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Spectral propertie:



Start with a single atom in R?. We study the spectrum of the (one-body) Schrédinger operator

—Z
H=-A+V(x), eg. V(x)= m

@ Discrete spectrum (= eigenvalues). The energy levels are quantized.

e The NN fermions occupies the IV first eigenvectors/orbitals (associated to the IV lowest eigenvalues).




Then take two atoms in R®.
R R
H=-A+YV xfE +V x+5 .

o(H)

e When R = oo, the spectrum is copied twice (each eigenvalue doubles its multiplicity);
o When R > 1, tunnelling effect = interaction of eigenvectors => splitting of the eigenvalues;

o The eigenvectors are delocalized between the two atoms.
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Now take an infinity of atoms in R, located along a lattice (= material)

H=-A+ Z V(x—v)
veRzd

] (] (] (] (] o

@ When R = oo, each eigenvalue is of infinite multiplicity;
o When R >> 1, each eigenvalue becomes a band of essential spectrum;
o Each band represents «one electron per unit cell »;
o When R decreases, the bands may overlap.
The spectrum of —A + V with V-periodic has a band-gap structure!
One band = one electron per unit cell.

Usual proof with the Bloch transform (~ discrete version of the Fourier transform).
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Motivation: Spectral pollution
Let’s compute numerically the spectrum of the (simple, one-dimensional) operator

H:=-8%,4+V(z), with V(z)=50-cos(2rz) + 10 - cos(4rz).

The potential V' is 1-periodic. We expect a band-gap structure for the spectrum.
We study H in a box [t,t 4+ L] with Dirichlet boundary conditions, and with finite difference.
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Spectrum of H on [t, £+5]
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Depending on where we fix the origin ¢, the spectrum differs...
There are branches of spurious eigenvalues = spectral pollution (they appear for all L).
The corresponding eigenvectors are edge modes: they are localized near the boundaries.
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Setting
Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian
Hf = —82, +V(z—t) on L*R"),
with Dirichlet boundary conditions (with domain H2(R¥) N HJ (RT)).
Since V is 1-periodic, the map ¢ +— Hf is also 1-periodic.

'Iheorem (l\'omtyacv 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards ast goes from 0 to 1.
These eigenvalues are simple, and their associated eigenvectors are exponentially localised ( = edge modes).

Spectrum of H on [t, t+5]

Figure: (Left) Spectrum of H#(t) for ¢ € [0, 1]. (Right) Spectrum of the operator on [t, t + L].

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.
R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166-178, 2011.
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Idea of the proof

Step 1. Prove the result for dislocations (following Hempel and Kohlmann).
Introduce the dislocated operator

Hislee .= 92 4 [V(2)L(z < 0) + V(z —t)L(z > 0)], on L*(R).
Let L € N be a (large) integer. Consider the periodic dislocated operator

H%ﬂ"c = =02, + [V(2)1(z < 0) + V(z — t)1(z > 0)], on LQ([—%L7 %L +t])

with periodic boundary conditions.
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Remarks
o The branches of eigenvalues of t — H' %isi"c are continuous;
o Att = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;

o Att =1, the system is 1-periodic, on a box of size L + 1. Each «band» contributes to L + 1 eigenvalues.
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Figure: Spectrum of H%S}fc for L =6att = 0(6cells)and t = 1 (7 cells).




—
60
40
- —
20
0
6 7
-20 L ™
0.0 0.2 0.4 06 08 10

t

Figure: Spectrum of H%flfc forallt € [0, 1].

The presence and the number of the red lines are independent of L € N.
They survive in the limit . — oo.

This implies that there the result holds for the family of dislocated operators t — H, f‘iSl"C.




The Spectral flow
Ift — Ay is a 1-periodic and continuous family of self-adjoint operators, and if E ¢ oess(A¢) for all ¢, we can define its Spectral flow as

Sf(A¢, E) := number of eigenvalues going downwards in the essential gap where FE lies.

The previous result can be formulated as:

St (Hf“s'“, E) = N(E), N(E) := number of bands below E.
Facts :
o Ift — Ky is a 1-periodic continuous family of compact operators, then
Sf(A¢, E) = St(Ar + K¢, E) .
o If f : R — Ris strictly increasing, then
SE(f (Ar), f(E)) =SE(Ar, E).
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Step 2. From the dislocated case to the Dirichlet case.

Recall that the dislocated operator is
Hsoc .= 52 4 [V(z)l(z < 0)+ V(z —t)l(z >0)] on L*(R).
Consider the cut Hamiltonian
HM = 92, + [V(2)I(z <0) + V(z —t)I1(z >0)] on L*(R)=L*R™)UL*RT),
and with Dirichlet boundary conditions at = 0 (only the domain differs).
Fact: For any X negative enough (below the essential spectra of all operators), we have
K= (S — H™) o (E — HfiSl"C) - is compact (here, it is finite rank).

So
Sf((E - 1LI§“S‘°C)71 (- E)’l) - Sf((E R N E)’1> .

Since f(x) := (X — x)~! is strictly increasing on x > ¥, we have

N(E) = Sf (Hgisloc7 E) _ Sf(Hf“t,E) —sf (Hf’_’_,E) o
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The case of junctions
Take two 1-periodic potentials

Vi (z) = 50 cos(2mz) + 10 cos(4nz), Vr(z) = 10cos(2mx) + 50 cos(4mx)
Consider the junction Hamiltonian

HY = 92 4+ (Vi (2)1(x < 0) + Vr(z — t)1(z > 0)) on L2(R).

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf (H iumt, E) = Nr(E).
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A «fun» analogy

The «Grand Hilbert Hotel»
An infinite number of floors, and an infinite number of rooms per floor.

-3 ... Floor 3.

J J 5 ... Floor 2. .

@ @ (%) (%] ... Floor1. L




As t moves from O to 1...

t=00 t=025 t=05 t=075

AL AL LA B

. anew room is created on each floor!

t—t+1
(% 5 & ] -3 -5 ... Floor3.
(%] (&5 (55 %] -3 ... Floor 2. .
(3‘ & -3 ... Floor 1. li




As t moves from O to 1...

t=00 t=025 t=05 t=075 t=10

JAAAL [ARALL

... a new room is created on each floor!

t—t+1
(1/1 (5‘ 6 (ij 5] ... Floor 3.
& ... Floor2. .
%] -5 ... Floor 1.

In order to fill the new rooms,
@ 1 person from floor 2 must come down to floor 1;
@ 2 persons from floor 3 must come down to floor 2;
@ and so on.

If we reverse the motion, (we delete rooms, or new guests arrive), then people climb up instead.
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The two-dimensional case.
Let V be a Z2-periodic potential. We study the edge operator

HY(t)=—-A+V(z—t,y), on L3Ry xR), withDirichlet boundary conditions.
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The two-dimensional case.
Let V be a Z2-periodic potential. We study the edge operator

HY(t) = —-A+V(z—ty), on L% Ry xR), withDirichlet boundary conditions.

After a Bloch transform in the y-direction, we need to study the family of operators

HE(t) = —82, + (—i8y + k)2 + V(¢ — t,y), onthetube L*(Ry x [0,1]).

o Consider again the «Grand Hilbert Hotel» (= on a tube).
@ For each k, as t moves from O to 1, a new room is created on each floor = spectral flow.
o As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of essential spectrum appearing in each gap.
The corresponding modes can only propagate along the boundary.




The two-dimensional twisted case.
We rotate V' by 6.




The two-dimensional twisted case.
We rotate V' by 6.

Commensurate case (tan § = %)

Considering a Supercell of size L = 1/p2 + ¢2, we recover a LZ?-periodic potential.
On the tube RT x [0, L] (at the k-Bloch point & = 0 for instance),

«Ast moves from O to L, L? new rooms are created»

Key remark:
e The map ¢ — Hg (t) is now 1/ L-periodic (up to some x> shifts)
@ So the map t — O’(Hg (t)) is 1/L periodic.

«Ast moves from 0 to % 1 new room is created»
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In-commensurate case (tan 6 ¢ Q, corresponds to L — 00)

Theorem (pG 2021)

Iftan 0 ¢ Q, the spectrum ong is of the form [, 00).

Remarks:
o The spectrum of H*(t) is independent of ¢ (ergodicity);
o All bulk gaps are filled with edge spectrum.

5 5
4 4
Bulk spectrum Bulk spectrum
3 3
Edge spectrum
2 2
1 1
o o
00 02 04 06 08 10 00 02 04 06 08 10
(a) Uncut two-dimensional material (b) Two-dimensional material with incommensurate cut

Open question
Is the edge spectrum pure point (~ Anderson localization), or absolutely continuous (travelling waves)?




In the Tight-Binding Approximation (TBA)

joint work with Hanne VAN DEN BoscH & Camilo GOMEZ ARAYA
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In the (one dimensional) TBA, bulk operators are of the form .

(HY)n = astPn—1 + bipn + athn = (h*1) (=convolution).

Motivation (Example): Su-Schrieffer-Heeger (SSH) chain (polyacetylene)
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Lemma (Exercice)

If|J1| < |J2], then 0 is an eigenvalue of multiplicity 1 of the cut operator H*.
If|J2| < |J1], then O is not an eigenvalue of H*.

J1
0

).

In the first case, the corresponding eigenvector (= edge state) is topologically stable = Majorana fermions?
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Question: Can we prove spectral flows for TBA models?

Problem

There is no cut parameter... The naive one will give a discontinuous family of operators.
=> no Spectral Flows.

Idea: use a Soft wall instead of a hard truncation

Soft wall 7 w(x) a v-Lipschitz function with w(—00) = 400 and w(+o00) = 0.
Wall operator (W) = W(n — t)1, (multiplication operator).
Cut operator

wa =W+ hxy (multiplication + convolution).

Remarks
o In the TBA setting, the bulk operator is bounded perturbation of the (unbounded) wall operator.
o When t — ¢ + 1, the wall is moving to the right. We expect branches of eigenvalues going upwards.

Lemma (DG, Gémez Araya, Van Den Bosch, 207?)

We have Sf(Hf, E)=-N(B).
In addition, for allty € R the operator HY (to) has at least N'(E) eigenvalues in each interval of the form (X, X + v in this gap.
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Numerical simulations for the SSH chain
Ji

o
0 for >0

We took di = 1/4,d2 = 3/4, J1 = 3/2and J2 = 1/2, and the soft wall w(z) := ,
v|z| for <0

4

4

4

3 3

3

Figure: From left to right, v = 0.5, v = 1, v = 5and v = 10.

There is no fundamental difference between the |Ji| > |J2| and |J2| < |J1| cases!
In this soft-wall setting, it is unclear whether the edge modes are topologically protected.
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Numerical simulations for graphene (2d)

The hard-truncation theory

The spectrum of H!(k2) (Bloch in the direction orthogonal to the wall) depends on the orientation of the cut:
@ For the zigzag cut, there is a flat band appearing between the two Dirac cones;
@ For the armchair cut, there is no extra edge modes;

o For another (commensurate orientation), a flat band appears (expect in few rare cases).
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A degenerate case

Consider Q C R? a nice bounded set, and repeat it on a Z? grid.
Consider H = —A on L2(R?), with Dirichlet boundary conditions «everywhere».

000000000
000000000
000000000

0006000000
000000000

In the un-cut situation, the spectrum equals o (—A|q), and each eigenvalue is of infinite multiplicities.
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A degenerate case

Consider Q C R? a nice bounded set, and repeat it on a Z? grid.
Consider H = —A on L2(R?), with Dirichlet boundary conditions «everywhere».
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900000000
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In the un-cut situation, the spectrum equals o (—A|q), and each eigenvalue is of infinite multiplicities.
In the cut situation:
o Iftan 6 € Q, a finite number of new motifs appear, each one appears infinitely many times
=> finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
o Iftan 6 ¢ Q, an infinite (countable) number of new motifs appear

_poin e m evervwhore
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Bonus: The cut Landau operator

Consider the Landau Hamiltonian (it describes a 2d electron gas in a constant magnetic field B.)
Hp = =82, + (—idy + Bz)2.

After a Fourier transform in y, we get

—k
Hp g, = =02, + (ky + Bx)> = =02, + B*(z —1)°, with ¢= ?‘”.

The Fourier momentum k,, plays the role of the shift.

If B # 0, the bulk Hamiltonian has discrete spectrum. o(Hp) = |B|(2Ng + 1). (Landau operator).
The edge Hamiltonian H !iB ; has flows of eigenvalues, going downwards.
Inparticularcr(H%) = [|B|, ).
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