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Kekulé (1829-1896, German)
Funder of the structure of molecules (atoms + covalent bonds).
Discovered that the Carbon atom has 4 covalent bonds.
Understood first the structure of Benzene (out of a day–dream involving Ouroboros).

Graphene? Usually represented with the regular honeycomb lattice.

There are no double bonds!

=⇒ responsible for the high conductivity of graphene.
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Kekulé distortions ≈ Add the fourth bond to each Carbon atom.
Kekulé-O (3–periodic) A 1–periodic Kekulé A random Kekulé

Many possible Kekulé distortions a priori (linked with the theory of dimers and random surfaces).
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Courtesy of B. Laslier

Question: Is graphene distorted?

Remarks:
A double bond brings the atom closer;
Electrons can jump more easily to close atoms (larger hopping parameters);
There is a competition between the distortion energy of the lattice, and the quantum energy
of the electrons.
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One–dimensional graphene
(aka polyacetylene)
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Polyacetylene

Conductivity of undopped polyacetylene: 4.4× 10−5 Ω−1 · cm−1.
Conductivité of dopped (with iode) polyacetylene: 38 Ω−1 · cm−1.
Nobel prize to Heeger, MacDiarmid, Shirakawa for «conductive polymers» (2000).

There is an insulator/metallic transition due to dopping.
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Peierls/Su–Schrieffer–Heeger (SSH) model
L classical atoms (Carbon), linked by springs of stiffnessK and rest length d].
Quantum non–interacting electrons in a tight–binding Hamiltonian generated by the
Carbon atoms:

C C C C C

dn dn+1

tn tn+1

T := T (t) =


0 t1 0 0 · · · tL
t1 0 t2 · · · 0 0
0 t2 0 t3 · · · 0
...

...
...

. . .
...

...
0 0 · · · tL−2 0 tL−1

tL 0 · · · 0 tL−1 0

 .

Hopping parameters. We assume a linear relation: (tn − t]) = −α(dn − d]).

Peierls energy (∼ 1930) (Peierls? Hueckel? Su-Schrieffer-Heeger (SSH)?) After rescaling and with µ :=
Kt]
α2 ,

EL(t, γ) :=
µ

2

L∑
n=1

(tn − 1)2 + 2Tr (Tγ) .

We want to minimize the energy for all tn ∈ R+ and all 0 ≤ γ = γ∗ ≤ 1.
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Theorem (Peierls 33, Kennedy/Lieb 1987, Lieb/Nachtergaele 1995)
If L = 2N is even, there are at most two optimal configurations,

tn =W + (−1)nδ or tn =W − (−1)nδ, with δ ≥ 0.

In addition, if N is odd or if L is large enough, then δ > 0 (Peierls dimerization).

The corresponding Hamiltonian is of the form

T =


0 a 0 0 · · · b
a 0 b · · · 0 0
0 b 0 a · · · 0

.

.

.
.
.
.

.

.

.
. . .

.

.

.
.
.
.

0 0 · · · b 0 a
b 0 · · · 0 a 0

 , σ(T ) =
⋃

k∈ 2π
L

{
±|a+ beik|

}
,

{
a = W + δ

b = W − δ.

There is a gap of size 2δ around the origin.

Case δ > 0. Two distinct minimizers. The model is insulating.

Case δ = 0. Unique minimizer. The corresponding model is metallic.
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Proof 1 (Kennedy–Lieb 1987), with convexity
Lemma (Exercice 1)

For T ∈ SL(C) with Tr(T ) = 0, we have: inf
γ∈SL
0≤γ≤1

{2Tr(Tγ)} = −2Tr(T−) = −Tr
(√

T 2
)
.

The minimum is obtained for γ = 1(T ≤ 0).

Lemma (Exercice 2)

The map S+
L (C) 3 A 7→ −Tr

(√
A
)
is convex.

=⇒ The energy is convex it the variable T 2 =⇒ Minimizers are at most 2–periodic.

To study dimerization, it remains to study a functional with two variablesW and δ (Peierls 1933).
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Thermodynamic limit (L → ∞)
We are left with only two variable in the energy, namelyW and δ.
The limit E := limL→∞

1
LEL (energy per unit cell) is well-defined, and given by

E(W, δ) = µ

2

[
(W − 1)2 + δ2

]
− 1

2π

ˆ 2π

0

√
4W 2 cos2(s) + 4δ2 sin2(s)ds

≈ µ

2

[
(W − 1)2 + δ2

]
− 4W

π

(
1 +

δ2

2W 2
log

(
δ

2W

))
.

Conclusion: For all µ > 0, we have δ > 0.
(it costs δ2 to open a gap δ, and we gain δ2 log(δ) quantum energy).

Remark (Exercice?). The gain of energy due to Peierls dimerization is of order ∆E ≈ Ce−
π
2
µ.
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Similar results with positive temperature θ > 0
Peierls free energy

Eθ
L(t, γ) :=

µ

2

L∑
n=1

(tn − 1)2 + 2Tr (Tγ) + 2θTr

γ log(γ) + (1− γ) log(1− γ)︸ ︷︷ ︸
fermionic entropy of the electrons

 .

Lemma (Exercice 3)
For all matrix T ∈ SL(C) with Tr(T ) = 0, we have

inf
γ∈SL
0≤γ≤1

2 {Tr(Tγ) + θTr (γ log(γ) + (1− γ) log(1− γ))} = Tr
[
hθ(T

2)
]
,

with hθ(x) := −2θ log
(
2 cosh

(√
x

2θ

))
. The minimum is attained for γ =

(
1 + e

T
θ

)−1
.

The key property is that hθ is a convex function.
So, if L = 2N is eveny, there are at most 2 minimizers, of the form

tn =W + (−1)nδ ou tn =W − (−1)nδ, with δ ≥ 0.
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We can perform the thermodynamic limit again, and obtain the free energy per unit cell

F(W, δ) =
µ

2

[
(W − 1)2 + δ2

]
+

1

2π

ˆ 2π

0
hθ

(
4W 2 cos2(s) + 4δ2 sin2(s)

)
ds.

Theorem (DG, Kouandé, Séré 2023)
For all µ > 0, there is a critical temperature θc(µ) > 0 such that:

If θ < θc(µ), we have δ > 0 (Peierls dimerization);

Si θ ≥ θc(µ), we have δ = 0.

In addition, for large µ, we have θc(µ) ∼µ→∞ Ce−
π
4
µ.

Phase transition due to temperature

Apparently, a reasonable value for µ is µ ≈ 3.1.
This gives θc(µ) ≈ 2900°K…
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Proof 2 (Lieb–Nachtergaele 1995), with Reflection Positivity

=⇒

Reflection Positivity (general principle from Quantum Field Theory)

E(tL, tcut, tR) ≥
1

2

(
E(tL, tcut, t̃L) + E(t̃R, tcut, tR)

)
.

So, any minimising configuration should be symmetric with respect to all cuts
=⇒ 2–periodicity for polyacetylene.
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Two–dimensional polyacetylene
(aka graphene)
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For graphene, Reflection Positivity applies (Frank–Lieb, 2012).

So, at most 3 different hopping parameters/distances may appear.
Graphene is at most 3 periodic (with 6 Carbon atoms per unit cell).

This already discards the 1–periodic Kekulé and other «random» Kekulé distortions.
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Results for the Peierls/SSH model for graphene
Denote by t1 ≤ t2 ≤ t3 the three remaining hopping/parameters.

Theorem (DG, Roussigné, Séré, 2024)
There is a critical value µc > 0 so that,

for µ ≥ µc, we have t1 = t2 = t3. No distortion =⇒ no gap.
for µ < µc, we have t1 = t2 < t3. Kekulé-O distortion =⇒ gap.

Kekulé-O, exaggerated

We find µc = 0.88…
…and the experimental value seems to be
much greater.

Thank you for your attention.

David Gontier Kekulé distortions in graphene 16 / 16



Results for the Peierls/SSH model for graphene
Denote by t1 ≤ t2 ≤ t3 the three remaining hopping/parameters.

Theorem (DG, Roussigné, Séré, 2024)
There is a critical value µc > 0 so that,

for µ ≥ µc, we have t1 = t2 = t3. No distortion =⇒ no gap.
for µ < µc, we have t1 = t2 < t3. Kekulé-O distortion =⇒ gap.

Kekulé-O, exaggerated

We find µc = 0.88…
…and the experimental value seems to be
much greater.

Thank you for your attention.

David Gontier Kekulé distortions in graphene 16 / 16



Kinks in thePeierls/SSHmodel
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Let’s go back to polyacetylene in the θ = 0 case.
In the even (L = 2N ) case, there are two minimizers t±n =W ± (−1)nδ.

Theorem ((odd case) Garcia-Arroyo/Séré, 2011)
If L = 2N + 1 is odd, minimizers look like «kinks» :
If t(2N + 1) is a centered minimiser, then limN→∞ t(2N + 1)n =: tn exists, and

lim
n→∞

|tn − t+n | = lim
n→∞

|tn − t−n | = 0. heteroclinic configuration.

Same phenomena with a billiard (maximise the periodic billiard path with L points)
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Edge modes
The corresponding Hamiltonian can be seen as a junction between T+ and T−.

Lemma (Exercice 3)
Consider any positive sequence tn with limn→∞ |tn − t+n | = limn→∞ |tn − t−n | = 0, and consider
the corresponding tight–binding Hamiltonian (Tψ)n = tnψn+1 + tn−1ψn−1. Then 0 ∈ σ(T ).

In addition, if δ > 0 (so t+ 6= t−), then 0 is an eigenvalue of multiplicity 1, and the corresponding
eigenvector is exponentially localised (= edge mode).

Example of topologically protected states (Majorana states?).

Theorem (DG, Kouandé, Séré)
If (tn) is any (heteroclinic) positive critical point of the infinite Peierls model, then the convergence
of tn to t±n at ±∞ is exponential.
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