
Stochastic calculus – exam 2021

We always work on a filtered probability space (Ω,F , (Ft)t≥0,P) on which is defined a

(Ft)t≥0−Brownian motion B = (Bt)t≥0.

Problem 1 (10 points)

The goal of this problem is to determine the law of X? := supt≥0Xt, where X solves the SDE

dXt =
1

1 +X2
t

dBt −
1

2
(
1 +X2

t

)2 dt, X0 = 0.

1. Justify the existence and uniqueness of a solution X = (Xt)t≥0.

This is an homogeneous SDE with coefficients σ : x 7→ 1
1+x2

and b : x 7→ −1
2(1+x2)2

. These

two functions are Lipshitz, because they are continuously differentiable and their derivatives

σ′ : x 7→ −2x
(1+x2)2

and b′ : x 7→ 2x
(1+x2)3

vanish at infinity. Thus, the SDE admits a unique

solution starting from any X0 ∈ L2(Ω,F0,P), hence in particular from X0 = 0.

2. Prove that M := (eXt)t≥0 is a local martingale, and explicitate its quadratic variation.

M is in fact the exponential local martingale associated with the progressive, bounded process

φ : t 7→ 1
1+X2

t
. Specifically, we have Mt = exp(

∫ t
0 φu du − 1

2

∫ t
0 φ

2
u du). The general theory

ensures that M is a continuous local martingale, with quadratic variation 〈M〉t =
∫ t
0 M

2
uφ

2
u du.

3. In this question, we fix a, b > 0, and set T = T−a ∧ Tb where Tr := inf{t ≥ 0: Xt = r}.

(a) Prove that (Mt∧T )t≥0 is a square-integrable martingale.

Being the hitting time of the closed set {−a, b} by the continuous and adapted process X,

T is a stopping time. Thus, the stopped process MT := (Mt∧T )t≥0 is a local martingale.

But the continuity of M and the definition of T ensure that the process MT takes values

in [−a, b]. Thus, it is in fact a true, square-integrable martingale.

(b) Justify the following identity:

∀t ≥ 0, E
[
M2
t∧T
]

= 1 + E
[∫ t∧T

0

e2Xu

(1 +X2
u)2

du

]
.

We know that (MT )2−〈MT 〉 is a martingale. In particular, it has constant expectation,

i.e. E[M2
t∧T−〈M〉T∧t] = E[M2

0 ] = 1 for all t ≥ 0. Rearranging yields the desired identity.
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(c) Deduce from this identity that E[T ] <∞.

In the above identity, the left-hand side is at most e2b, while the right-hand side is at

least 1 + E[T ∧ t] e−2a

(1+b2)2
. This implies that E[T ∧ t] is bounded by a constant Ca,b <∞,

which does not depend on t. Taking t→∞ (monotone convergence) yields E[T ] ≤ Ca,b.

(d) Justify the following formula:

P(Tb < T−a) =
1− e−a

eb − e−a
.

Since MT is a martingale, we have E[MT∧t] = E[M0] = 1 for all t ≥ 0. Letting t → ∞
yields E[MT ] = 1. Indeed, we have T < ∞ a.-s. because E[T ] < ∞, and we have the

domination |MT∧t| ≤ eb. Now, since MT takes values in {e−a, eb}, we have E[MT ] =

peb + (1− p)e−a, where p = P(Tb < T−a). Thus, p = (1− e−a)/(eb − e−a), as desired.

4. Deduce the value of P(Tb <∞) for all b > 0. Relate this to X? and conclude.

The random variables (T−a)a>0 are clearly increasing with a. Moreover, for each t ≥ 0, we

have P(lima→∞ T−a ≤ t) = P(infu∈[0,t]Xu = −∞) = 0. Passing to the limit as t → ∞, we

obtain P(lima→∞ T−a < ∞) = 0. In other words, T−a → +∞ a.-s. as a → ∞. We may

thus send a → ∞ in the formula obtained in the previous question to obtain (by monotone

convergence) that P(Tb < ∞) = e−b. But the continuity of X implies that P(X? ≥ b) =

P(Tb <∞), so we conclude that X? is an Exponential random variable with mean 1.

5. More generally, determine the law of X? := supt≥0Xt when X = (Xt)t≥0 solves the SDE

dXt = f(Xt) dBt −
f2(Xt)

2
dt, X0 = 0,

with f a strictly positive, bounded, Lipschitz function.

The answer is exactly the same. First, the assumptions on f imply that f2 is Lipschitz,

because |f2(x) − f2(y)| = |f(x) − f(y)||f(x) + f(y)| ≤ 2κ‖f‖∞|x − y|, where κ denotes the

Lipschitz constant of f . Thus, the SDE has a unique solution. Moreover, M = eX is the

exponential local martingale associated with t 7→ f(Xt). Thus, the stopped process MT is a

local martingale, and it is bounded so it is a square-integrable martingale. As above, we have

E
[
M2
t∧T
]

= E
[
M2

0

]
+ E [〈M〉t∧T ] = 1 + E

[∫ t∧T

0
e2Xuf2(Xu) du

]
.

The left-hand is at most e2b, and the right-hand side is at least 1 + E[t ∧ T ]e−2a min[−a,b] f
2.

This shows that E[T ∧ t] is bounded by a constant Ca,b. The end of the proof is the same.
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Problem 2 (10 points)

The goal of this problem is to determine all bounded solutions v : R+ × R→ R to the PDE
∂v

∂t
(t, x) =

1

2

∂2v

∂x2
(t, x)− x2

2
v(t, x)

v(0, x) = 1.

To this end, we fix a bounded solution v, and x ∈ R and we write X = x+B.

1. Fix t ≥ 0, and let M = (Ms)s∈[0,t] be defined by

∀s ∈ [0, t], Ms := v(t− s,Xs)e
− 1

2

∫ s
0 X

2
u du.

Prove that M is a martingale, and deduce the following formula:

v(t, x) = E
[
e−

1
2

∫ t
0 X

2
u du
]
.

One possibility is to compute the stochastic differential of M and check that the drift term

is zero. Since M is bounded, we may then deduce that it is a true martingale. Alternatively,

we recognize a special case of the general PDE
∂v

∂t
(t, x) = −h(x)v(t, x) + b(x)

∂v

∂x
(t, x) +

1

2
σ2(x)

∂2v

∂x2
(t, x)

v(0, x) = f.

,

for which Feynman-Kac’s formula gives the representation v(t, x) = E[f(Xx
t )e−

∫ t
0 h(X

x
u) du],

where Xx solves the homogeneous SDE dXx
t = σ(Xx

t ) dBt + b(Xx
t ) dt, Xx

0 = x. In our case,

we have b = 0, σ = 1, h(x) = x2 and f ≡ 1. Thus, Xx = x+B, and the claim follows.

2. Establish the following identity:

∀t ≥ 0,

∫ t

0
Xu dBu =

X2
t − t− x2

2
.

Both sides are Itô processes. They take the same value (zero) at time t = 0, and they have

the same stochastic differentials (by Itô’s formula), so they must coincide.
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3. Show that the process Z = (Zt)t≥0 defined below is a martingale:

∀t ≥ 0, Zt := exp

{
−
∫ t

0
Xu dBu −

1

2

∫ t

0
X2
u du

}
.

The process Z is the exponential local martingale associated with X. Moreover, the previous

question implies that 0 ≤ Zt ≤ e
t+x2

2 , so that

∀t ≥ 0, E

[
sup
s∈[0,t]

|Zs|

]
< ∞.

This condition suffices to conclude that the local martingale Z is in fact a martingale.

4. Construct a probability measure Q under which the process W = (Wt)t≥0 defined by

∀t ≥ 0, Wt := Bt +

∫ t

0
Xu du,

is a (Ft)t≥0−Brownian motion, and express v(t, x) as an expectation under Q.

This is Girsanov’s theorem, valid here because Z is a martingale. For each t ≥ 0, the formula

∀A ∈ Ft, Qt(A) := E[Zt1A],

defines a probability measure Qt on (Ω,Ft), and these measures are consistent as t increases.

Thus, they must all be restrictions of a single probability measure Q on F∞ := σ(
⋃
t≥0Ft),

under which W is a (Ft)t≥0−Brownian motion. In view of Question 1, we have

v(t, x) = E
[
Zte

∫ t
0 Xu dBu

]
= EQ

[
e
∫ t
0 Xu dBu

]
.

5. Show that the process X satisfies a Langevin equation driven by the Brownian motion W ,

and deduce an explicit expression for X, in terms of W .

By differentiating the very definition of W , we see that the process X = x+B solves

dXt = dWt −Xt dt, X0 = x.

This is the classical Langevin equation on the filtered space (Ω, (Ft)t≥0,F∞,Q) equipped with

the Brownian motion W . The solution is of course the Ornstein-Uhlenbeck process:

∀t ≥ 0, Xt := xe−t +

∫ t

0
eu−t dWu,

as shown in class (or re-obtained via the change of variable Yt = etXt).
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6. Deduce that for each t ≥ 0, the distribution of Xt under Q is N
(
xe−t, 1−e

−2t

2

)
.

Under Q, we have
∫ t
0 e

u dWu ∼ N (0, e
2t−1
2 ) (Wiener integral), so the result follows.

7. For a random variable Y ∼ N (µ, σ2) with µ ∈ R and σ ∈ [0, 1), show that

E
[
e
Y 2

2

]
=

e
µ2

2(1−σ2)
√

1− σ2
.

Writing Y = µ+ σY0 with Y0 ∼ N (0, 1), we have

E
[
e
Y 2

2

]
=

1√
2π

∫ +∞

−∞
e
µ2+σ2y2−2µσy−y2

2 dy

=
e

µ2

2(1−σ)2

√
2π

∫ +∞

−∞
e
− 1−σ2

2

(
y− µσ

1−σ2

)2
dy,

and the result follows because the last integral is equal to
√

2π
1−σ2 .

8. Deduce that for all t ≥ 0, the function v admits the expression

v(t, x) =
1√
C(t)

exp

{
−x

2T (t)

2

}
,

where C, T : R+ → R+ are classical functions that you should explicitate. Conclude.

Combining Questions 2 and 4, we obtain

v(t, x) = e−
t+x2

2 EQ
[
e
X2
t
2

]
.

Now, Questions 6 and 7 allow us to compute the expectation on the right-hand side (take

Y = Xt, µ = xe−t and σ2 = 1−e−2t

2 ). Re-arranging yields the desired expression, with

C(t) =
et + e−t

2
= cosh(t)

T (t) =
et − e−t

et + e−t
= tanh(t).

Conversely, a direct computation shows that the above expression indeed satisfies the desired

PDE, because the pair (T,C) satisfies the ODE (T ′, C ′) = (1−T 2, TC) with initial condition

(0, 1). Moreover, this expression is [0, 1]−valued, because T ≥ 0 and C ≥ 1. Thus, the PDE

admits a unique bounded solution, and it is given by the above formula.
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