Quentin Guibert

guibert@ceremade.dauphine.fr
https://www.ceremade.dauphine.fr/~guibert/

CEREMADE, Université Paris Dauphine-PSL

September 23, 2024 - JOCO 2024 - IAALS Session Brussels (Belgium)

Impacts of Climate Change on Mortality

An extrapolation of temperature effects based on time series data in France

in collaboration with G. Pincemin and F. Planchet The paper is available here: https://arxiv.org/abs/2406.02054

1 Introduction

- 2 Modeling framework
- 3 Calibration and forecast
- 4 Case study: Mortality forecast with temperature effect in France
- 5 Conclusion

Background

The effects of heat and cold on human body

- > Temperatures have direct and indirect effects on human health.
- > Hot and cold periods in temperate regions (Beker et al., 2018)
- Concept of MMT (Minimum Mortality Temperature) with spatial heterogeneity indicating different adaptation levels to temperatures (Yin et al., 2019).
- > Many epidemiological studies estimated the temperature-attributable deaths.
- ➤ Concept of attributable mortality → Require daily or weekly mortality data (Gasparrini, 2014; Vicedo-Cabrera et al., 2019).
- Heatwaves / and cold waves \ during the 21st century (IPCC, 2023). BUT, complex projections with a lot of uncertainty, heterogeneity and combined effects due to human activity.

Problem set-up

Integrate climate change effects in mortality models

Climate-related mortality in actuarial and demographic literature

- > Largely unexplored in this actuarial literature, except some papers, e.g. Seklecka et al. (2017).
- Most stochastic mortality models are based on past dynamics (Lee and Carter, 1992; Barrieu et al., 2012; Dowd et al., 2020), e.g. the Lee-Carter model

$$\ln(\widehat{m}_{x,t}) = \alpha_x + \beta_x \kappa_t + \epsilon_{x,t}.$$

1 Specificity of temperature-attributable deaths

- > The intensity of shocks is likely to be affected by climate change.
- > Observed temperature-related shocks are punctual and generally non-catastrophic.
- > They may be offset throughout the year \rightarrow need to incorporate daily or weekly data.

> Coupling a multi-population mortality model with a climate epidemiology model.

- > Coupling a multi-population mortality model with a climate epidemiology model.
- > Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.

- > Coupling a multi-population mortality model with a climate epidemiology model.
- > Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.
- > Integrating the uncertainty associated with future temperatures.

- > Coupling a multi-population mortality model with a climate epidemiology model.
- > Measuring the effect of future temperatures on mortality trend, differentiating by sex and age.
- > Integrating the uncertainty associated with future temperatures.
- > Measuring regional sensitivity differences.

Two causes of mortality

Notation and basic assumptions

- > $\mu_{x,t}^{(g)}$, $E_{x,t}^{(g)}$, and $D_{x,t}^{(g)}$ represent, respectively, the force of mortality, observed exposure to risk, and observed number of deaths at age x and calendar year t.
- > Two populations $g \in \{\text{female}, \text{male}\}\ \text{in Metropolitan France}.$
- > Crude central death rate of mortality $\hat{m}_{x,t}^{(g)} = D_{x,t}^{(g)}/E_{x,t}^{(g)}$.

Two causes of mortality

Notation and basic assumptions

- > $\mu_{x,t}^{(g)}$, $E_{x,t}^{(g)}$, and $D_{x,t}^{(g)}$ represent, respectively, the force of mortality, observed exposure to risk, and observed number of deaths at age x and calendar year t.
- > Two populations $g \in \{\text{female}, \text{male}\}\ \text{in Metropolitan France}.$
- > Crude central death rate of mortality $\hat{m}_{x,t}^{(g)} = D_{x,t}^{(g)}/E_{x,t}^{(g)}$.

Deaths attributable to temperatures

Decomposition into two components

$$D_{x,t}^{(g)} = \tilde{D}_{x,t}^{(g)} + \bar{D}_{x,t}^{(g)} \Rightarrow \hat{m}_{x,t}^{(g)} = \tilde{m}_{x,t}^{(g)} + \bar{m}_{x,t}^{(g)}$$

where $\tilde{D}_{x,t}^{(g)}$ and $\bar{D}_{x,t}^{(g)}$ are the number of deaths without and with temperature effects. > Define the total attributable fraction related to temperatures as $\theta_{x,t}^{(g)} = \bar{D}_{x,t}^{(g)}/D_{x,t}^{(g)}$.

A multi-population model for virtual deaths

Consider the two-populations Li and Lee (2005) model for central deaths rates without temperature effects

ln
$$\widetilde{m}_{x,t}^{(g)} = A_x + B_x K_t + \alpha_x^{(g)} + \beta_x^{(g)} \kappa_t^{(g)}.$$

A multi-population model for virtual deaths

Consider the two-populations Li and Lee (2005) model for central deaths rates without temperature effects

ln
$$\tilde{m}_{x,t}^{(g)} = A_x + B_x K_t + \alpha_x^{(g)} + \beta_x^{(g)} \kappa_t^{(g)}.$$

> This choice is compatible with our data, but other models are possible.

A multi-population model for virtual deaths

Consider the two-populations Li and Lee (2005) model for central deaths rates without temperature effects

$$\ln \widetilde{m}_{x,t}^{(g)} = A_x + B_x K_t + \alpha_x^{(g)} + \beta_x^{(g)} \kappa_t^{(g)}.$$

- > This choice is compatible with our data, but other models are possible.
- > Identifiability constraints

$$\begin{split} &\sum_{t\in\mathcal{T}_y}K_t=0 \text{ and } \sum_{x\in\mathcal{X}}B_x^2=1,\\ &\sum_{t\in\mathcal{T}_y}\kappa_t^{(g)}=0 \text{ and } \sum_{x\in\mathcal{X}}(\beta_x^{(g)})^2=1, \text{ for } g\in\mathcal{G} \end{split}$$

A multi-population model for virtual deaths

Consider the two-populations Li and Lee (2005) model for central deaths rates without temperature effects

ln
$$\tilde{m}_{x,t}^{(g)} = A_x + B_x K_t + \alpha_x^{(g)} + \beta_x^{(g)} \kappa_t^{(g)}$$
.

- > This choice is compatible with our data, but other models are possible.
- > Identifiability constraints

$$\begin{split} \sum_{t\in\mathcal{T}_y} K_t &= 0 \text{ and } \sum_{x\in\mathcal{X}} B_x^2 = 1, \\ \sum_{t\in\mathcal{T}_y} \kappa_t^{(g)} &= 0 \text{ and } \sum_{x\in\mathcal{X}} (\beta_x^{(g)})^2 = 1, \text{ for } g\in\mathcal{G} \end{split}$$

Time series model with coherence assumption

$$\begin{split} K_t &= \delta + K_{t-1} + e_t \rightarrow \text{ RWD with drift} \\ \kappa_t^{(g)} &= c^{(g)} + \phi^{(g)} \kappa_{t-1}^{(g)} + r_t^{(g)} \rightarrow \text{ AR(1) with drift and } |\phi^{(g)}| < 1. \end{split}$$

Errors terms are white noises with a mean of zero and a variance-covariance matrix Σ . 7/30

A multi-population model for virtual deaths

Poisson assumption and temperature-attributable deaths

> Poisson assumption for the number of virtual deaths

$$\widetilde{D}_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)}\widetilde{m}_{x,t}^{(g)}\right).$$

A multi-population model for virtual deaths

Poisson assumption and temperature-attributable deaths

Poisson assumption for the number of virtual deaths

$$\widetilde{D}_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)}\widetilde{m}_{x,t}^{(g)}\right).$$

> Knowing the attributable fraction $\theta_{x,t}^{(g)}$, we also have a Poisson formulation with log-link function for the overall number of deaths

$$D_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)} T_{x,t}^{(g)} \widetilde{m}_{x,t}^{(g)}\right),$$

where $T_{x,t}^{(g)} = (1 - \theta_{x,t}^{(g)})^{-1}$.

A multi-population model for virtual deaths

Poisson assumption and temperature-attributable deaths

Poisson assumption for the number of virtual deaths

$$\widetilde{D}_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)}\widetilde{m}_{x,t}^{(g)}\right).$$

> Knowing the attributable fraction $\theta_{x,t}^{(g)}$, we also have a Poisson formulation with log-link function for the overall number of deaths

$$D_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)} T_{x,t}^{(g)} \widetilde{m}_{x,t}^{(g)}\right),$$

where $T_{x,t}^{(g)} = (1 - \theta_{x,t}^{(g)})^{-1}$.

> The mortality-related temperature component $T_{x,t}^{(g)}$ is an offset term.

A multi-population model for virtual deaths

Poisson assumption and temperature-attributable deaths

Poisson assumption for the number of virtual deaths

$$\widetilde{D}_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)}\widetilde{m}_{x,t}^{(g)}\right).$$

> Knowing the attributable fraction $\theta_{x,t}^{(g)}$, we also have a Poisson formulation with log-link function for the overall number of deaths

$$D_{x,t}^{(g)} \sim \mathsf{Pois}\left(E_{x,t}^{(g)} T_{x,t}^{(g)} \widetilde{m}_{x,t}^{(g)}\right),$$

where $T_{x,t}^{(g)} = (1 - \theta_{x,t}^{(g)})^{-1}$.

- > The mortality-related temperature component $T_{x,t}^{(g)}$ is an offset term.
- > The model is estimated as a Poisson GLM through maximum likelihood estimation.

Effect of temperature: the DLNM model

Quasi-Poisson regression model

Let $D_{k,t,d}^{(g)}$ be the number of daily deaths aggregated by K age groups and by sex for each day $d \in D^* = \{1, 2, \dots, 365, (366)\}$ of year t. We have

$$\ln(\mathbb{E}[D_{k,t,d}^{(g)}]) = \eta_k + s(\vartheta_{d,t}, L; \theta_k) + u_d \gamma_k^\top + \sum_{p=1}^P h_p(z_{d,p}; \boldsymbol{\zeta}_k),$$

where:

- ▶ $s(\vartheta_{d,t}; l, \theta_k)$ is a cross-basis (non-linear) function, capturing the cumulated effect of the daily mean temperature $\vartheta_{d,t}$ over a maximum of L days,
- *h*_p(*z*_{d,p}; *ζ*_k) are natural cubic spline to account for seasonal variations, e.g year, day of the week or month as features.
- > Confounding variables u_d can be integrated as a linear effect, e.g. pollutant.

The distributed lag non-linear generalized model (DLNM) is a gold standard in climate epidemiology (Gasparrini et al., 2010; Guo et al., 2014).

Calibration

Excess of mortality and attributable risk

Main indicators - Estimated on the calibration period

> Daily deaths attributed to temperatures

$$\bar{D}_{x,t,d}^{(g)} = (1 - \exp\left(-s(\vartheta_{d,t}; L, \widehat{\theta}_k)\right)) \times D_{x,t,d}^{(g)}$$

 \blacktriangleright The total attributed deaths over the period $D \subseteq D^{\star}$ for a year t

$$\bar{D}_{x,t}^{(g)} = \sum_{d \in D} \bar{D}_{x,t,d}^{(g)} \mathbb{1}_{\{d \in D\}}.$$

> The total attributable fraction

$$\theta_{x,t}^{(g)} = \frac{\bar{D}_{x,t}^{(g)}}{D_{x,t}^{(g)}} \Rightarrow T_{x,t}^{(g)} = (1 - \theta_{x,t}^{(g)})^{-1}$$

Calibration

The mortality model for virtual deaths

Adjusted exposure and death counts data

$$\mathcal{E} = \left\{ E_{x,t}^{(g)} T_{x,t}^{(g)}, x \in \mathcal{X}, t \in \mathcal{T}_y, g \in \mathcal{G} \right\}, \quad \mathcal{D} = \left\{ D_{x,t}^{(g)}, x \in \mathcal{X}, t \in \mathcal{T}_y, g \in \mathcal{G} \right\}$$

Calibration steps (Li, 2013; Robben et al., 2022)

1 Estimate A_x, B_x, K_t from the Poisson log-likelihood

$$\begin{split} \max_{A_x, B_x, K_t} \quad & \sum_{x \in \mathcal{X}} \sum_{t \in \mathcal{T}_y} \left(D_{x, t}^{\mathsf{agg}} \ln(\widetilde{m}_{x, t}^{\mathsf{agg}}) - E_{x, t}^{\mathsf{agg}} \widetilde{m}_{x, t}^{\mathsf{agg}} \right), \\ \text{s.t.} \quad & \sum_{t \in \mathcal{T}_y} K_t = 0 \text{ and } \sum_{x \in \mathcal{X}} B_x^2 = 1 \end{split}$$

where $D_{x,t}^{\text{agg}} = D_{x,t}^{(f)} + D_{x,t}^{(m)}$, $E_{x,t}^{\text{agg}} = E_{x,t}^{(f)} T_{x,t}^{(f)} + E_{x,t}^{(m)} T_{x,t}^{(m)}$ and $\widetilde{m}_{x,t}^{\text{agg}} = \exp\left(A_x + B_x K_t\right)$.

2 Estimate the sex-specific parameters from the Poisson log-likelihood

$$\max_{\substack{\alpha_x^{(g)}, \beta_x^{(g)}, \kappa_t^{(g)}}} \sum_{x \in \mathcal{X}} \sum_{t \in \mathcal{T}_y} \left(D_{x,t}^{(g)} \ln(\widetilde{m}_{x,t}^{(g)}) - E_{x,t}^{(g)} T_{x,t}^{(g)} \widetilde{m}_{x,t}^{(g)} \right),$$

s.t.
$$\sum_{t \in \mathcal{T}} \kappa_t^{(g)} = 0 \text{ and } \sum_{x \in \mathcal{X}} (\beta_x^{(g)})^2 = 1$$
 11/30

Calibration

Time series model

- > Temperature dynamics are exogenous information from climate models.
- > Time series model is as follow

$$\boldsymbol{Y}_t = \boldsymbol{D} + \boldsymbol{\Phi} \boldsymbol{Y}_{t-1} + \boldsymbol{E}_t,$$

where

$$oldsymbol{Y}_t = egin{pmatrix} K_t \ \kappa^{(f)}_t \ \kappa^{(m)}_t \end{pmatrix}, oldsymbol{D} = egin{pmatrix} \delta \ c^{(f)} \ c^{(m)} \end{pmatrix}, oldsymbol{\Phi} = egin{pmatrix} 1 & 0 & 0 \ 0 & \phi^{(f)} & 0 \ 0 & 0 & \phi^{(m)} \end{pmatrix} ext{ and } oldsymbol{E}_t = egin{pmatrix} e_t \ r^{(f)}_t \ r^{(m)}_t \end{pmatrix}.$$

> The parameters D, Φ and Σ are estimated through maximum likelihood based on the R-package **MultiMoMo** (Antonio et al., 2022).

Central deaths rates

Simulation procedure for each year $t \in \mathcal{T}_u^{\mathsf{for}}$

1 Simulate $\widetilde{m}_{x,t}^{(g)}$ based on vector Y_t .

Central deaths rates

Simulation procedure for each year $t \in \mathcal{T}_u^{\mathsf{for}}$

- **1** Simulate $\widetilde{m}_{x,t}^{(g)}$ based on vector Y_t .
- 2 Select a daily temperature trajectory $(\vartheta_{d,t})$ along a climate scenario.

Quentin Guibert

Central deaths rates

Simulation procedure for each year $t \in \mathcal{T}_{u}^{\mathsf{for}}$

- **1** Simulate $\widetilde{m}_{x,t}^{(g)}$ based on vector Y_t .
- 2 Select a daily temperature trajectory $(\vartheta_{d,t})$ along a climate scenario.
- Compute the daily effect of temperatures

$$\left(\exp\left(s(\vartheta_{d,t};L,\widehat{\theta}_k)\right)-1\right).$$

Impacts of Climate Change on Mortality

Central deaths rates

Simulation procedure for each year $t \in \mathcal{T}_{u}^{\mathsf{for}}$

- **1** Simulate $\widetilde{m}_{x,t}^{(g)}$ based on vector Y_t .
- **2** Select a daily temperature trajectory $(\vartheta_{d,t})$ along a climate scenario.
- **3** Compute the daily effect of temperatures

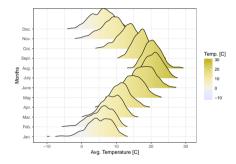
$$\left(\exp\left(s(\vartheta_{d,t};L,\widehat{\theta}_k)\right)-1\right).$$

4 Project central mortality rates with temperature effects accumulated over period D

$$\hat{m}_{x,t}^{(g)} = \tilde{m}_{x,t}^{(g)} \left[1 + \underbrace{\sum_{d \in D} \omega_{x,t,d}^{(g)} \left(\exp\left(s(\vartheta_{d,t}; L, \hat{\theta}_k)\right) - 1\right) \mathbbm{1}_{\{d \in D\}}}_{d \in D} \right],$$

where $w_{x,t,d}^{(g)} = \widetilde{D}_{x,t,d}^{(g)} / \widetilde{D}_{x,t}^{(g)}$, a weight to be chosen, for the distribution of virtual deaths, e.g. $w_{x,t,d}^{(g)} = 1/D^{\star}$.

Case study



- **Calibration period:** $T_y = \{1980, ..., 2019\}.$
- Extract average daily temperatures of 14 cities from the GHCN database (NOAA).
- Compute average daily temperatures for Metropolitan France.

Figure: Distribution of average daily temperatures for each month of the year.

14 stations are located around Bordeaux, Brest, Caen, Clermont-Ferrand, Dijon, Lille, Lyon, Marseille, Nantes, Paris, Perpignan, Strasbourg, Toulouse and Tours.

Case study

Mortality data

Annual data from the HMD

Quentin Guibert

mpacts of Climate Change on Mortality

- **Calibration period:** $T_y = \{1980, ..., 2019\}.$
- **Age range:** $\mathcal{X} = \{0, \dots, 105\}.$

Daily data from the Quetelet-Prodego Diffusion network (INSEE, 2020)

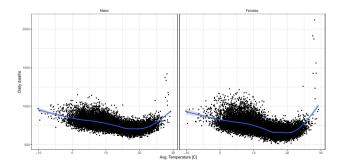


Figure: Representation of the daily death count according to the average daily temperature in France for women and ment 5/30

Estimation

Temperature-mortality association with the DLNM

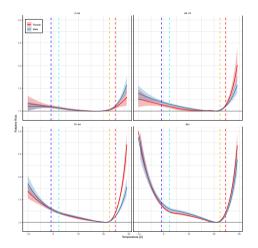


Figure: Cumulative relative risk of mortality over a 21-day period in Metropolitan France calculated for the years 1980-2019 for women (red) and men (blue) (95% Cl with 1,000 Monte Carlo simulations)

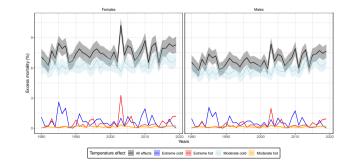
 \Box

Estimation

Temperature-mortality association with the DLNM

The DLNM estimation on 1980-2019

- > K = 4 age buckets (0-64, 65-74, 75-84, and 85+) and split by sex.
- > Hyperparameters are selected according to the literature.
- > Extreme cold and hot: [0%, 2.5%] and [97.5%, 100%] quantiles
- > Moderate cold and hot:]2.5%, MMT[and]MMT, 97.5%[quantiles



Impacts

Estimation

The Li-Lee model

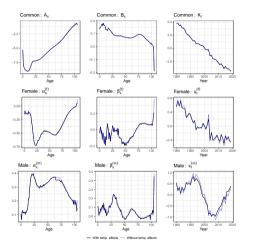


Figure: Estimated parameters $(\hat{A}_x, \hat{B}_x, \hat{K}_t, \hat{\alpha}_x^{(f)}, \hat{\beta}_x^{(f)}, \hat{\alpha}_x^{(m)}, \hat{\beta}_x^{(m)}, \hat{\kappa}_t^{(m)})$ of the Li-Lee model for the calibration period 1980-2019 and ages between 0-105 for the entire population of Metropolitan France (Common), females (Female), and males (Male). 18/30

Forecasting mortality

- > Projection of parameters \hat{K}_t , $\hat{\kappa}_t^{(f)}$, and $\hat{\kappa}_t^{(m)}$ over the period 2020-2100.
- > For both models with and without temperature effects.

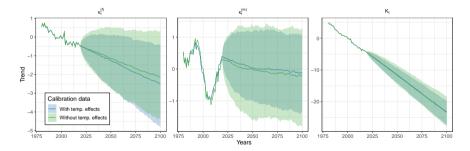


Figure: Projection of trend parameters \widehat{K}_t , $\widehat{\kappa}_t^{(f)}$, and $\widehat{\kappa}_t^{(m)}$ over the period 2020-2100 for the Li-Lee model for observed central death rates (with temperature effects) and central virtual death rates (without temperature effects).

Climate scenarios

- \blacktriangleright 12 climate models from the DRIAS \rightarrow uncertainty about future temperatures.
- > 3 Representative Concentration Pathway (RCP): RCP2.6, RCP4.5 and RCP8.5.
- > 8 km resolution grid (SAFRAN) → 14 cities → average daily temperatures for Metropolitan France.

GCM	RCM	RCPs available	Period
CNRM-CM5	ALADIN63	RCP8.5, RCP4.5, RCP2.6	2006-2100
MPI-ESM	CCLM4-8-17	RCP8.5, RCP4.5, RCP2.6	2006-2100
HadGEM2	RegCM4-6	RCP8.5, RCP2.6	2006-2099
EC-EARTH	RCA4	RCP8.5, RCP4.5, RCP2.6	2006-2100
IPSL-CM5A	WRF381P	RCP8.5, RCP4.5	2006-2100
NorESM1 MPI-ESM HadGEM2 EC-EARTH IPSL-CM5A	REMO2015 REMO2009 CCLM4-8-17 RACMO22E RCA4	RCP8.5, RCP2.6 RCP8.5, RCP4.5, RCP2.6 RCP8.5, RCP4.5 RCP8.5, RCP4.5, RCP2.6 RCP8.5, RCP4.5, RCP4.5	2006-2100 2006-2100 2006-2099 2006-2100 2006-2100
CNRM-CM5 NorESM1	RACMO22E HIRHAM5 v3	RCP8.5, RCP4.5, RCP2.6 RCP8.5, RCP4.5	2006-2100 2006-2100

Simulating temperatures effects

- > Projection for each climate model and RCP scenario.
- > Compute $\theta_{x,t}^{(g)}(D)$ and aggregate by age and sex for facilitate visual analysis

$$\theta_t(D) = \sum_{g \in \mathcal{G}} \sum_{x \in \mathcal{X}} \theta_{x,t}^{(g)}(D) \frac{D_{x,2019}^{(g)}}{D_{2019}}, \text{ where } D_{2019} = \sum_{g \in \mathcal{G}} \sum_{x \in \mathcal{X}} D_{x,2019}^{(g)}.$$

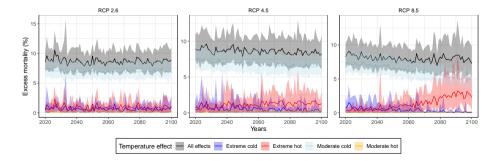


Figure: Temperature attributable fraction in Metropolitan France - Years 2020-2100 for both women and men. 21/30

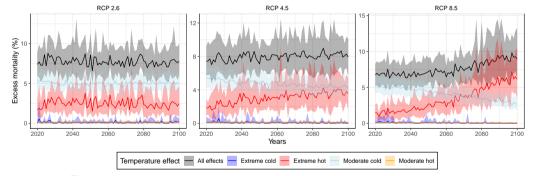


Figure: Temperature attributable fraction in Perpignan, simulated for the years 2020-2100.

Life-years lost due to temperature

> The total mortality rates with and without temperature effects

$$q_{x,t}^{(g)} = 1 - \exp\left(-\widehat{m}_{x,t}^{(g)}\right), \quad \widetilde{q}_{x,t}^{(g)} = 1 - \exp\left(-\widetilde{m}_{x,t}^{(g)}\right),$$

> Life expectancy lost (or gained) due to temperatures for a person of age x at date t due to the temperature effect

$$\Delta e_{x,t}^{(g)} = \int_{x}^{t_{\max}} e^{-\int_{x}^{t} \tilde{\mu}_{x,u}^{(g)} du} dt - \int_{x}^{t_{\max}} e^{-\int_{x}^{t} \mu_{x,u}^{(g)} du} dt$$
$$\approx \sum_{k=1}^{t_{\max}} \left[\prod_{j=0}^{k-1} \left(1 - \tilde{q}_{x,j}^{(g)} \right) - \prod_{j=0}^{k-1} \left(1 - q_{x,j}^{(g)} \right) \right].$$

Simulation

Life-years lost due to temperature

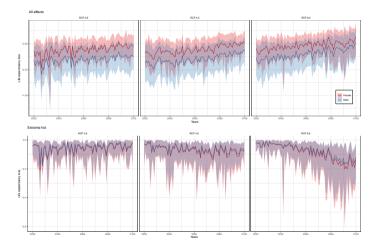


Figure: Life expectancy at birth lost in Metropolitan France, simulated for the years 2020-2100 for both women and men. We present both the loss related to all temperature effects and extreme hot effects only.

Simulation

Life-years lost due to temperature - Perpignan

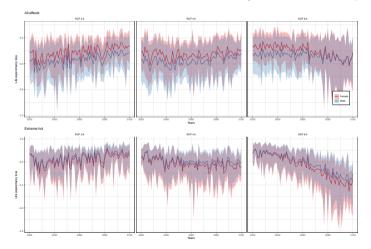


Figure: Life expectancy at birth lost in Perpignan, simulated for the years 2020-2100 for both women and men. We present both the loss related to all temperature effects and extreme hot effects only.

Conclusion

Main results

- A multi-population mortality model incorporating the effect of temperature changes on mortality.
- > Assess gains or losses in projected life expectancy related to temperatures.
- > Attenuation of the effect of cold temperature in RCP8.5 scenario.
- Increase of the effect of hot temperature in RCP8.5 scenario, especially in southern departments of France from 2050.

Limitations and extensions

- > Strong assumption: we assume that populations do not adapt to their local environment:
 - » Better (or worse) acclimatization to hot and cold temperatures.
 - >> House insulation, development of air conditioning, physiological process or immunity.
 - >> Prevention.
- > Integrate other environmental variables (air pollution, the heat index, ...).
- > Consider other regions, especially Southern Europe or the MENA region.

Thank you for your attention!

References I

- Antonio, K., Devriendt, S., and Robben, J. (2022). The MultiMoMo package. url: https://github.com/jensrobben/MultiMoMo.
 - Barrieu, P., Bensusan, H., El Karoui, N., Hillairet, C., Loisel, S., Ravanelli, C., and Salhi, Y. (2012). Understanding, modelling and managing longevity risk: key issues and main challenges. Scandinavian Actuarial Journal 2012.3, pp. 203–231. doi: 10.1080/03461238.2010.511034.
- Beker, B. M., Cervellera, C., Vito, A. D., and Musso, C. G. (2018). Human Physiology in Extreme Heat and Cold. Int Arch Clin Physiol 1.1. doi: 10.23937/iacph-2017/1710001.
- Dowd, K., Cairns, A. J. G., and Blake, D. (2020). CBDX: a workhorse mortality model from the Cairns–Blake–Dowd family. Annals of Actuarial Science 14.2, pp. 445–460. doi: 10.1017/S1748499520000159.
- Gasparrini, A, Armstrong, B, and Kenward, M. G. (2010). Distributed lag non-linear models. *Statistics in Medicine* 29.21, pp. 2224–2234. doi: 10.1002/sim.3940.
- Gasparrini, A. (2014). Modeling exposure-lag-response associations with distributed lag non-linear models. *Statistics in Medicine* 33.5, pp. 881–899. doi: 10.1002/sim.5963.
- Goes, J., Barigou, K., and Leucht, A. (2023). Bayesian mortality modelling with pandemics: a vanishing jump approach. doi: 10.48550/arXiv.2311.04920.

mpacts

- Guo, Y., Gasparrini, A., Armstrong, B., Li, S., and al. (2014). Global variation in the effects of ambient temperature on mortality: a systematic evaluation. *Epidemiology* 25.6. doi: 10.1097/EDE.00000000000165.
- INSEE (2020). État civil Fichier détail Décès, INSEE (producteur), PROGEDO-ADISP (diffuseur). doi: 10.13144/lil-1605.
- IPCC (2023). Key Risks across Sectors and Regions. Climate Change 2022 Impacts, Adaptation and Vulnerability: Working Group II Contribution to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Ed. by Pörtner, H.-O. et al. Cambridge University Press. doi: 10.1017/9781009325844.025.
- Lee, R. D. and Carter, L. R. (1992). Modeling and Forecasting U. S. Mortality. *Journal of the American Statistical Association* 87.419, pp. 659–671. doi: 10.2307/2290201.
 - Li, J. (2013). A Poisson common factor model for projecting mortality and life expectancy jointly for females and males. *Population Studies* 67.1, pp. 111–126. doi:
 - 10.1080/00324728.2012.689316.
- Li, N. and Lee, R. (2005). Coherent mortality forecasts for a group of populations: An extension of the Lee-Carter method. *Demography* 42.3, pp. 575–594. doi: 10.1353/dem.2005.0021.

References III

- Liu, Y. and Li, J. S.-H. (2015). The age pattern of transitory mortality jumps and its impact on the pricing of catastrophic mortality bonds. *Insurance: Mathematics and Economics* 64, pp. 135–150. doi: 10.1016/j.insmatheco.2015.05.005.
- Martínez-Solanas, E., Quijal-Zamorano, M., Achebak, H., Petrova, D., Robine, J.-M., Herrmann, F. R., Rodó, X., and Ballester, J. (2021). Projections of temperature-attributable mortality in Europe: a time series analysis of 147 contiguous regions in 16 countries. *The Lancet Planetary Health* 5.7, e446–e454. doi: 10.1016/S2542-5196(21)00150-9.
- Robben, J. and Antonio, K. (2024). Catastrophe risk in a stochastic multi-population mortality model. *Journal of Risk and Insurance* n/a. doi: 10.1111/jori.12470.
- Robben, J., Antonio, K., and Devriendt, S. (2022). Assessing the Impact of the COVID-19 Shock on a Stochastic Multi-Population Mortality Model. *Risks* 10.2, p. 26. doi: 10.3390/risks10020026.
 - Seklecka, M., Pantelous, A. A., and O'Hare, C. (2017). Mortality effects of temperature changes in the United Kingdom. *Journal of Forecasting* 36.7, pp. 824–841. doi: 10.1002/for.2473.
- Vicedo-Cabrera, A. M., Sera, F., and Gasparrini, A. (2019). Hands-on Tutorial on a Modeling Framework for Projections of Climate Change Impacts on Health. *Epidemiology (Cambridge, Mass.)* 30.3, pp. 321–329. doi: 10.1097/EDE.00000000000982.

Impacts of Climate Change on Mortality

Yin, Q., Wang, J., Ren, Z., Li, J., and Guo, Y. (2019). Mapping the increased minimum mortality temperatures in the context of global climate change. *Nature Communications* 10.1, p. 4640. doi: 10.1038/s41467-019-12663-y.

Background

i/

Temperature-attributable mortality

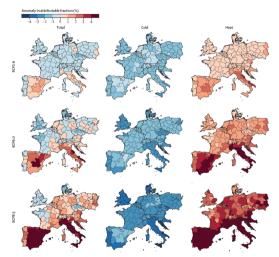


Figure: Attributable fraction anomalies by RCP scenario (2070–2099) (Martínez-Solanas et al., 2021)

Impacts of Climate Change on Mortality

Modeling framework

Literature on mortality models with jumps

The Liu and Li (2015) model

$$\ln(\hat{m}_{x,t}) = \alpha_x + \beta_x \kappa_t + N_t J_{x,t} + \epsilon_{x,t},$$

where N_t is a Bernoulli variable and $J_{x,t}$ is the intensity of gaussian mortality jumps.

Modeling framework

Literature on mortality models with jumps

Impacts of Climate Change on Mortality

The Liu and Li (2015) model

$$\ln(\hat{m}_{x,t}) = \alpha_x + \beta_x \kappa_t + N_t J_{x,t} + \epsilon_{x,t},$$

where N_t is a Bernoulli variable and $J_{x,t}$ is the intensity of gaussian mortality jumps.

Integrating vanishing jump effects (Goes et al., 2023) Bayesian formulation with gradually vanishing jump effects

$$\ln(\hat{m}_{x,t}) = \alpha_x + \beta_x \kappa_t + \beta_x^{(J)} J_t + \epsilon_{x,t}$$
$$J_t = \alpha J_{t-1} + N_t Y_t,$$

where Y_t, N_t and κ_t are random variables defined with a prior.

Modeling framework

Literature on mortality models with jumps

Catastrophe and volatility regime (Robben and Antonio, 2024) Jumps for the residuals of the mortality improvement rates of population c

$$\begin{aligned} z_{x,t}^{(c)} &:= \ln \hat{m}_{x,t}^{(c)} - \ln \hat{m}_{x,t-1}^{(c)} - (\ln \mu_{x,t}^{(c)} - \ln \mu_{x,t-1}^{(c)}) \\ Z_{x,t}^{(c)} &= \beta_x^{(c)} Y_t^{(c)} + \epsilon_{x,t}^{(c)}, \end{aligned}$$

where Y_t is null or a normal variable depending on the state of a Markov chain.

Specificity of temperature-attributable deaths

- > The intensity of shocks is likely to be affected by climate change.
- > Observed temperature-related shocks are punctual and generally non-catastrophic.
- > They may be offset throughout the year \rightarrow need to incorporate daily or weekly data.

Calibration

Estimating the DLNM model

We consider a bi-dimensional spline function \boldsymbol{s} as the surface of Relative Risk

$$s(\vartheta_{d,t}; L, \boldsymbol{\theta}_k) = \int_0^L f \cdot w(\vartheta_{d-l,t}, l; \boldsymbol{\theta}_k) dl \approx \sum_{l=0}^L f \cdot w(\vartheta_{d-l,t}, l; \boldsymbol{\theta}_k),$$

where $f \cdot w$ is a bi-dimensional integrable function, and $\boldsymbol{\theta}_k$ a vector of parameters.

- > Specification:
 - >> Cubic spline with internal knots placed at the 10th, 75th, and 90th percentiles of the daily temperature distribution.
 - >> Lag L of 21 days.
- Estimation error: the variance-covariance matrix V[θ_k] is estimated through a parametric bootstrap technique (Vicedo-Cabrera et al., 2019).

Case study

Mortality data

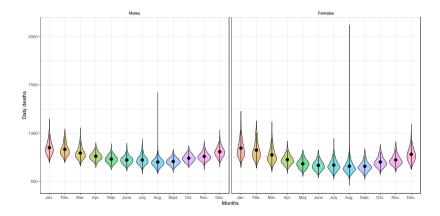


Figure: Probability density of the number of deaths by month of the year

Quentin Guibert

Impacts of Climate Change on Mortality

Case study

Climate scenarios

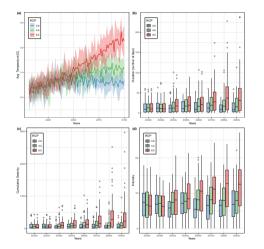


Figure: Projection of temperatures and heatwaves by RCP scenario in Metropolitan France over the period 2020-2100.

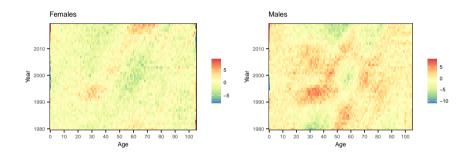


Figure: Pearson residuals of the Li-Lee model for the calibration period 1980-2019 and ages between 0-105 for the female and male populations of Metropolitan France. The model is fitted on temperature-ajusted risk exposures.

DLNM model - Goodness of fit

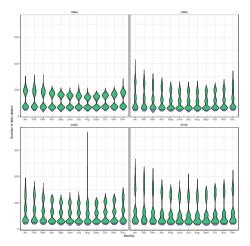


Figure: Monthly distribution of observed (blue) and predicted (green) numbers of deaths based on the DLNM model per year for women in metropolitan France for the years between 1980 and 2019. The distributions are grouped by decade.

DLNM model - Goodness of fit

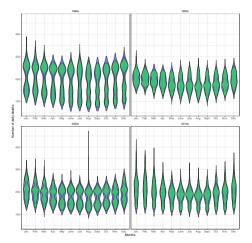


Figure: Monthly distribution of observed (blue) and predicted (green) numbers of deaths based on the DLNM model per year for men in metropolitan France for the years between 1980 and 2019. The distributions are grouped by decade.

DLNM model - Goodness of fit

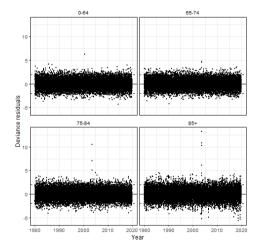


Figure: Representation of deviance residuals for DLNM models associated with age groups 0-64, 65-74, 75-84, and 85+ for women in metropolitan France for the years between 1980 and 2019.

DLNM model - Goodness of fit

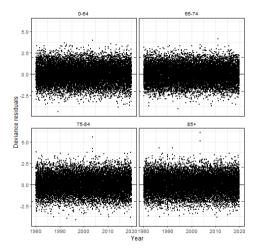


Figure: Representation of deviance residuals for DLNM models associated with age groups 0-64, 65-74, 75-84, and 85+ for men in metropolitan France for the years between 1980 and 2019.

Temperature-mortality association with the DLNM

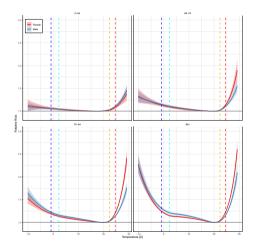


Figure: Cumulative relative risk of mortality over a 14-day period in Metropolitan France calculated for the years 1980-2019 for women (red) and men (blue) (95% Cl with 1,000 Monte Carlo simulations)