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Exercise 1 : No-shortselling constraint in a one-period binomial model

We consider a classical one-period binomial market. The underlying probability space is 2 =
{wy,wq}, with P(w,) = P(wy) = 1/2. The market consists in two tradable assets : a risk-free asset
with price values By = 1 at time 0 and B; = 1+ at time 1, for some fixed » > 0, and a risky asset
with price Sop = 1, and Si(wy) =14 u, Si(wg) =1+d with —1 < d < u.

In this market, a trading strategy (for a self-financing portfolio) is simply a number ¢ € R,
representing the number of units of the risky asset held in the portfolio between times 0 and 1. We
assume that no shortselling in the risky asset is allowed in this market, which means that
the only admissible strategies are ¢ € R.

We then denote by X7 ® the value at time 1 of a portfolio starting with wealth x at time 0 and
trading with strategy ¢.

As usual, if X;, i = 0,1 is a stochastic process we will call X its discounting, i.e. X, = X, and
Xl = Xl/(l + T‘).

The No Arbitrage condition in this context is

Vo > 0, (X?’¢(wi) >0 for i = u, d) = (X$’¢(wu) = X" (wy) = o) . (NA™)

(1) For any = € R and ¢ > 0, give a formula for X*. Show that (NA") implies d < r.

(2) We let
./\/lsuper(g) = {Q ~ P such that EQ [5’1] < SO} .

(2a) Compute all the possible Q in Mgyper(S) (parametrized by ¢ = Q(S1 = 1+ u)).
(2b) Show that (NA1) & Mguper(S) #0 < d <.

We now assume that d < r and consider an option with payoff G = ¢(S;), for a given function
g:{l+u,1+d} =R

(3) The superreplication price in this market is defined by

pH(@) = inf {p €R, 3¢ >0, XP?> G} .
(3a) We define 61 (G) = SUDGE M, per(5) EQ [é} . Show that

g(1+d) if g1 4+d) > g1+ u),
(14+7)0H(G) =< g(1+u) if g(1+d) <g(l+wu)andr>u,
(r=d)g(1+u)+(u—r)g(1+d)

otherwise.
u—d




(3b) Show that p™(G) > 61(G). Give an admissible strategy ¢ such that X10+(G)’qs > G.
Conclude that p*(G) = 07 (G).

(3c) Under which condition is the claim G exactly replicable in this market ? In that case,
is the price necessary for replication the same as the super-replication price 7
(4) (4a) Give the definition of a viable price for G in this market (assuming that both buyer and
seller of the option are faced with the no-shortselling constraint).

(4b) Show that the set of viable prices is given by an interval I with upper bound p™(G) and
lower bound —p™(—@G). Further show that

1={E2[G]. Qe Mupr(9)}

and discuss whether p*(G) and —p™ (—@) are viable prices. Is there any relation between
whether G is exactly replicable and the form of I 7

(5) (5a) Recall (without proof) the results seen in class for questions 2-3-4 in the case of the
unconstrained model (¢ < 0 allowed). Compare with the above results.

(5b) Assume d < r < u. Show that one can find a function § such that the replication price
pt(G) in the constrained market is equal to the price in the unconstrained market of an
option with payoff §(S1).



Exercise 2 : Asian option pricing

Let us consider a continuous time market on probability space (2, F,P) with a single risky asset
S = (St)o<t<T, and a riskfree asset with interest rate » = 0. The goal of this exercise is to discuss
pricing and hedging of asian options whose payoff is given by

T
G :=g(Ap), with Ap:= / Sidt and some function g : Ry — R.
0

Part I : Black-Scholes model
In this section, we assume that S follows the dynamic
dS; = puSidt + oS dWr,
where p and o > 0 are constants, W is a standard Brownian motion under P.
(1) Recall how to construct a probability measure Q ~ P such that
dS; = 0.5, dWy,

where W is a Brownian motion under Q.

(2) Let u:[0,T] x RZ — R be a smooth function, and define A := fg Sydr so that dA; = Sidt.
Apply the It6 formula on wu(t, S, A;) to obtain the dynamic of

du(t, St, At)
(in terms of dt and dW;).

(3) Let us define
p(t,s,a) = EQ [g(AT)‘St =54 = CL].

Assume that p € CY2([0,T) x Ry x Ry) N C([0,7] x Ry x Ry), prove that p satisfies the
following equation:

1
Oru + 5023283571 + s0,u = 0, uw(T,s,a) = g(a).
(4) Given a smooth solution u to the above PDE, provide a replicating portfolio for the payoff
G, and justify it.
Part II: Robust hedging.

In this section, we only assume that S is a continuous semi-martingale under P, and we want
to obtain hedges which do not rely on further assumptions on the model.

(5) We first consider the case when g(Ar) = Ap. Using integration by parts, show that
T
Ar =TSy + / (T — u)dSu
0

and deduce a replicating strategy for that particular payoff.



(6) We now consider the case when g(Ar) = A2 and we will use (without proof) that
T T
A = 2/ SHT — t)dt + 2/ Ay (T — t)dS;.
0 0

(i) Recall the definition of a semi-static hedging strategy.
(ii) Show that for all z > 0,

x2:2/ (z — k)4 dk.
0

(iii) Assuming that call options of all possible maturities ¢ € [0, 7] and strikes k£ > 0 may be
bought or sold at time 0 (at price C(t, k)), deduce a semi-static replicating strategy for
the payoff A2 (give the price as well as the strategy).

(7) We now consider the payoff of an Asian call option
9(Ar) = (Ar — K)+
with K > 0 fixed.

(i) Show that for each 0 < L < K, it holds that

2
VAER,, MZ(A—KM.

(ii) Deduce from the previous questions semi-static super-hedging strategies for this payoff.



