Publications de Jean Dolbeault (21-11-2024)

212. Jean Dolbeault. Stability results for Sobolev, logarithmic Sobolev, and related inequalities, Preprint Ceremade no. 2402, (2024).

211. Jean Dolbeault, Maria J. Esteban, Alessio Figalli, Rupert L. Frank, and Michael Loss. A short review on improvements and stability for some interpolation inequalities, Preprint Ceremade no. 2401, (2024).

210. E. Bouin, J. Dolbeault, and L. Ziviani. L2 Hypocoercivity Methods for Kinetic Fokker-Planck Equations with Factorised Gibbs States, volume 56, pages 23-56. Springer Nature Singapore, 2024.

209. G. Brigati, J. Dolbeault, and N. Simonov. Stability for the logarithmic Sobolev inequality. Journal of Functional Analysis, 287 (8): 110562, Oct. 2024.

208. G. Brigati, J. Dolbeault, and N. Simonov. On Gaussian interpolation inequalities. Comptes Rendus. Mathématique, 362: 21-44, 2024.

207. Jean Dolbeault, Marta García-Huidobro and Raúl Manásevich. Monotonicity of the period and positive periodic solutions of a quasilinear equation, Preprint Ceremade no. 2301, (2023).

206. G. Brigati, J. Dolbeault, and N. Simonov. Logarithmic sobolev and interpolation inequalities on the sphere: Constructive stability results. Ann. Inst. H. Poincaré Anal. Non Linéaire, 41(5): 1289-1321, 2023.

205. Esther Bou Dagher and Jean Dolbeault. Interpolation inequalities on the sphere and phase transition: rigidity, symmetry and symmetry breaking, Preprint Ceremade no. 2209, (2022).

204. Jean Dolbeault and Andres Zuniga. Symmetry breaking and weighted Euclidean logarithmic Sobolev inequalities, Preprint Ceremade no. 2208, (2022).

203. J. Dolbeault, D. Gontier, F. Pizzichillo, and H. V. D. Bosch. Keller and Lieb-Thirring estimates of the eigenvalues in the gap of Dirac operators. Revista Matemática Iberoamericana, 40 (2): 649--692, Sept. 2023.

202. Jean Dolbeault, Maria J. Esteban, Alessio Figalli, Rupert L. Frank, and Michael Loss. Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence, Preprint Ceremade no. 2206, (2022).

201. J. Dolbeault, M. Esteban, and É. Séré. Distinguished self-adjoint extension and eigenvalues of operators with gaps. Application to Dirac–Coulomb operators. Journal of Spectral Theory, 13 (2): 491-524, sep 2023.

200. Jean Dolbeault, Maria J. Esteban, and Eric Séré. Corrigendum to: "On the eigenvalues of operators with gaps. Application to Dirac operators" [J. Funct. Anal. 174 (1) (2000) 208-226]. J. Funct. Anal., 284(1): 109651, 2023.

199. M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov. Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations. Discrete and Continuous Dynamical Systems, 43 (3&4): 1070-1089, 2023.

198. J. Dolbeault and A. Zhang. Parabolic methods for ultraspherical interpolation inequalities. Discrete and Continuous Dynamical Systems, 43 (3&4): 1347-1365, 2023.

197. J. Dolbeault and M. J. Esteban. Hardy-Littlewood-Sobolev and related inequalities: Stability. In The Physics and Mathematics of Elliott Lieb, pages 247–268. EMS Press, jun 2022.

196. J. Dolbeault. Functional inequalities: Nonlinear flows and entropy methods as a tool for obtaining sharp and constructive results. Milan Journal of Mathematics, 89( 2): 355-386, 2021.

195. J. Dolbeault, R. L. Frank, and L. Jeanjean. Logarithmic estimates for mean-field models in dimension two and the Schrödinger-Poisson system. Comptes Rendus. Mathématique, 359 (10): 1279-1293, jan 2022.

194. K. Carrapatoso, J. Dolbeault, F. Hérau, S. Mischler, C. Mouhot, and C. Schmeiser. Special macroscopic modes and hypocoercivity. Journal of the European Mathematical Society, July 2024.

193. Matteo Bonforte, Jean Dolbeault, Bruno Nazaret, Nikita Simonov. Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method, Preprint Ceremade no. 2103, (2021).

192. J. Dolbeault. Stability in Gagliardo-Nirenberg-Sobolev inequalities. In Applications of Optimal Transportation in the Natural Sciences, Oberwolfach Reports, volume 18, pages 570 – 574. European Mathematical Society - EMS - Publishing House GmbH, 2022.

191. J. Dolbeault. L2 hypocoercivity, inequalities and applications. In E. Carlen, K. Fellner, I. Gallagher, and P.-E. Jabin, editors, Classical and Quantum Mechanical Models of Many-Particle Systems. Oberwolfach reports, volume 2020/38, pages 37-40. European Mathematical Publishing House, 2020.

190. A. Arnold, J. Dolbeault, C. Schmeiser, and T. Wöhrer. Sharpening of decay rates in Fourier based hypocoercivity methods. In F. Salvarani, editor, Recent Advances in Kinetic Equations and Applications, pages 1–50. Springer International Publishing, INdAM Series 48, 2021.

189. K. Carrapatoso, J. Dolbeault, F. Hérau, S. Mischler, and C. Mouhot. Weighted Korn and Poincaré-Korn inequalities in the Euclidean space and associated operators. Archive for Rational Mechanics and Analysis, 243(3): 1565–1596, jan 2022.

188. J. Dolbeault, M. J. Esteban, and M. Loss. Critical magnetic field for 2d magnetic Dirac-Coulomb operators and Hardy inequalities, Volume 18: Partial Differential Equations, Spectral Theory, and Mathematical Physics, The Ari Laptev Anniversary Volume, EMS Series of Congress Reports, 2021.

187. J. Dolbeault. Hétérogénéité sociale et modèles d’épidémie. In Covid-19 : Regards croisés sur la crise, pages 56–58. Université Paris Dauphine - PSL, 2021.

186. M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov. Stability in Gagliardo-Nirenberg inequalities, 2020.

185. M. Bonforte, J. Dolbeault, B. Nazaret, and N. Simonov. Stability in Gagliardo-Nirenberg inequalities - supplementary material, 2020.

184. J. Dolbeault and G. Turinici. Social heterogeneity and the Covid-19 lockdown in a multi-group SEIR model. Computational and Mathematical Biophysics, 9:1 4-21, 2021.

183. J. Dolbeault and G. Turinici. Heterogeneous social interactions and the Covid-19 lockdown outcome in a multi-group SEIR model. Mathematical Modelling of Natural Phenomena, 15: 36, 2020.

182. Juan D Ìavila, Manuel del Pino, Jean Dolbeault, Monica Musso, and Juncheng Wei. Existence and stability of infinite time blow-up in the Keller–Segel system. Arch. Rational Mech. Anal., 248(61):1–154, 2024.

181. E. Bouin, J. Dolbeault, L. Lafleche, and C. Schmeiser. Hypocoercivity and sub-exponential local equilibria. Monatshefte f�r Mathematik, 194 (1): 41-65, nov 2020.

180. E. Bouin, J. Dolbeault, and L. Lafleche. Fractional hypocoercivity. Communications in Mathematical Physics, 390 (3): 1369-1411, jan 2022.

179. L. Addala, J. Dolbeault, X. Li, and M. L. Tayeb. L2-hypocoercivity and large time asymptotics of the linearized Vlasov-Poisson-Fokker-Planck system. Journal of Statistical Physics, 184 (1), jun 2021.

178. J. Dolbeault and X. Li. Generalized Logarithmic Hardy-Littlewood-Sobolev Inequality. International Mathematics Research Notices, 2021 (23): 17862-17874, jan 2020

177. J. Dolbeault and M. J. Esteban. Improved interpolation inequalities and stability. Advanced Nonlinear Studies, 20 (2) :277-291, May 2020.

176. D. Bonheure, J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Inequalities involving Aharonov-Bohm magnetic potentials in dimensions 2 and 3. Reviews in Mathematical Physics, 33: 2150006, 1–29, 2021.

175. J. Dolbeault. From irreversibility in physics to optimal convergence rates in: 50 years of research in Dauphine: yesterday, today and tomorrow 1968 / 2019, pages 239-241. Université Paris-Dauphine PSL, 2019.

174. D. Bonheure, J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Symmetry results in two-dimensional inequalities for Aharonov–Bohm magnetic fields. Communications in Mathematical Physics, 375 (3): 2071-2087, Sep 2019.

173. Jean Dolbeault, Marta García-Huidobro, and Rául Manásevich. Interpolation inequalities in W1,p(S1) and carré du champ methods. Discrete & Continuous Dynamical Systems - A, 40 (1): 375-394, 2020.

172. Emeric Bouin, Jean Dolbeault, and Christian Schmeiser. Diffusion and kinetic transport with very weak confinement. Kinetic & Related Models, 13 (2): 345-371, 2020.

171. Emeric Bouin, Jean Dolbeault, and Christian Schmeiser. A variational proof of Nash's inequality. Atti della Accademia Nazionale dei Lincei. Rendiconti Lincei. Matematica e Applicazioni, 31: 211-223, April 2020.

170. José A. Carrillo, Matias G. Delgadino, Jean Dolbeault, Rupert L. Frank, and Franca Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. Journal de Mathématiques Pures et Appliquées, 132:133-165, Dec 2019.

169. Jean Dolbeault, Rupert L Frank, and Franca Hoffmann. Reverse Hardy-Littlewood-Sobolev inequalities. https://hal.archives-ouvertes.fr/hal-01735446. (15/03/2018), March 2018.

168. M. Chupin, J. Dolbeault, M. J. Esteban, and M. Lewin. Une cartographie de la communauté mathématique française. La Gazette des Mathématiciens (Société Mathématique de France), 156:49–61, & Matapli (Société de Mathématiques Appliquées et Industrielles), vol. 115, pp. 51–72, 2018.

167. J. Dolbeault. Hypocoercivity without confinement: mode-by-mode analysis and decay rates in the Euclidean space (joint with Emeric Bouin, Stéphane Mischler, Clément Mouhot, Christian Schmeiser). In A. Arnold, E. Carlen, and L. Desvillettes, editors, Classical and Quantum Mechanical Models of Many-Particle Systems, volume 14, pages 3395–3398. European Mathematical Publishing House, Dec 2018.

166. J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Magnetic rings. Journal of Mathematical Physics, 59 (5): 051504, 2018.

165. J. Dolbeault and X. Li. Phi-Entropies: convexity, coercivity and hypocoercivity for Fokker-Planck and kinetic Fokker-Planck equations. Mathematical Models and Methods in Applied Sciences, 28 (13): 2637-2666, 2018.

164. J. Dolbeault, M. J. Esteban, and M. Loss. Symmetry and symmetry breaking: rigidity and flows in elliptic PDEs. Proc. Int. Cong. of Math., Rio de Janeiro, 3: 2279-2304, 2018.

163. E. Bouin, J. Dolbeault, S. Mischler, C. Mouhot, and C. Schmeiser. Hypocoercivity without confinement. Pure and Applied Analysis, 2 (2): 203-232, May 2020.

162. J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Interpolation inequalities and spectral estimates for magnetic operators. Annales Henri Poincaré, 19 (5): 1439-1463, May 2018.

161. Jean Dolbeault and An Zhang. Flows and functional inequalities for fractional operators. Applicable Analysis, 96 (9): 1547-1560, 2017.

160. J. Dolbeault, M. J. Esteban, and M. Loss. Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization. Journal of elliptic and parabolic equations, 2: 267–295, 2016.

159. Jean Dolbeault and An Zhang. Optimal functional inequalities for fractional operators on the sphere and applications. Advanced Nonlinear Studies, 16 (4): 863-880, 2016.

158. J. Dolbeault. Calculus of variations : Symmetry by flow (joint work with M.J. Esteban, M. Loss and M. Muratori). Oberwolfach Reports, 13 (3): 1980-1982, 2016.

157. J. Dolbeault, M. J. Esteban, M. Loss, and M. Muratori. Symmetry for extremal functions in subcritical Caffarelli-Kohn-Nirenberg inequalities. Comptes Rendus Mathématique, 355 (2): 133 - 154, 2017.

156. Jean Dolbeault, Maria J. Esteban, and Michael Loss. Symmetry of optimizers of the Caffarelli-Kohn-Nirenberg inequalities. Proceedings of the XVIII International Congress on Mathematical Physics Santiago de Chile, July 27 - August 1, 2015, in Press.

155. Matteo Bonforte, Jean Dolbeault, Matteo Muratori, and Bruno Nazaret. Weighted fast diffusion equations (Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Kinetic and Related Models, 10 (1): 33-59, 2017.

154. Matteo Bonforte, Jean Dolbeault, Matteo Muratori, and Bruno Nazaret. Weighted fast diffusion equations (Part II): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models, 10 (1): 61-91, 2017.

153. J. Dolbeault, M. Muratori, and B. Nazaret. Weighted interpolation inequalities: a perturbation approach. Mathematische Annalen, pages 1-34, 2016.

152. J. Dolbeault, M. J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linear vs. nonlinear flows (inégalités d’interpolation sur la sphère : flots non-linéaires vs. flots linéaires). Annales de la faculté des sciences de Toulouse Sér. 6, 26 (2): 351-379, 2017.

151. Jean Dolbeault, Maria J. Esteban, and Michael Loss. Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces. Invent. Math., 206 (2): 397-440, 2016.

150. J. Dolbeault, M. J. Esteban, and M. Loss. Keller–Lieb–Thirring inequalities for Schrödinger operators on cylinders. Comptes Rendus Mathématique, 353 (9): 813 - 818, 2015.

149. J. Dolbeault and G. Toscani. Nonlinear diffusions: Extremal properties of Barenblatt profiles, best matching and delays. Nonlinear Analysis: Theory, Methods & Applications, 138: 31–43, 6 2016.

148. J. Dolbeault and M. Kowalczyk. Uniqueness and rigidity in nonlinear elliptic equations, interpolation inequalities, and spectral estimates. Annales de la faculté des sciences de Toulouse Sér. 6, 26 (4): 949-977, 2017.

147. J. Dolbeault, M. Esteban, S. Filippas, and A. Tertikas. Rigidity results with applications to best constants and symmetry of Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities. Calculus of Variations and Partial Differential Equations, 54 (3): 2465-2481, Nov 2015.

146. J. Dolbeault and G. Toscani. Stability results for logarithmic Sobolev and Gagliardo-Nirenberg inequalities. Int. Math. Res. Not. IMRN, (2): 473-498, 2016.

145. J. Dolbeault and G. Toscani. Best matching Barenblatt profiles are delayed. Journal of Physics A: Mathematical and Theoretical, 48 (6): 065206, 2015.

144. C. Cortázar, J. Dolbeault, M. García-Huidobro, and R. Manásevich. Existence of sign changing solutions for an equation with a weighted p-Laplace operator. Nonlinear Analysis: Theory, Methods & Applications, 110: 1-22, 2014.

143. J. Dolbeault, M. J. Esteban, and G. Jankowiak. Onofri inequalities and rigidity results. Discrete and Continuous Dynamical Systems, 37 (6): 3059-3078, 2017.

142. J. Dolbeault, M. J. Esteban, and G. Jankowiak. The Moser-Trudinger-Onofri inequality. Chinese Annals of Mathematics, Series B, 36 (5): 777-802, 2015.

141. J. Dolbeault and G. Jankowiak. Sobolev and Hardy–Littlewood–Sobolev inequalities. Journal of Differ- ential Equations, 257 (6) : 1689 - 1720, 2014.

140. J. Dolbeault, M. J. Esteban, M. Kowalczyk, and M. Loss. Improved interpolation inequalities on the sphere. Discrete and Continuous Dynamical Systems Series S (DCDS-S), 7 (4): 695-724, August 2014.

139. J. Dolbeault and R. Stanczy. Bifurcation diagrams and multiplicity for nonlocal elliptic equations mod- eling gravitating systems based on Fermi-Dirac statistics. Discrete and Continuous Dynamical Systems - Series A (DCDS-A), 35(1): 139-154, 2015.

138. J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. One-dimensional Gagliardo–Nirenberg–Sobolev inequalities: remarks on duality and flows. Journal of the London Mathematical Society, 90 (2): 525-550, 2014.

137. I. Catto, J. Dolbeault, O. Sánchez, and J. Soler. Existence of steady states for the Maxwell-Schr ̈odinger- Poisson system: exploring the applicability of the concentration-compactness principle. Math. Models Methods Appl. Sci., 23 (10): 1915-1938, 2013.

136. J. Dolbeault, G. Jankowiak, and P. Markowich. Stationary solutions of Keller-Segel-type crowd motion and herding models: multiplicity and dynamical stability. Mathematics and Mechanics of Complex Systems, 3 (3): 211-241, 2015.

135. J. Dolbeault and M. J. Esteban. Branches of non-symmetric critical points and symmetry breaking in nonlinear elliptic partial differential equations. Nonlinearity, 27 (3): 435, 2014.

134. J. Dolbeault, M. J. Esteban, A. Laptev, and M. Loss. Spectral properties of Schrödinger operators on compact manifolds: Rigidity, flows, interpolation and spectral estimates. Comptes Rendus Mathématique, 351(11–12): 437 - 440, 2013.

133. J. Dolbeault, M. J. Esteban, and M. Loss. Nonlinear flows and rigidity results on compact manifolds. Journal of Functional Analysis, 267 (5): 1338 - 1363, 2014.

132. J. Dolbeault, M. J. Esteban, and A. Laptev. Spectral estimates on the sphere. Analysis & PDE, 7 (2): 435-460, 2014.

131. Jean Dolbeault, Maria J. Esteban, Michal Kowalczyk, and Michael Loss. Sharp interpolation inequalities on the sphere: New methods and consequences. Chinese Annals of Mathematics, Series B, 34 (1): 99-112, 2013.

130. J. Dolbeault, M. García-Huidobro, and R. Manasevich. Qualitative properties and existence of sign changing solutions with compact support for an equation with a p-Laplace operator. Advanced Nonlinear Studies, 13: 149-178, 2013.

129. J. Campos and J. Dolbeault. A functional framework for the Keller-Segel system: Logarithmic Hardy- Littlewood-Sobolev and related spectral gap inequalities. Comptes Rendus Mathématique, 350 (21-22): 949-954, 2012.

128. J. F. Campos and J. Dolbeault. Asymptotic Estimates for the Parabolic-Elliptic Keller-Segel Model in the Plane. Comm. Partial Differential Equations, 39 (5): 806-841, 2014.

127. J.F. Campos and J. Dolbeault. A numerical study of linearized Keller-Segel operator in self-similar variables. Technical report, Ceremade, 2012.

126. J. Dolbeault and M. J. Esteban. A scenario for symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. Journal of Numerical Mathematics, 20 (3-4): 233—249, March 2013

125. Jean Dolbeault, Axel Klar, Clément Mouhot, and Christian Schmeiser. Exponential rate of convergence to equilibrium for a model describing fiber lay-down processes. Applied Mathematics Research eXpress, 2012.

124. M. del Pino and J. Dolbeault. The Euclidean Onofri inequality in higher dimensions. International Mathematics Research Notices, 2013(15): 3600-3611, 2012.

123. J. Dolbeault and B. Volzone. Improved Poincaré inequalities. Nonlinear Analysis: Theory, Methods & Applications, 75 (16): 5985 - 6001, 2012.

122. J. Dolbeault and G. Toscani. Improved interpolation inequalities, relative entropy and fast diffusion equations. Annales de l’?Institut Henri Poincaré (C) Non Linear Analysis, 30 (5): 917-934, 2013.

121. Jean Dolbeault, Maria J. Esteban, and Michael Loss. Symmetry of extremals of functional inequalities via spectral estimates for linear operators. J. Math. Phys., 53(P): 095204, 2012.

120. J. Dolbeault, B. Nazaret, and G. Savaré. From Poincaré to logarithmic Sobolev inequalities: A gradient flow approach. SIAM Journal on Mathematical Analysis, 44 (5): 3186-3216, 2012.

119. J. Dolbeault. Sobolev and Hardy-Littlewood-Sobolev inequalities: duality and fast diffusion. Math. Res. Lett., 18 (06): 1037--1050, 2011.

118. Jean Dolbeault and Maria J. Esteban. About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities. In Helge Holden and Kenneth H. Karlsen, editors, Nonlinear Partial Differential Equations, volume 7 of Abel Symposia, pages 117–130. Springer Berlin Heidelberg, 2012.

117. J. Dolbeault and M. J. Esteban. Extremal functions in some interpolation inequalities: Symmetry, symmetry breaking and estimates of the best constants, pages 178-182. Proceedings of the QMath11 Conference Mathematical Results in Quantum Physics, World Scientific, 2011

116. J. Dolbeault, M. Esteban, G. Tarantello, and A. Tertikas. Radial symmetry and symmetry breaking for some interpolation inequalities. Calculus of Variations and Partial Differential Equations, 42: 461-485, 2011.

115. G. Aki, J. Dolbeault, C. Sparber. Thermal effects in gravitational Hartree systems. Annales Henri Poincaré, 12: 1055-1079, 2011.

114. J. Dolbeault and M. J. Esteban. Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities. Proceedings of the Royal Society of Edinburgh, Section: A Mathematics, 142 (04): 745-767, 2012

113. J. Dolbeault and G. Toscani. Fast diffusion equations: matching large time asymptotics by relative entropy methods. Kinetic and Related Models, 4 (3): 701-716, 2011

112. J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for linear kinetic equations conserving mass. Trans. Amer. Math. Soc., 367 (6): 3807-3828, 2015.

111. J. Dolbeault. Extremal functions and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities. In Oberwolfach reports 08/2010, editor, Optimal Constants in the Theory of Sobolev Spaces and PDEs, volume 7, pages 330-334. Organised by Andrea Cianchi, Firenze Maria J. Esteban, Paris Bernd Kawohl, K ̈oln, European Mathematical Society, 2010

110. J. Campos, M. del Pino, and J. Dolbeault. Relative equilibria in continuous stellar dynamics. Communications in Mathematical Physics, 300:765–788, 2010.

109. M. del Pino, J. Dolbeault, S. Filippas, and A. Tertikas. A logarithmic hardy inequality. Journal of Functional Analysis, 259 (8): 2045-2072, 2010.

108. P. Biler, L. Corrias, and J. Dolbeault. Large mass self-similar solutions of the parabolic-parabolic Keller-Segel model of chemotaxis. Journal of Mathematical Biology, 63: 1-32, 2011. 10.1007/s00285-010-0357-5.

107. Jean-Philippe Bartier, Adrien Blanchet, Jean Dolbeault, and Miguel Escobedo. Improved intermediate asymptotics for the heat equation. Applied Mathematics Letters, 24 (1): 76 - 81, 2011.

106. M. Bonforte, J. Dolbeault, G. Grillo, and J. L. Vázquez. Sharp rates of decay of solutions to the nonlinear fast diffusion equation via functional inequalities. Proceedings of the National Academy of Sciences, 107(38) :16459-16464, 2010.

105. J. Dolbeault, M. J. Esteban, M. Loss, and G. Tarantello. On the symmetry of extremals for the Caffarelli-Kohn-Nirenberg inequalities. Advanced Nonlinear Studies, 9:713-727, 2009.

104. J. Dolbeault and R. Stanczy. Non-existence and uniqueness results for supercritical semilinear elliptic equations. Annales Henri Poincaré, 10 (7): 1311-1333, 02 2010.

103. A. Blanchet, J. Dolbeault, M. Escobedo, and J. Fernández, Asymptotic behaviour for small mass in the two-dimensional parabolic-elliptic Keller-Segel model, J. Math. Anal. Appl., 361 (2010), pp. 533-542.

102. J. Dolbeault, C. Mouhot, and C. Schmeiser. Hypocoercivity for kinetic equations with linear relaxation terms. Comptes Rendus Mathématique, 347(9-10): 511-516, 2009.

101. J. Dolbeault, M. J. Esteban, and G. Tarantello. Multiplicity results for the assigned Gauss curvature problem in R2. Nonlinear Analysis: Theory, Methods & Applications, 70(8):2870 - 2881, 2009. Liouville Theorems and Detours.

100. A. Blanchet, J. Dolbeault, and M. Kowalczyk, Travelling fronts in stochastic Stokes' drifts, Physica A: Statistical Mechanics and its Applications, 387 (2008), pp. 5741-5751.

99. A. Blanchet, J. Dolbeault, and M. Kowalczyk, Stochastic Stokes’ drift, homogenized functional inequalities, and large time behavior of brownian ratchets, SIAM Journal on Mathematical Analysis, 41 (2009), pp. 46 - 76.

98. R. Benguria, J. Dolbeault, and R. Monneau. Harnack inequalities and discrete—continuous error estimates for a chain of atoms with two—body interactions. Journal of Statistical Physics, 134(1):27-51, 01 2009.

97. J. Dolbeault, B. Nazaret, and G. Savaré. A new class of transport distances between measures. Calc. Var. Partial Differential Equations, 34(2):193-231, 2009.

96. J. Dolbeault, P. Felmer, and M. Lewin. Orbitally stable states in generalized Hartree-Fock theory. Mathematical Models and Methods in Applied Sciences, 19(3): 347-367, 2009.

95. J. Dolbeault, M. Esteban, and M. Loss. Characterization of the critical magnetic field in the Dirac-Coulomb equation. Journal of Physics A: Mathematical and Theoretical, 41(18):185303 (13pp), 2008.

94. J. Dolbeault, B. Nazaret, and G. Savaré, On the Bakry-Emery criterion for linear diffusions and weighted porous media equations., Commun. Math. Sci., 6 (2008), pp. 477-494.

93. J. Dolbeault, A. Laptev, and M. Loss. Lieb-Thirring inequalities with improved constants. J. Eur. Math. Soc. (JEMS), 10:1121-1126, 2008.

92. J. Dolbeault and C. Schmeiser, The two-dimensional Keller-Segel model after blow-up, Discrete and Continuous Dynamical Systems, 25 (2009), pp. 109-121.

91. A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J. Vazquez. Asymptotics of the fast diffusion equation via entropy estimates. Archive for Rational Mechanics and Analysis, 191(2): 347-385, 02 2009.

90. J. Dolbeault, M. J. Esteban, and G. Tarantello, The role of Onofri type inequalities in the symmetry properties of extremals for Caffarelli-Kohn-Nirenberg inequalities, in two space dimensions, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 7 (2008), pp. 313–-341.

89. J. Dolbeault, I. Gentil, A. Guillin, and F.-Y. Wang, Lq-functional inequalities and weighted porous media equations, Potential Anal., 28 (2008), pp. 35-59.

88. R. Bosi, J. Dolbeault, and M. J. Esteban, Estimates for the optimal constants in multipolar Hardy inequalities for Schrödinger and Dirac operators, Commun. Pure Appl. Anal., 7 (2008), pp. 533–-562.

87. J. Dolbeault, M. J. Esteban, J. Duoandikoetxea, and L. Vega. Hardy-type estimates for Dirac operators. Annales Scientifiques de l’'École Normale Supérieure, 40 (6): 885-900, 2007.

86. J. Dolbeault and J. Fernández, Localized minimizers of flat rotating gravitational systems, Annales de l?Institut Henri Poincaré (C) Non Linear Analysis, 25 (2008), pp. 1043-1071.

85. A. Blanchet, M. Bonforte, J. Dolbeault, G. Grillo, and J.-L. Vázquez. Hardy-Poincaré inequalities and applications to nonlinear diffusions. C. R. Math. Acad. Sci. Paris, 344(7): 431-436, 2007.

84. J. Dolbeault, P. Felmer, and J. Mayorga-Zambrano. Compactness properties for trace-class operators and applications to quantum mechanics. Monatshefte für Mathematik, 155(1):43–66, 2008.

83. J. Dolbeault, M. J. Esteban, and M. Loss. Relativistic hydrogenic atoms in strong magnetic fields. Ann. Henri Poincaré, 8(4):749-779, 2007.

82. J. Dolbeault and G. Karch. Large time behaviour of solutions to nonhomogeneous diffusion equations. Banach Center Publ., 74:133-147, 2006.

81. A. Blanchet, J. Dolbeault, and B. Perthame. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differential Equations, 44: 1-33, 2006.

80. J.-P. Bartier, J. Dolbeault, R. Illner, and M. Kowalczyk. A qualitative study of linear drift-diffusion equations with time-dependent or degenerate coefficients. Math. Models Methods Appl. Sci., 17(3):327-362, 2007.

79. J. Dolbeault, M. J. Esteban, and E. Séré. General results on the eigenvalues of operators with gaps, arising from both ends of the gaps. Application to Dirac operators. J. Eur. Math. Soc. (JEMS), 8(2):243–-251, 2006.

78. J. A. Carrillo, J. Dolbeault, I. Gentil, and A. Jüngel. Erratum on entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Technical report, Ceremade, 2006.

77. J. A. Carrillo, J. Dolbeault, I. Gentil, and A. Jüngel. Erratum on entropy-energy inequalities and improved convergence rates for nonlinear parabolic equations. Technical report, Ceremade, 2006.

76. J. Dolbeault, P. Markowich, D. Oelz, and C. Schmeiser. Non linear diffusions as limit of kinetic equations with relaxation collision kernels. Archive for Rational Mechanics and Analysis, 186(1):133--158, 2007.

75. A. Arnold, J.-P. Bartier, and J. Dolbeault. Interpolation between logarithmic Sobolev and Poincaré inequalities. Communications in Mathematical Sciences, 5(4): 971-979, December 2007.

74. J. Dolbeault, P. Felmer, M. Loss, and E. Paturel. Lieb-Thirring type inequalities and Gagliardo-Nirenberg inequalities for systems. J. Funct. Anal., 238(1):193–-220, 2006.

73. J. Dolbeault, J. Fernández, and Ó. Sánchez. Stability for the gravitational Vlasov–Poisson system in dimension two. Communications in Partial Differential Equations, 31:1425–--1449, 2006.

72. J.-P. Bartier and J. Dolbeault. Convex Sobolev inequalities and spectral gap. C. R. Math. Acad. Sci. Paris, 342(5):307-–312, 2006.

71. A. Blanchet, J. Dolbeault, and R. Monneau. Erratum to On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients: [J. Math. Pures Appl. 85 (3) (2006) 371-414]. Journal de Mathématiques Pures et Appliqués, 94: 447-449, 2010.

70. A.?Blanchet, J.?Dolbeault, and R.?Monneau. On the continuity of the time derivative of the solution to the parabolic obstacle problem with variable coefficients. J. Math. Pures Appl. (9), 85(3): 371-414, 2006.

69. A. Blanchet, J. Dolbeault, and R. Monneau. On the one-dimensional parabolic obstacle problem with variable coefficients. In Elliptic and parabolic problems, volume 63 of Progr. Nonlinear Differential Equations Appl., pages 59–-66. Birkhäuser, Basel, 2005.

68. J. Dolbeault and B. Perthame. Optimal critical mass in the two-dimensional Keller-Segel model in R2. C. R. Math. Acad. Sci. Paris, 339(9):611-–616, 2004.

67. J. Dolbeault, I. Gentil, and A. Jüngel. A logarithmic fourth-order parabolic equation and related logarithmic Sobolev inequalities. Commun. Math. Sci., 4(2):275–-290, 2006.

66. A. Arnold and J. Dolbeault. Refined convex Sobolev inequalities. J. Funct. Anal., 225(2):337–-351, 2005.

65. J. Dolbeault, P. Felmer, and R. Monneau. Symmetry and nonuniformly elliptic operators. Differential Integral Equations, 18(2):141-–154, 2005.

64. J. Dolbeault and I. Flores. Geometry of phase space and solutions of semilinear elliptic equations in a ball. Trans. Amer. Math. Soc., 359:4073-4087, 2007.

63. M. del Pino, J. Dolbeault, and M. Musso. Duality in sub-supercritical bubbling in the Brezis-Nirenberg problem near the critical exponent. In Partial differential equations and inverse problems, volume 362 of Contemp. Math., pages 339–-350. Amer. Math. Soc., Providence, RI, 2004.

62. A. Arnold, J. A. Carrillo, L. Desvillettes, J. Dolbeault, A. Jüngel, C. Lederman, P. A. Markowich, G. Toscani, and C. Villani. Entropies and equilibria of many-particle systems: an essay on recent research. Monatsh. Math., 142(1-2):35-–43, 2004.

61. M. del Pino, J. Dolbeault, and M. Musso. Multiple bubbling for the exponential nonlinearity in the slightly supercritical case. Commun. Pure Appl. Anal., 5(3):463–-482, 2006.

60. J. Dolbeault, D. Kinderlehrer, and M. Kowalczyk. Remarks about the flashing rachet. In Partial differential equations and inverse problems, volume 362 of Contemp. Math., pages 167–-175. Amer. Math. Soc., Providence, RI, 2004.

59. M. del Pino, J. Dolbeault, and M. Musso. The Brezis-Nirenberg problem near criticality in dimension 3. J. Math. Pures Appl. (9), 83(12):1405–-1456, 2004.

58. R. D. Benguria, I. Catto, J. Dolbeault, and R. Monneau. Oscillating minimizers of a fourth-order problem invariant under scaling. J. Differential Equations, 205(1):253–-269, 2004.

57. J. Dolbeault, M. J. Esteban, M. Loss, and L. Vega. An analytical proof of Hardy-like inequalities related to the Dirac operator. J. Funct. Anal., 216(1):1-–21, 2004.

56. M. del Pino, J. Dolbeault, and M. Musso. A phase plane analysis of the “multi-bubbling” phenomenon in some slightly supercritical equations. Monatsh. Math., 142(1-2):57–-79, 2004.

55. J. Dolbeault, Ó. Sánchez, and J. Soler. Asymptotic behaviour for the Vlasov-Poisson system in the stellar-dynamics case. Arch. Ration. Mech. Anal., 171(3):301–-327, 2004.

54. J. Dolbeault and M. Escobedo. L1 and Linfty intermediate asymptotics for scalar conservation laws. Asymptot. Anal., 41(3-4):189-–213, 2005.

53. J. Dolbeault, D. Kinderlehrer, and M. Kowalczyk. The flashing ratchet: long time behavior and dynamical systems interpretation. Technical report, Ceremade no. 0244, 2002.

52. M. Del Pino, J. Dolbeault, and I. Gentil. Nonlinear diffusions, hypercontractivity and the optimal Lp-Euclidean logarithmic Sobolev inequality. J. Math. Anal. Appl., 293(2):375–-388, 2004.

51. J. Dolbeault and R. Illner. Entropy methods for kinetic models of traffic flow. Commun. Math. Sci., 1(3):409–-421, 2003.

50. J. Dolbeault, M. J. Esteban, and E. Séré. About a non-homogeneous Hardy inequality and its relation with the spectrum of Dirac operators. Séminaire Equations aux Dérivées Partielles de l’Ecole Polytechnique, (XVIII): 1-10, 2002.

49. M. Del Pino, J. Dolbeault, and M. Musso. “Bubble-tower” radial solutions in the slightly supercritical Brezis-Nirenberg problem. J. Differential Equations, 193(2):280–-306, 2003.

48. J. Dolbeault and R. Monneau. On a Liouville type theorem for isotropic homogeneous fully nonlinear elliptic equations in dimension two. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 2(1):181-–197, 2003.

47. J. A. Carrillo, J. Dolbeault, P. A. Markowich, and C. Sparber. On the long-time behavior of the quantum Fokker-Planck equation. Monatsh. Math., 141(3):237–-257, 2004.

46. J. Dolbeault, M. J. Esteban, and E. Séré. A variational method for relativistic computations in atomic and molecular physics. International Journal of Quantum Chemistry, 93:149-155, 2003.

45. J. P. Desclaux, J. Dolbeault, M. J. Esteban, P. Indelicato, and E. Séré. Computational approaches of relativistic models in quantum chemistry. In Handbook of numerical analysis, Vol. X, Handb. Numer. Anal., X, pages 453–-483. North-Holland, Amsterdam, 2003.

44. N. Ben Abdallah and J. Dolbeault. Relative entropies for kinetic equations in bounded domains (irreversibility, stationary solutions, uniqueness). Arch. Ration. Mech. Anal., 168(4):253–-298, 2003.

43. M. J. Cáceres, J. A. Carrillo, and J. Dolbeault. Nonlinear stability in Lp for a confined system of charged particles. SIAM J. Math. Anal., 34(2):478-–494 (electronic), 2002.

42. M. Del Pino and J. Dolbeault. Nonlinear diffusions and optimal constants in Sobolev type inequalities: asymptotic behaviour of equations involving the p-Laplacian. C. R. Math. Acad. Sci. Paris, 334(5):365–-370, 2002.

41. C. Cid and J. Dolbeault. Defocusing nonlinear Schrödinger equation: confinement, stability and asymptotic stability. Technical report, Ceremade no. 010a, 2001.

40. M. Del Pino and J. Dolbeault. Asymptotic behavior of nonlinear diffusions. Math. Res. Lett., 10(4):551-–557, 2003.

39. M. Del Pino and J. Dolbeault. The optimal Euclidean Lp-Sobolev logarithmic inequality. J. Funct. Anal., 197(1):151–-161, 2003.

38. M. Del Pino and J. Dolbeault. Best constants for Gagliardo-Nirenberg inequalities and applications to nonlinear diffusions. J. Math. Pures Appl. (9), 81(9):847-–875, 2002.

37. J. Dolbeault and R. Monneau. Convexity estimates for nonlinear elliptic equations and application to free boundary problems. Ann. Inst. H. Poincaré Anal. Non Linéaire, 19(6):903–-926, 2002.

36. M. Balabane, J. Dolbeault, and H. Ounaies. Nodal solutions for a sublinear elliptic equation. Nonlinear Anal., 52(1):219-–237, 2003.

35. J. Dolbeault, M. J. Esteban, and M. Ramaswamy. Radial singular solutions of a critical problem in a ball. Differential Integral Equations, 15(12):1459–-1474, 2002.

34. P. Biler, J. Dolbeault, M. J. Esteban, P. A. Markowich, and T. Nadzieja. Steady states for streater’s energy-transport models of self-gravitating particles. IMA Vol. Math. Appl., 135:37-–56, 2004.

33. J. Dolbeault, P. A. Markowich, and A. Unterreiter. On singular limits of mean-field equations. Arch. Ration. Mech. Anal., 158(4):319–-351, 2001.

32. J. Dolbeault and R. Monneau. Convexity estimates for nonlinear elliptic equations and application to free boundary problem. C. R. Acad. Sci. Paris Sér. I Math., 331(10):771-–776, 2000.

31. P. Biler, J. Dolbeault, and M. J. Esteban. Intermediate asymptotics in L1 for general nonlinear diffusion equations. Appl. Math. Lett., 15(1):101–-107, 2002.

30. P. Biler, J. Dolbeault, M. J. Esteban, and G. Karch. Stationary solutions, intermediate asymptotics and large-time behaviour of type II Streater’s models. Adv. Differential Equations, 6(4):461-–480, 2001.

29. J. Dolbeault and P. Felmer. Monotonicity up to radially symmetric cores of positive solutions to nonlinear elliptic equations: local moving planes and unique continuation in a non-Lipschitz case. Nonlinear Anal., 58(3-4):299–-317, 2004.

28. J. Dolbeault, M. J. Esteban, E. Séré, and M. Vanbreugel. Minimization methods for the one-particle dirac equation. Physical Review Letters, 85(19):4020-4023, November 2000.

27. J. Dolbeault, M.J. Esteban, and E. Séré. Variational methods in relativistic quantum mechanics: new approach to the computation of Dirac eigenvalues. In Mathematical models and methods for ab initio quantum chemistry, volume 74 of Lecture Notes in Chem., pages 211-226. Springer, Berlin, 2000.

26. J. Dolbeault and R. Monneau. Convexity properties of the free boundary and gradient estimates for quasi-linear elliptic equations. Technical report, Ceremade no. 9947.

25. J. Dolbeault and G. Rein. Time-dependent rescalings and Lyapunov functionals for the Vlasov-Poisson and Euler-Poisson systems, and for related models of kinetic equations, fluid dynamics and quantum physics. Math. Models Methods Appl. Sci., 11(3):407-–432, 2001.

24. L. Caffarelli, J. Dolbeault, P. A. Markowich, and C. Schmeiser. On Maxwellian equilibria of insulated semiconductors. Interfaces Free Bound., 2(3):331-–339, 2000.

23. J. Dolbeault, R. Illner, and H. Lange. On asymmetric quasiperiodic solutions of Hartree-Fock systems. J. Differential Equations, 178(2):314–-324, 2002.

22. P. Biler, J. Dolbeault, and P. A. Markowich. Large time asymptotics of nonlinear drift-diffusion systems with Poisson coupling. Transport Theory Statist. Phys., 30(4-6):521-–536, 2001. The Sixteenth International Conference on Transport Theory, Part II (Atlanta, GA, 1999).

21. J. Dolbeault and P. Felmer. Symétrie des solutions d’'équations semi-linéaires elliptiques. C. R. Acad. Sci. Paris Sér. I Math., 329(8):677-–682, 1999.

20. N. Ben Abdallah and J. Dolbeault. Relative entropies for the Vlasov-Poisson system in bounded domains. C. R. Acad. Sci. Paris Sér. I Math., 330(10):867–-872, 2000.

19. J. Dolbeault, M. J. Esteban, and E. Séré. On the eigenvalues of operators with gaps. Application to Dirac operators. J. Funct. Anal., 174(1):208–-226, 2000.

18. R. D. Benguria, J. Dolbeault, and M. J. Esteban. Classification of the solutions of semilinear elliptic problems in a ball. J. Differential Equations, 167(2):438–-466, 2000.

17. J. Dolbeault. An introduction to kinetic equations: the Vlasov-Poisson system and the Boltzmann equation. Discrete Contin. Dyn. Syst., 8(2):361–-380, 2002. Current developments in partial differential equations (Temuco, 1999).

16. P. Biler and J. Dolbeault. Long time behavior of solutions of Nernst-Planck and Debye-Hückel drift-diffusion systems. Ann. Henri Poincaré, 1(3):461–-472, 2000.

15. M. del Pino and J. Dolbeault. Generalized Sobolev inequalities and asymptotic behaviour in fast diffusion and porous medium problems. Technical report, Ceremade no. 9905, 1999.

14. J. Dolbeault and P. Felmer. Symmetry and monotonicity properties for positive solutions of semi-linear elliptic PDE’s. Comm. Partial Differential Equations, 25(5-6):1153-–1169, 2000.

13. J. Dolbeault. Time-dependent rescalings and Lyapunov functionals for some kinetic and fluid models. In Proceedings of the Fifth International Workshop on Mathematical Aspects of Fluid and Plasma Dynamics (Maui, HI, 1998), volume 29, pages 537-–549, 2000.

12. J. Dolbeault. Time-dependent rescalings and dispersion for the Boltzmann equation. Technical report, Ceremade no. 9845, 1998.

11. J. Dolbeault, M. J. Esteban, and E. Séré. Variational characterization for eigenvalues of Dirac operators. Calc. Var. Partial Differential Equations, 10(4):321–-347, 2000.

10. J. Dolbeault. Monokinetic charged particle beams: qualitative behavior of the solutions of the Cauchy problem and 2d time-periodic solutions of the Vlasov-Poisson system. Comm. Partial Differential Equations, 25(9-10):1567–-1647, 2000.

9. J. Dolbeault. Free energy and solutions of the Vlasov-Poisson-Fokker-Planck system: external potential and confinement (large time behavior and steady states). J. Math. Pures Appl. (9), 78(2):121-–157, 1999.

8. L. Desvillettes and J. Dolbeault. On long time asymptotics of the Vlasov-Poisson-Boltzmann equation. Comm. Partial Differential Equations, 16(2-3):451–-489, 1991.

7. J. Dolbeault. Kinetic models and quantum effects: a modified Boltzmann equation for Fermi-Dirac particles. Arch. Rational Mech. Anal., 127(2):101–-131, 1994.

6. J. Dolbeault. On long time asymptotics of the Vlasov-Poisson-Boltzmann system. In Nonlinear kinetic theory and mathematical aspects of hyperbolic systems (Rapallo, 1992), volume 9 of Ser. Adv. Math. Appl. Sci., pages 115–-123. World Sci. Publ., River Edge, NJ, 1992.

5. J. Dolbeault and F. Poupaud. A remark on the critical explosion parameter for a semilinear elliptic equation in a generic domain using an explosion time of an ordinary differential equation. Nonlinear Anal., 24(8):1149-–1162, 1995.

4. J. Dolbeault. Existence de solutions symétriques pour un modèle de champs de mésons: le modèle d’Adkins et Nappi. Comm. Partial Differential Equations, 15(12):1743–-1786, 1990.

3. F. Bouchut and J. Dolbeault. On long time asymptotics of the Vlasov-Fokker-Planck equation and of the Vlasov-Poisson-Fokker-Planck system with Coulombic and Newtonian potentials. Differential Integral Equations, 8(3):487-–514, 1995.

2. J. Dolbeault. Stationary states in plasma physics: Maxwellian solutions of the Vlasov-Poisson system. Math. Models Methods Appl. Sci., 1(2):183-–208, 1991.

1. J. Dolbeault. Solutions stationnaires de masse finie pour l'’équation de Vlasov avec potentiel central en dimension trois: une démonstration du théorème de Jeans. Technical report, Ceremade, 1996.