting [a, c].

Lemma 3 (Upper bound on mean hitting time). Let a < b < c be real num-
bers. Given ω we define the environment ωa that coincides with ω everywhere
except at a where ωa = 1 (that is the walker is reflected at a). Then

Eb,ωa(Tc) ≤ 2|c− b||c− a|e[V ]a,c

where [V ]a,c = maxa<i<j≤c Vj − Vi

Proof. From strong Markov property

Eb,ωa(Tc) = Eb,ωa(Tb+1) + Eb+1,ωa(Tb+2) + · · ·+ Ec−1,ωa(Tc).
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Now as ρa = 0, using (8), we obtain that for all j = b, · · · , c− 1

Ej,ωa(τj+1) = 2

(∑
i≤j

ρi · · · ρj + 1

)
− 1

= 2

( ∑
a+1≤i≤j

ρi · · · ρj + 1

)
− 1

= 2

( ∑
a+1≤i≤j+1

exp(Vj+1 − Vi)

)
− 1.

Finally

Eb,ωa(Tc) ≤ 2
∑

j=b,··· ,c−1
a+1≤i≤j+1

exp(Vj+1 − Vi)

≤ 2|c− b||c− a|e[V ]a,c

Lemma 4 (staying at the bottom of a valley). Let a < b < c be real numbers
such that b is a minimum of V on the segment [a, c]. Given ω we define the
environment ωa,c that coincides with ω everywhere except at a where ωa = 1
and at c where ωc = 0 (that is the walker is reflected both at a and c). Then
for all time n ≥ 0 and all x ∈ [a, c]

Pb,ωa,c(Xn = x) ≤ ωb
ωx

eVb+1

eVx+1
.

Proof. One can check that

π(x) =
ωb
ωx

eVb+1

eVx+1
, x ∈ [a, c]

defines an invariant measure (do it) and that π ≥ δb. It implies that π ≥
Pb,ωa,c(Xn ∈ ·).

Proof of Theorem 7. Intuition: in the recurrent case (E ln ρ = 0) the poten-
tial is a random walk with mean zero increments. Before time n, the walker
looks for a valley of the potential of depth at least lnn where it can stay a
time exp(lnn) = n. It finds such valley at a distance ln2 n as the potential
is diffusive. We can make precise the law of the bottom of this valley after
correct renormalisation using Donsker’s theorem : it is the bottom of the
smallest valley of B that surrounds 0 and has depth at least 1.
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We start the proof by defining for all n ≥ 1, the renormalised potential

V
(n)
t =

Vbln2 ntc

lnn
, t ∈ R.

As (UE) implies σ2 = E ((ln ρ)2) < +∞, Donsker’s theorem gives that V n

converges weakly for the uniform topology (on compact sets) to the two sided
Brownian motion (σBt)t∈R.
For every scale n one want to define a location b̄n that corresponds to the
theoretical area where the walker lies in the the potential after n steps. For
this purpose we need the intuitive notion of valley.

We call a triple (a, b, c) with a < b < c a valley if

V
(n)
b = min

a≤t≤c
V

(n)
t ,

V (n)
a = max

a≤t≤b
V

(n)
t ,

V (n)
c = max

b≤t≤c
V

(n)
t .

The depth of the valley is defined as

d(a, b, c) = min(V (n)
a − V (n)

b , V (n)
c − V (n)

b ).

If (a, b, c) is a valley, and a < d < e < b are such that

V (n)
e − V (n)

d = max
a≤x<y≤b

V (n)
y − V (n)

x ,

then (a, d, e) and (e, b, c) are again valleys, which are obtained from (a, b, c)
by a left refinement. One defines similarly a right refinement. Define

c0
n = min{t ≥ 0 : V

(n)
t ≥ 1},

a0
n = max{t ≤ 0 : V

(n)
t ≥ 1},

V
(n)

b0n
= min

a0n≤t≤c0n
V

(n)
t .

We now apply a sequence of refinements till we find the smallest valley
(ān, b̄n, c̄n) with ān < 0 < c̄n and d(ān, b̄n, c̄n) > 1. Finally for technical
reasons we also have to define in the same way for all δ > 0, (āδn, b̄

δ
n, c̄

δ
n)

except we are looking this time for a valley of depth d(ān, b̄n, c̄n) > 1 + δ.
The bar in the notation refers to positions in the renormalised potential while
we use same notations without it to denote the positions at the original scale
that is :

an = ān ln2 n ; bn = b̄n ln2 n ; cn = c̄n ln2 n

24



and the same obvious notations for aδn, b
δ
n and cδn.

As a consequence of the weak convergence of V n toB one obtains the weak
convergence of b̄n to the bottom of the smallest valley of B that surrounds 0
and has depth at least 1. In order to prove the result it is sufficient to prove
that for all η > 0

P0

(∣∣∣∣ Xn

ln2 n
− b̄n

∣∣∣∣ > η

)
→ 0 as n→ +∞.

To control the above probability we use a standard strategy dealing with
random environments : first define a sequence of sets Gn ⊂ Ω of good envi-
ronments with enough conditions such that the walker in any environment
ω ∈ Gn is close to bn = b̄n ln2 n with large probability uniformly with respect
to ω: for all δ, J > 0

Gδ,J
n =

{
1. b̄n = b̄δn

2. any refinement (a, b, c) of (āδn, b̄
δ
n, c̄

δ
n) satisfies d(āδn, b̄

δ
n, c̄

δ
n) < 1− δ

3. c̄δn − āδn < J

4. min{V n
i − V n

b̄n
, t ∈ [ān, c̄n] \ [b̄n − δ, b̄n + δ] > δ3}}

[Comment these 4 conditions. Picture to summarise]
Using Donsker’s theorem and basic properties (COMPLETE : description

of brownian motion around local minimum) of the brownian motion one can
prove that for all δ, J > 0 limn→+∞ P(Gδ,J

n ) exists and

lim
J→+∞,δ→0

lim
n→+∞

P(Gδ,J
n ) = 1.

Given η, ε > 0, we fix J > 0 large enough, δ ≤ η/2 small enough and n
large enough so that P((Gδ,J

n )c) < ε. From now on we omit exponents δ and
J in the notations for the event Gn. We obtain

P0

(∣∣∣∣ Xn

ln2 n
− b̄n

∣∣∣∣ > η

)
≤ P(Gc

n) + E
(

1GnP0,ω

(∣∣∣∣ Xn

ln2 n
− b̄n

∣∣∣∣ > η

))
≤ ε+ sup

ω∈Gn
P0,ω

(∣∣∣∣ Xn

ln2 n
− b̄n

∣∣∣∣ > η

)
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and we are left with proving that

sup
ω∈Gn

P0,ω

(∣∣∣∣ Xn

ln2 n
− b̄n

∣∣∣∣ > η

)
→ 0

when n goes to infinity. In the following we assume bn ≥ 0 as both cases are
similar.

Step 1. We first prove that

sup
ω∈Gn

P0,ω (Tbn > n)→ 0

Given ω ∈ Gn, using Lemma 2 with (a, b, c) = (aδn, 0, bn) and 1., 3., we obtain

P
0,ωa

δ
n

(
Taδn < Tbn

)
|

1.&3.

≤ J ln2 n

nδ
→ 0.

Using Lemma 3 again with (a, b, c) = (aδn, 0, bn) and 1., 2., 3., we obtain

E
0,ωa

δ
n

(Tbn) ≤ 2J2(ln4 n)n1−δ.

and using Markov’s inequality

P
0,ωa

δ
n

(Tbn > n) ≤ 2J2 ln4 n

nδ
→ 0.

Finally
sup
ω∈Gn

P
0,ωa

δ
n

(
Tbn ≤ n, Tbn ≤ Taδn

)
→ 1

and as

P
0,ωa

δ
n

(
Tbn ≤ n, Tbn ≤ Taδn

)
= P0,ω

(
Tbn ≤ n, Tbn ≤ Taδn

)
we obtain

sup
ω∈Gn

P0,ω (Tbn ≤ n)→ 1

Step 2. We now prove

sup
ω∈Gn

sup
0≤k≤n

Pbn,ω

(∣∣∣∣ Xk

ln2 n
− b̄n

∣∣∣∣ > η

)
→ 0

Fix ω ∈ Gn and 0 ≤ k ≤ n. Define T as the hitting time of {aδn, cδn}. Thus

Pbn,ω

(∣∣∣∣ Xk

ln2 n
− b̄n

∣∣∣∣ > η

)
≤ Pbn,ω (T ≤ n) + P

bn,ωa
δ
n,c

δ
n

(∣∣∣∣ Xk

ln2 n
− b̄n

∣∣∣∣ > η

)
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For the first term we use the second part of Lemma 2 with (a, b, c) =
(aδn, bn, c

δ
n) to obtain

Pbn,ω (T ≤ n) ≤ 1−
(

1− 1

n1+δ

)n
≤ 1

nδ
→ 0.

For the second one we use Lemma 4 with (a, b, c) = (aδn, bn, c
δ
n) (here it is

usefull that δ has been chosen smaller that η/2) and point 1., 3., 4., to obtain
that (we assume (UE) with ε0 > 0)

P
bn,ωa

δ
n,c

δ
n

(
|Xk − bn| > η ln2 n

)
≤ 1− ε0

ε0

J
ln2 n

nδ3
.

Step 3. Finally for all ω ∈ Gn using Markov property,

P0,ω

(∣∣∣∣ Xn

ln2 n
− b̄n

∣∣∣∣ > η

)
≤ P0,ω (Tbn > n) +

∑
k≤n

P0,ω (Tbn = n− k) Pbn,ω

(∣∣∣∣ Xk

ln2 n
− b̄n

∣∣∣∣ > η

)
≤ P0,ω (Tbn > n) + sup

k≤n
Pbn,ω

(∣∣∣∣ Xk

ln2 n
− b̄n

∣∣∣∣ > η

)
and the proof is complete.

2.5 Kesten-Kozlov-Spitzer regime

Theorem 8 (Kesten-Kozlov-Spitzer 1975). Assume (UE) and E(ln ρ) < 0
and E(ρ) ≥ 1 (and some other technical assumptions). There exists a unique
positive real number κ > 0 such that E(ρκ) = 1 and

(Xn/n
κ)n≥0 converges weakly under P0.

We will not prove (this year !) this theorem. Intuition. Two ways to
prove this result : inhomogeneous branching process (the original proof [7])
& using once again the potential (Enriquez Sabot Zindy [3])

3 Multidimensional RWRE

3.1 Kalikow auxiliary Markov chain

A major problem with the annealed law is that is not markovian. Kalikow
introduced a familiy of auxiliary Markov chains that exhibit same exit dis-
tribution of connexe sets as the walker under P0.
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More precisely, for any connexe set U ( Zd such that 0 ∈ U we define

∂U = {z ∈ Zd : there exists x ∈ U, |x− z| = 1}

the boundary of U and TU the hitting time of this boundary. We define a
Markov kernel on U ∪ ∂U by: for all x ∈ U , |e| = 1

P̂U(x, x+ e) =
E0

(∑TU
k=0 1Xk=x,Xk+1=x+e

)
E0

(∑TU
k=0 1Xk=x

)
and for all x ∈ ∂U

P̂U(x, x) = 1.

Remark 3. Check that transition are well defined (that is all expectations
are finite) and positive

We use P̂x,U to denote the law of the canonical Makov chain starting at

x ∈ U ∪ ∂U with transition P̂U

The main interest of this chain is the following result

Theorem 9 (Kalikow 81). If P̂0,U(TU < +∞) = 1 then P0(TU < +∞) = 1

and moreover XTU has same law under P̂0,U and P0.

Proof. Define for all x ∈ U ∪ ∂U

ĜU(x) = Ê0,U

(
TU∑
k=0

1Xk=x

)

that is (except at the boundary) the green function associated to P̂0,U . The
key of the proof (and actually an interesting result by itself) is to prove that
for all x ∈ U ∪ ∂U

ĜU(x) = E0

(
TU∑
k=0

1Xk=x

)
= EE0,ω

(
TU∑
k=0

1Xk=x

)
. (9)

We admit this for the moment. It implies that if x ∈ ∂U

P̂0,U(TU < +∞, XTU = x) = ĜU(x) = P0(TU < +∞, XTU = x).

Summing over all x ∈ ∂U we obtain P0(TU < +∞) = P̂0,U(TU < +∞) = 1

and then also that XTU has same law under P̂0,U and P0.
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It remains to prove (9). First note that ĜU(·) and Ψ(·) = E0

(∑TU
k=0 1Xk=·

)
solve the equation

f(x) = δ0,x +
∑
y∈U

P̂U(y, x)f(y) x ∈ U ∪ ∂U (10)

To prove that first note that from Markov property for all ω and x, y,

E0,ω

(
TU∑
k=0

1Xk=y,Xk+1=x

)
= E0,ω

(
TU∑
k=0

1Xk=y

)
ωy(x) (11)

and it implies

E0,ω

(
TU∑
k=0

1Xk=x

)
= δ0,x +

∑
y∈U

E0,ω

(
TU∑
k=0

1Xk=y

)
ωy(x).

The fact that ĜU solve (10) is just the same last equation with kernel P̂U

instead of ω. For Ψ, we continue the computation by taking the expectation
with respect to the environment to obtain

E0

(
TU∑
k=0

1Xk=x

)
= δ0,x +

∑
y∈U

E

[
E0,ω

(
TU∑
k=0

1Xk=y

)
ωy(x)

]
(11)
= δ0,x +

∑
y∈U

E

[
E0,ω

(
TU∑
k=0

1Xk=y,Xk+1=x

)]

= δ0,x +
∑
y∈U

P̂U(y, x)E0

(
TU∑
k=0

1Xk=y

)
.

Now ĜU(·) is the minimal non-negative solution of (10) : to see that point
introduce for all n ≥ 0 and for all x ∈ U ∪ ∂U

ĜU
n (x) = Ê0,U

(
TU∧n∑
k=0

1Xk=x

)
.

Using a computation similar to the last one one can prove that for all n ≥ 0

ĜU
n+1(x) = δ0,x +

∑
y∈U

P̂U(y, x)ĜU
n (x) x ∈ U ∪ ∂U (12)

Consider now a solution f of (10). Clearly for n = 0

ĜU
0 = δ0,x ≤ f
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and using (12) and the fact that f solves (10), by induction, for all n ≥ 0

ĜU
n ≤ f.

Monotonous convergence theorem assures that ĜU
n ↗ ĜU pointwise and we

obtain the result and in particular

GU ≤ Ψ. (13)

Next, GU = Ψ on ∂U as for all x ∈ ∂U

ĜU(x) = P̂0,U(TU < +∞, XTU = x)

so that ∑
x∈∂U

ĜU(x) = P̂0,U(TU < +∞) = 1

and
P0(TU < +∞) =

∑
x∈∂U

Ψ(x) ≥
∑
x∈∂U

ĜU(x) = 1.

It implies that the inequality in the last equation is actually an equality and
due to (13) for all x ∈ ∂U

ĜU(x) = Ψ(x).

As a consequence h = ĜU −Ψ is non negative function such that

h(x) =
∑
y∈U

P̂U(y, x)h(y) x ∈ U ∪ ∂U (14)

and h = 0 on ∂U . Assume by contradiction that h(x) > 0 for some x ∈ U .
As x is connected to any y ∈ ∂U , (14) implies that h(y) > 0 too. Prove that
P̂U is strictly larger than 0 !

From the proof above on easily deduce

Corollary 1. Under same assumptions as in Theorem 9

ÊU
0 (TU) = E0(TU)

3.2 Directional transience and 0− 1 law

See [1] and [6] for this part. In this section again we assume that
(UE) holds for some ε0 > 0 and that the environment is i.i.d. There
is unfortunately no criterium for characterising transience / recurrence in
dimension d ≥ 2. There are however some results relative to directional
transience. We say that the walker is transient in the direction ` ∈ Rd if
Xn · `→ +∞ when n goes to +∞ and denote by A` the corresponding event

A` = {Xn · `→ +∞}.
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Theorem 10 (Kalikow [6]). For all ` ∈ Rd \ {0} the event A` ∪A−` satisfies
a 0− 1 law that is

P(A` ∪ A−`) ∈ {0, 1}.

Proof.

Lemma 5. Assume (UE) and ` 6= 0. Then

P0 − a.s. lim inf Xn · ` ∈ {±∞}

and the same holds for lim supXn · `.
As a consequence P0−a.s. (Xn)n≥1 belongs to (only) one of these three events
: A`, A−` or {lim inf Xn · ` = −∞, lim supXn · ` = +∞}.

Proof. We have to prove that this result holds P0,ω-a.s. for P-almost all ω.
For a given u ∈ R, we define the following stopping times

T̃ (0)
u = T̃u = inf{n ≥ 0, Xn · ` < u}

and by iteration for all k ≥ 1

T̃ (k)
u := T̃u ◦ θT (k−1)

u +1

as on the event {lim inf XN · ` < u}, all T̃
(k)
u are finite. Consider now e such

that α = ` ·e > 0, it follows from Markov property and the (UE) assumption
[ADD DETAILS, see [12]] that P0,ω-a.s.

{lim inf XN · ` < u} ⊂ {lim inf XN · ` < u− α}.

Finally iterating this argument we obtain that Pω-a.s.

{lim inf XN · ` < u} ⊂ {lim inf XN · ` = −∞}.

Introduce the first time the walker goes behind its initial level in direction
`

D = inf{n ≥ 0, Xn · ` < X0 · `}

still with the convention inf ∅ = +∞.

Proposition 9. Assume (UE) (even if (E) would be sufficient) and P0(D =
+∞) = 0. Then P0−a.s.

lim inf Xn · ` = −∞.

31



Proof. Using the fact that the environment is invariant by translation we
obtain from the assumption that for all x ∈ Zd, Px(D < +∞) = 1 and thus
P-a.s. Px,ω(D < +∞) = 1. As Zd is countable we obtain that P−a.s. for all
x ∈ Zd, Px,ω(D < +∞) = 1.

As a consequence P-a.s., using the strong Markov property, the successive
hitting times of the half-space {x · ` < 0} are all finite P0,ω−a.s., that is
P0,ω(lim inf Xn · ` ≤ 0) = 1 and the claim follows easily from Lemma 5.

Define for all u ∈ R the hitting time

Tu = inf{n ≥ 0, Xn · ` > u}.

and the sequence of random variables

S0 = 0 M0 = X0 · `

then

S1 = TM0 and R1 = D ◦ θS1 + S1 and M1 = max{Xn · `, 0 ≤ n ≤ R1}

and by induction for all k ≥ 1

Sk+1 = TMk
and Rk+1 = D◦θSk+1

+Sk+1 and Mk+1 = max{Xn·`, 0 ≤ n ≤ Rk+1}

One can check that all Sk and Rk, k ≥ 1 are stopping times and that

0 = S0 ≤ R0 ≤ S1 ≤ R1 ≤ S2 ≤ · · ·Sk ≤ Rk ≤ +∞

and that any of these inequalities is strict if the left member is finite. Finally
define

K = inf{k ≥ 1, Sk < +∞, Rk = +∞}.
and the first renewal time (this terminology will be clear later)

τ1 = SK .

One could alternatively and in a simpler way define τ1 as

τ1 = inf{n ≥ 0, Xk · ` < Xn · ` for all k < n and Xk · ` ≥ Xn · ` for all k > n}.

However the first definition is more convenient to prove the following propo-
sition.

Proposition 10. Assume P0(D = +∞) > 0, then P0−a.s.

{lim supXn · ` = +∞} = {K < +∞} = A` = {τ1 < +∞}.

Moreover all these events have positive probability under P0.
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Proof. Once proven the two first equalities, the last one is trivial.
We first prove ⊂ of the first equality. For k ≥ 1 using Markov property

P0(Rk < +∞) =
∑
x∈Zd

E
(

E0,ω(Sk < +∞, XSk = x)Px,ω(D < +∞)
)
.

The point is now that for a given x ∈ Zd, E0,ω(Sk < +∞, XSk = x) is
σ(ωy(·), y s.t. y·` < x·`)-measurable while Px,ω(D < +∞) is σ(ωy(·), y s.t. y·
` ≥ x · `)-measurable. As these two σ−algebra are independent we obtain

P0(Rk < +∞) =
∑
x∈Zd

E0(Sk < +∞, XSk = x)Px(D < +∞)

= P0(D < +∞)P0(Sk < +∞)

≤ P0(D < +∞)P0(Rk−1 < +∞)

≤ P0(D < +∞)k.

where we used to go from the first to the second line that the environment
is invariant by translation ; to go from the second to the third that {Sk <
+∞} ⊂ {Rk−1 < +∞} ; and a basic iteration to go from the second to the
last line. We thus deduce from Borel Cantelli’s lemma that P0-a.s.

inf{k ≥ 0, Rk = +∞} < +∞

As on {lim supXn · ` = +∞}, {Rk < +∞} ⊂ {Sk+1 < +∞}, we obtain that

P0 − a.s. on {lim supXn · ` = +∞}, K < +∞.

We now prove ⊂ of the second inequality. Note that on {K < +∞},
{lim inf Xn · ` > −∞} and using Lemma 5 it implies that P0−a.s.

{K < +∞} ⊂ {lim inf Xn · ` = +∞} = A`.

Finally just notice that from Lemma 5, {D = +∞} ⊂ {lim supXn ·` = +∞}
and thus P0(lim supXn · ` = +∞) > 0.

We come back now to the proof of the 0− 1 law (Theorem 10). For that
we introduce the random variable D̃, K̃ defined as D and K but with −`
instead of `.

Case 1: P0(D = +∞) > 0 and P0(D̃ = +∞) = 0.
From Proposition 9, P0-a.s. lim supXn · ` = +∞. Now from Proposition 10,
K < +∞ P0-a.s. and

P0(A`) = 1.
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Case 2: P0(D = +∞) = 0 and P0(D̃ = +∞) > 0.
Using the same arguments

P0(A−`) = 1.

Case 3: P0(D = +∞) = 0 and P0(D̃ = +∞) = 0.
From Proposition 9, P0-a.s. lim supXn · ` = +∞ and lim inf Xn · ` = −∞.
As a consequence, in the direction ` the walker oscillates between −∞ and
+∞ and P0(A`) = P0(A−`) = 0 thus

P0(A` ∪ A−`) = 0.

Case 4: P0(D = +∞) > 0 and P0(D̃ = +∞) > 0.
Using Lemma 5 we only have to prove that P0(lim inf Xn·` = −∞, lim supXn·
` = +∞) = 0. As P0(D̃ = +∞) > 0 it is a direct consequence of Proposition
10 that states that P0-a.s. {lim supXn · ` = +∞} = A` = {lim inf Xn · ` =
+∞}. We have thus proven that

P0(A` ∪ A−`) = 1.

Actually we can say more about this case. On {D = +∞}, lim inf Xn · ` ≥ 0
and thus from Lemma 5, P0-a.s. lim inf Xn · ` = +∞. This implies that
P0(A`) > 0. and the same holds of course for P0(A−`).

One can wonder after this theorem if we can improve this result to a
stonger 0− 1 law that would be

For all ` ∈ Rd \ {0} the event A` satisfies a 0− 1 law that is

P(A`) ∈ {0, 1}.

After our analysis it appears that this question can be reformulated as : “is
it true that Case 4 can not happen ?” This question is also decisive as it is
the key to prove the law of large number. Unfortunately even if it is strongly
believed to be true it has been proven so far only in dimension d = 2 by
Merkl and Zerner ([15] and see also [14])

3.3 Renewal structure

In this section we assume that P0(A`) > 0 and study more in details the
P0-a.s. behaviour of the walker on A` that is under the probability measure

Q0 = P0(· | A`).
The idea is to cut the path in pieces that are independent under P0 even

if the walker is not markovian. The time were the path is cut are random but
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not stopping times. They are called renewal times and this decomposition is
known as a renewal structure.

As a warm-up let us prove that τ1 separates the path into two P0-
independent pieces. Introduce the σ−algebra :

G1 = σ((Xn∧τ1)n≥0, (ωy(·))y·`<Xτ1 ·`)

with the convention Xτ1 · ` = +∞ on {τ1 = +∞}. The σ−algebra G1

corresponds roughly speaking to the information about the walker and the
environment collected before the first renewal time τ1. Remark in particular
that τ1 is G1-measurable.

Proposition 11. The following equality in law holds

Q0((Xτ1+n −Xτ1)n≥0 ∈ ·, (ωXτ1+y(·))y·`≥0 ∈ · | G1)

= P0((Xn)n≥0 ∈ ·, (ωy(·))y·`≥0 ∈ · | D = +∞)

Remark that this conditional law does actually not depend on the infor-
mation G1.

Proof. We have to prove that for all bounded functions f of the paths, g
of the environment in the positive (with respect to `) half space, and h
G1−measurable

EQ0

[
f
(

(Xτ1+n −Xτ1)n≥0

)
g
(

(ωXτ1+y(·))y·`≥0

)
h
]

= EQ0

[
EP0

[
f
(

(Xn)n≥0

)
g
(

(ωy(·))y·`≥0

) ∣∣ D = +∞
]
h
]

= EP0

[
f
(

(Xn)n≥0

)
g
(

(ωy(·))y·`≥0

) ∣∣ D = +∞
]
EQ0

[
h
]
.

(15)

Observe first that suming over all possible values k ≥ 1 such that τ1 = Sk
and all possible positions for Xτ1 we obtain

EP0

[
f
(

(Xτ1+n −Xτ1)n≥0

)
g
(

(ωXτ1+y(·))y·`≥0

)
h, τ1 < +∞

]
=
∑
k≥1

x∈Zd

EP0

[
f
(

(XSk+n − x)n≥0

)
g
(

(ωx+y(·))y·`≥0

)
h, Sk < +∞, Rk = +∞, XSk = x

]
On {τ1 = Sk} ∩ {Xτ1 = x} the function h coincides actually with a function
hk,x of (ωy(·))y·`≤x·` and (X1, · · · , XSk) thus, using strong Markov property
at the stopping time Sk the last term equals

∑
k≥1

x∈Zd

E
{

E0,ω

[
hk,x, Sk < +∞, XSk = x

]
Ex,ω

[
f
(

(Xn−x)n≥0

)
, D = +∞

]
g
(

(ωx+y(·))y·`≥0

)}
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For all k ≥ 1, x ∈ Zd, E0,ω

[
hk,x, Sk < +∞, XSk = x

]
is σ(ωy(·), y s.t. y · ` <

x · `)-measurable while Ex,ω

[
f
(

(Xn− x)n≥0

)
, D = +∞,

)]
g
(

(ωx+y(·))y·`≥0

)
is σ(ωy(·), y s.t. y · ` ≥ x · `)-measurable. As the environment is i.i.d. these
two variables are thus independent and the last term is∑

k≥1

x∈Zd

E
{

E0,ω

[
hk,x, Sk < +∞, XSk = x

]}
E
{

Ex,ω

[
f
(

(Xn − x)n≥0

)
, D = +∞

]
g
(

(ωx+y(·))y·`≥0

)}
.

As the environment is translation invariant one can change ω for txω and

E
{

Ex,ω

[
f
(

(Xn − x)n≥0

)
, D = +∞

]
g
(

(ωx+y(·))y·`≥0

)}
= E

{
E0,ω

[
f
(

(Xn)n≥0

)
, D = +∞

]
g
(

(ωy(·))y·`≥0

)}
.

We finally obtain

EP0

[
f
(

(Xτ1+n −Xτ1)n≥0

)
g
(

(ωXτ1+y(·))y·`≥0

)
h, τ1 < +∞

]
= E

{
E0,ω

[
f
(

(Xn)n≥0

)
, D = +∞

]
g
(

(ωy(·))y·`≥0

)}∑
k≥1

x∈Zd

E
{

E0,ω

[
hk,x, Sk < +∞, XSk = x

]}
.

Picking f = g = 1 leads to∑
k≥1

x∈Zd

E
{

E0,ω

[
hk,x, Sk < +∞, XSk = x

]}
= EP0

[
h, τ1 < +∞

]
P0(D = +∞)−1.

Gathering everything we obtain (15).

We want to iterate this construction and define a sequence (τk)k≥1 of
such renewal times. Under Q0(· | G1), the law of the walker (and of the
environment) after this first renewal time is P0(· | D = +∞) according to
Proposition 12. This is the law we want to study in order to iterate instead
of Q0(·|G1) as in Proposition 12. Note first that {D = +∞} ⊂ {τ1 < +∞}
P0−a.s. from Proposition 10, so that τ1 is finite a.s. under P0(· | D = +∞).
It also implies that P0(· | D = +∞) coincides with Q0(· | D = +∞). Under
this law as {D = +∞} ∈ G1 one can use again Proposition 12 and conclude
that under P0(· | D = +∞) the law of (Xτ1+n −Xτ1)n≥0, (ω(Xτ1 + y, ·))y·`≥0

is again given by P0(· | D = +∞).
From this analysis one can thus define by iteration for all k ≥ 1

τk+1 = τ1 + τk((Xτ1+n −Xτ1)n≥0)
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that are all finite Q0−a.s. and prove that P0-a.s.

A` = {τ1 < +∞} = ∩k≥1{τk < +∞}.

We now define for all k ≥ 1 the σ−algebra

Gk = σ((Xn∧τk)n≥0, (ωy(·))y·`<Xτk ·`)

and by iteration from Proposition 12 one can prove (see [12] for more details)

Proposition 12. The following equality in law holds for all k ≥ 1

Q0((Xτk+n −Xτk)n≥0 ∈ ·, (ω(Xτk + y, ·))y·`≥0 ∈ · | Gk)
= P0((Xn)n≥0 ∈ ·, (ωy(·))y·`≥0 ∈ · | D = +∞)

As a direct consequence of this proposition we obtain the renewal struc-
ture of the path under Q0 = P0(· | A`) that is the decomposition into con-
secutive pieces that are i.i.d.

Theorem 11. Under Q0, the paths and environments(
(Xn∧τ1)n≥0, (ωy)y·`<Xτ1 ·`

) (
(X(τk+n)∧τk+1

−Xτk)n≥0, (ωy)Xτk ·`≤y·`<Xτk+1
·`

)
k≥1

are independent. Moreover
(

(X(τk+n)∧τk+1
−Xτk)n≥0, (ωy)Xτk ·`≤y·`<Xτk+1

·`

)
k≥1

have same law as (Xn∧τ1)n≥0 under P0(· | D = +∞).

3.4 “Law of large numbers”

We have now the main tools to derive the law of large numbers. Using the
renewal structure one can easily deduce a first result.

Proposition 13. Assume P0(A`) > 0 and E0(τ1 | D = +∞) < +∞. Then
Q0−a.s.

Xn

n
7→ v :=

E0(Xτ1 | D = +∞)

E0(τ1 | D = +∞)
as n→ +∞

and v · ` > 0.

Proof. We first remark that E0(τ1 | D = +∞) < +∞ implies E0(|Xτ1 | |
D = +∞) < +∞ so that v is well-defined. Then the proposition holds for
the subsequence (τk)k≥1 as from the law of large numbers and Theorem 11,
Q0-a.s.

τk
k
→ E0(τ1 | D = +∞) and

Xτk

k
→ E0(Xτ1 | D = +∞)

(16)
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as k goes to +∞ which implies that Q0-a.s.

Xτk

τk
→ E0(Xτ1 | D = +∞)

E0(τ1 | D = +∞)
as k → +∞.

To control times between the renewal times, introduce for all n ≥ 1 the
integer kn such that

τkn ≤ n < τkn+1.

From (16), Q0−a.s. n/kn goes to E0(τ1 | D = +∞) when n goes to infinity
so that Q0-a.s.

Xτkn

n
→ E0(Xτ1 | D = +∞)

E0(τ1 | D = +∞)
as n→ +∞.

To control the reminder: Using again (16), Q0-a.s.

Xn −Xτkn

n
≤ τkn+1 − τkn

n
→ 0 as n→ +∞.

Finally E0(Xτ1 · ` | D = +∞) > 0 implies that v · ` > 0.

Some remarks about this first result :

1. The result obtained states that the RW is ballistic as v · ` > 0. By
ballistic we mean that a.s.

lim inf Xn · ` = +∞ as n→ +∞.

2. The assumption E0(τ1 | D = +∞) < +∞ is difficult to check and
one would like to find an effective criterium. In [12] the authors make
use ok the so-called Kalikow criterium to provide a sufficient condition.
The caracterisation of ballistic RWRE is a fundamental open question
in this topic ([ADD REFERENCES]). In particular one wonder if

under assumption (UE) directional transience implies ballisticity as
soon as d ≥ 2.

It is not the case under (E) and Dirichlet environments provides nice
counter-examples (see [10] for an overview about this environments).

Two results help us to improve Proposition 13. If we do not have condition
E0(τ1 | D = +∞) < +∞ one can still prove that E0(Xτ1 ·` | D = +∞) < +∞
using
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Lemma 6. We assume ` ∈ E and (UE) and P0(D = +∞) > 0. Then

E0(Xτ1 · ` | D = +∞) =
1

P0(D = +∞)
.

Proof. The idea of the proof is to compute in two different ways

lim
i→+∞

Q0(∃k ≥ 1, Xτk · ` = i)

First, using similar arguments as the ones used to define the renewal structure
[ADD DETAILS]

Q0(∃k ≥ 1, Xτk · ` = i) =
P0(Ti < +∞)P0(D = +∞)

P0(A`)

From Theorem 10 we know that P0(A` ∪ A−`) = 1 so that A−`
⋂
∩i≥1{Ti <

+∞} = ∅ implies limi→+∞ P0(Ti < +∞) = P0(A`). Finally

lim
i→+∞

Q0(∃k ≥ 1, Xτk · ` = i) = P0(D = +∞). (17)

On the other hand using Theorem 11,

lim
i→+∞

Q0(∃k ≥ 1, Xτk ·` = i) = lim
i→+∞

∑
n≥1

Q0(Xτ1·` = n)Q0(∃k ≥ 2, (Xτk−Xτ1)·` = i−n).

The renewal theorem [ADD DETAILS] assures that

lim
i→+∞

Q0(∃k ≥ 2, (Xτk −Xτ1) · ` = i− n) =
1

E0(Xτ1|D = +∞)

and finally by dominated convergence

lim
i→+∞

Q0(∃k ≥ 1, Xτk · ` = i) =
1

E0(Xτ1|D = +∞)
.

Comparing to (17) we obtain the result.

With this result in hands one obtains the following

Proposition 14. Assume (UE) and P0(A`) > 0. Then Q0−a.s.

Xn · `
n
7→ v` as n→ +∞

where v` =
E0(Xτ1 |D=+∞)

E0(τ1|D=+∞)
.
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We remark that this result get rid of the assumption E0(τ1 | D = +∞) <
+∞ but we loose the conclusion that the velocity is non zero that is the
walker ballistic.

Proof. If E0(τ1 | D = +∞) < +∞ we have already proven what we need (and
even more) in Proposition 13. Assume now that E0(τ1 | D = +∞) = +∞.
As P0(A`) > 0 implies that P0(D = +∞) > 0, one can use Lemma 6 to
deduce that E0(Xτ1 · ` | D = +∞) < +∞. As Q0−a.s.

Xτk · `
k
→ E0(Xτ1 · ` | D = +∞) < +∞

as k goes to +∞ and
kn
n
→ 0

as n goes to +∞ we conclude that for all n ≥ 1

Xn · `
n
≤
Xτkn+1

· `
n

=
Xτkn+1

· `
kn + 1

kn + 1

n

so that Q0−a.s. lim sup Xn·`
n

= 0. In this case we thus have v` = 0.

To complete this description we mention without proof the following re-
sult by Zerner [13] which get rid of the ‘’oscillating case”

Proposition 15 (Zerner 2002). Assume (UE) and let e ∈ Rd such that
|e| = 1 and P0(Ae ∪ A−e) = 0. Then Q0−a.s.

lim
n→+∞

Xn · `
n

= 0.

We gather now all our results. We use (ei)i=1··· ,n to denote the canonical
basis of Rd and decompose the position of the walker in this basis. We obtain

Theorem 12 (Zerner 2002). Assuming (UE) it holds that Q0−a.s.

Xn

n
=

n∑
i=1

Xn · ei
n

ei → v :=
n∑
i=1

vi1Aei + v−i1A−ei (−ei)

as n→ +∞ with obvious notations. When i is such that P(Ai ∪ Ai) = 1
the expression of v±i is given by Proposition 14 while Proposition 15 assures
that for i such that P(Ai ∪ Ai) = 0, v±i = 0.
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Note that this theorem does not establish a true law of large number as
v is a random variable that is not necessarily deterministic. To obtain a true
law of large numbers one would need an improvement of the 0−1 law proven
in Section 3.2 : For all ` 6= 0,

P0(A`) ∈ {0, 1}.

If this conjecture turns out to be true then it is easy to prove that v in
Theorem 12 is deterministic. I remind you that Conjecture ?? has been
proven so far only in dimension d = 2 ([15, 14]) but that it is believed to be
true for all d ≥ 1.

4 Environment viewed from the particle

4.1 Introduction

In this section we follow Sznitman’s Lecture in [1] that refers him-
self to [8] and [9]. We assume (UE) and that the environment is
i.i.d. or in the case of random conductances model that conduc-
tances are i.i.d.

One of the principal difficulty with RWRE is that they are not markovian
under the annealed law. One way to overcome this difficulty is to work with
the environment as seen from the particle (EVFP) : We thus introduce the
process

ω̄n = tXnω, n ≥ 0

with values in Ω where tx denotes the space translation of the environment
by x:

tx : Ω → Ω

(ωu(·))u∈Zd → (ωx+u(·))u∈Zd

• Main interest : it is Markovian even under the annealed law!

• Main problem : the states space is huge !

Proposition 16. The process (ω̄n)n≥0 is Markovian both under P0,ω (for
all ω ∈ Ω) and under P0 with transition kernel R defined for all bounded
measurable function f and all ω ∈ Ω by

Rf(ω) =
∑
|e|=1

ω0(e)f(teω).

and initial law δω under P0,ω and P under P0.
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As the space state is not countable we define the law of the Markov process
via its kernel but here as only finite transitions have positive probability from
a given state we can also at least informally say that the transitions are given
by

p(ω, teω) = ω0(e), |e| = 1, ω ∈ Ω

for all ω ∈ Ω and all e ∈ E.

Proof. Fix n ≥ 1 and φ0, · · · , φn+1 measurable functions from Ω in R. We
obtain from the definition of (ω̄n)n≥0 and Markov property

E0,ω (φn+1(ω̄n+1) · · ·φ0(ω̄0)) = E0,ω

(
φn+1(tXn+1ω) · · ·φ0(tX0ω)

)
= E0,ω (EXn,ω (φn+1(tX1ω))φn(tXnω) · · ·φ0(tX0ω))

Now
EXn,ω (φn+1(tX1ω)) =

∑
|e|=1

ωXn(e)φn+1(tXn+eω)

=
∑
|e|=1

tXnω(e)φn+1(te(tXnω))

= Rφn+1(tXnω)

and finally

E0,ω (φn+1(ω̄n+1) · · ·φ0(ω̄0)) = E0,ω (Rφn+1(ω̄n)φn(ω̄n) · · ·φ0(ω̄0))

This implies that (ω̄n)n≥0 is markovian under P0,ω. This property is still true
under the annealed law after integrating under P.

Theorem 13. Assume there exists a probability measure Q absolutely con-
tinuous with respect to P (Q = fP for some density function f) and invariant
for R (

∫
RhQ =

∫
hQ for all measurable bounded h). Then Q ∼ P and the

Markov chain (ω̄n)n≥0 with initial law Q is ergodic. Moreover there is at
most one such probability measure Q.

Proof. Equivalence. We first prove Q ∼ P. Let E = {f = 0}. We have to
prove that P(E) = 0. It implies that if A is such that Q(A) = 0 then∫

f1AdP =

∫
f1A1EcdP = 0

and thus f1A1Ec = 0 P−a.s. that implies 1A = 0 P−a.s.
As Q is invariant∫

R1E dQ =

∫
1E dQ =

∫
1E f dP = 0.
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It implies that (R1E)f = 0 P−a.s. and still P−a.s. for all |e| = 1

1E ≥ R1E ≥ ε0

∑
|f |=1

1E ◦ tf ≥ ε0 1E ◦ te.

As 1E takes values in {0, 1}, 1E ≥ 1E ◦ te P−a.s. and both functions are
actually equal P−a.s. as they have same expectation under P. Finally after
composition we obtain that for all x ∈ Zd and P− a.s.

1E = 1E ◦ tx.

As P is ergodic it implies that 1E is constant P−a.s.. As an indicator function
it can only be 0 or 1 but as

∫
fdP = 1 it implies that it is 0 that is P(E) = 0.

Ergodicity. We now prove that (ω̄n)n≥0 with initial law Q is ergodic.
We work with the canonical process (ω̃n)n≥0 that is just the collection of all
projections on Ω̃ = ΩN endowed with the product σ−algebra B̃ and the shift
θ̃. We use P̃ω for the law of the chain with kernel R and initial position ω ;
P̃Q for the one with same kernel and initial law Q.

Our goal is to prove that for all invariant A ∈ B̃ (that is such that
θ̃−1A = A) it holds that

P̃Q(A) ∈ {0, 1}.

Step 1. We introduce the function φ defined for all ω ∈ Ω by

φ(ω) = P̃ω(A).

The process (φ(ω̃n))n≥0 is a martingale under P̃Q closed by 1A [DETAILS] so
that

φ(ω̃n)
P̃Q−a.s.→ 1A (18)

Step 2. We now deduce from the previous step that there exists some B
in the product σ−algebra B on Ω such that φ = 1B Q−a.s.

If it is not the case Q(φ ∈ [a, b]) > 0 for some a < b in [0, 1]. Using
Birkhoff’s ergodic theorem (Theorem 2) we obtain that P̃Q − a.s.

1

n

n−1∑
i=0

1φ(ω̃i)∈[a,b] → EQ̃(1φ(ω̃0)∈[a,b] |I).

The expectation of the limit is Q(φ ∈ [a, b]) that is positive while it should
be 0 according to (18). We note that

P̃Q(A) =

∫
φ(ω) dQ = Q(B)
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so that to conclude it remains to prove that Q(B) ∈ {0, 1}.
Step 3. As a consequence of the martingale property, the event B satisfies

R1B = 1B P̃Q−a.s. It implies that Q−a.s. and thus P−a.s.

1B ≥ ε0

∑
|e|=1

1B ◦ te

and we conclude as in the proof of the equivalence between P and Q.

4.2 Law of large numbers for conductances model

We remind the conductances model defined in the introduction: consider a
probability measure µ on [ν0, 1/ν0] (where 0 < ν0 < 1 is some real number)
endowed with its Borel σ−algebra and define the probability measure P =
µ⊗E

d
(where Ed is the set of non oriented edges of Zd) on C = REd . We remind

that that to a collection c = (ca)a∈Ed ∈ C of conductances we associates the
environment ω ∈ Ω defined for all neighbours x, y in Zd by

ωx(y − x) =
cx,y∑
z∼x cx,z

.

Observe that under P ω satisfies (UE) with ε0 = ν2
0/2d > 0. In this context

the EVFP is defined as
c̄n = tXnc, n ≥ 0

with values in C where (Xn) denotes the walker in ω(c). An inspection of
the proof of Theorem 13 shows that it is still true in this context.

Theorem 14. The probability measure

Q :=

∑
|e|=1 c0,e

Z
P

(where Z = EP(
∑
|e|=1 c0,e) is a normalising constant) is invariant for R and

satisfies the assumptions of Theorem 13. Moreover

Xn

n

P0−a.s.−→ 0 as n→ +∞.

Proof. We actually prove the stronger result that is R is self-adjoint in L2(Q).
Let h and g be two bounded measurable functions defined on Ω and observe
that ∫

h Rg dQ =

∫
h(c)

∑
|e|=1

ω0(e)g(tec)dQ

=
1

Z

∫
h(c)

∑
|e|=1

c0,eg(tec)dP
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Now use that c has same law as t−ec under P so that the last term equals

1

Z

∑
|e|=1

∫
(t−ec)0,e h(t−ec) g(c)dP

and as (t−ec)0,e = c0,−e(ω) this last term is

1

Z

∑
|e|=1

∫
c0,−e h(t−ec) g(c)dP

=

∫
Rh g dQ.

We turn to the law of large numbers. For c ∈ C and x ∈ Zd one defines
the drift at x in the environment ω(c) by

d(c, x) =
∑
|e|=1

ωx(e)e = Ex,ω(X1 −X0).

From Theorem 13 and Birkhoff’s ergodic theorem one deduces that

1

n

n−1∑
i=0

d(c̄i, 0)
P0,ω−a.s.−→ EQ (d(·, 0)) .

for Q (or P as both probability measures are equivalent) almost all c.
This last proposition is the key of the proof as one can remark that for

all ω ∈ Ω and x ∈ Zd
d(c, x) = d(txc, 0)

so that
n−1∑
i=0

d(c̄i, 0) =
n−1∑
i=0

d(c,Xi).

From Markov’s property for all c ∈ C

Mn := Xn −
n−1∑
i=0

d(c,Xi), n ≥ 1

is under P0,ω a martingale with bounded increments. One can thus prove (use
Azuma’s inequality : if (Zn) is a real martingale with increments bounded
by 1 then for all λ > 0 and all n ≥ 1

P(Zn ≥ λ
√
n) ≤ e−λ

2/2
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) that P0,ω-a.s.
Mn

n
→ 0 as n goes to +∞.

We finally obtain
Xn

n

P0−a.s.−→ EQ (d(·, 0)) .

It remains to check that the expectation of the drift at 0 under Q is 0:

EQ d(·, 0) =

∫ ∑
|e|=1

ω0(e)e dQ

=
1

Z

∫ ∑
|e|=1

c0,e e dP

=
1

Z

∫ d∑
i=1

(c0,ei − c0,−ei) ei dP

= 0.

4.3 Back to the 1D- ballistic law of large number

In this section we find back the law of large numbers in the ballistic regime
when d = 1. For ω ∈ Ω and x ∈ Zd the drift at x in the environment ω
writes when d = 1

d(ω, x) = 2ωx − 1

Proposition 17. Assume that E(ρ) < 1. Then the probability measure Q =
fP where f is defined for all ω by

f(ω) =
1− E(ρ)

1 + E(ρ)
(1 + ρ0)

(
1 +

∑
i≥1

i∏
j=1

ρj

)
satisfies the assumptions of Theorem 13 and

Xn

n

P0−a.s.→
∫
d(ω, 0)dQ =

1− E(ρ)

1 + E(ρ)
as n→ +∞.

Remark 4. It is easy to check that f is a density in the case of an i.i.d.
environment as

E

(
(1 + ρ0)

(
1 +

∑
i≥1

i∏
j=1

ρj

))
= (1 + E(ρ))

(∑
i≥1

E(ρ)i

)

=
1 + E(ρ)

1− E(ρ)

46



This a way to make correct the wrong intuition that the asymptotic speed
is
∫
d(ω, 0)dP. The walker certainly does not see P as an invariant measure

as it prefers to stay at the bottom of valleys of the potential ! Very roughly
here we can say that f is large when the environment has large (ρi)i≥0 on
the positive half line. That is the walker has in front of itself small (ωi)i≥0’s
that is a barrier of the potential. It thus need many tries before it is able to
overcome it.

Proof. We only have to prove that Q is invariant that is
∫
RhQ =

∫
hQ for

all measurable bounded h. Now using that both t1ω and t−1ω have law P
when ω has law P we obtain∫

RhQ =

∫ (
ω0h(t1ω) + (1− ω0)h(t−1ω)

)
f(ω)P

=

∫
h(ω)ω−1f(t−1ω)P + +

∫
h(ω)(1− ω1)f(t1ω)P

=

∫
h(ω)

(
ω−1f(t−1ω) + (1− ω1)f(t1ω)

)
P.

Now for all ω (notice that 1 + ρ = 1/ω) using C := 1+E(ρ)
1−E(ρ)

C{ω−1f(t−1ω) + (1− ω1)f(t1ω)} = 1 +
∑
i≥1

i∏
j=1

ρj(t−1ω) + ρ1

(
1 +

∑
i≥1

i∏
j=1

ρj(t1ω)

)

= 1 +
∑
i≥1

i∏
j=1

ρj−1 + ρ1

(
1 +

∑
i≥1

i∏
j=1

ρj+1

)

= 1 +
ρ0

1 + ρ0

Cf(ω) +

(
Cf(ω)

1 + ρ0

− 1

)
= Cf(ω).

We finally obtain ∫
RhQ =

∫
hfP =

∫
hQ.

Arguing exactly in the same way as in the previous sequence we obtain
that

Xn

n

P0−a.s.→
∫
d(ω, 0)dQ as n→ +∞

and it only remains to prove that∫
d(ω, 0)dQ =

1− E(ρ)

1 + E(ρ)
.
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For that we use the definition of Q together with d(·, 0)(1 + ρ0) = 1− ρ0 and
the assumption that the environment is i.i.d.

1 + E(ρ)

1− E(ρ)

∫
d(ω, 0)dQ = E

(
d(·, 0)(1 + ρ0)

(
1 +

∑
i≥1

i∏
j=1

ρj

))

= E

(
(1− ρ0)

(
1 +

∑
i≥1

i∏
j=1

ρj

))

= (1− Eρ)

(∑
i≥0

(Eρ)i

)
= 1.

Remark 5. A way to find the probability measure Q in Proposition 17 is to
guess and prove that the measure Q̃ define for all event B by

Q̃(B) = E0

( ∑
i=0T1−1

1ω̄i∈B

)

is invariant for R. It has finite mass E0(T1) we have already computed so
that we can define Q = Q̃/E0(T1) that is an invariant probability for R. It
remains to prove that it has density f with respect to P using again the one
to one map between the excursion and the tree to comput the expected number
of visits at a given level.
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