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Signature stochastic volatility models

General non-Markovian stochastic volatility model, of the form

dSt = StσtdBt ,

σt = σ (t, (Bs)0 ⩽ s ⩽ t , (Ws)0 ⩽ s ⩽ t) ,

with B,W independent Brownian motions.

How to choose σ(·) ?

Natural choice :
σ = ⟨σ,Xt⟩

where Xt is the signature of (t,B,W ) on [0, t].
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Path signature : definition

Let Ad = {1, 2, . . . , d}, and

Vn := {i1 · · · in : ik ∈ Ad for k = 1, . . . , n}. (1)

T ((Rd)) =

ℓ =
∑
n ⩾ 0

∑
w∈Vn

⟨ℓ,w⟩w

 .

Let X : [0,T ] → Rd be a path (deterministic, or continuous
semi-martingale).
Signature of X (Chen ’57) : Xt ∈ T ((Rd)) with

⟨Xt , i1 · · · in⟩ =
∫

0<u1<···<un<t

dX i1
u1

◦ · · · ◦ dX in
un

(Stratonovich integration in the case of semi-martingales).
e.g.

⟨Xt , i⟩ =
∫ t

0
◦dX i

u = X i
t − X t

0 , ⟨Xt , ij⟩ =
∫ t

0
X i
u ◦ dX j

u, . . .
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Path signature : properties (1)

For w = vi,

⟨Xt ,w⟩ =
∫ t

0
⟨Xs , v⟩ ◦ dX i

s .

Shuffle product ⊔⊔ on words :

w ⊔⊔ ø = ø ⊔⊔ w = w,

vi ⊔⊔ wj = (v ⊔⊔ (wj))i + ((vi) ⊔⊔ w)j

e.g.
1 ⊔⊔ 2 = 12 + 21, (12) ⊔⊔ 3 = 123 + 132 + 312

Then for any u,w,

⟨Xt , v⟩ ⟨Xt ,w⟩ = ⟨Xt , v ⊔⊔ w⟩ .

Consequence :
any polynomial function of the signature is linear
(iterated integrals ≈ monomials on path-space)
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Path signature : properties (2)

Xt determines X on [0, t] up to reparametrization and tree-like
equivalence (Chen ’58, Hambly-Lyons ’10, Boedihardjo et al. ’16).

For X̂t = (t,Xt), X̂t determines X on [0, t].

Universality properties : for instance, let K ⊂ C 1−var ([0, t],Rd) be
compact, then {

X 7→
〈
X̂t , ℓ

〉
, ℓ ∈ T (Rd)

}
is dense in C (K,R) (for uniform convergence).
(Here T (Rd) = ∪NT

(N)(Rd),
T (N)(Rd) = {ℓ =

∑
n ⩽ N

∑
w∈Vn

ℓww}).)
Similar results also hold in other topologies than C 1−var (e.g. rough
path topologies).
(In particular, X 7→ Y where dY = V (Y ) ◦ dX may be
approximated by linear functionals of the signature).
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Path signature : properties (3)

Tractability due to various algebraic properties.
In particular by linearity,

E
[〈

X̂t , ℓ
〉]

=
〈
E
[
X̂t

]
, ℓ
〉
,

with E
[
X̂t

]
being explicit in certain cases.

For instance, if X̂t = (t,Bt) (B scalar B.M.),

E
[
X̂t

]
= exp⊗

(
t

(
1 +

1
2
22
))

= ø + t(1 +
1
2
22) +

t2

2

(
11 +

1
2
122 +

1
2
221 +

1
4

2222
)
+ . . .

(Fawcett’s formula)
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Signature models in finance 1/2

Volatility models of the form

Σt = ⟨σ,Xt⟩

where Xt is the signature of an auxiliary process X̂ = (t,X ).
Note : σ ∈ T (N)(Rd) → (dN+1 − 1)/(d − 1) parameters

Perez Arribas, Salvi, Szpruch ’20 X̂ = (t,B) (time-augmented
scalar BM). σ truncated at N = 4 (31 parameters).
Numerical experiments (calibration, simulation, pricing)

Cuchiero, Gazzani, Svaluto-Ferro ’22. Further theoretical study
of the models.
X̂ = (t,B,W ) (multi-dimensional BM).
σ truncated at N = 2, 3, 4, 102 to 105 parameters.

(In both these papers dSt = ΣtdBt).
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Signature models in finance 2/2

dSt = StΣtdBt ,

Σt =
〈
σ, X̂t

〉
Cuchiero, Gazzani, Svaluto-Ferro ’23. Joint calibration of
SPX/VIX options.
Uses auxiliary processes X̂ = (t,B,X ), X Ornstein-Uhlenbeck
processes (3-dimensional). Explicit formulae for VIX option prices in
this model (”polynomial diffusions”).
σ truncated at N = 3, 81 parameters.

Abi Jaber, Gérard ’24. Pricing via Fourier, using affine structure
and (infinite-dimensional) Ricatti equations (σ possibly infinite).
Xt signature of (t,W ), W a B.M. with d ⟨W ,B⟩ = ρdt.
Numerics for calibration : truncated at N = 3, 13 parameters.
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Martingale property : discussion

Stochastic volatility model, price dynamics (no interest rate, under
pricing measure).

dSt = StσtdBt .

S clearly always local martingale (and a supermartingale).
Q : is it a true martingale ? (Equivalent to E[St ] = S0, for all t ⩾ 0).
Note : if S is a strict local martingale, then :

The "model price" for holding the stock (E[St ])until time t is
< market price (= S0).
Technically not an arbitrage opportunity in the classical (e.g.
NFLVR) sense : shorting the stock is not an ’admissible strategy”.
Put-call parity does not hold.
Has been suggested as a model for bubbles (Protter and co-authors).
In any case : clearly a pathological model, should not be used for
day-to-day activities ! (and it is important to rule this out when
introducing a model).
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Martingale property : literature

Novikov criterion

E
[
exp

(
1
2

∫ t

0
σ2
s ds

)]
< ∞

can sometimes be used (Heston,...) but useless e.g. when σ has
superlinear growth in a Gaussian process.
Classical results. Sin ’98, Jourdain ’04, Lions Musiela ’07, Bernard
Cui McLeish ’17,... for Markovian models. Typical result :

dSt = StσtdBt , dσt = ασtdWt , d⟨B,W ⟩t = ρdt,

then
S true martingale ⇔ ρ ⩽ 0. (2)

Few results in non-Markovian case. G. ’19 rough Bergomi model,

σt = exp

(∫ t

0
(t − s)H−1/2dWs

)
, d⟨B,W ⟩t = ρdt,

same result (2) as above.
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Existence of moments

For which m > 1, T > 0 does it hold that E[Sm
T ] < ∞ ?

(m = 1 is clear by supermartingale property).
Importance :

Monte Carlo error : CLT requires finite variance

1
M

M∑
i=1

(S i
T − K )+ − E[(ST − K )+] of order

1√
M

iff E[S2
T ] < ∞.

Asymptotic formula : to go from LDP estimates

P(St > K ) ≈t→0 exp

(
− I (K ) + o(1)

tα

)
to call price asymptotics

E[(St − K )+] ≈t→0 exp

(
− I (K ) + o(1)

tα

)
(or finer asymptotics) requires some moments, e.g.∃m > 1,
E[Sm

t ] < ∞ for all t > 0 (Friz-G.-Pigato ’19).
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Moments : literature

When volatility has Gaussian tails (e.g. Heston)

∀m > 1, ∃T (m) > 0, ∀t ⩽ T (m),E[Sm
t ] < ∞.

’superlinear’ SDE models : Jourdain ’04, Andersen Piterbarg ’07,
Lions Musiela ’07.

dSt = StσtdBt , dσt = ασtdWt , d⟨B,W ⟩t = ρdt,

then, for ρ ⩽ 0, for any t > 0,

E[Sm
t ] < ∞ ⇔ m ⩽

1
1 − ρ2

Rough Bergomi model G. ’19 Gulisashvili ’19,

σt = exp

(∫ t

0
(t − s)H−1/2dWs

)
, d⟨B,W ⟩t = ρdt,

Implication ⇒ above holds.
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Martingale property in truncated Sigvol model

Stock price dynamics
dSt = StσtdBt ,

where
σt = ⟨σ,Xt⟩

and Xt is the signature of (t,Bt ,W
i
t ; i = 1, . . . , d), where B,W i are

independent Brownian motions, and

σ =
∑

0 ⩽ n ⩽ N

∑
w∈Vn

σww,

where words are over the alphabet {1, 2, 3, . . . , d + 2}.



Path signature and SigVol models Martingale property and moments Result and proofs

Results : martingale property

(Recall that 2 corresponds to integrals in dB, where B drives S).

Theorem
Assume that N ⩾ 2 and σ is such that σ2⊗N ̸= 0.
Then

S is a true martingale ⇔ N is odd and σ2⊗N < 0.

Note : as a special case, in the Abi Jaber-Gérard model

σt = ⟨σ,Sig(t, ρB + ρ̄W )⟩ ,

then if σ2⊗N ̸= 0,

S is a true martingale ⇔ N is odd and ρσ2⊗N < 0.
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Numerical illustration
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Results : moments

Consider the Abi Jaber-Gérard model

dSt = Stσt(ρdBt +
√

1 − ρ2dWt),

σt = ⟨σ,Sig(t,B)t⟩ ,

with σ ∈ TN(Rd), N ⩾ 3 is odd and

σ2⊗N > 0, ρ ⩽ 0.

Theorem
For any T > 0, it holds that

m <
1

1 − ρ2 ⇒ E[Sm
T ] < ∞,

m >
1

1 − ρ2 ⇒ E[Sm
T ] = ∞.
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Idea of proofs : martingale (1/2)

Classical idea (Sin ’98, see Ruf ’15 for a general statement): for
σt = σ(t,B), it holds that

E[ST ] = S0 ⇔ almost surely,
∫ T

0
σ(t,X )2dt < ∞,

where X is solution to the fixed point equation

dXt = dBt + σ(t,X )dt.

(Follows from Girsanov, with weight ST∧τn/S0)
In our context : explosion / no-explosion of solution to

dXt = dBt + ⟨σ,Sig(t,X ,W )⟩ dt.

(SDE with signature drift and additive noise)
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Idea of proofs : martingale (2/2)

Assumption on σ :

dXt = −cXN
t dt + (l .o.t.) + dBt ,

and explosion can be related to the sign of the leading coefficient.
More precisely, a crucial lemma shows that the other terms are of
lower order in expectation, e.g.∫ t

0
XsdWs ≲Lp sup

s ⩽ t
|Xs |

∫
0 ⩽ u1 ⩽ u2 ⩽ u3 ⩽ t

dXu1dWu2dXu3

=

(∫ t

0
XudWu

)(∫ t

0
dXu

)
−
∫ t

0
X 2
u dWu

≲Lp sup
s ⩽ t

|Xs |2.

(and similarly for arbitrary words by induction on word length and
some shuffle identities)
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Idea of proofs : moments (1/2)

dSt = Stσt(ρdBt +
√

1 − ρ2dWt),

σt = ⟨σ,Sig(t,B)t⟩ ,

After conditioning,

E[Sm
T ]/Sm

0 = E

[
exp

(∫ T

0
Cρ,mσ(t,B)

2dt + ρmσ(t,B)dBt

)]
,

where Cρ,m = (1−ρ2)m2−m
2 (assumption on ρ,m ↔ sign of Cm).

As in G. ’19, apply Boué-Dupuis formula

logE exp(F (B)) = sup
v

E
[
F

(
B +

∫ ·

0
v

)
− 1

2

∫
v2
]

to obtain that finiteness of the moments is equivalent to that of

V := sup
(vt ) adapted

E

[∫ T

0

(
Cρ,mσ

(
t,B +

∫ ·

0
v

)2
+ ρmσ

(
t,B +

∫ ·

0
v

)
vt −

1
2
v2
t

)
dt

]
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Idea of proofs : moments (2/2)

The case where Cm,ρ > 0 : use feedback controls and explosion as in
martingale part to obtain V = +∞
If Cm,ρ < 0 : letting V =

∫ ·
0 v , we can rewrite

σ(t,B + V ) = ⟨σ̃,Sig(t,B,V )t⟩ = σ2⊗NV N
t + (l .o.t.)

and as a result

E

[∫ T

0
Cρ,mσ(t,B + V )2dt

]
= E

[
−c1

∫ T

0
V 2N
t dt + (l .o.t.)

]
⩽ C1,

and

E

[∫ T

0
ρmσ(t,B + V )dVt

]
= E[−c2V

N+1
T + (l .o.t.)] ⩽ C2,

so that V < ∞.
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Conclusion

We prove sharp conditions on martingale / moments in SigVol models.
Correlation (and leading coefficient) matter. So does (parity of the)
truncation order.

Still not completely general result :
More general driving processes (e.g. OU as in Cuchiero et al. ?)
Moments for more general models ? (not clear there would be a
simple condition)

Methodology : here, we can treat the non-Markovian case as
perturbation of the Markovian one. Could we obtain robust genuinely
non-Markovian methods ? (could maybe help for moments in rough
Bergomi ?)
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