
New Developments in
Aggregation Economics
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Abstract

The goal of this article is to provide a general characterization

of the aggregate behavior of a group in a market environment.

We allow for public and private consumption, intragroup produc-

tion, and consumption externalities within a group; we only
assume that the group always reaches Pareto-efficient decisions.

We show that aggregation problems involve a simple mathemati-

cal structure: The aggregate demand of the group, considered as

a vector field, can be decomposed into a sum of gradients. We

briefly introduce exterior differential calculus as a tool to study

this structure. We analyze two main issues. One is testability:

What restrictions (if any) on the aggregate demand function char-

acterize the efficient behavior of the group? The second issue
relates to identifiability; we investigate the conditions under which

it is possible to recover the underlying structure—namely, individ-

ual preferences, the decision process, and the resulting intragroup

transfers—from the group’s aggregate behavior.
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1. INTRODUCTION

The notion of aggregation is pervasive in economics.1 Many (arguably most) economic

decisions are made by groups, not individuals, with firms as an obvious example. It has

long been recognized that the standard model of a unique, profit-maximizing decision unit

often must be extended to take into account the multiperson nature of the decision process.

The same remark applies to committees, clubs, villages, and other local organizations,

which have also attracted much interest. Even standard micro demand analysis, although
it routinely uses the tools of consumer theory, exploits data on households or families,

which in general gather several individuals. Partial equilibrium analysis relies on aggregate

demand or supply functions. And, quite obviously, macroeconomics concentrates on the

aggregate behavior of vast classes of agents (households, firms, etc.), each being routinely

identified with a single decision maker.

In all these cases, aggregation issues are raised, at least implicitly. When can a

multiperson entity be analyzed as a single decision maker (i.e., when is there a representa-

tive consumer)? What data are needed to fully summarize the situation of a group? Are
there testable restrictions on aggregate behavior stemming from the utility- (or profit-)

maximizing actions of each member? Can one formulate welfare evaluations at the aggre-

gate level, and what are their implications for the individuals under consideration? To what

extent is it possible to recover information on individual-level characteristics (e.g., prefer-

ences, resources) or the intragroup decision process from the sole observation of aggregate

behavior?

Quite often, answers to these questions are taken for granted without much analysis; for

instance, macro models typically assume the existence of a representative agent with little
discussion of either the prerequisites for the assumption or its implications. Still, theoretical

investigations of the aggregation issues just mentioned, and of many others, have been

available for several decades. Moreover, the field of aggregation theory has recently at-

tracted renewed interest. Old, open problems have been solved; existing questions have

been reconsidered from a different perspective; and more generally, a new subfield has

emerged, with original emphasis, techniques, and results. In this review, we survey some of

these recent developments.

The structure of the review is as follows. We first describe the notations we use through-
out the article. Section 3 then briefly summarizes the main features of traditional aggrega-

tion theory, as it has developed up to the late 1970s and early 1980s. Section 4 describes

how some of the traditional questions have recently been solved or reinterpreted. The

recent literature on the aggregate behavior of small groups (i.e., aggregation in the small)

is covered in Section 5.

Finally, one caveat is in order. The goal of this article is simply to provide a quick

overview of some recent results. For the sake of brevity, we omit the proofs of some of the

most important (and most complex) results, as well as many interesting but specific devel-
opments. The interested reader is referred to our recent book (Chiappori & Ekeland

2009a) for a more complete exposition.

1Throughout the article, we consider issues related to aggregation over individuals. The word aggregation is
sometimes used in a totally different context—namely, the aggregation of several commodities into some composite
good (e.g., the aggregation of various types of meat, vegetables, and dairy into the general category of food). The
aggregation of commodities is not considered in this article.
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2. NOTATION

We first define the notation used throughout the article. In what follows, the transpose of

vector x is denoted xT, and the scalar product of vectors x and y is denoted xTy.

2.1. Commodities

We consider a group consisting of H members. Agents may consume M commodities, I of
which are privately consumed by each member, while the remaining J ¼ M# I are public

within the group; formally, the list of commodities may include leisure. Moreover, a given,

physical commodity may be further indexed by the period or the state of the world

(or both) at which it is available. Therefore, our setting extends to intertemporal behavior

(savings, investment, human capital accumulation) as well as risk sharing and group
decision under uncertainty.

Let xih denote the private consumption of commodity i by group member h, and Xj the

group’s consumption of public good j. An allocation is a JþHI vector (X, x1, . . . ,xH),
where

X ¼ X1, . . . ,XJ
! "

2 RJ

and

xh ¼ x1h, . . . ,x
I
h

! "
2 RI for h ¼ 1, . . . ,H,

and the group’s aggregate demand is the vector X,xð Þ 2 RM, where x ¼
P

hxh. For brevity,
the vector (X, x) is often denoted x.

2.2. Utility Functions

We assume that each person has a utility function over allocations. We denote h’s utility
function by Uh(X, x1, . . . , xH). This formulation is fully general; it allows the utility of h to

depend on the private consumption of other members in a nonrestricted way. This interac-

tion may be the result of altruism (i.e., h cares about other members’ well-being) or

paternalism (h is concerned with her partners’ consumptions); it may also reflect other

external impacts between consumptions (e.g., a member’s smoking bothers the other mem-

bers by reducing their utility, an intragroup externality in the usual sense). In particular,

other members’ consumption of private goods may impact h’s marginal rate of substitution
between her own private and public goods; in other words, we do not impose separability

restrictions so far.

The utility functions Uh, h¼ 1, . . . ,N, are assumed continuously differentiable and

strictly concave. In some cases, one will require stronger restrictions (e.g., infinite differen-

tiability; strong concavity, requiring that the matrix of second derivatives is negative

definite everywhere; or strong quasi-concavity, requiring that the restriction of this matrix

to the subspace orthogonal to the gradient is negative definite).

Although quite reasonable, the form just described is sometimes too general—if only
because it is difficult to incorporate such preferences into a model in which agents live

alone for some part of their life cycle. Consequently, in many models preferences

are egoistic, of the form Uh(X, xh). Finally, a fraction of the literature deals with market

economies. In this context, preferences are strictly egoistic, and all commodities are
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privately consumed. In particular, interactions between group members (if any) are

restricted to commodity trading. Then the general form just defined boils down to

Uh X,x1, . . . ,xHð Þ ¼ uh xhð Þ. ð1Þ

2.3. Aggregate Budget Constraint

Let p denote the price vector of private goods, P the price vector of public goods, and y the
group’s total income. Again, for brevity, the vector (P, p) is often denoted p, so the aggre-

gate demand (as a function of prices and income) becomes x p, yð Þ.
The group has limited resources. Specifically, its purchase vector x¼(X, x) must satisfy a

standard market budget constraint of the form

pTx ¼ PTXþ pT
X

h

xh

 !
' y.

Throughout, we assume that behavior is zero homogeneous in prices and income. For

some computations, we therefore may normalize the group’s total income to be one. Also,

we sometimes consider the group’s budget shares, defined by

C ¼ C1, . . . ,CMð Þwhere Ci ¼ pixi

y
.

3. STANDARD AGGREGATION THEORY: A BRIEF OVERVIEW

As a first step, it is useful to briefly reconsider some crucial aspects of aggregation theory as

it has developed up until the early 1980s. Our goal here is not to provide a survey; the

interested reader is referred to, for instance, Deaton & Muelbauer (1980) and Shafer &

Sonnenschein (1982) for that purpose. Instead, we want to briefly recall the main features

of this literature, and in particular the questions it asked and the answers it provided. The

general notion of aggregation theory gathers a host of different and more or less related
approaches. To provide an overview, we find it convenient to distinguish between two core

approaches: one in which the group is considered as a (mostly exchange) economy and a

more general perspective that allows for richer interactions such as public consumptions or

intragroup production.

3.1. Groups as Market Economies

In this first subsection, we assume that all commodities are privately consumed; we thus

rule out public goods, as well as externalities of any type, and do not consider intragroup

production. A few questions have played a crucial role in the development of the various

branches of the field, and we organize our presentation around them.

3.1.1. When does a group behave as a single decision maker? A first question relates to

the conditions under which the aggregate behavior of a group can validly be described
using the tools of standard consumer theory. A first version, which has been known for

at least a century [since Antonelli’s (1971[1886]) pathbreaking result], is the following.

Assume that some total income y is distributed between H agents, who each freely spend

his share on several goods. When is it the case that the group’s aggregate demand for
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each good can be expressed as a function of y alone (i.e., does not depend on how the

income has been allocated within the group)? The answer is straightforward: For the

property to be satisfied, it must be the case that transferring a dollar from one group
member to another does not change total consumption—in other words, the marginal

propensity to consume (MPC) each good must be the same for all agents, irrespective

of their income. This can only happen under two conditions: (a) Each agent’s MPC is

independent of the agent’s income, and (b) these constant MPCs are identical across

agents. In other words, individual Engel curves must be linear or affine, and the coeffi-

cients of income must be common to all agents. When it is the case, one can readily

show that the resulting, aggregate demand is compatible with utility maximization.

Clearly, this statement sounds like an impossibility result. Although a group may in
theory behave like a single individual, the restrictions required in practice are quite strin-

gent. Cross-section consumer expenditure data provide strong evidence against hypotheses

(a) and (b), at least under the standard assumption that, among consumers with the same

observable characteristics, preferences are distributed independently of income.

This negative conclusion has led to a reformulation of the question along a slightly

different line, usually called exact nonlinear aggregation. Assume, again, that total income

is distributed between the agents, with agent h receiving some amount yh. Lau (1982) asks,

when one can find some (possibly vector-valued) aggregate statistic ~y, dependent on the
distribution of income within the group, such that aggregate demands can be expressed

as functions of prices and ~y only? The answer is positive when individual demands have

the form

xih p, yhð Þ ¼
XK

k¼1

ak,ih pð Þbk,ih yhð Þ. ð2Þ

Gorman (1981) proves that for each h and p, the matrix ak, ih pð Þ has rank 3 or less.
Moreover, the maximum rank can be reached only for specific functions bhk yhð Þ (see Lewbel

1991 on such rank restrictions). A specification widely used in empirical applications is the

PIGLOG form, in which K¼ 2, b1, ih yhð Þ ¼ yh, and

b2, ih yhð Þ ¼ yh ln yhð Þ.

This yields a so-called flexible functional form (Lau 1982), with individual budget shares

of the form

ci
h p, yhð Þ ¼ pia

1, i
h pð Þ þ pia

2, i
h pð Þ ln yhð Þ. ð3Þ

If, in addition, a1,ih , a2,ih , and bih are independent of h, then aggregate demand becomes

Ci ¼ pia
1,i pð Þ þ pia

2,i pð Þ ln ~yð Þ,

where ~y is defined by

ln ~y ¼
P

hyh ln yhð ÞP
hyh

,

which is closely related to Theil’s inequality index.2

2Specifically, Theil’s index is defined by T1 ¼
P

h
yh ln yhð ÞP

h
yh

# ln !yð Þ ¼ ln ~y=!yð Þ, where !y denotes average income.
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In that case, aggregate market sharesCi only depend on individual incomes through the

aggregate indicator ~y. Moreover, they have exactly the same form as the individual market

shares in Equation 3; therefore, they can be derived from the maximization of a utility of
the same form, using the aggregate indicator ~y as the group’s pseudo-income. It follows

that, in terms of budget shares, the group behaves like a single agent, endowed with the

same utility as each individual in the group and a pseudo-income equal to ~y. Moreover, as

the same functional form can be used at both the individual and the aggregate levels, this

specification may be useful when individual data do not display enough price variation.

Indeed, a strong motivation for earlier research was the design of a demand function that

would allow the estimation of Engel curves from cross-sectional data and of price effects

from aggregate time series.
One can see from this example that one drawback of Antonelli’s restrictions—the lack

of realism of individual demands—is largely alleviated by the nonlinear aggregation

approach. In fact, state-of-the-art estimations of individual demands routinely use func-

tional forms such as the quadratic almost ideal demand system (Banks et al. 1997) with

budget shares of the rank-3 Gorman form:

ci
h p, yhð Þ ¼ pia

1,i
h pð Þ þ pia

2, i
h pð Þ ln yhð Þ þ pia

3, i
h pð Þ ln 2 yhð Þ.

However, the second problem remains: Aggregation is possible only under very strong

restrictions regarding heterogeneity of preferences (in our example, all agents must have

identical preferences, although this can be slightly relaxed). In short, a representative

consumer may exist for acceptably general individual demands—but only when agents

have similar preferences.3

A last remark is that one should be cautious with welfare judgments suggested by the

representative consumer’s utility. Indeed, several authors have provided examples showing
that a given reform may increase the utility of the representative consumer while decreas-

ing the welfare of all individuals in the economy (see, for instance, Jerison 1984b, Dow &

da Costa Werlang 1988).

3.1.2. Is some structure preserved by (large-scale) aggregation? A second line of research

adopts the opposite viewpoint. Instead of imposing a priori some desired structural prop-

erties of aggregate demand (e.g., the existence of a representative consumer) and trying to

find sufficient conditions on individual preferences for these properties to be satisfied, these

approaches consider general preferences and ask which structure (if any) aggregate

demand must have, given that each individual in the economy maximizes a well-behaved
utility under a budget constraint. We have known for a long time that utility maximization

generates a lot of structure for individual demands (namely, the symmetry and negativeness

of the Slutsky matrix); the question is whether (some of) this structure is preserved by

aggregation.

The problem was initially raised by Sonnenschein (1973) in a seminal article. Techni-

cally, Sonnenschein states two versions of the problem. In both cases, individuals each

maximize utility under a budget constraint, but in the first version each individual

3More heterogeneity of individual preferences can be allowed if the distribution of income is restricted, for example,
if the consumers get fixed shares of aggregate income, as in the case of workers with different skill levels and no other
capital (see Jerison 1984a,b; Mas-Colell et al. 1994, chapter 4).
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h receives some nominal income yh, whereas in the second each receives a fixed endowment

oh. Technically, individual maximization programs are therefore of the form

maxxhU
h xhð Þ subject to

pTxh ¼ yh
ð4Þ

in the first case and

maxxhU
h xhð Þ subject to

pTxh ¼ pToh

ð5Þ

in the second. The first case corresponds to the market demand problem; the second

determines the agent’s excess demand, defined as the difference between the agent’s desired

consumption bundle and her initial endowment.

In both cases, aggregate demand depends on prices and initial endowments. The main
question, however, is with regard the characterization of aggregate demand as a function of

prices. It can therefore be stated as follows: Consider a given function x(p). When is it

possible find H smooth, increasing, strongly concave utility functions Uh and (a) (market

demand) H scalars (y1, . . . , yH) such that

x pð Þ ¼
X

h

xh pð Þ,

where xh(p) solves Equation 4 and (b) (excess demand) H vectors (o1, . . . ,oH) in RN

such that

x pð Þ ¼
X

h

xh pð Þ,

where xh(p) solves Equation 5.

The statement of the excess demand case can actually be slightly simplified. For any

given set of direct utilities U1, . . . ,UH
# $

and initial endowments
#
o1, . . . ,oH

$
, one can

define the utilities
#
~U
1
, . . . , ~U

H$
by ~U

h
zð Þ ¼ Uh zþ ohð Þ, h¼ 1, . . . ,H. With this notation,

and defining zh¼ xh#oh, the program in Equation 5 can be rewritten as

maxzh
~U
h
zhð Þ subject to

pTzh ' 0:
ð6Þ

There are obvious restrictions that the aggregate market or excess demand will satisfy.

One is continuity (or differentiability in our context). Another is adding up (sometimes

called the Walras law); namely, it must be the case that pTx pð Þ ¼
P

hy
h for market

demand, and pTz pð Þ ¼
P

hp
T xh pð Þ # oh½ ) ¼ 0 for excess demand. Finally, excess demand

functions are zero homogeneous in prices. The question is whether these properties are

sufficient or whether the underlying structure generates stronger properties at the aggre-

gate level.

In practice, a large fraction of the subsequent literature has been devoted to the case of

a large economy, i.e., one in which the number of agents exceeds the number of commod-

ities. Sonnenschein’s conjecture was that in large economies, the obvious properties just

listed fully characterize aggregate demands: Individual structure is therefore lost by aggre-

gation, at least if the latter takes place on a sufficiently large scale.
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Within months after Sonnenschein’s initial statement, the excess demand case was

independently solved by Mantel and Debreu [this literature is actually often referred to as

Debreu-Mantel-Sonnenschein (DMS)]. Specifically, Mantel (1974) establishes that any
smooth function satisfying homogeneity and adding up could be decomposed on any

compact set of prices as the aggregate excess demand of an economy with at least H¼2M
agents. Debreu (1974) shows that the result is valid for H¼M, and Mantel (1976) proves

that, in addition, one could assume that all utilities were homothetic.

Chiappori & Ekeland (2004) provide a short proof of a slightly stronger result. Their

approach is based on the properties of individual excess demand functions. Surprisingly

enough, given their theoretical importance, individual excess demands had not been stud-

ied in detail until recently. Their key result is the following. Suppose that V(p) is a smooth
function defined on some neighborhood O of !p, with DpV !pð Þ 6¼ 0. Assume that it is quasi-

convex, positively homogeneous of degree zero [which implies that pT *DpV pð Þ ¼ 0],

that D2
ppV pð Þ has rank (N# 1), and that the restriction of D2

ppV pð Þ to Span p,DpV pð Þ
# $?

is positive definite. Take any C2 function l(p)> 0, homogeneous of degree (–1) on O,

and set

z pð Þ ¼ # 1

l pð ÞDpV pð Þ ð7Þ

so that pTz(p) ¼ 0. Then z(p) is the excess demand function of some consumer; i.e., there

exists a strictly quasi-concave function U(z) defined and C2 in a neighborhood N of z !pð Þ,
such that V is the indirect utility associated with U. It follows, in particular, that if z pð Þ is
an individual excess demand, then for any positive, zero-homogeneous scalar function
z pð Þ, z pð Þz pð Þ is also an individual excess demand.

Consider now some compact subset K of the positive orthant. For H + M, take

some family Vh(p), 1 ' h ' H, such that at every p 2 K, the set of linear combinations

of DVh(p) with nonnegative coefficients spans TpS
N#1 (the tangent space TpS

N#1 at p to

the N-dimensional simplex, to which the price vector can be normalized to belong). Then

for any C2 map x(p) defined on K, homogeneous of degree zero and satisfying the Walras

law pTx(p) ¼ 0, one can find excess demand functions zh(p), 1 ' h ' H, such that the

decomposition x pð Þ ¼
P

hzh pð Þ holds on K and the indirect utility associated with zh is V
h.

This version of the result is slightly stronger than Debreu’s because the indirect utilities

can be defined independently of the excess demand at stake; i.e., the same V1(p), . . . ,VH(p)
can be used in the decomposition of any given function.4

The DMS result was quite influential in the profession. Its theoretical implications are

far from trivial; for instance, it immediately implies that for any compact subset of the

positive orthant, one can always find economies with exactly one equilibrium within the

compact subset, such that this equilibrium is not stable by the Walrasian tatonnement.

From a more epistemological perspective, it has also been widely interpreted as a negative
result: If aggregate demand can be anything, it was argued, then general equilibrium theory

has no testable implication (except maybe the existence of an equilibrium), at least when

applied to a large-enough economy. As shown below, this somewhat excessive claim,

however, has been drastically reconsidered by the recent literature on the topic.

4This property may sound surprising. In sharp contrast with market demands, it reflects the existence of a continuum
of individual excess demands that correspond to the same indirect utility (of course, they involve different initial
endowments in general).
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Finally, the case of a small economy (i.e., one with fewer agents than goods) has been

considered by Diewert (1977) and Geanakoplos & Polemarchakis (1980). These authors

show that, in such a setting, additional conditions (beyond the obvious ones) have to
be fulfilled for a given function to be the aggregate excess demand of such an economy.

Their approach relies on a local linearization of the problem; in particular, although the

conditions they provide are indeed necessary, neither article provides sufficiency results.

We come back to these results below.

3.1.3. Can aggregation create structure? The main conclusion of the Sonnenschein pro-

gram is that assembling a sufficiently large number of sufficiently diverse utility maxi-
mizers may result in a collective demand with bizarre (in fact arbitrary) properties; in

short, aggregation in the large tends to destroy any structure that may exist at the individ-

ual level (and in small groups; see below). An interesting question, however, relies on the

opposite perspective: Is it the case that the aggregation of sufficiently diverse individual

demands results in an object that is more regular that its component? In other words, can

aggregation create structure?

This line of research has been pioneered by Hildenbrand. In a series of papers,

Hildenbrand (1983, 1994) investigates the law of demand (LD) (see Hicks 1956). Denoting
by X(p) a demand function, it is said to satisfy the LD if the inequality

X pð Þ #X qð Þ½ )T p# qð Þ ' 0

holds for all price systems p and q. If X(p) is differentiable, it is equivalent to the Jacobian

matrix

DpX ¼ @Xi

@pj

% &

1'i, j'I

being negative semidefinite at every p. Roughly speaking, the LD means that consumption

and prices move in opposite directions. It implies that the demand curve for every good is

downward sloping, but it is of course much more. For instance, if aggregate demand

satisfies the LD, then the equilibrium is unique.

It is well known (e.g., Giffen goods) that individual demand functions need not satisfy

the LD. For an individual having nominal income y, Marshallian demand is a function

x(p, y), and we have

Dpx ¼ S p, yð Þ # Dyx
! "

x0,

where Dp and Dy denote partial derivatives. The first term on the right-hand side, S(p, y),
is the Slutsky matrix, which is negative definite. The second term on the right-hand side,

(Dyx)x0, describes the income effect, that is, the change in wealth due to the change in

prices. If preferences are homothetic, it is positive semidefinite, so the LD is satisfied. Apart

from this special case, the income effect bites, and the LD needs not be satisfied at the

individual level.

Hildenbrand’s idea is that the LD can nevertheless be satisfied at the macroeconomic
level because of special properties of the income distribution. This idea is best explained

from the example in Hildenbrand (1983). Suppose all individuals have identical prefer-

ences, and the income distribution has a differentiable density m(y) on 0, !y½ ) with m !yð Þ ¼ 0.

The aggregate demand is
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X pð Þ ¼
ð y!

0
x p, yð Þm yð Þdy.

The aggregate Slutsky matrix is obviously negative definite, and the aggregate income

effect is

X ð y!

0

@xi

@y
xim yð Þdy ¼

X ð y!

0

@

@y
xi
! "2

m yð Þdy

¼ #
X ð

xi
! "2 dm

dy
dy,

where we have integrated by parts. The two boundary terms vanish, the first one because
xi(0) ¼ 0 and the second one because m !yð Þ ¼ 0, and we are left with the integral term.

Now a striking result emerges: If dm
@y ' 0, that is, if the density is decreasing, then the

aggregate income effect is positive definite, and the collective demand X(p) satisfies the

LD, even though the individual demands do not. Of course, it is unrealistic to assume

that individuals have identical preferences, but this example vindicates the idea that

particular properties of the wealth distribution can result in the LD. As shown in

Chiappori (1985), one can also obtain the LD by putting conditions on the form of both

individual demand and the wealth distribution, the Hildenbrand result, in which all
preferences are identical, being just a polar case. The question is then to find character-

istics of consumption and wealth distributions that (a) are empirically verifiable and (b)
will generate the LD.

Jerison (1982, 1999) shows that aggregate demand satisfies the weak axiom of

revealed preference (RP), a weak version of the LD, if there is increasing demand disper-

sion, that is, if the cloud of consumption vectors for individuals of a given income level is

increasingly dispersed as the level rises. In other words, the Engel curves spread out at

higher income levels. Grandmont (1992) decomposes a population into subclasses that
are rescaled replicas of each other and shows that sufficient heterogeneity, as measured by

the flatness of the density of the scale factors, leads to the LD. Kneip (1999) introduces a

nonparametric notion of demand heterogeneity with the same result. Hildenbrand (1994)

takes a different approach and checks directly, using British and French family expendi-

ture data, that the aggregate income effect is positive definite (Härdle et al. 1991). There

are a number of econometric problems to overcome. For instance, as such surveys do not

follow an individual through time, one cannot infer from the data how a small change in

income would affect the average consumption of individuals at a given income level.
However, the surveys give the average consumption of individuals with slightly higher

or slightly smaller incomes, and this should be a reasonable stand-in, provided the

other characteristics of the population do not change dramatically across income classes.

This being said, the econometric conclusions do seem to provide empirical support for

the LD.

3.2. Groups as Complex Economies

A second line of research has considered aggregation problems from a totally different

perspective. On the one hand, it essentially deals with small groups (typically households

or families). On the other hand, instead of focusing on market economies, it considers

potentially more complex interactions, involving possibly public consumption and
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intragroup production. The initial literature almost exclusively concentrates on one

question—namely, which assumptions would guarantee that the group under consider-

ation behaves like a single individual? We briefly describe the two main contributions to
this literature: Samuelson’s aggregate welfare index and Becker and Bergstrom’s transfer-

able utility (TU) setting.

3.2.1. Samuelson’s index. Assume that all individuals agree on some global index, the

arguments of which are the various individual utilities that will be maximized by the

group. Technically, there exists some strictly increasing W such that the group maximizes

W U1 X,x1, . . . ,xHð Þ, . . . ,UH X,x1, . . . ,xHð Þ
( )

ð8Þ

under the budget constraint

PTXþ pT
X

h

xh

 !

¼ y. ð9Þ

Household production could be introduced at little cost; this task is left to the reader.

It is straightforward to see that this formulation boils down to a standard utility

maximization problem. Indeed, define the group utility UG by

UG X,xð Þ ¼ maxP
h
xh¼x

W U1 X,x1, . . . ,xHð Þ, . . . ,UH X,x1, . . . ,xHð Þ
( )

.

Then UG is the utility of a representative consumer for the group: for any consump-

tion vector (X, x1, . . . , xH) that maximizes Equation 8 under Equation 9, the vector (X, x)

where x ¼
P

hxh maximizes UG under the budget constraint PTX þ PTx¼ y. Note that

this conclusion is just a restatement of an old result by Hicks, sometimes referred to as the

composite good theorem: In this setting, for any i the commodities xi1, . . . ,x
i
H are always

purchased at the same price pi.
Simple as it may seem, this approach has some interesting properties. First, the relation-

ship between UG, on the one hand, and (W,U1, . . . ,UH), on the other hand, is not one-

to-one: There exist many (in fact a continuum of different) structures (W,U1, . . . ,UH) that

generate the same representative utility UG. This is exactly the spirit of Hick’s theorem:

Without variations in the respective prices of (x1, . . . ,xH), individual utilities simply cannot

be recovered. It follows that in this approach, the group is doomed to be a black box: Its

aggregate behavior can certainly be studied (using standard consumer theory), but its
inner mechanisms (individual utilities and the index W) are necessarily unrecoverable.

Ironically, we see below that Samuelson’s index is a particular case of a more general

representation (the so-called collective approach), which only postulates that the

group decisions are Pareto efficient. In this general family, simple exclusion restric-

tions are generically sufficient for individual utilities to be identified; the Samuelson

index case is among the few exceptions for which individual utilities can never be

recovered.

A second remark is that the Samuelson index case satisfies income pooling; that is, the
group’s behavior depends only on total income, not on its allocation between the group

members. Therefore, in this setting, paying a benefit to one member instead of another

(e.g., to the husband instead of the wife) cannot possibly have any impact on the outcomes.

As shown below, there is strong empirical evidence against this prediction.
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Finally, there is a relationship between the Samuelson index and the market economy

approach described above, although the link is somewhat subtle. Assume for a moment

that agents are egoistic and only consume private goods, and there are no externalities, so
we are back in the setting studied in Section 2.1. Now the maximization of W(U1, . . . ,UH)

under a budget constraint generates a consumption plan that is Pareto efficient, for other-

wise an alternative allocation would increase some of the Uh without decreasing any, but

this would strictly increaseW, a contradiction. By the second welfare theorem, this efficient

allocation can be decentralized; i.e., there exists an income distribution within the group

such that this allocation obtains as an equilibrium; in practice, if each agent h receives a

specific income yh (with
P

hyh ¼ y) and consumes it at his will, the resulting consumption

plan maximizesW under a budget constraint.5 Clearly, this argument can be applied to any
specific value of the price vector p ¼ (p1, . . . ,pM). The crucial remark, however, is that

the income distribution that decentralizes the optimal allocation at prices p may (and

generally will) depend on p in an arbitrary way. In particular, there is no reason to expect

that it will be either constant, as in the market demand case, or a linear function of p, as in
the excess demand case. In other words, in Samuelson’s index story, there exists some

income allocation y(p) ¼ [y1(p), . . . ,yH(p)] such that individuals behave as if they were

maximizing their own utility under a budget constraint, solving a program of the form

maxxhU
h xhð Þ subject to

pTxh ¼ yh pð Þ. ð10Þ

But the market economy approach imposes an additional restriction on the income alloca-

tion, specifically, that is takes one of the following two forms: (a) constant nominal

income, yh pð Þ ¼ yh2R for all p,h, or (b) linear income, yh(p) ¼ pT *oh, where oh2RN.

These conditions may be satisfied for special functional forms for individual utilities

and the index. For instance, one can readily check that, if utilities are Cobb-Douglas and

W is linear,

W U1, . . . ,UH
! "

¼
X

h

lhUh,

then the optimal consumption plan can be decentralized by allocating to agent h a fixed

nominal income equal to yh ¼ lhy. Most of the time, however, the conditions are not sat-

isfied; the relationship that exists, for given individual utilities (U1, . . . ,UH), between the
index W and the allocation y(p) ¼ [y1(p), . . . ,yH(p)] is in fact quite complex and in general

is highly nonlinear.

3.2.2. The transferable utility case. An alternative situation in which the group’s behavior

boils down to a single utility maximization is when individual utilities exhibit a TU

property (see, for instance, Browning et al. 2011). This happens when one can find, for

5The precise, formal argument is as follows. Consider an economy with H customers U1, . . . ,UH and (Mþ1)
commodities, the M physical commodities plus money. There exists an initial (total) endowment of the (Mþ1)-th
commodity (money) equal to y; regarding the other commodities, the initial endowment is nil, but they can be
produced from the (Mþ1)-th commodity according to the linear production technology y ¼

P
k
pkx

k. In this

economy, by the second welfare theorem, any Pareto-efficient allocation can be decentralized as an equilibrium.
Given the linear technology, equilibrium prices must be proportional to (p1, . . . ,pM), and we can always normalize
them to be equal to that vector. An equilibrium is uniquely characterized by the allocation of initial endowments
(y1, . . . ,yH), which we interpret as an income distribution within the group.
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each agent h, a particular cardinalization such that, for all values of prices and income, the

Pareto frontier is a hyperplane of the equation
X

h

Uh ¼ K

for some K that depends on prices and income. In other words, it must be the case that for
some well-chosen cardinalization of individual preferences, agents are able to transfer

utility between them at a constant exchange rate (which can be normalized to one).

When all goods are private, the TU obtains only for quasi-linear utilities:

Uh xhð Þ ¼ x1h þ uh x2h, . . . ,x
M
h

! "
.

Here the marginal utility of an additional dollar spent on private consumption of com-

modity 1 is always constant (and can be normalized to one). This form has strong (and

unrealistic) implications; for instance, individual demands for all commodities but the first

have a zero-income elasticity. Things become much more interesting when public goods are
considered. Bergstrom & Cornes (1983) prove that the TU property obtains if and only if

individual utilities can be put into a generalized quasi-linear form (possibly after an in-

creasing transform and a renaming of the private goods):

Uh X,xhð Þ ¼ uh x2h, . . . ,x
M
h ,X

! "
þG Xð Þx1h, ð11Þ

where G(X) > 0 for all X. Note that the G function must be identical for all members,

whereas the u functions can be specific to individuals. In words, the TU assumption implies

that, for some well-chosen cardinalization of individual preferences, the marginal utility

of an additional dollar spent on private consumption of commodity 1 is always the same

for all members (although it need not be constant—it may vary with the vector of public
goods).

Although this form remains constrained, the restrictions are much less stringent than

the quasi-linear case (see Chiappori 2010 for a precise characterization of these restric-

tions). Interestingly, and similar to the market economy case, the main restriction affects

the level of heterogeneity that is allowed between individual preferences: The function G,

which determines the marginal utility of private commodity 1, must be the same for all

agents in the group.

Under TU, the sole assumption of Pareto efficiency is sufficient to generate a represen-
tative consumer, at least when all agents consume a positive quantity of the first private

commodity. Indeed, one can readily show that efficiency then requires that the group

maximizes the sum of individual utilities. In particular, the level of all public and private

consumption (other than of the first private good) is the same for all efficient outcomes.

Thus, under TU and assuming efficiency, group members will agree on almost all con-

sumption choices; the only conflict will be in how to divide the private good x1, which is

often referred to as money but may be interpreted more broadly as a medium of exchange.

Lastly, if we define

UG X,xð Þ ¼ maxP
hxh¼x

XH

h¼1

uh x2h, . . . ,x
M
h ,X

! "
þG Xð Þx1,

then the group’s aggregate demand (X, x) maximizes UG under a budget constraint, and

UG is therefore the utility of the group’s representative consumer.
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The TU framework is extremely convenient for many economic problems and is

therefore widely used.6 Still, it comes at a cost. Because TU is compatible with the existence

of a representative customer, the resulting behavior satisfies income pooling. As men-
tioned above, empirical evidence does not support this property. Moreover, the repre-

sentation of group behavior it provides is highly peculiar: This is a world in which,

under efficiency, group members do not disagree about anything except the allocation

of one private good. Applied to household economics, this implies that parents must

always agree on all public expenditures, from housing to health care and from the

brand of a new car to the level of education to be provided to each child. Such a

representation may sometimes be convenient; in many contexts, however, it conflicts

with evidence and omits some of the most interesting issues of group behavior—namely
how shifts in the members’ respective powers affect the group’s decisions and aggregate

behavior. These are issues on which new approaches—and especially the collective

model that we describe below—put a lot of emphasis, thus requiring a more general

framework.

4. AGGREGATION IN MARKET ECONOMIES: NEW RESULTS,
NEW PERSPECTIVES

The market economy approach was actively pursued in the 1970s and the 1980s. Since

then, there have been new advances. First, the market aggregate demand problem, which
had been open since Sonnenschein’s (1973) formulation, was solved; several extensions,

dealing primarily with the case of small groups, have subsequently been developed.

Second, the standard interpretation of the DMS results—that general equilibrium theory

has no empirical content—has been challenged, and a more subtle interpretation has

emerged.

4.1. Aggregate Market Demand

Although Sonnenschein’s first problem, the excess demand case, was solved within
months, the second remained open for 25 years and was solved only in 1997.7 The

existence of a decomposition has so far only been proved locally (i.e., in some open

neighborhood of a regular point), and only for analytic functions; moreover, the proof

relies on one of the most impressive results of twentieth-century mathematics, the Cartan-

Kähler theorem (see Kähler 1934, Cartan 1945, and Bryant et al. 1991 for a modern

presentation).

We do not provide the entire proof here; the interested reader is referred to Chiappori &

Ekeland (1997, 1999a,b, 2000, 2006, 2009a). Instead, we briefly present the mathematical
nature of the problem and try to explain why the market demand problem turned out to be

much more difficult than its apparently similar counterpart, the excess demand one.

We start by assuming that yh¼ 1. This simplifies the notations without reducing the

generality of the proof, which can readily be extended to any vector y¼(y1, . . . ,yH).

6According to Bergstrom (1989), it lies at the core of Becker’s celebrated rotten kid theorem (see Browning et al.
2011 for a precise discussion).
7However, Andreu (1982) provides a solution for finite data sets, and Sonnenschein (1973) includes perceptive
intuitions.
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Also we assume that H + N. We consider some mapping x(p) from RN to itself, which has

to be decomposed into the sum of H individual market demand functions,

x(p) ¼ x1(p)þ . . .þ xH(p), ð12Þ

such that for all h, xh(p) solves

maxUh(x) subject to

pTx ¼ 1,
ð13Þ

where Uh is smooth (in a sense that is discussed below), strongly convex, and strictly

increasing.

As usual, the indirect utility of agent h is defined as the value of the program in

Equation 13. By the envelope theorem,

DpV
h ¼ #lhxh pð Þ, ð14Þ

where lh is the Lagrange multiplier of the budget constraint in Equation 13. The prob-

lem thus becomes the following: Finding H smooth, decreasing, quasi-convex functions

V1, . . . ,VH such that the function x(p) can be written as (the negative of) a convex combi-

nation of the gradients of the Vh,

x(p) ¼ #
X

h

1

lh
DpV

h, ð15Þ

where the Vh satisfy the additional restriction

pTDpV
h ¼ #lh. ð16Þ

Note that the market demand problem is similar to the excess demand one except for

one feature—namely, the individual budget constraint is pTx ¼ 1 instead of pTz ¼ 0, so

the condition on indirect utilities is Equation 16 instead of pTDpV
h¼ 0. This apparently

minor variation results in a considerably more difficult problem. As mentioned above,

an obvious but crucial property of a constraint like pTz¼ 0 is that if it is satisfied by

some function z, then it is also satisfied by k*z for any scalar function k—and the proof

of the result heavily exploits this fact. No such property exists in the market demand
context.

Decomposing a given function into a linear or convex combination of gradients is a

standard problem in mathematics (often referred to as the Darboux problem; see, for

instance, Ekeland & Nirenberg 2002). Here, however, two additional complexities

appear. One is that the V functions must be quasi-convex; the other is that they must

satisfy Equation 16. Unlike the excess demand case, these complexities cannot be over-

come by simple manipulations; they require the full strength of the Cartan-Kähler

approach. The same tools can actually be applied to the case of small economies, in
which necessary and sufficient conditions can be derived (see, for instance, Ekeland &

Djitte 2006).

Finally, it should be stressed that the class of mathematical problems just described—

decomposing a given function into a convex combination of gradients, possibly under

additional constraints—lies at the core of most, if not all, modern aggregation theory. It

appears not only in the market problem, but also in the much more general approach

presented in the next section below.
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4.2. Is General Equilibrium Theory Testable?

A widely accepted interpretation of the DMS results is that they shed light on a severe

weakness of general equilibrium theory, namely its inability to generate empirically falsifi-

able predictions. A prominent illustration of this stand is provided, for instance, by Arrow

(1991, p. 201), who listed among the main developments of utility theory the result that

“in the aggregate, the hypothesis of rational behavior has in general no implications,”

concluding that “if agents are different in unspecifiable ways, then . . . very few, if any,
inferences can be made.”

This view, however, has been recently challenged as overly pessimistic. New results

show that general equilibrium theory can actually generate strong testable predictions,

even for large economies. The main idea, initially introduced by Brown & Matzkin

(1996), Snyder (1999), Brown & Shannon (2000), and Kubler (2003) and reformulated

from a differential perspective by Chiappori et al. (2002a, 2004), can be summarized as

follows. The DMS approach concentrates on the properties of aggregate excess (or mar-

ket) demand as a function of prices. However, this viewpoint is not the most adequate to
assess the testability of general equilibrium theory. As far as testable predictions are

concerned, the structure of aggregate excess demand is not the relevant issue, if only

because excess demand is, in principle, not observable, except at equilibrium prices,

where, by definition, it vanishes. However, prices are not the only variables that can be

observed to vary. Price movements reflect fluctuations of fundamentals, and the relation-

ship between these fundamentals and the resulting equilibrium prices is the natural object

for empirical observation. One of the goals of general equilibrium theory is to precisely

characterize the properties of this relationship. As it turns out, this characterization
generates strong testable restrictions.

To illustrate this view, Brown & Matzkin (1996) consider the simplest possible struc-

ture, namely an exchange economy. Here, for given preferences, the economy is fully

described by the initial endowments, which are observable, in principle, and general

equilibrium theory precisely describes the link between endowments and equilibrium

prices by characterizing the structure of the equilibrium manifold. Brown & Matzkin

derive a set of necessary and sufficient conditions in the form of linear equalities and

inequalities that have to be satisfied by any finite data set consisting of endowments and
equilibrium prices. They show that these relationships are indeed restrictive. Dealing with

the same problem, Chiappori et al. (2002a, 2004) adopt a differentiable viewpoint; their

necessary and sufficient conditions take the somewhat more familiar form of a system of

partial differential equations, reminiscent of Slutsky conditions. In particular, these condi-

tions can readily be imposed on a parametric estimation of the equilibrium manifold and

therefore can be tested using standard econometric tools. They also show that these

restrictions, if fulfilled, are sufficient to generically recover the underlying economy—

including individual preferences. These results, however, require that individual endow-
ments be observable; indeed, when only aggregate endowments are observable, a nontesta-

bility result can be proved.

The conclusion that emerges from this literature is that, in contrast to prior views,

general equilibrium theory does generate strong, empirically testable predictions. The

subtlety, however, is that tests can only be performed if data are available at the micro

(here individual) level. One of the most interesting insights of new aggregation theory may

be there—in the general sense that testability generally requires micro data and does not
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seem to survive (except maybe under stringent auxiliary assumptions) in a macro context,

when only aggregates can be observed.

5. AGGREGATION IN THE SMALL: THE MICROECONOMICS OF
EFFICIENT GROUP BEHAVIOR

A major development in aggregation theory has been the emergence of the so-called
collective models of group behavior. Unlike the market economy literature developed in

the 1970s and 1980s, these models mostly concentrate on small groups (formally defined

as groups in which the number of agents is small relative to the number of commodities);

therefore, some structure is preserved by aggregation. And unlike Samuelson’s or Becker’s

approach, they do not try to force aggregate behavior into the unitary structure of con-

sumer theory; on the contrary, they explicitly acknowledge that groups cannot be expected

to behave as a single individual. The emphasis is actually put on what precisely distin-

guishes groups from individuals—that is, the existence of a (possibly complex) decision
process, and more specifically the notion of power. Central to the collective approach is the

view that power matters—that any variation in the allocation of power between members

will systematically result in changes in the aggregate behavior of the group and that these

changes constitute an extremely interesting object for economic analysis. In collective

models, paying a benefit to the wife instead of the husband makes a difference, and this

difference is a major topic of interest.

This perspective opens a host of new questions: How, and under which assumptions,

should the decision process be modeled? How can we formally represent the abstract
notion of power? Should the group remain a black box, or is there something one can

say about its structure (utilities, decision process) from the sole observation of its

aggregate behavior? Are empirical predictions possible, and of what kind? In what

follows, we describe the answers provided by the main line of research in this direction.

We first present the formal model. We then provide a full characterization of the

aggregate demand functions stemming from this framework. Finally, we discuss issues

related to identification; we show that, generically, a set of simple exclusion restric-

tions (one per group member) is sufficient to fully recover welfare allocation between
members.

5.1. Efficiency and Power

The collective approach essentially relies on one basic assumption, namely efficiency.

Whatever the decision process may be, it is assumed that it leads to efficient out-

comes, in the usual (Pareto) sense that no alternative would have been preferred by

all group members. Innocuous as it may seem, this assumption still excludes several

existing models of group (often household) behavior based on noncooperative game

theory, for instance. It also rules out asymmetric information or agency problems.

As such, it is particularly relevant for modeling long-term interactions between

members that know each other well (families being a typical example). More gener-
ally, it can be seen as a benchmark formulation that will be extended in the future.

Also, it encompasses and generalizes both the market economy approach (as, in the

latter setting, equilibria are Pareto efficient) and the unitary perspective à la Becker/

Samuelson.
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Formally, we thus assume the following.

Axiom 1 (efficiency): The outcome of the group decision process is Pareto

efficient; the consumption (x1, . . . xH,X) chosen by the group is such that no

other vector !x1, . . . !xH, !X
! "

feasible at the same prices and incomes could make

all members better off, one of them strictly so.

The set of Pareto-efficient allocations can be characterized in a number of equivalent

ways. First, for any vector (p, y) of prices and income in RMþ1, there must exist numbers
!u2, . . . , !uH and vectors X, x1, . . . , xH, which may depend on (p, y), such that (X, x1, . . . ,xH)
solves

maxX, x1,..., xHU
1 X,x1, . . . ,xHð Þ subject to

Uh X,x1, . . . ,xHð Þ + !uh, h ¼ 2, . . . ,H,

pTx ¼ y,

ð17Þ

where, again, p ¼ (P, p) and x ¼ X,
P

hxh
! "

.

Second, if mh denotes the Lagrange multiplier of the h-th constraint, the axiom can
be restated as follows: There exist H# 1 scalar functions mh(p, y) + 0, 2 ' h ' H, such

that (X, x1, . . . ,xH) solves

maxX, x1,..., xH

X
h
mhUh X,x1, . . . ,xHð Þ subject to

pTx ¼ y,
ð18Þ

where m1¼ 1. The equivalence between efficiency and the maximization of a weighted

sum of utilities is well known; the mh are the Pareto weights of the program. Clearly,
Pareto weights are defined only up to some normalization. In the program given in

Equation 18, the first weight is normalized to be one. Clearly, other normalizations are

possible.

A more geometric interpretation is the following. For any given utility functions

U1, . . . ,UH and any price-income bundle, the budget constraint defines a Pareto set for

the group (defined as the set of vectors U1, . . . ,UH that are reachable); under the

assumptions stated (concave utilities, convex production set), the Pareto set is moreover

convex. From Axiom 1, the final outcome will be located on the frontier of the Pareto
set. Under standard smoothness assumptions, this frontier is an (H# 1)-dimensional

manifold, indexed by the vector m ¼ (1,m2, . . . ,mH).
An important remark is that the vector m, normalized, for instance, by

P
mh ¼ 1,

summarizes the decision process because it determines the final location of the demand

vector on this frontier. In that sense, it describes the distribution of power within the

group. If one of the weights, mh, is equal to one for every (p, y), then the group behaves

as though h is the effective dictator. For intermediate values, the group behaves as

though each person h has some decision power, and the person’s weight mh can be seen
as an indicator of this power. This power interpretation must be used with some care, as

the Pareto coefficient mh depends on the particular cardinalization adopted for individual

preferences; if Uh is replaced with G(Uh) for some increasing mapping G, the set of

Pareto-efficient allocations does not change, but the parameterization through the vector

m has to be modified accordingly. It follows that interpersonal comparisons of Pareto

weights are meaningless; for instance, mh> mr does not imply that h has more power
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than r. However, the variations of mh are significant, in the sense that for any fixed

cardinalization, a policy change that increases mh while leaving mr constant unambigu-

ously ameliorates the position of h relative to r.
If the mh are constant, then the program (P) boils down to the maximization of a unique

utility under production and a budget constraint. We then get a variant of the Samuelson

index model, and the group behaves as if it were a single decision maker. In general,

however, the weights mh depend on prices and income because these variables in principle

may influence the distribution of power within the group, hence the location of the final

choice over the Pareto frontier. The maximand in P is therefore price dependent; the

standard properties of unitary models do not apply in this context. However, the depen-

dence on prices and income has a specific form, which is exploited in what follows.
Three additional remarks can be made. First, because we postulate throughout the

absence of monetary illusion, the mh are taken to be zero homogeneous in (p, y). Second,
following Browning & Chiappori (1998), we often add some structure by assuming that

the mh are continuously differentiable. Third, if we assume that all commodities are pri-

vately consumed and there are no externalities, then by the second welfare theorem any

Pareto-efficient allocation can be decentralized as an equilibrium—and we are back to the

framework studied in Section 2. Indeed, the market economy approach is a special case of

the collective model.8

5.2. Aggregate Demand of an Efficient Group: A Characterization

The characterization problem can be stated as follows. Take a group that satisfies the

assumptions made above and that makes Pareto-efficient decisions under the constraints

defined by its production technology and its budget. What restrictions (if any) on the

aggregate demand function characterize the efficient behavior of the group, and how do

these restrictions vary with the size of the group? In other words, is it possible to derive

conditions that are sufficient for some demand function to stem from a Pareto-efficient
decision process within a well-behaved group? Technically, consider a demand function

x ¼ X,xð Þ of (p, y) ¼ (P, p, y) that satisfies two standard conditions, namely homogeneity

and adding up (i.e., pTx ¼ y for all p, y), and that is sufficiently smooth in a sense that is

defined below. Are there necessary and sufficient conditions on x that stem from the

theoretical structure under consideration, i.e., from the fact that it is the Pareto-efficient

demand of an H-person group?

5.2.1. The SNR(H# 1) condition. We start with a set of necessary conditions that char-

acterize group demand in the most general framework. In what follows, utilities are of the

unrestricted form Uh(X, x1, . . . , xH)—we simply assume that Uh is increasing and strongly
concave; moreover, intragroup production could be introduced at no cost. We maintain the

homogeneity assumption; therefore, we normalize y to be one. The budget constraint is

pTx ¼ 1,

and aggregate demand is now a function x pð Þ of prices only.

8The collective approach also encompasses several models of household behavior that have been developed in the
literature, including models based on cooperative bargaining (Manser & Brown 1980, McElroy & Horney 1981)
or on equilibrium (Grossbard-Schechtman & Neuman 2003).
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Household utility. As discussed above, Pareto efficiency requires that the group demand

solves the program given in Equation 18 above. We define the function UH, from RM , S
to R, where S denotes the H-dimensional simplex, by

UH x,mð Þ ¼ UH X,x,m1, . . . ,mH
! "

¼ maxX, x1,...,xH

P
hm

hUh X,x1, . . . ,xHð Þ
subject to x ¼ x1 þ . . .þ xH.

ð19Þ

In words, UH denotes the maximum value of the weighted sum
P

hm
hUh when aggre-

gate group demand is x. In that sense, UH can be interpreted as the group’s utility function,

and Equation 18 is equivalent to maximizing UH under the budget constraint

maxUH x,mð Þ
subject to pTx ¼ 1:

ð20Þ

In what follows, let ~x p,mð Þ denote the solution to Equation 20.
It is crucial to remark that UH also depends on the vector of Pareto weights

m ¼ m1, . . . ,mH
! "

2 S. In particular, UH is not a standard utility function: Because the mh

are generally price and income dependent, so is UH. In practice, ~x, considered as a function

of p only (for some fixed m), is a standard demand function; as such, it satisfies Slutsky

symmetry and negativeness. However, ~x is not observable because one cannot vary p while

keeping m constant. What the econometrician observes (or may recover), i.e., the demand

function x, is related to ~x by

x pð Þ ¼ ~x p,m pð Þ½ ). ð21Þ

Slutsky matrix. We now define the Slutsky matrix associated with x by

S(p) ¼ (Dpx) I # pxT
! "

.

This is the standard definition of a Slutsky matrix, adapted to take into account the

normalization y¼ 1.9 Note, incidentally, that S(p)v¼ 0 for all vectors v 2 Span pf g. Indeed,

S(p)p ¼ (Dpx) p# pxTp
! "

¼ 0 because xTp ¼ 1:

Now, from Equation 21, we see that

S(p) ¼
!
Dp~xþDm~x * DpmT

"
I # pxT
! "

¼
!
Dp~x

"
I # pxT
! "

þDm~x * DpmT I # pxT
! "

¼ S pð Þ þ R pð Þ,

where

S pð Þ ¼ Dp~x
* +*

I # pxT
+
¼ Dp~x

* +
I # p~x

T
* +

and

R pð Þ ¼ Dm~x * DpmT I # pxT
! "

.

9Homogeneity implies by the Euler relation that Dpx * pþ yDyx ¼ 0 The Slustky matrix is defined as
S p, yð Þ ¼ DpxþDyx * x

0
. Therefore, S p, yð Þ ¼ Dpxþ # 1

y Dpx * p
* +

* x
0
, and for y ¼ 1 the result obtains.
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S pð Þ is the Slustky matrix corresponding to the function ~x *,mð Þ, as computed at

m(p). As such, it is symmetric and negative semidefinite and satisfies vTS pð Þv ¼ 0 for

all vectors v 2 Span pf g. Moreover, the rank of R(p) cannot exceed that of (Dpm),
which is at most H# 1. We therefore can state the basic result from Browning &

Chiappori (1998).

Proposition 1 [the SNR(H# 1) condition]: If the C1 function x(p) solves prob-
lem (P), then the Slutsky matrix S(p) ¼ (Dpx) I # pxT

! "
can be decomposed as

S pð Þ ¼ S pð Þ þ R pð Þ, ð22Þ

where (a) the matrix S pð Þ is symmetric and satisfies vTS pð Þv ¼ 0 for all
vectors v 2 Span pf g, vTS pð Þv < 0 for all vectors v =2 Span pf g, and (b) the

matrix R(p) is of rank at most H # 1.

Equivalently, there exists a subspace E(p)of dimension at leastM –H such that

the restriction of S(p) to E(p) is symmetric, negative definite, in the sense that
vTS(p)w ¼ wTS(p)v and vTS(p)v < 0 for all nonzero vectors v,w 2 E pð Þ.

Here, SNR (H# 1) stands for symmetric negative plus rank (H# 1). As discussed above,

an appealing property of these conditions is that they stem from the most general version of
the collective model; i.e., they do not require much beyond efficiency and differentiability.

Also, the SNR(H# 1) property nicely generalizes the standard Slutsky symmetry of the

unitary model. Indeed, when H ¼ 1 (the unitary setting), then R(p) is the null matrix, and

S pð Þ ¼ S pð Þ is symmetric. In the general case in whichH + 1, S(p) needs not be symmetric,

and R(p) represents the deviation from symmetry. Then the rank of this deviation is at most

the number of members minus one.

On a more technical side, the (H,M) matrix DpmT I # pxT
! "

can be written as

DpmT * I # pxT
! "

¼

vT1
vT2
⋮

vTH

0

BBBB@

1

CCCCA
,

where the vectors v1, . . . , vH 2 RN are linearly dependent.10 It follows that

R pð Þ ¼ Dm~x*

vT1
vT2
⋮

vTH

0

BBBB@

1

CCCCA

¼
X

h

Dmh
~x * vTh ¼

X

h

uh * vTh ,

where

uh ¼ Dmh
~x.

10Obviously, the vectors vh vary with p and should be written vh(p). To simplify notations, we omit the reference to p
whenever it can be done without ambiguity.
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Also,

R pð Þ * p ¼ Dm~x *DpmT I # pxT
! "

* p ¼ 0

because I # pxT
! "

* p ¼ p# p xTp
! "

¼ p# p ¼ 0. Therefore, vTh * p ¼ 0 for h¼ 1, . . . ,H.

By the same token,

S pð Þ * p ¼ S pð Þ * p ¼ 0:

Let E(p) denote the subspace orthogonal to {p,n1,. . .nH}; its dimension is at least M – H.

Then the space RM can be decomposed as

RM ¼ Span pf g-Span v1, . . . , vHf g- E pð Þ,

and we know that for any two vectors v and w in E(p),

vTS pð Þw ¼ vTS pð Þw ¼ wTS pð Þv ¼ wTS pð Þv

and

vTS pð Þv ¼ vTS pð Þv < 0,

which shows that the restriction of S to E(p) is symmetric, negative definite, as stated in the
last part of Proposition 1.

Geometric interpretation. A geometric interpretation of SNR(H# 1) is the following.

Remember, first, that for any given H-tuple of utilities, the budget constraint defines

the Pareto frontier as a function of the price-income bundle; then m determines the

location of the final outcome on the frontier. Under smoothness assumptions, the

Pareto frontier is actually a manifold of dimension H# 1. Assume now that prices and
income are changed. This has two consequences. For one thing, the Pareto frontier will

move. Keeping m constant, this would change demand in a way described by the S
matrix. However, this change will not violate Slutsky symmetry; that is, it is not

different from the traditional, unitary effect. The second effect is that m will also

change; this will introduce an additional move of demand along the (new) frontier.

This change (as summarized by the R matrix) does violate Slutsky symmetry. But moves

along an (H# 1)-dimensional manifold are quite restricted. For instance, the set of

price-income bundles that lead to the same m is likely to be quite large in general;
indeed, under our smoothness assumption, it is an (M#H# 1)-dimensional manifold.

Considering the linear tangent hyperspace, this means that there is a whole linear

manifold of codimension (H# 1) such that, if the (infinitesimal) change in prices and

income belongs to that hyperplane, no deviation from Slutsky symmetry can be

observed. In other words, the SNR(H# 1) condition is a direct consequence of the fact

that, in an H-person household, the Pareto frontier is of dimension H# 1, whatever the

number of commodities.

Testing for SNR(H # 1). How can a property like SNR(H# 1) be tested ? The basic idea

is that a matrix S is SNR(H# 1) if and only if the antisymmetric matrix M ¼ S# ST is

of rank at most 2(H# 1) (remember that a matrix M is antisymmetric if MT ¼ #M).

A more precise statement is the following.
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Lemma 1: Let S be some SNR(H# 1) matrix,

S ¼ Sþ
XH#1

h¼1

uh * vTh ,

where the vectors (u1, . . . , uH) are linearly dependent and the vectors

(v1, . . . , vH) are linearly dependent. Then the matrix M ¼ S# ST is of

rank at most 2(H# 1), and Im(M) (the subspace spanned by the columns

of M) is spanned by the vectors (u1, . . . ,uH, v1, . . . , vH).

Therefore, testing for the collective model amounts to testing for the rank of matrix

M ¼ S# ST
! "

. The collective model predicts this rank should be at most 2(H# 1), while it

would be zero in the unitary case (note that antisymmetry implies that the rank ofMmust

be an even integer).

The tests just described are derived under the crucial assumption of efficiency. Alterna-
tive approaches have been developed; the reader is referred to Browning et al. (2011) for a

detailed presentation. Lechene & Preston (2011) analyze the demand function of a couple

stemming from a noncooperative model (involving private provision of the public goods)

similar to that discussed in Section 4. They show that, again, a decomposition of the type

SNR1 holds. However, the rank conditions on the deviation matrix R are different. Specif-

ically, Lechene & Preston show that the rank of R can take any value between one and the

number of public goods in the model. Recently, d’Aspremont & Dos Santos Ferreira (2009)

introduced a general framework that provides a continuous link between the cooperative
and the noncooperative solutions. In their setting, couples are characterized by a pair

of parameters that indicate how cooperatively each agent behaves. Again, they derive an

SNR(H# 1)decomposition; however, the rank of matrix R can now take values between

one and twice the number of public goods.

Several tests of SNR(H# 1) have been empirically performed (Browning & Chiappori

1998, Dauphin & Fortin 2001, Dauphin 2003, Dauphin et al. 2008, Kapan 2009). They

conclude that standard symmetry of the Slutsky matrix is strongly rejected for multi-

person families, although quite interestingly it fails to be rejected for singles; moreover,
SNR(H# 1) is not rejected for couples. Finally, one can use these approaches to assess

the number of actual decision makers in the family (see Dauphin et al. 2008, Kapan

2009).

5.2.2. Sufficiency of the SNR(H# 1) condition. The condition SNR(H# 1) has been
known to be necessary for some time. A more difficult question is with regard to suffi-

ciency. Take a smooth demand function x pð Þ that satisfies homogeneity, adding up,

and SNR(H# 1). Can it be constructed as the aggregate demand of a Pareto-efficient

group? Formally, the sufficiency problem thus can be stated as follows: Is it possi-

ble to find (a) functions x1 pð Þ, . . . ,xH pð Þ,X pð Þ½ ), (b) increasing, concave utility func-

tions U1 x1, . . . ,xH,Xð Þ, . . . ,UH x1, . . . ,xH,Xð Þ, and (c) a vector function m(p) in the

H-dimensional simplex, such that x pð Þ,x1 pð Þ, . . . ,xH pð Þ,X pð Þ½ ) solves the program given

in Equation 18?
In other words, we are looking for an equivalent, in the collective setting, to the

integrability theorem in the unitary case, whereby Slutsky conditions (with homogeneity

and adding up) are sufficient for the existence of a well-behaved utility function generating

the demand function under consideration.
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We start with a simple methodological point, namely that to prove sufficiency, one has

to prove the existence of only one set of utility and production functions, however simple.

In particular, it suffices to prove sufficiency for the set of egoistic preferences of the form
Uh(xh,X).

As it turns out, any demand that is (locally) compatible with the collective approach is

compatible with the collective approach with egoistic preferences. Two caveats must be

made, however. First, the proof requires some degree of smoothness of the demand; in

practice, we assume that the function x is continuously differentiable. Second, the con-

struction of individual utilities and Pareto weights is only local; i.e., we prove sufficiency in

an open neighborhood of any regular point (in a sense that is precisely defined below). The

global construction is still an open problem.
Our first task is to describe the basic mathematical structure of the identification

problem. We start with introductory examples that show how the structure obtains in two

specific but intuitive cases—namely, commodities are either all public or all private. We

then address the general setting.

Two introductory examples. We now describe the mathematical structure of the problem

in more detail. Our main conclusion is that some known function (aggregate demand,

aggregate inverse demand, or a function derived from these) must be written as a convex

combination of gradients. In other words, the key structure is the same as for the aggregate

excess or market demand of a market economy, as discussed in the previous sections,

despite the fact that the model is much more general.

We start with two simple examples that illustrate the main result in an intuitive way. For

expository convenience, we disregard distribution factors for the moment.

Public goods only. We first consider a version of the model in which all commodities

are publicly consumed (therefore, x ¼ X and p ¼ P). Keeping the normalization y ¼ 1,

the program given in Equation 18 above can be written as

maxX
X

hmh Pð ÞUh(X)

PTX ¼ 1
.

8
<

: ð23Þ

Let X.(P) denote its solution. Assuming an interior solution, first-order conditions give
X

h

mh Pð ÞDXU
h(X) ¼ l Pð Þ *P, ð24Þ

where l denotes the Lagrange multiplier of the budget constraint, and l is a scalar

function of P.
Next we assume that the Jacobian matrix DPX is of full rank on some open set. It

follows that the function X(P) is invertible, and we can define the inverse demand function

P(X). Then Equation 24 becomes

X

h

mh P Xð Þ½ )
l P Xð Þ½ )

DXU
h(X) ¼ P Xð Þ.

In this equation, the right-hand side is the known (inverse) demand function, whereas

all functions in the left-hand side are unknown, and we want to prove their exis-

tence. The specific structure here is that the inverse demand function must be a linear
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combination of gradients of increasing, concave functions; moreover, the coefficients of the

combination must be nonnegative. Note that when H ¼ 1, this equation boils down to a

well-known result, namely that the inverse demand function stemming from the maximi-
zation of a unique utility under a budget constraint must be proportional to the gradient of

the utility function.

Finally, assume, conversely, that some given C1 demand X(P), satisfying PT *X(P) ¼ 1,

is regular in the sense just defined in some neighborhood and such that the inverse demand

P(X) can be written as

P Xð Þ ¼
X

h

!mh Xð ÞDXU
h Xð Þ,

where the !mh are positive, and the Uh are increasing and strongly concave. Define

~mh Pð Þ ¼ !mh X Pð Þ½ ) for h¼ 1, . . . ,H, and consider the program

maxX
Xh

h
~m Pð ÞUh(X)

PTX ¼ 1
.

8
<

: ð25Þ

Because the maximand is strongly concave, the first-order conditions are sufficient for a
global optimum. Hence X(P) is the aggregate demand of the group thus defined.

Private goods only. The previous argument may seem specific to the public-good structure
in which it was constructed. As it turns out, the underlying intuition is more general. To see

why, let us briefly discuss an alternative polar case in which all commodities are privately

consumed and individual utilities belong to the egoistic family. This case has been repeat-

edly studied in the literature, starting with Chiappori (1988a,b, 1992). Now the demand

function x pð Þ is in fact x(p); the program is therefore

maxx1, ...,xH
X

h
mhUh xhð Þ subject to

pT
X

h
xh

* +
¼ 1,

ð26Þ

where y has again been normalized to one. Let x.1, . . . ,x
.
H

! "
denote the solution to this

program.
The notion of a sharing rule provides an equivalent but often more tractable version of

this program. It relies on the following result.

Proposition 2: There existH scalar functions r1, . . . ,rH of p, with
P

hr
h pð Þ ¼ 1,

such that for any h¼ 1, . . . ,H, x.h solves

maxxhU
h xhð Þ subject to

pTxh ¼ rh pð Þ.
ð27Þ

Proof: Define rh ¼ pTx.h, and assume that x.h does not solve Equation 27.

Then there exists some !xh such that pT!xh ¼ pTx.h and Uh !xhð Þ > Uh x.h
! "

. But

then the allocation x.1, . . . , !xh, . . . ,x
.
H

! "
is feasible and Pareto dominates

x.1, . . . ,x
.
H

! "
, a contradiction.

This is just a particular application of the second welfare theorem. Consider the group

as a small, convex economy, in which all commodities 1, . . . ,N can be produced from a
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single input, money, according to the linear production technology pT
P

hxh
! "

¼ 1. Then

any Pareto-efficient allocation can be decentralized as an equilibrium; moreover, the linear

technology requires that the prices within the economy be proportional to market prices p,
hence the result.

In other words, when commodities are all private, an efficient allocation can always be

seen as stemming from a two-stage decision process.11 In the first stage, members decide on

the allocation of total income y ¼ 1 between them; member h receives rh. In the second

stage, agents each chose their vector of private consumption subject to their own budget

constraints.

The vector (r1, . . . ,rH) is the group’s sharing rule. In a private-good context, the

intragroup decision process is fully summarized by the sharing rule; in particular, there is
a one-to-one mapping between (normalized) Pareto weights and the sharing rule. More-

over, this mapping is monotonic in the following sense: If we increase the Pareto weight of

member i while keeping the other weights constant (possibly before renormalization), then

the new sharing rule allocates more income to i than the initial one. A nice property of the

sharing rule is that it does not depend on the particular cardinalization of individual

utilities (it is expressed in dollars). The price to pay for this superior tractability is that

sharing rules are less general, being defined for private goods only—although we extend

the concept to a more general setting below.
Let Wh(p) denote the value of the program given in Equation 27: It is called the

collective indirect utility. It is defined as the utility reached by agent h, taking into account

the intragroup decision process. If Vh denotes the standard, individual indirect utility of

member h, we have

Wh pð Þ ¼ Vh p,rh pð Þ
h i

. ð28Þ

By the envelope theorem applied to the program given in Equation 27,

DpW
h ¼ lh xh #Dprh

* +
,

where lh is the Lagrange multiplier of the budget constraint, i.e., the marginal utility of the

money of h. Therefore,

X

h

DpWh

lh
¼
X

h

xh #Dprh
* +

.

Hence

X

h

DpWh

lh
¼ x pð Þ,

as
P

hr
h pð Þ ¼ 1 implies

P
hDprh pð Þ ¼ 0.

We can rewrite this equation in a slightly different way. Define ~W pð Þ ¼ #W pð Þ; if
ah ¼ 1=lh, we have

#x pð Þ ¼
X

h

ahDh
p
~W

h
. ð29Þ

11Needless to say, we are not assuming that the actual decision process occurs in two stages. The result simply states
that any efficient group behaves as if it were following a process of this type.
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This time, it is the direct group demand function that is equal to a linear combination of

gradients. Note that when H¼ 1, this equation boils down to the well-known Roy’s

identity, which states that a demand function stemming from the maximization of a unique
utility under a budget constraint must be proportional to the gradient of the indirect utility

[indeed, when H ¼ 1, then r(p) ¼ 1 and W is the standard indirect utility].

Conversely, assume that some smooth function x(p), satisfying the Walras law, also

satisfies Equation 29 in the neighborhood of some !p for some positive ah and some

strictly decreasing, strongly convex ~W
h
(so that the Wh are strictly increasing and strongly

concave). We now show that x can be decomposed as the aggregate demand of a group in

which all commodities are privately consumed.

For each h, define a function rh(p) by

rh pð Þ ¼ pT * Dprh # ah pð ÞDp
~W

h
h i

. ð30Þ

This is a linear first-order partial differential equation for rh(p). Note that the sum

r pð Þ ¼
P

rh pð Þ satisfies a similar equation:

r ¼ pTDprþ pTx ¼ pTDprþ 1, ð31Þ

which has the obvious solution r(p) ¼ 1.

Equation 30 can be solved by the method of characteristics.12 It follows that rh(p)
can be prescribed arbitrarily on the affine hyperplane H defined as the set of p where
!pT p# !pð Þ ¼ 0 (technically speaking, this is a noncharacteristic hypersurface, at least in

some neighborhood of !p). We choose rh(p) ¼ 1=S onH. It follows that r ¼
P

rh ¼ 1 onH,

and as r satisfies Equation 31,
P

rh pð Þ ¼ 1 everywhere. As a consequence, we have
X

Dprh ¼ 0:

Now define

xh pð Þ ¼ Dprh # ah pð ÞDp
~W

h
. ð32Þ

We have

pTxh pð Þ ¼ rh pð Þ, 1 ' h ' S,X

h

xh pð Þ ¼ x pð Þ.

We now have to show that the xh(p) solve the consumer’s problem. For each h, consider
the function

Uh xð Þ ¼ min
p

~W
h
pð Þ j pTx ' rh pð Þ

n o
. ð33Þ

Note that, by the envelope theorem, Uh is differentiable and strictly increasing, and

DxUh xh pð Þ½ ) is proportional to p. But Equation 32 is the optimality condition for this

problem. Because ~W
h
is strongly convex, this condition is sufficient, so that

12In the case at hand, the method of characteristics consists of considering the flow dp
dt ¼ p in RN, the solutions of

which are given by p(t) ¼ p(0)et. We also note that the function !rh tð Þ :¼ rh p tð Þ½ ) solves the differential equation
!rh tð Þ ¼ d!rh

dt tð Þ # as p tð Þ½ ) p tð ÞT *Dp
~W

h
p tð Þ½ ) on R. This determines the solution !rh pð Þ on each trajectory of the flow

(see, for instance, Bryant et al. 1991 for details).

www.annualreviews.org ! New Developments in Aggregation Economics 657



Uh xh pð Þ½ ) ¼ ~W
h
pð Þ. ð34Þ

Now set

!W
h
pð Þ ¼ sup

x
Uh xð Þ j pTx ' rh pð Þ
n o

. ð35Þ

We have !W
h
pð Þ + Uh xh pð Þ½ ) ¼ ~W

h
pð Þ. Alternatively, for every x such that pTx ' rh(p), we

have Uh xð Þ ' ~W
h
pð Þ. Taking the supremum with respect to all such x, we get

!W
h
pð Þ ' ~W

h
pð Þ. Finally !W

h ¼ ~W
h
, and Equation 35 becomes

~W
h
pð Þ ¼ maxx Uh xð Þ j pTx ' rh pð Þ

n o
¼ Uh xh pð Þ½ ),

which tells us that xh(p) solves the consumer’s problem for the utilities Uh(x) and the

sharing rule rh(p).
It remains to show that the Uh are quasi-concave, at least in some neighborhood

of !p. To do this, pick x1 and x2 and a number a such that Uh(x1) + a and Uh(x2) + a.
We have

Uh

%
x1 þ x2

2

&
¼ minp ~W

h
pð Þ j pT

%
x1 þ x2

2

&
' rh pð Þ

, -
.

Now, if 1
2 pTx1 þ 1

2 pTx2 ' rh pð Þ, then we must have pTxi ' rh pð Þ for i¼ 1 or i¼ 2.

Hence

n
p j pT

* x1 þ x2
2

+
' rh(p)

o
/ p j pTxi ' rh pð Þ

# $
[ p j pTx2 ' rh pð Þ
# $

,

Uh
* x1 þ x2

2

+
+ min

i¼1,2

#
~W

h
pð Þ j pTxi ' rh pð Þ

$
¼ min

i¼1,2
Uh xið Þ ¼ a.

So the Uh are differentiable and quasi-concave.

The general case. In the two polar examples just considered—all goods are privately

consumed, and all goods are publicly consumed—the sufficiency problem can thus be
reformulated as follows: When can a given map from RN to RN be written as a linear

combination of H gradients of increasing, strongly concave functions from RN to R?
Specifically, this condition is necessary in both cases; furthermore, the condition is also

sufficient, in the sense that whenever it is fulfilled one could construct a group for which

the function at stake is indeed the aggregate demand.

We now show that this gradient structure is in fact general and that it fully characterizes

the collective conditions. As explained above, it is sufficient to consider egoistic preferences

without intragroup production. Therefore, we study the program

maxx1,... xH ,X
X

mh p,Pð ÞUh(xh,X)

pT x1 þ . . .þ xHð Þ þ PTX ¼ 1:

(
ð36Þ

Let x1(p,P), . . . ,xH(p,P),X(p, P) denote its solution. The household demand function is

then x p,Pð Þ ¼ x p,Pð Þ,X p,Pð Þ½ ), where x ¼
P

hxh.
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In what follows, we repeatedly use the duality between private and public consumption,

a standard tool in public economics. Assuming that the Jacobian matrix DpX is of full

rank, we consider the following change in variables:

c :RN ! RN,

p,Pð Þ ! p,Xð Þ.
ð37Þ

The economic motivation for such a change in variables is clear. A basic insight under-
lying the duality between private and public goods is that, broadly speaking, quantities

play for public goods the role of prices for private goods and vice versa. Intuitively, in the

case of private goods, all agents face the same price but consume different quantities,

which add up to the group’s demand. With public goods, agents consume the same quan-

tity, but face different (Lindahl) prices, which add up to the market price if the allocation is

efficient. This suggests that whenever the direct demand function x(p) is a relevant concept
for private consumption, then the inverse demand function P(X) should be used for public

goods. The change of variable c allows us to implement this intuition.
In particular, instead of considering the demand function (x,X) as a function of (p,P),

we often consider (x,P) as a function of (p,X) (then the public prices P are implicitly

determined by the condition that the demand for public goods equals X while private

prices equal p). Although these two viewpoints are clearly equivalent (one can switch form

the first to the second and back using the change c), the computations are much easier (and

more natural) in the second setting.

Conditional sharing rule. It is convenient, at this point, to introduce the notion of a

conditional sharing rule, which directly generalizes the sharing rule introduced above in

the case of private goods. It stems from the following result.

Lemma 2: For any given (p,P), let !x1, . . . , !xH, !X
! "

denote a solution to Equa-

tion 36. Define rh ¼ pT!xh for h ¼ 1, . . . ,H. Then for h¼ 1, . . . ,H, !xh solves

maxxhU
h(xh, !X) subject to

pTxh ' rh.
ð38Þ

Proof: Assume then there does not exist some ~xh such that pT~xh ' rh and

Uh(~xh, !X) > Uh(!xh, !X). But then the allocation !x1, . . . , ~xh, . . . !xH, !X
! "

is feasi-

ble and Pareto dominates !x1, . . . , !xH, !X
! "

, a contradiction.

In words, an efficient allocation can be seen as stemming from a two-stage decision

process. In the first stage, members decide on the public purchases X and on the allocation

of the remaining income y#PTX between the members; member h receives rh. In the

second stage, agents each chose their vector of private consumption, subject to their own
budget constraint and taking the level of public consumption as given. The vector r ¼
(r1, . . . ,rH) is the conditional sharing rule; it generalizes the notion of a sharing rule

developed in collective models with private goods only because it is defined conditionally

on the level of public consumption previously chosen. Of course, if all commodities are

private (K ¼ 0), then the conditional sharing rule boils down to the previous notion. In all

cases, the conditional sharing rules satisfy the budget constraint
X

h

rh ¼ 1# PTX. ð39Þ
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As above, the conditional sharing rule can be expressed either as a function of

(p,P) or, using the change in variable c, as a function of (p,X). We define the

conditional indirect utility of member h as the value of the program given in Equa-
tion 27; hence

Vh p,X,rð Þ ¼ max Uh xh,Xð Þ
# $

subject to pTxh ¼ r,
ð40Þ

which can be interpreted as the utility reached by member h when consuming X and

being allocated an amount r for her private expenditures. Obviously, Vh is zero homoge-

neous in (p, r).

Collective indirect utility. Following Chiappori (2005) and Blundell et al. (2005), we

introduce the following key definition, which again generalizes that introduced in the

private-good case.

Definition 1: The collective indirect utility of agent h is defined by

Wh p,Xð Þ ¼ Vh p,X,rh p,Xð Þ
h i

.

In words, Wh denotes the utility level reached by agent h, at prices p and with total

income y, in an efficient allocation such that the household demand for public goods is X,

taking into account the conditional sharing rule at stake. Note that Wh depends not only

on the preferences of agent h (through the conditional indirect utility Vh), but also on the
decision process (through the conditional sharing rule rh). Hence Wh summarizes the

impact on h of the interactions taking place within the group. As such, it is the main

concept required for welfare analysis: Knowing each Wh, one can assess the impact of any

reform (i.e., any change in prices and incomes) on the welfare of each group member. Also,

in the case of public consumption only, Wh is simply equal to the direct utility Uh. Finally,

remember that we are using the normalization y ¼ 1. Without it, Wh would be a function

of (p, X, y).
One can then prove (Chiappori & Ekeland 2006, 2009a) the following result: There

exist scalar functions g1, . . . , gh
! "

such that

X
hghDpWh ¼ #x#DpA,

X
hghDXWh ¼ P#DXA,

ð41Þ

where A(p,X) ¼ P(p,X)T *X denote the group’s total expenditures on public goods.

We thus see that in the general case under consideration, the sufficiency problem can

be expressed as follows: Find a family of differentiable functions Wh(p,X) on RN, each

defined up to some increasing transform, such that the vector
*

#x#DpA

P#DXA

+
can be expressed

as a linear combination of the gradients of Wh.

The main result. We can now state the main result.

Theorem 1: Suppose a positive C1 function x pð Þ satisfies the Walras law

pTx pð Þ ¼ 1 and condition SNR(H# 1) in some neighborhood of !p:
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S(p) ¼ (Dpj) I # pxT
! "

¼ S(p)þ
XH#1

h¼1

ah pð ÞbTh pð Þ, ð42Þ

where S pð Þ is symmetric, negative semidefinite, and the vectors x pð Þ, ah pð Þ,
and bh pð Þ are linearly independent. Then there are positive functions lh pð Þ
and increasing, strongly concave functions Vh(p), 1' h'H, both defined on

some neighborhood N of !p, such that the decomposition

x pð Þ ¼
XH

h¼1

lh pð ÞDpV
h pð Þ ð43Þ

holds true on N .

Proof: For the proof, the reader is referred to Chiappori & Ekeland (2009b).

In words, SNR(H# 1) is a necessary and sufficient local characterization of the

aggregate demand of an efficient group. Some remarks are in order on that point. First,

SNR(H# 1) remains necessary and sufficient even when one assumes either that all goods

are publicly consumed or that all goods are privately consumed. In other words, the private

versus public nature of intragroup consumption is not testable without additional assump-

tions. Second, the SNR(H# 1) condition is restrictive if and only if the number of com-

modities is larger than the number of agents. Indeed, in the opposite case, one can always
write the decomposition in Equation 22 with S pð Þ ¼ 0 and R(p) ¼ S(p). Quite interest-

ingly, we confirm in this general framework an intuition already generated in the very

specific case of a market economy—namely, that the individualistic foundations of the

model induce some structure on the group’s aggregate demand if and only if the group is

small enough (technically, if it has fewer agents than commodities). Finally, note, however,

that the key ingredient for this testability is Pareto efficiency. In that sense, the exclusive

emphasis in the DMS literature on competitive equilibria in a market economy seems

misleading ex post. Equilibria are but a specific form of Pareto-efficient allocations in
a specific context (characterized by egoistic preferences, the absence of public goods

and external effects), and the market economy literature in addition imposes highly

specific types of intragroup allocation of income. The results just described imply that,

perhaps surprisingly, none of these restrictions makes any difference for the basic

conclusion.

5.2.3. Revealed preferences. The conditions described above characterize smooth demand

functions and test for the generalized Slutsky conditions for integrability. An alternative

approach to empirical demand analysis that has gained ground in the past few years is the

RP approach derived from Afriat (1967) and Varian (1982). This style of analysis explicitly

recognizes that we only ever have a finite set of observations on prices and quantities,

which cannot be used to directly construct smooth demand functions without auxiliary

assumptions. The RP approach instead identifies linear inequality conditions on the finite

data set that characterizes rational behavior. The most-attractive feature of the Afriat-
Varian approach is that no functional form assumptions are imposed. Moreover, powerful

numerical methods are available to implement the RP tests. The drawback of the RP

approach is that even when the data satisfy the RP conditions, we can only set identify

preferences (see Blundell et al. 2008).
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Chiappori (1988b) first generalized the unitary model RP conditions to the collective

setting for a specific version of the collective model. The conditions for the general model

have been established in Cherchye et al. (2007, 2008, 2009); these papers provide a
complete characterization of the collective model in an RP context. This requires several

significant extensions to the RP approach for the unitary model. For example, these

authors allow for nonconvex preferences and develop novel (integer programming)

methods because the linear programming techniques that work for the unitary model are

not applicable to the collective model. The tests for collective rationality require that one

find individual utility levels, individual marginal utilities of money (implying Pareto

weights), and individual assignments for private goods and Lindahl prices for public goods.

As in the unitary model, these methods can set identify only the preferences of the house-
hold members and the Pareto weight. Cherchye et al. (2011) apply these methods to a

Russian expenditure panel.

5.3. Aggregate Demand of an Efficient Group: Identification

Broadly speaking, the identification question can be stated as follows: When is it possible

to recover the underlying structure—namely, individual preferences, the effective distribu-

tion of power, and the resulting intragroup transfers—from the sole observation of the
group’s aggregate behavior?

Recent results in the literature on household behavior suggest that, surprisingly

enough, when the group is small, the structure can be recovered under reasonably mild

assumptions. For instance, in the model of household labor supply proposed by

Chiappori (1988b, 1992), two individuals privately consume leisure and some Hicksian

composite good. The main conclusion is that the two individual preferences and the

decision process can generically be recovered (up to an additive constant) from the

two labor supply functions. This result has been empirically applied, for example, by
Fortin & Lacroix (1997) and Chiappori et al. (2002b) and extended by Chiappori

(1997) to household production and by Blundell et al. (2007) and Donni (2003) to

discrete participation decisions. Fong & Zhang (2001) consider a more general model

in which leisure can be consumed both privately and publicly. Although the two alter-

native uses are not independently observed, in general they can be identified under a

separability restriction, provided that the consumption of another exclusive good (e.g.,

clothing) is observed.

Taken together, these results suggest that multiperson groups need not remain black
boxes, for which the structure cannot be investigated without precise information on

intragroup decision processes. On the contrary, the group’s aggregate behavior, as summa-

rized by its demand function, contains potentially rich information on its structure—i.e.,

individual preferences and the distribution of powers between its members. We now

substantiate this claim.

Define a structure as a set of individual utilities and Pareto weights (normalized, for

instance, by the condition that their sum is one). Moreover, two structures (U1, . . . ,UH;

m1, . . . ,mH) and (!U
1
, . . . , !U

H
; !m1, . . . , !mHÞ are equivalent if (a) for each h, there exists some

increasing mapping Fh such that Uh ¼ Fh( !U
h
), and (b) for any (p, y), (m1, . . . ,mH) and

(!m1, . . . , !mHÞ correspond to parameterizations of the same Pareto-efficient allocation for

the respective cardinalizations of individual preferences; two structures are different if they

are not equivalent.
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A first result is the following.

Proposition 3: In the most general version of the model, there exists a contin-

uum of different structures that generate the same aggregate demand function.

Moreover, the result remains valid even when all commodities are privately

consumed or all commodities are publicly consumed.

Proof: For the proof, the reader is referred to Chiappori & Ekeland (2009a,b).

In the most general case, there thus exists a continuum of observationally equivalent

models—i.e., a continuum of structurally different settings generating identical observable

behavior. This negative result implies that additional assumptions are required.
As it turns out, such assumptions are surprisingly mild. Essentially, it is sufficient that

each agent in the group be excluded from the consumption of (at least) one commodity. We

start with the case in which all commodities are publicly consumed. Then the following

result holds.

Proposition 4: In the collective model with H agents and public consumption

only, if member 1 does not consume at least one good, then generically the

utility of member 1 is exactly (ordinally) identifiable from household demand.

If each member is excluded from the consumption of at least one specific

good, then generically individual preferences are exactly (ordinally) identifi-

able from household demand, and for any cardinalization of individual utili-

ties, the Pareto weights are exactly identifiable.

Proof: For the proof, the reader is referred to Chiappori & Ekeland (2009a,b).

This result, in particular, has been applied to the collective formulation of household

behavior. A large literature has been devoted to the analysis of labor supply, following the
initial contribution of Chiappori (1988b, 1992). The idea is to consider the household as a

two-person group making Pareto-efficient decisions on consumption and labor supply. Let

Lh denote the leisure of member h, and wh the corresponding wage. Various versions of the

model can be considered. In each, Proposition 4 applies, leading to the full identifiability of

the model (see Chiappori & Ekeland 2009b).

The general case (in which some goods are consumed privately and some publicly) is

slightly more complex.

Proposition 5: In the general, collective model with two agents, if each mem-

ber is excluded from the consumption of at least one specific good, then

generically the indirect collective utility of each member is exactly (ordinally)

identifiable from household demand. For any cardinalization of indirect col-
lective utilities, the Pareto weights are exactly identifiable.

Proof: For the proof, the reader is referred to Chiappori & Ekeland (2009a,b).

Here, what is identified is the structure that is relevant to formulate welfare judgments
(namely, the indirect collective utility Wh of each agent h). Remember that Wh is not

identical to the standard indirect utility function Vh. The difference indeed is that Wh

captures both the preferences of agent h (through Vh) and the decision process (which

governs the way private commodities are allocated). In particular, identifying Wh is not
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equivalent to identifying Vh (hence Uh). If, for instance, all commodities are private, we

have

Wh pð Þ ¼ Vh p,rh pð Þ
h i

¼ Vh p

rh pð Þ
, 1

. /
, ð44Þ

and it is easy to prove that knowledge ofWh is not sufficient to independently identify both
rh and Vh. For any Wh, there exists a continuum of pairs (rh,Vh) such that Equation 44 is

satisfied.13 In contrast to the public-good case, knowledge of the collective indirect utilities

is therefore not sufficient, in the presence of private consumption, to identify individual

preferences and the decision process (as summarized by the sharing rule). However, the

indeterminacy is welfare irrelevant: Any welfare conclusion reached using one particular

solution would remain valid for all the others (this is exactly the scope of the indirect

collective utilities).

Finally, the previous identification result is only generic. One can find cases in which it
does not obtain, but these cases are not robust to small perturbations.14 Among these

pathological contexts is the Samuelson index case, in which the group behaves as a single

consumer. Intuitively, the basic condition (that some function must be decomposed as a

linear combination of gradients) is then degenerate: The function is in fact proportional to

a single gradient, which can itself be decomposed into a continuum of different sums. In

other words, when a group behaves as a single consumer, then individual preferences are

not identifiable. Ironically, a large fraction of the literature devoted to household behavior

tends to assume a unitary setting, in which the group is described as a unique decision
maker. Our conclusions show that this approach, although analytically convenient, entails

a huge cost, as it precludes the (nonparametric) identification of individual consumption

and welfare. In a general sense, nonunitary models are indispensable to address issues

related to intragroup allocation.

6. CONCLUSION

The old literature on aggregation concentrated mainly on two issues. One was related to

the structure of the aggregate (market or excess) demand of a large market economy; the

other dealt with the conditions under which a small group would behave as a single

decision maker. The research programs represented by these issues have mostly been
completed. The questions raised by Sonnenschein (1973) have been answered (some quite

recently), and Hildenbrand’s contributions have illuminated how the aggregation of suffi-

ciently heterogeneous individual behaviors could in fact create structure. Alternatively, the

unitary representation of small groups (mostly families) has been the basis of a consider-

able theoretical and empirical literature.

Modern approaches have recently triggered a deep reconsideration of these views. The

claim that general equilibrium theory could not generate testable predictions has been chal-

lenged; the consensus is now that testable implications exist, but they typically require micro
data. What is dubious is that testable restrictions could be generated only if aggregate data

are available, at least without very strong (and microempirically unrealistic) restrictions.

13For instance, pick up some arbitrary f pð Þ mapping RN into R and define an alternative solution !rs, !Vs! "
by

!rs pð Þ ¼ f pð Þrs pð Þ and !V
s
p, 1ð Þ ¼ Vs f pð Þp, 1½ ). Then Equation 44 is satisfied for the alternative solution.

14Technically, demands for which identification does not obtain must satisfy a specific partial differential equation
(see Chiappori & Ekeland 2009b).
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More importantly, the emphasis has shifted from aggregation in the large to aggregation

in the small. Recent approaches have taken seriously the idea that the aggregate behavior

of a (small) group exhibits specific features, which cannot in general and should not in any
case be reduced to an individual decision process. These features actually raise fascinating

issues about power relationships within groups and their impact on aggregate behavior,

and a set of new results suggests that much can be learned about the former from a careful

investigation of the latter. From this perspective, the macro fiction of a representative

consumer no longer seems too attractive.
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Poincaré 23:269–81

Ekeland I, Nirenberg L. 2002. The convex Darboux theorem. Methods Appl. Anal. 9:329–44

Fortin B, Lacroix G. 1997. A test of neoclassical and collective models of household labor supply.

Econ. J. 107:933–55

Geanakoplos J, Polemarchakis H. 1980. On the disaggregation of excess demand functions.

Econometrica 48:315–31

Gorman WM. 1981. Some Engel curves. In Essays in the Theory and Measurement of Consumer

Behavior in Honor of Sir Richard Stone, ed. A Deaton, pp. 7–30. Cambridge, UK: Cambridge

Univ. Press

Grandmont JM. 1992. Transformation of the commodity space, behavioural heterogeneity, and the

aggregation problem. J. Econ. Theory 57:1–35
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