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Quantitative Hydrodynamical limits from stochastic
interacting particle systems

e Goal: present an abstract method (quantitative) to prove a
hydrodynamic limit for

@ Zero-Range process (ZRP)
@ Simple Exclusion process (SEP)

o Kawasaki dynamics with Ginzburg-Landau type potentials
[Joint work with D. Marahrens and C. Mouhot]
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e T9 =1[0,1)9, N € N the inverse of the distance among sites.
We are interested in the limit as N — oc.

Notation: 7)(x) = number of particles on [%, %)

n=1{n0),....n(N—1)} € Xy :=NTT% ={0,1,... N—1} = Z/NZ.

o macroscopic scale T9 (u, v, w,...)

@ microscopic scale Tj\’, (x,y,2z,...) correspond to points of the form
x v ... cTd

N> N>
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Let n € Xy and functions {c(x,y,-) : x,y € T} = Markov process with
generator:

(LAm) =Y clxy,n)(f() = f(n)

xwyeT‘,fl

where
nx)—1 ifz=x,

Y (z)=qnly) +1 fz=y,
n(z) otherwise.

Generator satisfies then

d
E<M£V7 f> = <IU,£V,Lf>7 f S Cb(XN)
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Assume that Vo > 0, 3! equilibrium measure v, with density « s.t.

/Lfdl/a =0, /n(O)dVa(n) = q, /Txf(n)d’/a = /f(n)dva(n)-

Definition (mesaure with slowly varying parameter)

Vfy smooth function, l/f() the product measure on Xy s.t.

vy ({n:n(x) = k}) = v o my ({n - n(0) = k})

and under 1/,’%’(.) the variables {7(x) : x € T} are independent.
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e Empirical measure a))(du) := N~¢ ZXGT‘K: 1n(x)0x/n(du) € MF(T?).

N

e Does !V, where 1 has law i}, approach a deterministic profile f;

n
satisfying a macroscopic equation? i.e. for ¢ € C(T9), V5 > 0:

P,y <‘(a2’,¢5> - (ﬂ,qﬁ)‘ > 5) N0 where 8,f, = L.
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|
e Empirical measure oz,';l(du) = N~ erqr;{, n(x)dx/n(du) € MH(T9).

e Does a,’y, where 1) has law 1V, approach a deterministic profile f;

satisfying a macroscopic equation? i.e. for ¢ € C(T9), V5 > 0:

Py (‘<a7';’,¢> . (ﬂ,gb)‘ ) 0, where d:f, = L.

> N—)oo

About L:

@ asymmetric process: rescale time t by N and space x by N
=

Oife =y Vo(f),vy:=>_ zp(2)

@ mean-zero process: rescale time t by N2 and space x by N (diffusive
scaling) =

Ocfe = Deo(f), De= Y cj0y0u.

1<ij<d

Angeliki Menegaki, IHES Rigorous Derivation of Macroscopic PDE: October 14, 2021 6/24



|
Simple Exclusion Process (SEP)

We allow at most 1 particle per site: state space Xy = {0, 1}11‘;{,_

°
o Generator:
(LA ) =Y 0L = n())p(x = y) (F(r™) — f(n)).
xry
o Equilibrium measure: For a € (0,1), " the Bernoulli product measure

() = [ a7 (1 ~ @)~

X

particle densities of Sym. SEP = as N — o0, 0:f, = A f;.

particle densities of Asym. SEP = as N — oo, 0:fy = v - V(1 — ).
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|
Zero-Range Process (ZRP)

No restrictions on the total number of particles per site: state space
N =NT.

e Rate function g : N — R4, g(0) =0, g(n) > 0 for all n € N*, and

o g* :=sup,|g(k +1) — g(k)| < oo.

o Generator: (Lf)(n) =, &(n(x))p(x = y)(F(nY) — f(n)).

°

Invariant measure: Vo > 0,

JNip) = U(a)n(x) SDk
A= 11 gz 1 EGL
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Zero-Range Process (ZRP), Invariant measure structure

o Nonlinearity functional o prescribed s.t. (v, n(0)) = a. [As the
inverse of R : [0,00) — R, R(’”) = E;n(n(0)), where

7y ({n(x) = k}) = 25 g0 ]
o vV translation invar p.m. with (v n(x)) = a, (VN g(n(x))) = o().
Assumptions for the hydrodynamic limit:
(iii) g(n) —g(m) >4 for § >0 & n—m > ng for ng > 0.
(v) g(n+1) = g(n).
e particle densities of Sym. ZRP = as N — oo, Oify = Aco(ft).
e particle densities of Asym. ZRP = as N — oo, Oify = v - Vo(f).

Angeliki Menegaki, IHES Rigorous Derivation of Macroscopic PDE: October 14, 2021 9/24



Ginzburg-Landau with Kawasaki dynamics

@ To each lattice site x € Ty we associate a variable n(x) € R. State
space Xy = R,

e Hamiltonian: H(n) = >_ .1, V(n(x)) , where V' is one-body
potential: V(u) = Vo(u) + V4 (u) with

Vo'(u) > A >0 and [[Va| goo(ry, | Vil ooy < C.

o Kawasaki dynamics: the SDE

dni(x) = N72ANV’(77(X))dt + N(dWi(x) — dWi(x + 1)).
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Ginzburg-Landau with Kawasaki dynamics

Generator:

L::Af 2 (817(?)()_8773()/))2_

x~y€Tn
- Af 2 (3221) - 3(3(\;)> (%?X) - 3na(y)> '

x~y€Ty

symmetric w.r.t. the invariant product measure:

VN(77) — e 2 ety V(W(Xi))‘

o Let M(\) = [ e ~V(¥). Define

p(A) :=log M(X), h(y) = sup)cr(Ay — p(}))

e h,psothat H(y)=Xiff y = p'(}).
@ particle densities of Sym. Ginzburg-Landau process = 0,f, = AH (f;).
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Some state of the art

e [J. Fritz'89]: Hydrodynamic limit for the Ginzburg-Landau model

e [Guo-Papanicolaou-Varadhan‘88]: ‘Entropy method for the hydrodynamic
limit’- general method

For ZRP: Assume on the initial data ;) € L>°(T¢)

dul 1
H (b)) 2/ In (d(,]\,> dug < N, <u3’,Nd > n(X)2> <1
Xn Vp d
x€T§,
Then there is propagation in time of the deterministic limit:
N—oo
L ({‘<a7’7‘f,,s0> - (fmw)‘ > 6}) =70

implies for later times t > 0

P ({‘(aé‘{,@ - <ft790>’ > s}) =0,
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Some state of the art

e [Yau1991] If furthermore f € C3(T9) (smooth solution at the limit) and

1 N|, N
ot (81

for the local equilibrium product measure

)N:}woo

f(X/’V))”(X)
H Z(o(f(x/N)))g(1)---g(n(x))

then at later times t > 0,

1
at (R =50
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Some state of the art

@ [Grunewald-Otto-Villani-Westdinckenberg ‘09] for Ginzburg-Landau
model - 1st step towards quantitative results

o [Dizdar-Menz-Otto-Wu ‘18] Quantitative hydrodynamic limit for GL
model

o [E.Kosygina ‘05],[M.Fathi ‘12] - Convergence of the entropy

@ Hyperbolic scaling: [F. Rezakhanlou ‘91] - Hydrodynamic limit for all
times towards a conservation law
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Questions and motivations

e Quantitative rate of convergence? not in GPV, almost in GOVW,
Yau's relative entropy methods can be made explicit, but rate O(et)
with A\ > 0 large, and for smooth solutions.

@ However both the many-particle and limit systems are dissipative,

hence ergodicity and relaxation should win over stochastic fluctuations
at the level of the laws.

iV e P(Xp) N=oo f, € L°(T)
t%ml J/t%oo
vV € P(Xy) ARES fo
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Abstract Theorem - Assumptions

(H1) Microscopic Stability. We define a coupling among 2 processes,
generator £, with

LN In(x)—¢(x)] <0
XET%

(H2) Macroscopic Stability. Let (H, | - ||n) be the space of solutions to the
limit PDE. 4T > 0:

IV f|lw < K,V t €0, T], Vs multi-index |s| < 4.

When T = oo, [|V5(f — fuo)lln < R(t) € LL.
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Abstract Theorem - Assumptions

(H3) Consistency Estimate. For k > 0,p > 0, there is EN — 0 s.t.

/ /X NS 00 = GO0~ £7) 0 (Qdv ) (0) S

X

eV maxseqr,ay [D°(fe — fo) -
Theorem (Marahrens-M.-Mouhot, 2021)

Letd =1, F € Lip(R), ¢ € C(T9). Under (H1)-(H2)-(H3) and if
initially, 3 RN — 0:

[ v () - [ st

/xz > () = <) g’ (dn, d¢) < RN, =

N X

dM(’)V(ﬁ) < COfRN?

v
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|
Abstract Theorem (Marahrens-M.-Mouhot, 2021)

30 < (1, G < oo independent of N, t and

e }((0,00)) if T =00,
() = tK if T < oo

such that for all t > 0

/XN F (Nd Z n(x)e (%)) —F (/ﬂ‘d ft(U)¢(u)du) du?’(n)

d
x€T§,

<

< Gr(t)eN + RN + N,
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proof of Theorem

F € Lip(R) so we need to bound
|/ s 2600 (37) dn o) — | f(wpoo)am

« Using the coupling density GV we have
I, s 2000 =0 ()
o %dew (i) - [ wou)d

=G // Nd Z [10x) = C()I 6 (n, Q)dvf () dv () + CoN~/ 1+

G (n, Q)dvy (n)dva ()

dv)(Q)
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proof cont.

For the first term:

T // “’Z In(x) = ()G, O (m)dv V(<)

< // o 2 1) = SRR G . e () (0

+ max||D*(f — foo) [ E"

(H1)
< max | D4(f — i) €.
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proof cont.

Integrate in time:

//2 Nd Z|’7 ()G (0, Q)dv (n)dvi (€)
// N Z In(x) — ¢()|Gg' (n, Q) dvd (n)dvy (€)

+ eN/ max | D (£ — o) | uds.
0

The second term, due to (H2) equals to ENKt if T < oo, while in the case
of T = oo, the second term equals ENfo s)ds (integrable in time).
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How to meet (H1)-(H2)-(H3) for ZRP

o Consider the Wasserstein coupling

Lf(n,¢) = /\/22,, — x)g(n(x)) A g(CCNF(r, &) = £(n,))
+ N2 ply —x)( (n(x)) — g(1(x)) A (LN ) (FGr?, ) = F(1,0))
+ N2 ply = x)(8(C(x)) — g(n(x)) A g(C(x)) ) (F (1, €)= F(n.C)).

explicit calculations give £(|n(x) — ¢(x)|) < 0.
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|
How to meet (H1)-(H2)-(H3) for ZRP

Known for the diffusion equation, ¢/(0) > 0, o .

WS 00 = 0ol @ = £l ()
N X
ce_CtN_d/(d"'z).
Calculations on the ‘artificial * process 1}.

o Replace g(¢ (x)) with g(C(x))" for intermediate scale 0 < £ < N.
o And g(¢(x)) )) with o(¢(x )Z) (Local Law of Large Numbers).
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Thank you for listening!
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