# Spectral properties of half-periodic systems

#### David Gontier

CEREMADE, Université Paris-Dauphine & DMA, École Normale Supérieure de Paris

Joint work with Hanne Van Den Bosch and Camilo Gómez Araya

June 5, 2024



Start with a single atom in  $\mathbb{R}^d$ . We study the spectrum of the (one–body) Schrödinger operator





- Discrete spectrum (= eigenvalues). The energy levels are *quantized*.
- The N fermions occupies the N first eigenvectors/orbitals (associated to the N lowest eigenvalues).



- When  $R = \infty$ , the spectrum is copied twice (each eigenvalue doubles its multiplicity);
- When  $R \gg 1$ , *tunnelling* effect = interaction of eigenvectors  $\implies$  splitting of the eigenvalues;
- The eigenvectors are delocalized between the two atoms.

Now take an infinity of atoms in  $\mathbb{R}^d$ , located along a lattice (= material)



- When  $R = \infty$ , each eigenvalue is of infinite multiplicity;
- When  $R \gg 1$ , each eigenvalue becomes a **band of essential spectrum**;
- Each band represents «one electron per unit cell »;
- When *R* decreases, the bands may overlap.

#### The spectrum of $-\Delta + V$ with V-periodic has a band-gap structure! One band = one electron per unit cell.

Usual proof with the *Bloch transform* ( $\sim$  discrete version of the Fourier transform).

## Motivation: Spectral pollution

Let's compute numerically the spectrum of the (simple, one-dimensional) operator

$$H := -\partial_{xx}^2 + V(x)$$
, with  $V(x) = 50 \cdot \cos(2\pi x) + 10 \cdot \cos(4\pi x)$ .

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.

We study H in a box [t, t + L] with Dirichlet boundary conditions, and with finite difference.

## Motivation: Spectral pollution

Let's compute numerically the spectrum of the (simple, one-dimensional) operator

$$H := -\partial_{xx}^2 + V(x)$$
, with  $V(x) = 50 \cdot \cos(2\pi x) + 10 \cdot \cos(4\pi x)$ .

The potential V is 1-periodic. We expect a band-gap structure for the spectrum.

We study H in a box [t, t + L] with Dirichlet boundary conditions, and with finite difference.



Depending on where we fix the origin t, the spectrum differs...

There are branches of spurious eigenvalues = spectral pollution (they appear for all *L*). The corresponding eigenvectors are edge modes: they are localized near the boundaries.

## Setting

Let V be a 1-periodic potential, and consider the cut (one-dimensional) Hamiltonian

$$H^{\sharp}_t = -\partial^2_{xx} + V(x-t) \quad \text{on} \quad L^2(\mathbb{R}^+),$$

with Dirichlet boundary conditions (with domain  $H^2(\mathbb{R}^+) \cap H^1_0(\mathbb{R}^+)$ ).

Since V is 1-periodic, the map  $t \mapsto H_t^{\sharp}$  is also 1-periodic.

### Theorem (Korotyaev 2000, Hempel Kohlmann 2011, DG 2020)

In the n-th essential gap, there is a flow of n eigenvalues going downwards as t goes from 0 to 1. These eigenvalues are simple, and their associated eigenvectors are exponentially localised (= edge modes).



Figure: (Left) Spectrum of  $H^{\sharp}(t)$  for  $t \in [0, 1]$ . (Right) Spectrum of the operator on [t, t + L].

E. Korotyaev, Commun. Math. Phys., 213(2):471-489, 2000.

R. Hempel and M. Kohlmann, J. Math. Anal. Appl., 381(1):166-178, 2011.

# Idea of the proof

**Step 1.** Prove the result for *dislocations* (following *Hempel and Kohlmann*). Introduce the dislocated operator

$$H^{\mathrm{disloc}}_t:=-\partial^2_{xx}+\left[V(x)\mathbbm{1}(x<0)+V(x-t)\mathbbm{1}(x>0)\right],\quad \mathrm{on}\quad L^2(\mathbb{R}).$$

Let  $L \in \mathbb{N}$  be a (large) integer. Consider the periodic dislocated operator

$$H_{L,t}^{\text{disloc}} := -\partial_{xx}^2 + \left[ V(x) \mathbb{1}(x < 0) + V(x - t) \mathbb{1}(x > 0) \right], \quad \text{on} \quad L^2([-\frac{1}{2}L, \frac{1}{2}L + t])$$

with periodic boundary conditions.



### Remarks

- The branches of eigenvalues of  $t \mapsto H_{L,t}^{\text{disloc}}$  are continuous;
- At t = 0, the system is 1-periodic, on a box of size L. Each «band» contributes to L eigenvalues;
- At t = 1, the system is 1-periodic, on a box of size L + 1. Each «band» contributes to L + 1 eigenvalues.



Figure: Spectrum of  $H_{L,t}^{\text{disloc}}$  for L = 6 at t = 0 (6 cells) and t = 1 (7 cells).



Figure: Spectrum of  $H_{L,t}^{\text{disloc}}$  for all  $t \in [0, 1]$ .

The presence and the number of the red lines are independent of  $L \in \mathbb{N}$ . They survive in the limit  $L \to \infty$ .

This implies that there the result holds for the family of dislocated operators  $t\mapsto H_t^{\rm disloc}.$ 

# The Spectral flow

If  $t \mapsto A_t$  is a 1-periodic and *continuous* family of self-adjoint operators, and if  $E \notin \sigma_{ess}(A_t)$  for all t, we can define its Spectral flow as

Sf  $(A_t, E)$  := number of eigenvalues going **downwards** in the essential gap where E lies.



The previous result can be formulated as:

$$\mathrm{Sf}\left(H_t^{\mathrm{disloc}}, E\right) = \mathcal{N}(E), \quad \mathcal{N}(E) := \mathrm{number \ of \ bands \ below \ } E.$$

Facts :

• If  $t \mapsto K_t$  is a 1-periodic continuous family of **compact** operators, then

$$Sf(A_t, E) = Sf(A_t + K_t, E)$$

• If  $f: \mathbb{R} \to \mathbb{R}$  is strictly increasing, then

 $\mathrm{Sf}(f(A_t), f(E)) = \mathrm{Sf}(A_t, E).$ 

Step 2. From the dislocated case to the Dirichlet case.

Recall that the dislocated operator is

$$H_t^{\text{disloc}} := -\partial_{xx}^2 + [V(x)\mathbb{1}(x < 0) + V(x - t)\mathbb{1}(x > 0)] \quad \text{on} \quad L^2(\mathbb{R}).$$

Consider the cut Hamiltonian

$$H_t^{\text{cut}} := -\partial_{xx}^2 + [V(x)\mathbb{1}(x < 0) + V(x - t)\mathbb{1}(x > 0)] \quad \text{on} \quad L^2(\mathbb{R}) = L^2(\mathbb{R}^-) \cup L^2(\mathbb{R}^+),$$

and with Dirichlet boundary conditions at x = 0 (only the domain differs).

Fact: For any  $\Sigma$  negative enough (below the essential spectra of all operators), we have

$$K_t := \left(\Sigma - H_t^{\text{cut}}\right)^{-1} - \left(\Sigma - H_t^{\text{disloc}}\right)^{-1}$$
 is compact (here, it is finite rank).

So

$$\mathrm{Sf}\left(\left(\Sigma - H_t^{\mathrm{disloc}}\right)^{-1}, (\Sigma - E)^{-1}\right) = \mathrm{Sf}\left(\left(\Sigma - H_t^{\mathrm{cut}}\right)^{-1}, (\Sigma - E)^{-1}\right)$$

Since  $f(x) := (\Sigma - x)^{-1}$  is strictly increasing on  $x > \Sigma$ , we have

$$\mathcal{N}(E) = \mathrm{Sf}\left(H_t^{\mathrm{disloc}}, E\right) = \mathrm{Sf}\left(H_t^{\mathrm{cut}}, E\right) = \mathrm{Sf}\left(H_t^{\sharp, +}, E\right). \quad \Box$$

# The case of junctions

Take two 1-periodic potentials

 $V_L(x) = 50\cos(2\pi x) + 10\cos(4\pi x), \qquad V_R(x) = 10\cos(2\pi x) + 50\cos(4\pi x)$ 

Consider the **junction** Hamiltonian

$$H^{\text{junct}}_t := -\partial_{xx}^2 + (V_L(x)\mathbb{1}(x < 0) + V_R(x - t)\mathbb{1}(x > 0)) \quad \text{on} \quad L^2(\mathbb{R}).$$

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf  $\left(H_t^{\text{junct}}, E\right) = \mathcal{N}_R(E)$ .

# The case of junctions

Take two 1-periodic potentials

 $V_L(x) = 50\cos(2\pi x) + 10\cos(4\pi x), \qquad V_R(x) = 10\cos(2\pi x) + 50\cos(4\pi x)$ 

Consider the junction Hamiltonian

$$H^{\mathrm{junct}}_t:=-\partial^2_{xx}+(V_L(x)\mathbb{1}(x<0)+V_R(x-t)\mathbb{1}(x>0))\quad\text{on}\quad L^2(\mathbb{R}).$$

Reasoning as before (using a cut as a compact perturbation), one can prove that Sf  $(H_t^{\text{junct}}, E) = \mathcal{N}_R(E)$ .



Figure: Spectrum of  $H_t^{\text{junc}}$  as a function of t.

# A «fun» analogy

## The *«Grand Hilbert Hotel»* An infinite number of floors, and an infinite number of rooms per floor.



Idea: each unit cell represents 1 room (per floor), each spectral band represents one floor.





As t moves from 0 to 1...



... a new room is created on each floor!





As t moves from 0 to 1...



... a new room is created on each floor!





In order to fill the new rooms,

- 1 person from floor 2 must come down to floor 1;
- 2 persons from floor 3 must come down to floor 2;
- and so on.

If we reverse the motion, (we delete rooms, or new guests arrive), then people climb up instead.



The Grand Hilbert Hotel, by Étienne Lécroart.

## The two-dimensional case.

Let V be a  $\mathbb{Z}^2\text{-periodic potential. We study the edge operator$ 

$$H^{\sharp}(t) = -\Delta + V(x - t, y)$$
, on  $L^{2}(\mathbb{R}_{+} \times \mathbb{R})$ , with Dirichlet boundary conditions.



#### The two-dimensional case.

Let V be a  $\mathbb{Z}^2$ -periodic potential. We study the edge operator

$$H^{\sharp}(t) = -\Delta + V(x - t, y)$$
, on  $L^{2}(\mathbb{R}_{+} \times \mathbb{R})$ , with Dirichlet boundary conditions.



After a Bloch transform in the y-direction, we need to study the **family** of operators

$$H^\sharp_k(t) = -\partial^2_{xx} + (-\mathrm{i}\partial_y + k)^2 + V(x - t, y), \quad \text{on the tube} \quad L^2(\mathbb{R}_+ \times [0, 1])$$

- Consider again the **«Grand Hilbert Hotel»** (= on a tube).
- For each k, as t moves from 0 to 1, a new room is created on each floor  $\implies$  spectral flow.
- As k varies, each branch of eigenvalue becomes of branch of essential spectrum.

There is a «spectral flow» of **essential spectrum** appearing in each gap. The corresponding modes can only propagate along the boundary.

The two-dimensional twisted case. We rotate V by  $\theta$ .



### The two-dimensional twisted case. We rotate V by $\theta$ .



Commensurate case  $(\tan \theta = \frac{p}{a})$ 

Considering a **Supercell** of size  $L = \sqrt{p^2 + q^2}$ , we recover a  $L\mathbb{Z}^2$ -periodic potential. On the tube  $\mathbb{R}^+ \times [0, L]$  (at the k-Bloch point k = 0 for instance),

« As t moves from 0 to L,  $L^2$  new rooms are created»

## Key remark:

- The map  $t \mapsto H^{\sharp}_{\theta}(t)$  is now 1/L-periodic (up to some  $x_2$  shifts)
- So the map  $t\mapsto \sigma(H^{\sharp}_{\theta}(t))$  is 1/L periodic.

«As t moves from 0 to  $\frac{1}{L}$ , 1 new room is created»

In-commensurate case (tan  $\theta \notin \mathbb{Q}$ , corresponds to  $L \to \infty$ )

## Theorem (DG 2021)

If  $\tan \theta \notin \mathbb{Q}$ , the spectrum of  $H_{\theta}^{\sharp}$  is of the form  $[\Sigma, \infty)$ .

## Remarks:

- The spectrum of  $H^{\sharp}(t)$  is independent of t (ergodicity);
- All bulk gaps are filled with edge spectrum.



(b) Two-dimensional material with incommensurate cut

#### Open question

Is the edge spectrum pure point ( $\sim$  Anderson localization), or absolutely continuous (travelling waves)?

# In the Tight–Binding Approximation (TBA)

joint work with Hanne VAN DEN BOSCH & Camilo GÓMEZ ARAYA

In the (one dimensional) TBA, bulk operators are of the form

$$(H\psi)_n = a_*\psi_{n-1} + b\psi_n + a\psi_n \qquad = (h*\psi)$$
 (=convolution).

Motivation (Example): Su-Schrieffer-Heeger (SSH) chain (polyacetylene)

$$H = \begin{pmatrix} \ddots & \ddots & & & \\ & \vdots & b & a & \\ & \vdots & b & a & \\ & a^* & b & a & \\ & & a^* & b & a & \\ & & a^* & b & a & \\ & & a^* & b & a & \\ & & & a^* & b & a & \\ & & & a^* & b & a & \\ & & & a^* & b & a & \\ & & & a^* & b & a & \\ & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & a & \\ & & & & a^* & b & \ddots & \\ & & & & & \ddots & \ddots & \end{pmatrix}, \quad a = \begin{pmatrix} 0 & 0 & 0 \\ J_2 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & J_1 \\ J_1 & 0 \end{pmatrix}.$$

## Lemma (Exercice)

If  $|J_1| < |J_2|$ , then 0 is an eigenvalue of multiplicity 1 of the cut operator  $H^{\sharp}$ . If  $|J_2| < |J_1|$ , then 0 is not an eigenvalue of  $\hat{H}^{\sharp}$ .

In the first case, the corresponding eigenvector (= edge state) is **topologically stable**  $\equiv$  *Majorana fermions*?

Question: Can we prove spectral flows for TBA models? Problem

There is no *cut parameter*... The naïve one will give a discontinuous family of operators.

 $\implies$  no Spectral Flows.

Idea: use a Soft wall instead of a hard truncation

Soft wall ? w(x) a  $\nu$ -Lipschitz function with  $w(-\infty) = +\infty$  and  $w(+\infty) = 0$ . Wall operator  $(W_t\psi)_n = W(n-t)\psi_n$  (multiplication operator). Cut operator

 $H_t^{\sharp}\psi = W_t\psi + h * \psi$  (multiplication + convolution).

## Remarks

- In the TBA setting, the bulk operator is bounded perturbation of the (unbounded) wall operator.
- When  $t \mapsto t + 1$ , the wall is moving to the right. We expect branches of eigenvalues going **upwards**.

## Lemma (DG, Gómez Araya, Van Den Bosch, 20??)

We have  $Sf(H_t^{\sharp}, E) = -\mathcal{N}(E)$ . In addition, for all  $t_0 \in \mathbb{R}$  the operator  $H^{\sharp}(t_0)$  has at least  $\mathcal{N}(E)$  eigenvalues in each interval of the form  $(\lambda, \lambda + \nu]$  in this gap.

# Numerical simulations for the SSH chain



We took  $d_1 = 1/4$ ,  $d_2 = 3/4$ ,  $J_1 = 3/2$  and  $J_2 = 1/2$ , and the soft wall  $w(x) := \begin{cases} 0 & \text{for } x \ge 0\\ \nu |x| & \text{for } x \le 0 \end{cases}$ ,



Figure: From left to right,  $\nu = 0.5$ ,  $\nu = 1$ ,  $\nu = 5$  and  $\nu = 10$ .

## There is no fundamental difference between the $|J_1| > |J_2|$ and $|J_2| < |J_1|$ cases! In this soft–wall setting, it is unclear whether the edge modes are topologically protected.

Spectral properties of half-periodic systems

# Numerical simulations for graphene (2d)

## The *hard–truncation* theory

The spectrum of  $H^{\sharp}(k_2)$  (Bloch in the direction orthogonal to the wall) depends on the orientation of the cut:

- For the *zigzag* cut, there is a flat band appearing between the two *Dirac cones*;
- For the *armchair* cut, there is no extra edge modes;
- For another (commensurate orientation), a flat band appears (expect in few rare cases).

# Appendix

# A degenerate case

Consider  $\Omega \subset \mathbb{R}^2$  a nice bounded set, and repeat it on a  $\mathbb{Z}^2$  grid. Consider  $H = -\Delta$  on  $L^2(\mathbb{R}^2)$ , with Dirichlet boundary conditions «everywhere».



In the un-cut situation, the spectrum equals  $\sigma(-\Delta|_{\Omega})$ , and each eigenvalue is of infinite multiplicities.

# A degenerate case

Consider  $\Omega \subset \mathbb{R}^2$  a nice bounded set, and repeat it on a  $\mathbb{Z}^2$  grid. Consider  $H = -\Delta$  on  $L^2(\mathbb{R}^2)$ , with Dirichlet boundary conditions «everywhere».



In the un-cut situation, the spectrum equals  $\sigma(-\Delta|_{\Omega})$ , and each eigenvalue is of infinite multiplicities. In the cut situation:

- If  $\tan \theta \in \mathbb{Q}$ , a finite number of new motifs appear, each one appears infinitely many times
  - $\implies\,$  finite number of new eigenvalues appear in each gap (all of infinite multiplicities)
- If  $\tan\theta\notin\mathbb{Q},$  an infinite (countable) number of new motifs appear

## Bonus: The cut Landau operator

Consider the Landau Hamiltonian (it describes a 2d electron gas in a constant magnetic field B.)

$$H_B = -\partial_{xx}^2 + (-\mathrm{i}\partial_y + Bx)^2.$$

After a Fourier transform in y, we get

$$H_{B,ky} = -\partial_{xx}^2 + (k_y + Bx)^2 = -\partial_{xx}^2 + B^2(x-t)^2, \quad \text{with} \quad t = \frac{-k_y}{B}.$$

The Fourier momentum  $k_y$  plays the role of the shift.

## Lemma

If  $B \neq 0$ , the bulk Hamiltonian has discrete spectrum.  $\sigma(H_B) = |B|(2\mathbb{N}_0 + 1)$ . (Landau operator). The edge Hamiltonian  $H_{B,t}^{\sharp}$  has flows of eigenvalues, going downwards. In particular  $\sigma(H_B^{\sharp}) = [|B|, \infty)$ .

