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Start with a single atom in Rd. We study the spectrum of the (one–body) Schrödinger operator

H = −∆+ V (x), e.g. V (x) =
−Z
|x|

.

σ(H)

Discrete spectrum (= eigenvalues). The energy levels are quantized.
TheN fermions occupies theN first eigenvectors/orbitals (associated to theN lowest eigenvalues).
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Then take two atoms in Rd.
H = −∆+ V

(
x−

R

2

)
+ V

(
x+

R

2

)
.

σ(H)

When R = ∞, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
When R � 1, tunnelling effect = interaction of eigenvectors =⇒ splitting of the eigenvalues;
The eigenvectors are delocalized between the two atoms.
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Now take an infinity of atoms in Rd, located along a lattice (= material)

H = −∆+
∑

v∈RZd

V (x− v)

σ(H)

When R = ∞, each eigenvalue is of infinite multiplicity;
When R � 1, each eigenvalue becomes a band of essential spectrum;
Each band represents «one electron per unit cell »;
When R decreases, the bands may overlap.

The spectrum of −∆+ V with V -periodic has a band-gap structure!
One band = one electron per unit cell.

Usual proof with the Bloch transform (∼ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H := −∂2xx + V (x), with V (x) = 50 · cos(2πx) + 10 · cos(4πx).

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.
We studyH in a box [t, t+ L] with Dirichlet boundary conditions, and with finite difference.

Depending on where we fix the origin t, the spectrum differs…
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.
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Setting
Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

H]
t = −∂2xx + V (x− t) on L2(R+),

with Dirichlet boundary conditions (with domainH2(R+) ∩H1
0 (R+)).

Since V is 1-periodic, the map t 7→ H]
t is also 1-periodic.

Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1.
These eigenvalues are simple, and their associated eigenvectors are exponentially localised ( = edge modes).

Figure: (Left) Spectrum of H](t) for t ∈ [0, 1]. (Right) Spectrum of the operator on [t, t + L].

E. Korotyaev, Commun. Math. Phys., 213(2):471–489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166–178, 2011.
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Idea of the proof
Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

Hdisloc
t := −∂2xx +

[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2(R).

Let L ∈ N be a (large) integer. Consider the periodic dislocated operator

Hdisloc
L,t := −∂2xx +

[
V (x)1(x < 0) + V (x− t)1(x > 0)

]
, on L2([− 1

2
L, 1

2
L+ t])

with periodic boundary conditions.

Remarks
The branches of eigenvalues of t 7→ Hdisloc

L,t are continuous;

At t = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;
At t = 1, the system is 1-periodic, on a box of size L+ 1. Each «band» contributes to L+ 1 eigenvalues.
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Figure: Spectrum of Hdisloc
L,t for L = 6 at t = 0 (6 cells) and t = 1 (7 cells).

The presence and the number of the red lines are independent of L ∈ N.
They survive in the limit L→ ∞.

This implies that there the result holds for the family of dislocated operators t 7→ Hdisloc
t .
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Figure: Spectrum of Hdisloc
L,t for all t ∈ [0, 1].

The presence and the number of the red lines are independent of L ∈ N.
They survive in the limit L→ ∞.

This implies that there the result holds for the family of dislocated operators t 7→ Hdisloc
t .
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The Spectral flow
If t 7→ At is a 1-periodic and continuous family of self-adjoint operators, and ifE /∈ σess(At) for all t, we can define its Spectral flow as

Sf (At, E) := number of eigenvalues going downwards in the essential gap where E lies.

The previous result can be formulated as:

Sf
(
Hdisloc

t , E
)
= N (E), N (E) := number of bands below E.

Facts :
If t 7→ Kt is a 1-periodic continuous family of compact operators, then

Sf (At, E) = Sf (At +Kt, E) .

If f : R → R is strictly increasing, then
Sf (f (At) , f(E)) = Sf (At, E) .
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Step 2. From the dislocated case to the Dirichlet case.

Recall that the dislocated operator is

Hdisloc
t := −∂2xx + [V (x)1(x < 0) + V (x− t)1(x > 0)] on L2(R).

Consider the cut Hamiltonian

Hcut
t := −∂2xx + [V (x)1(x < 0) + V (x− t)1(x > 0)] on L2(R) = L2(R−) ∪ L2(R+),

and with Dirichlet boundary conditions at x = 0 (only the domain differs).

Fact: For any Σ negative enough (below the essential spectra of all operators), we have

Kt :=
(
Σ−Hcut

t

)−1 −
(
Σ−Hdisloc

t

)−1
is compact (here, it is finite rank).

So
Sf
((

Σ−Hdisloc
t

)−1
, (Σ− E)−1

)
= Sf

((
Σ−Hcut

t

)−1
, (Σ− E)−1

)
.

Since f(x) := (Σ− x)−1 is strictly increasing on x > Σ, we have

N (E) = Sf
(
Hdisloc

t , E
)
= Sf

(
Hcut

t , E
)
= Sf

(
H],+

t , E
)
.
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The case of junctions
Take two 1-periodic potentials

VL(x) = 50 cos(2πx) + 10 cos(4πx), VR(x) = 10 cos(2πx) + 50 cos(4πx)

Consider the junction Hamiltonian

H
junct
t := −∂2xx + (VL(x)1(x < 0) + VR(x− t)1(x > 0)) on L2(R).

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf
(
H

junct
t , E

)
= NR(E).

Figure: Spectrum of H junc
t as a function of t.

A typical spectrum contains:
The essential spectrum of the left and right side.
Additional edge modes at the junction.
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A «fun» analogy

The «Grand Hilbert Hotel»
An infinite number of floors, and an infinite number of rooms per floor.

Idea: each unit cell represents 1 room (per floor), each spectral band represents one floor.

😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴

… Floor 3.

...
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As t moves from 0 to 1…

… a new room is created on each floor!

😴 😴 😴 😴 😴 😴

… Floor 1.

😴 😴 😴 😴 😴 😴

… Floor 2.

😴 😴 😴 😴 😴 😴

… Floor 3.

t→t+1−−−−−→

In order to fill the new rooms,
1 person from floor 2 must come down to floor 1;
2 persons from floor 3 must come down to floor 2;
and so on.

If we reverse the motion, (we delete rooms, or new guests arrive), then people climb up instead.
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The Grand Hilbert Hotel, by Étienne Lécroart.
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The two-dimensional case.
Let V be a Z2-periodic potential. We study the edge operator

H](t) = −∆+ V (x− t, y), on L2(R+ × R), with Dirichlet boundary conditions.

After a Bloch transform in the y-direction, we need to study the family of operators

H]
k(t) = −∂2xx + (−i∂y + k)2 + V (x− t, y), on the tube L2(R+ × [0, 1]).

Consider again the «Grand Hilbert Hotel» (= on a tube).
For each k, as t moves from 0 to 1, a new room is created on each floor =⇒ spectral flow.
As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.
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The two-dimensional twisted case.
We rotate V by θ.

Commensurate case (tan θ = p
q
)

Considering a Supercell of size L =
√
p2 + q2, we recover a LZ2-periodic potential.

On the tube R+ × [0, L] (at the k-Bloch point k = 0 for instance),
« As t moves from 0 to L, L2 new rooms are created»

Key remark:

The map t 7→ H]
θ(t) is now 1/L-periodic (up to some x2 shifts)

So the map t 7→ σ(H]
θ(t)) is 1/L periodic.

«As t moves from 0 to 1
L
, 1 new room is created»
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In-commensurate case (tan θ /∈ Q, corresponds to L→ ∞)

Theorem (DG 2021)

If tan θ /∈ Q, the spectrum ofH]
θ is of the form [Σ,∞).

Remarks:
The spectrum ofH](t) is independent of t (ergodicity);
All bulk gaps are filled with edge spectrum.

(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut

Open question
Is the edge spectrum pure point (∼ Anderson localization), or absolutely continuous (travelling waves)?

D. Gontier, Comptes Rendus Mathématique, 359(8), 949-958 (2021).
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In theTight–BindingApproximation (TBA)

joint work with Hanne Van Den Bosch & Camilo Gómez Araya
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In the (one dimensional) TBA, bulk operators are of the form

(Hψ)n = a∗ψn−1 + bψn + aψn = (h ∗ ψ) (=convolution). H =



. . .
. . .

. . . b a
a∗ b a

a∗ b a

a∗ b
. . .

. . .
. . .


.

Motivation (Example): Su–Schrieffer-Heeger (SSH) chain (polyacetylene)

J1

J2

d1 d2

H =



. . .
. . .

. . . 0 J1
J∗
1 0 J2

J∗
2 0 J1

J∗
1 0

. . .
. . .

. . .


, a =

(
0 0
J2 0

)
, b =

(
0 J1
J1 0

)
.

Lemma (Exercice)
If |J1| < |J2|, then 0 is an eigenvalue of multiplicity 1 of the cut operatorH].
If |J2| < |J1|, then 0 is not an eigenvalue ofH].

In the first case, the corresponding eigenvector (= edge state) is topologically stable ≡ Majorana fermions?
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Question: Can we prove spectral flows for TBA models?
Problem
There is no cut parameter… The naïve one will give a discontinuous family of operators.
=⇒ no Spectral Flows.

Idea: use a Soft wall instead of a hard truncation

Soft wall ? w(x) a ν-Lipschitz function with w(−∞) = +∞ and w(+∞) = 0.
Wall operator (Wtψ)n =W (n− t)ψn (multiplication operator).
Cut operator

H]
tψ =Wtψ + h ∗ ψ (multiplication + convolution).

Remarks
In the TBA setting, the bulk operator is bounded perturbation of the (unbounded) wall operator.
When t 7→ t+ 1, the wall is moving to the right. We expect branches of eigenvalues going upwards.

Lemma (DG, Gómez Araya, Van Den Bosch, 20⁇)

We have Sf(H]
t , E) = −N (E).

In addition, for all t0 ∈ R the operatorH](t0) has at leastN (E) eigenvalues in each interval of the form (λ, λ+ ν] in this gap.
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Numerical simulations for the SSH chain
J1

J2

d1 d2

We took d1 = 1/4, d2 = 3/4, J1 = 3/2 and J2 = 1/2, and the soft wall w(x) :=

{
0 for x ≥ 0

ν|x| for x ≤ 0
,

Figure: From left to right, ν = 0.5, ν = 1, ν = 5 and ν = 10.

There is no fundamental difference between the |J1| > |J2| and |J2| < |J1| cases!
In this soft–wall setting, it is unclear whether the edge modes are topologically protected.
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Numerical simulations for graphene (2d)
The hard–truncation theory
The spectrum ofH](k2) (Bloch in the direction orthogonal to the wall) depends on the orientation of the cut:

For the zigzag cut, there is a flat band appearing between the two Dirac cones;
For the armchair cut, there is no extra edge modes;
For another (commensurate orientation), a flat band appears (expect in few rare cases).
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Appendix
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A degenerate case
Consider Ω ⊂ R2 a nice bounded set, and repeat it on a Z2 grid.
ConsiderH = −∆ on L2(R2), with Dirichlet boundary conditions «everywhere».

In the un-cut situation, the spectrum equals σ (−∆|Ω), and each eigenvalue is of infinite multiplicities.

In the cut situation:
If tan θ ∈ Q, a finite number of new motifs appear, each one appears infinitely many times
=⇒ finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
If tan θ /∈ Q, an infinite (countable) number of new motifs appear
=⇒ pure-point spectrum everywhere.
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Bonus: The cut Landau operator
Consider the Landau Hamiltonian (it describes a 2d electron gas in a constant magnetic field B.)

HB = −∂2xx + (−i∂y +Bx)2.

After a Fourier transform in y, we get

HB,ky = −∂2xx + (ky +Bx)2 = −∂2xx +B2(x− t)2, with t =
−ky
B

.

The Fourier momentum ky plays the role of the shift.

Lemma
If B 6= 0, the bulk Hamiltonian has discrete spectrum. σ(HB) = |B|(2N0 + 1). (Landau operator).
The edge HamiltonianH]

B,t has flows of eigenvalues, going downwards.

In particular σ(H]
B) = [|B|,∞).
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