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Abstract. Obtaining explicit stability estimates in classical functional
inequalities like the Sobolev inequality has been an essentially open ques-
tion for 30 years, after the celebrated but non-constructive result [4] of
G. Bianchi and H. Egnell in 1991. Recently, new methods have emerged
which provide some clues on these fascinating questions. The goal of
the course is to give an introduction to the topic for some fundamental
functional inequalities and present several methods that can be used to
obtain explicit estimates.

Keywords: Stability, functional inequalities, Sobolev inequality, loga-
rithmic Sobolev inequality, Gagliardo-Nirenberg inequalities, construc-
tive estimates, nonlinear diffusions, entropy methods, carré du champ

The most classical Sobolev inequality on Rd with d ≥ 3 is

‖∇f‖2L2(Rd) ≥ Sd ‖f‖2L2∗ (Rd) ∀ f ∈ D1,2(Rd) (1)

where D1,2(Rd) is the Beppo-Levi space, Sd denotes the sharp Sobolev constant
and 2∗ = 2 d/(d − 2) is the critical Sobolev exponent. Equality in (1) holds if
and only if f is in the (d + 2)-dimensional manifold M of the Aubin–Talenti
functions

ga,b,c(x) = c
(
a+ |x− b|2

)− d−2
2 , a ∈ (0,∞) , b ∈ Rd , c ∈ R .

We refer to [39] for an up-to-date introduction to Ineq. (1). In 1991, G. Bianchi
and H. Egnell proved in [4] that the deficit in the Sobolev inequality, that is, the
difference of the two sides of (1), satisfies the stability inequality

‖∇f‖2L2(Rd) − Sd ‖f‖2L2∗ (Rd) ≥ κd min
g∈M

‖∇(f − g)‖2L2(Rd) (2)

for some constant κd > 0. The method of [4] uses compactness and provides no
estimate on κd. Recently, several constructive results have been obtained, i.e.,
results with explicit estimates of κd. The goal of these lecture notes is to make
a short review based on two main strategies:
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1. The strategy of G. Bianchi and H. Egnell made explicit in both of its steps:
the global-to-local reduction and the local analysis, both relying on methods
of the Calculus of Variations,

2. Entropy methods and fast diffusion equations, in which we can recognize also
the same two steps, that are based on nonlinear parabolic flows and carré
du champ techniques.

Entropy methods usually result in better estimates of the stability constant,
but to the price of some limitations. We will also state some results for related
inequalities, like some families of Gagliardo-Nirenberg interpolation inequalities
and logarithmic Sobolev inequalities, on the Euclidean space Rd or on the unit
sphere Sd ⊂ Rd+1, and consider the use of the Legendre duality applied, for
instance, to Hardy-Littlewood-Sobolev inequalities.

1 Sobolev and Hardy-Littlewood-Sobolev inequalities

Let us start with a first example of fast diffusion flows applied to inequalities in
the context of the Legendre duality. On Rd with d ≥ 3, the Hardy-Littlewood-
Sobolev inequality

‖g‖2
L

2 d
d+2 (Rd)

≥ Sd

∫
Rd

g (−∆)−1g dx ∀ g ∈ L
2 d
d+2 (Rd) (3)

is obtained by Legendre’s duality from (1), as observed in [49]. Indeed, by the
Legendre transform, we obtain

sup
f∈D1,2(Rd)

(∫
Rd

f g dx− 1

2
‖f‖2L2∗ (Rd)

)
=

1

2
‖g‖2

L
2 d
d+2 (Rd)

sup
f∈D1,2(Rd)

(∫
Rd

f g dx− 1

2
‖∇f‖2L2(Rd)

)
=

1

2

∫
Rd

g (−∆)−1g dx

where q = d+2
d−2 is the Hölder conjugate of 2∗, so that ‖fq‖

L
2 d
d+2 (Rd)

= ‖f‖q
L2∗ (Rd)

.

It is not difficult to check that Sd is also the optimal constant in (3).

Theorem 1 ([33]). Assume that d ≥ 3. There exists a constant C ∈ [ d
d+4 , 1)

such that

‖fq‖2
L

2 d
d+2 (Rd)

− Sd

∫
Rd

fq (−∆)−1fq dx

≤ C S−1d ‖f‖
8

d−2

L2∗ (Rd)

(
‖∇f‖2L2(Rd) − Sd ‖f‖2L2∗ (Rd)

)
∀ f ∈ D1,2(Rd) .

(4)

Theorem 1 can be considered as a stability result for (1), because the left-hand
side in (4), which is the deficit associated with (3), measures a distance to M .
However, it is still a nonlinear functional and corresponds to a weaker norm than
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the usual norm in D1,2(Rd). With C = 1, there is an easy proof that goes as
follows. Two integrations by parts show that∫

Rd

|∇(−∆)−1 g|2 dx =

∫
Rd

g (−∆)−1 g dx

and, if g = fq with q = d+2
d−2 ,∫

Rd

∇f · ∇(−∆)−1 g dx =

∫
Rd

f g dx =

∫
Rd

gq dx =

∫
Rd

f2
∗
dx .

Hence the expansion of the square

0 ≤
∫
Rd

∣∣∣∣‖f‖ 4
d−2

L2∗ (Rd)
∇f − Sd∇(−∆)−1 g

∣∣∣∣2 dx
shows the result with C = 1. To prove that the inequality holds with C < 1
requires finer tools.

Let us consider the fast diffusion equation

∂v

∂t
= ∆vm , (t, x) ∈ R+ × Rd (5)

and compute the evolution of the deficit in (3) defined as

−H := ‖v‖2
L

2 d
d+2 (Rd)

− Sd

∫
Rd

v (−∆)−1v dx ≥ 0 .

As in [27], we observe that

1

2
H′ =

(∫
Rd

v
2 d
d+2 dx

) 2
d
∫
Rd

∇vm · ∇v
d−2
d+2 dx− Sd

∫
Rd

vm+1 dx

where v = v(t, ·) is a solution of (5). With the choice m = (d− 2)/(d+ 2), that
is, m + 1 = 2 d/(d + 2) = q, which corresponds to the exponent in the Yamabe
flow, and u = vm, we have

1

2

d

dt

(
Sd

∫
Rd

v (−∆)−1v dx− ‖v‖2
L

2 d
d+2 (Rd)

)
=

(∫
Rd

vm+1 dx

) 2
d (
‖∇u‖2L2(Rd) − Sd ‖u‖2L2∗ (Rd)

)
≥ 0 .

Eq. (5) admits a solution with separation of variables vanishing at t = T > 0,

vT (t, x) = c (T − t)α (g?(x))
d+2
d−2 , α = 1

4 (d+ 2) and c =
(

4 d d−2d+2

)α
,

where g?(x) = (1+|x|2)−(d−2)/2 is the solution of ∆g?+d (d−2) g
(d+2)/(d−2)
? = 0.

Up to conformal transformations, this solutions describes the asymptotic extinc-
tion profile of all solutions of (5) near the extinction time T .
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Theorem 2 ([23]). For any solution v with initial datum v0 ∈ L2d/(d+2)(Rd),
v0 > 0, there exists T > 0, λ > 0 and x0 ∈ Rd such that

lim
t→T−

(T − t)−
1

1−m sup
x∈Rd

(1 + |x|2)d+2

∣∣∣∣v(t, x)

v(t, x)
− 1

∣∣∣∣ = 0

with v(t, x) = λ−(d+2)/2 vT
(
t, (x− x0)/λ

)
.

The Hardy-Littlewood-Sobolev inequality (3) amounts to H ≤ 0 and appears as
a consequence of the Sobolev inequality (1) because H′ ≥ 0 for any t ∈ (0, T )
and limt→T− H(t) = 0 by Theorem 2. By computing H′′, one can obtain refined
estimates. Assume that t ∈ [0, T ) and let Y be such that

H(t) = −Y(J(t)) with J(t) :=

∫
Rd

v(t, x)
2 d
d+2 dx .

With κ0 = H′0/J0, we obtain the differential inequality

Y′
(
Sd s

1+ 2
d + Y

)
≤ d+2

2 d κ0 S
2
d s

1+ 4
d , Y(0) = 0 , Y(J0) = −H0 .

The relation Y′(J) ′ + H′ = 0 and elementary integrations by parts provide the
following refinement of (4) written with C = 1.

Proposition 1 ([33]). Assume that d ≥ 3. Then for any f ∈ D1,2(Rd) we have

‖fq‖2
L

2 d
d+2 (Rd)

− Sd

∫
Rd

fq (−∆)−1fq dx

≤ ‖f‖2
d+2
d−2

L2∗ (Rd)
ϕ
(
S−1d ‖f‖−2L2∗ (Rd)

(
‖∇f‖2L2(Rd) − Sd ‖f‖2L2∗ (Rd)

))
with q = (d+ 2)/(d− 2) and ϕ(s) :=

√
1 + 2 s− 1 for any s ≥ 0.

An asymptotic analysis of v(t, ·) as t→ T− and some spectral estimates discard
the case C = 1 in Theorem 1, while the lower bound C = d/(d+4) is obtained by
considering a sequence of test functions. See [33] for details. In dimension d = 2
similar results holds in which (1) and (3) are respectively replaced by Onofri’s
inequality and the logarithmic Hardy-Littlewood-Sobolev inequality while (5)
has to be replaced by the logarithmic fast diffusion equation using the results
of [55,50,54] instead of Theorem 2. Notice that stability results based on duality
are known for (logarithmic) Hardy-Littlewood-Sobolev inequalities from [16,17].
The method based on (5) also applies to the fractional Sobolev inequality and the
dual Hardy-Littlewood-Sobolev inequality as shown in [45]. Even if the optimal
value of the stability constant C is not known, a nice feature of Theorem 1 is
that we have a rather precise estimate of C . However, a significant drawback
of the method is that the deficit of the Hardy-Littlewood-Sobolev inequality
corresponds to a weaker notion of distance to M than what can be expected.
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2 Stability, fast diffusion equation and entropy methods

On Rd, let us consider the fast diffusion equation written in self-similar variables,

∂v

∂t
+∇ ·

(
v
(
∇vm−1 − 2x

))
= 0 . (6)

Up to a t-dependent rescaling, it is equivalent to (5). By fast diffusion, we mean
m < 1 and reserve the expression porous medium to the regime m > 1 while
the heat equation case corresponds to m = 1 (in this case, Eq (6) is known as
the Fokker-Planck equation, and vm−1 should be replaced by − log v). An intro-
duction can be found in the two classical books [52,53]. Section 1 was devoted
to m = m∗ := (d − 2)/(d + 2) with d ≥ 3. Here we are interested in the range
mc := (d − 2)/d < m < 1 in which nonnegative solution with initial data in
L1(Rd) at t = 0 exist for any t ≥ 0 according to [42], and more specifically to
the range m1 ≤ m < 1 where m1 := (d− 1)/d. Note that m∗ < mc < m1 < 1 in
dimension d ≥ 2. In any case, (6) admits a stationary solution

B(x) :=
(
1 + |x|2

) 1
m−1

which is usually called a Barenblatt solution and has finite mass M > 0 for any
m ∈ (mc, 1). If m ∈ (mc, 1), the mass of any nonnegative solution v is conserved
and for simplicity, we shall assume that

∫
Rd v(t, x) dx = M for any t ≥ 0. See [54]

for an interesting survey on mass conservation and the role of Barenblatt solu-
tions in the range (mc, 1). With this notation, we can introduce the generalized
entropy (or free energy) and Fisher information functionals respectively given by

F [v] :=
1

m− 1

∫
Rd

(
vm − Bm −mBm−1 (v − B)

)
dx ,

I[v] :=
m

1−m

∫
Rd

v
∣∣∇vm−1 −∇Bm−1∣∣2 dx .

A straightforward computation shows that, for a solution of (6), we have

d

dt
F [v(t, ·)] = −I[v(t, ·)] . (7)

Theorem 3 ([22]). Assume that m ∈ (m1, 1) if d = 1 or d = 2, and m ∈ [m1, 1)
if d ≥ 3. If v is a nonnegative solution of (6) with initial datum v0 ∈ L1(Rd) of
mass M such that F [v0] is finite, then

F [v(t, ·)] ≤ F [v0] e− 4 t ∀ t ≥ 0 . (8)

The estimate (8) is equivalent to the entropy – entropy production inequality

I[v] ≥ 4F [v] , (9)
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which can also be rewritten as a family of Gagliardo-Nirenberg-Sobolev inequal-
ities

‖∇f‖θL2(Rd) ‖f‖
1−θ
Lp+1(Rd) ≥ CGNS(p) ‖f‖L2p(Rd) (10)

with optimal constant. The equivalence is obtained using

p =
1

2m− 1
⇐⇒ m =

p+ 1

2 p

with v = f2 p so that vm = fp+1 and v |∇vm−1|2 = (p − 1)2 |∇f |2. The range
m ∈ (m1, 1) means that 2 p ∈ (2, 2∗) where 2∗ = 2 d/(d − 2) if d ≥ 3 and
2∗ = +∞ otherwise. The case m = m1, i.e., 2 p = 2∗, is also covered if d ≥ 3.

Equality in (10) is achieved by f?(x) = B(x)
1
2p =

(
1 + |x|2

)− 1
p−1 , which also

means that 4 is the optimal constant in (9) and it is also the best possible decay

rate in (8). The exponent θ = d (p−1)
(d+2−p (d−2)) p is determined by the invariance

under scalings and it is easy to check that θ = 1 for p = 2∗/2 and d ≥ 3. If
d = 2, we obtain the Euclidean Onofri inequality in the limit as p → +∞. On
the other hand, limp→1+ CGNS(p) = 1 so that (10) becomes an equality for p = 1.
By taking the derivative with respect to p at p = 1, we obtain the scale invariant
form of the scale invariant Euclidean logarithmic Sobolev inequality

d

2
log

(
2

π d e

∫
Rd

|∇f |2 dx
)
≥
∫
Rd

|f |2 log |f |2 dx (11)

for any function f ∈ H1(Rd) such that ‖f‖L2(Rd) = 1. Ineq. (11) can be found

in [56, Theorem 2], [51, Inequality (2.3)] and [15, Inequality (26)]. See [35] for
further comments and [40] for the classical Gaussian form and its Euclidean
counterpart.

We obtain a linearized free energy and a linearized Fisher information

F[w] :=
m

2

∫
Rd

w2 B2−m dx and I[w] := m (1−m)

∫
Rd

|∇w|2 B dx

by considering fε := B (1+εB1−m w) and taking the O(ε2) in, respectively F [fε]
and I[fε]. The functionals F and I are related by a Hardy-Poincaré inequality.

Proposition 2 ([6,34,9]). Let m ∈ [m1, 1) if d ≥ 3, m ∈ (1/2, 1) if d = 2, and
m ∈ (1/3, 1) if d = 1. If w ∈ L2(Rd,B2−m dx) is such that ∇w ∈ L2(Rd,B dx),∫
Rd wB2−m dx = 0, then

I[w] ≥ 4αF[w] (12)

with α = 1. Additionally, under the center of mass condition∫
Rd

xwB2−m dx = 0 , (13)

then the inequality holds with α = 2− d (1−m).
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The value of α in Proposition 2 is optimal and corresponds to the spectral gap
of the linearized evolution operator L associated with (6), and to an improved
spectral gap under Condition (13) in the second case. In the first case, we recover
that inf I/F = inf I/F = 4, which means that the worst decay rate is achieved
in (8) in the asymptotic regime as t→ +∞. The eigenspace of L associated with
α = 1 corresponds to the equality case in (12) and determines the spectral gap.
See [26] for a description of the spectrum of L and [7] for an equivalence with the
setting of Proposition 2. Under Condition (13), an improved entropy – entropy
production inequality is obtained, at least for functions which are close enough
to the manifold of the Barenblatt functions.

Corollary 1 ([34,7,9]). Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/3, 1) if d = 1,
η = 2 (dm − d + 1) and χ = m/(266 + 56m). If

∫
Rd v dx = M,

∫
Rd x v dx = 0

and
(1− ε)B ≤ v ≤ (1 + ε)B (14)

for some ε ∈ (0, χ η), then

I[v] ≥ (4 + η)F [v] .

If v solves (6) with m ∈ (m1, 1) and an initial datum v0 with centred mass,
i.e., such that

∫
Rd x v0(x) dx = 0, then

∫
Rd x v(t, x) dx = 0 for any t ≥ 0 so that

w = (v − B)Bm−2 satisfies (13). If additionally v0 satisfies (14), then

F [v(t, ·)] ≤ F [v0] e−(4+η) t ∀ t ≥ 0 .

We have obtained an improved entropy – entropy production inequality and
an improved decay rate of F [v(t, ·)] by comparing the nonlinear free energy F
and the Fisher information I with their linearized counterparts F and I, and
by getting rid of the eigenspace corresponding to α = 1 in (12). The result of
Corollary 1 can be extended to m /∈ [m1, 1): see [6]. Under technical conditions,
better rates can be achieved in some cases as in [25]. One of the issues is that
Condition (14) is rather restrictive and determines only a small neighbourhood
of the set of the Barenblatt functions. Here we are going to take advantage of a
property of relative uniform convergence that goes back to [11]: Condition (14)
is satisfied by any solution v(t, ·) for t ≥ t? if the threshold time t? is taken large
enough. Based on results of [10,9], we have the following result.

Theorem 4 ([9,8]). Assume that m ∈ (m1, 1) if d ≥ 2, m ∈ (1/3, 1) if d = 1
and let ε ∈ (0, 1/2), small enough, and A > 0 be given. There exists an explicit
threshold time t? ≥ 0 such that, if v is a solution of (6) with nonnegative initial
datum v0 ∈ L1(Rd) satisfying

∫
Rd v0 dx =

∫
Rd B dx = M and

A[v0] = sup
r>0

r
d (m−mc)

(1−m)

∫
|x|>r

v0 dx ≤ A <∞ , (15)

and if B(t, ·) solves (5) with initial datum B, then

sup
x∈Rd

∣∣∣∣v(t, x)

B(x)
− 1

∣∣∣∣ ≤ ε ∀ t ≥ t? .
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Using the self-similar change of variables that transforms (5) into (6), we obtain
that a solution of (6) satisfies Condition (14) for t > t? for some threshold time
t? > 0 which explicitly depends on T . See [9] for details. Under Condition (15),
we have an improved decay rate for any t in the asymptotic time range [t?,+∞).

The next question is to find an improvement in the initial time layer [0, t?)
as well. A key ingredient is the carré du champ method for which we can refer
to [9, Chapter 2]. We learn for instance that for some strictly convex function ψ
with ψ(0) = 0, ψ′(0) = 0, there is an improved entropy – entropy production
inequality

I − 4F ≥ ψ(F) ≥ 0 ,

so that better decay rates can be expected if F is large, which is precisely what
can be expected in the initial time layer. In fact, a key estimate of the carré du
champ method is the simpler observation that

d

dt
I[v(t, ·)] ≤ − 4 I[v(t, ·)]

if v solves (6), which allows us to prove a backward in time estimate. Let us

define Q[v] := I[v]
F [v] and notice that, using (7), we have

d

dt
Q[v(t, ·)] ≤ Q[v(t, ·)]

(
Q[v(t, ·)]− 4

)
.

Lemma 1 ([9]). Assume that m > m1 and v is a solution to (6) with nonneg-
ative initial datum v0. If for some η > 0 and t? ≥ 0, we have Q[v(t?, ·)] ≥ 4 + η,
then

Q[v(t, ·)] ≥ 4 + ζ ∀ t ∈ [0, t?] with ζ :=
4 η e−4 t?

4 + η − η e−4 t?
.

In the subcritical range with m > m1, the first consequence of Lemma 1 is
an improved decay rate of the free energy for the solution of (6).

Corollary 2 ([9]). Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, and A > 0.
If v is a solution of (6) with nonnegative initial datum v0 ∈ L1(Rd) such that∫
Rd v0 dx = M,

∫
Rd x v0 dx = 0 and v0 satisfies (15), then there is an explicit

ζ > 0 such that
F [v(t, .)] ≤ F [v0] e− (4+ζ) t ∀ t ≥ 0 .

The constant ζ can be explicitly computed in terms of d, m and A using Corol-
lary 1, Theorem 4, and Lemma 1. The second consequence of Lemma 1 is a
stability result for the entropy – entropy production inequality, which reads as

I[v]− 4F [v] ≥ ζ

4 + ζ
I[v]

where the left-hand side is the deficit in (9), while the distance in the right-hand
side is measured by the Fisher information, which is a quantity that controls
strong norms.
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In the critical case m = m1 corresponding to the Sobolev inequality for d ≥ 3,
we also obtain a constructive stability result. Let g(x) := (1 + |x|2)−(d−2)/2 be
the Aubin–Talenti function such that g2

∗
= B.

Theorem 5 ([9]). Let d ≥ 3, A > 0, and p = 2∗/2. Then for any nonnegative
f ∈ Lp+1(Rd) such that ∇f ∈ L2(Rd) and |x| fp ∈ L2(Rd),∫

Rd

(1, x, |x|2) f2
∗
dx =

∫
Rd

(1, x, |x|2) g dx and sup
r>0

rd
∫
|x|>r

f2
∗
dx ≤ A ,

then we have

‖∇f‖2L2(Rd) − S2d ‖f‖
2
L2∗ (Rd) ≥ C

∫
Rd

∣∣(p− 1)∇f + fp∇g1−p
∣∣2 dx

for some explicit C > 0 which depends only on d and A.

Extending the subcritical result of Corollary 2 to the critical case uses the in-
troduction of a time delay, as shown in [9, Chapter 6]. On can also obtain a
stability result in the subcritical range m ∈ (m1, 1), that is, 1 < p < 2∗/2 for
Ineq. (10), but the statement is more delicate as several scales are involved. A
remarkable feature in Theorem 5 is that we measure the distance to a specific
Aubin–Talenti function and not to the manifold M .

Summing up, we have obtained a construction of an explicit stability result
using the fast diffusion equation and entropy methods based on a parabolic reg-
ularity theory made explicit, spectral estimates and various features of the carré
du champ method. However, estimates of the stability constants are way smaller
than the expected values of the optimal stability constants and are available only
under the restriction (15) on the tails of the functions, which is inherent to the
method, as one can prove that t? diverges if A→ +∞ in (15).

3 Explicit stability results for Sobolev and log-Sobolev
inequalities, with optimal dimensional dependence

In this section, we just state the main results and refer the reader to [28] for
detailed results and to [29] for a shorter introduction to the main tools. The
most important fact is that the method gives an explicit value to the constant
in the stability inequality (2), but again one can suspect that the lower bound
is not very good, even if it has an optimal dimensional dependence.

Theorem 6 ([28]). There is a constant β > 0 with an explicit lower estimate
which does not depend on d such that for all d ≥ 3 and all f ∈ H1(Rd) we have

‖∇f‖2L2(Rd) − Sd ‖f‖2L2∗ (Rd) ≥
β

d
inf
g∈M

‖∇f −∇g‖2L2(Rd) . (16)
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Using the inverse stereographic projection we can rewrite the result on Sd as

‖∇F‖2L2(Sd) −
1
4 d (d− 2)

(
‖F‖2L2∗ (Sd) − ‖F‖

2
L2(Sd)

)
≥ β

d
inf

G∈M (Sd)

(
‖∇F −∇G‖2L2(Sd) + 1

4 d (d− 2) ‖F −G‖2L2(Sd)

)
.

Here we take on Sd the uniform probability measure. Let v ∈ H1(Rn, dx) with
compact support, d ≥ n large enough and consider

ud(ω) = v
(

1
rd
ω1,

1
rd
ω2, . . . ,

1
rd
ωn

)
, rd =

√
d
2π

where ω = (ω1, ω2, . . . , ωd+1) ∈ Sd ⊂ Rd+1. If dγ = e−π |x|
2

dx denotes the
Gaussian measure on Rn, by taking the limit as d→ +∞, we obtain

lim
d→+∞

d
(
‖∇ud‖2L2(Sd) −

1
4 d (d− 2)

(
‖ud‖2L2(Sd) − ‖ud‖

2
Lp(Sd)

))
= ‖∇u‖2L2(Rn,dγ) − π

∫
Rn

|u|2 log

(
|u|2

‖u‖2L2(Rn,dγ)

)
dγ ,

where the right-hand side is the deficit in the Gaussian logarithmic Sobolev in-
equality of [40], which is equivalent to (11). We can also let d→ +∞ in (16). The
delicate part is to bound the coefficients (a, b, c) of the Aubin–Talenti functions
which minimize the distance in (2) uniformly with respect to d. Because of the
rescaling, the gradient term in the distance is lost and stability is measured only
by a L2(Rn, dγ) norm. See [28] for a detailed proof.

Corollary 3 ([28]). With β > 0 as in Theorem 6, we have

‖∇u‖2L2(Rn,dγ) − π
∫
Rn

|u|2 log

(
|u|2

‖u‖2L2(Rn,dγ)

)
dγ

≥ β π

2
inf

a∈Rd, c∈R

∫
Rn

|u− c ea·x|2 dγ .

The proof of Theorem 6 relies on three main steps.

1. A sequence of nonnegative functions built using the competing symmetries
of E. Carlen and M. Loss in [18], which alternate a Schwarz symmetric
decreasing rearrangement and a transformation which corresponds, up to
the stereographic projection, to a rotation on the sphere. This step reduces
the stability problem to a local problem, on a neighbourhood of M . We also
use a continuous Steiner symmetrization in the discussion of one of the cases
and an argument of [21].

2. A Taylor expansion with explicitly controlled remainder terms. To obtain
the d-dependence, one has to perform a delicate analysis which involves an
argument of [36].
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3. The result for sign-changing functions is deduced from the result for the
positive and negative parts by a convexity estimate.

For full details on the proof of Theorem 6, on has to refer to [28]. How much
is lost in the first two steps is unclear, and this is why a proof based, e.g., on
a fast diffusion equation would be a significant added value. There are several
results which complement Theorem 6 and Corollary 3. We know from [46] that
β < 4 d/(d + 4). The equality case in (2) written for the optimal value of κd is
achieved according to [47]. A stability result for the Hardy-Littlewood-Sobolev
inequality follows from the duality method of [16] and has been generalized in [20]
to cover various exponents. This result also proves an explicit stability estimate
for the fractional Sobolev inequality, which uses duality but otherwise follows
the very same lines of proof as in [28].

The case of the logarithmic Hardy-Littlewood-Sobolev inequality is also ob-
tained in [17] using duality with the Onofri inequality, whose explicit stability
has been obtained in [41] by other methods.

4 More explicit stability results for the logarithmic
Sobolev and Gagliardo-Nirenberg inequalities on Sd

Here the goal is to reconciliate the flow methods of Section 2 with stability
estimates without restrictions as in Section 3 and get estimate which may have
the right order of magnitude compared to the optimal stability constants. Let
us consider the family of subcritical Gagliardo-Nirenberg inequalities

‖∇F‖2L2(Sd) ≥ d Ep[F ] :=
d

p− 2

(
‖F‖2Lp(Sd) − ‖F‖

2
L2(Sd)

)
∀F ∈ H1(Sd, dµ)

(17)
for any p ∈ [1, 2)∪ (2, 2∗), with 2∗ := 2 d

d−2 if d ≥ 3 and 2∗ = +∞ if d = 1 or 2. If
d ≥ 3, the limit case p = 2∗ of (17) is the Sobolev inequality on the sphere. As
another limit case when p→ 2, we obtain the logarithmic Sobolev inequality on
the sphere∫

Sd
|∇F |2 dµ ≥ d E2[F ] :=

d

2

∫
Sd
F 2 log

(
F 2

‖F‖2L2(Sd)

)
dµ ∀F ∈ H1(Sd, dµ)

(18)
where dµ is the uniform probability on Sd. These inequalities were obtained
in [1,2,5]. While equality is always achieved by constant functions, the optimal
constant d can be identified with the first positive eigenvalue of the Laplace-
Beltrami operator on Sd. Let X1 be the corresponding eigenspace of spherical
harmonic functions and denote by Π1 the orthogonal projection onto X1. If
ϕ ∈ X1 and Fε = 1 + εϕ, a simple Taylor expansion shows that ‖∇Fε‖2L2(Sd) −
d Ep[Fε] = O(ε4), so that there is no hope to control the deficit from below by
the square of a distance based on usual norm, at least in the direction of X1.
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Theorem 7 ([12]). Let d ≥ 1 and p ∈ (1, 2∗). There is an explicit stability
constant Sd,p > 0 such that, for any F ∈ H1(Sd, dµ), we have∫

Sd
|∇F |2 dµ− d Ep[F ]

≥ Sd,p

(
‖∇Π1F‖4L2(Sd)

‖∇F‖2L2(Sd) + ‖F‖2L2(Sd)
+ ‖∇(Id−Π1)F‖2L2(Sd)

)
.

This results is a consequence of the stability analysis of [38], of explicit improve-
ments of (17) and (18) obtained for instance in [30,32] based on [24,31], which
involve a generalized carré du champ method for the flow

∂u

∂t
= u−p (1−m)

(
∆u+ (mp− 1) |∇u|

2

u

)
with exponents m ∈

[
m−(d, p),m+(d, p)

]
where

m±(d, p) :=
1

(d+ 2) p

(
d p+ 2±

√
d (p− 1)

(
2 d− (d− 2) p

))
,

and of spectral properties taken from the proof of [3]. As in Section 3 and with
the same notation, we can consider the large dimensional limit.

Theorem 8 ([13]). Let n ≥ 1 and u ∈ H1(Rn, dx) with compact support. For
any p ∈ (1, 2), we have

lim
d→+∞

d
(
‖∇ud‖2L2(Sd) −

d
2−p

(
‖ud‖2L2(Sd) − ‖ud‖

2
Lp(Sd)

))
= ‖∇u‖2L2(Rn,dγ) − 1

2−p

(
‖u‖2L2(Rn,dγ) − ‖u‖

2
Lp(Rn,dγ)

)
.

In Theorem 7 we have the satisfaction to obtain a stability result which distin-
guishes the X1 eigenspace, is based on a fast diffusion equation and does not
involve any restriction on the function space, but the estimate is not uniform as
p→ 2∗, as could be expected from Theorem 6.

There is still much more to understand, particularly concerning (18). In
Corollary 3, the stability of the Gaussian logarithmic Sobolev inequality is mea-
sured only by a L2(Rn, dγ) norm. It is known from [44,43] that an H1(Rn, dγ)
stability result cannot be expected without additional conditions. The quest for
optimal conditions is open but as an illustration, we can conclude with a last
result.

Theorem 9 ([14]). Let d ≥ 1. For any ε > 0, there is some explicit C > 1
depending only on ε such that, for any u ∈ H1(Rd, dγ) with∫

Rd

(1, x) |u|2 dγ = (1, 0) ,

∫
Rd

|u|2 e ε |x|
2

dγ <∞
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for some ε > 0, then we have

‖∇u‖2L2(Rd,dγ) ≥
C

2

∫
Rd

|u|2 log |u|2 dγ .

Moreover, if u is compactly supported in a ball of radius R > 0, we know from [48]

that with C = 1 + C?(K?)−1
1+R2 C?(K?)

, C?(K) = 1 + 1
432K and K? := max

(
d, (d+1)R2

1+R2

)
.

Here we use the heat flow case corresponding to the limit m = 1 of the fast dif-
fusion flow. The proof is based on a stability result of [37] for a restricted class
of functions, which contains the solution of the heat flow after an initial time
layer recently determined in [19]. For a compactly supported initial datum, we
obtain a very explicit expression using a result of [48]. One can certainly object
that 1/432 ≈ 0.00231481 does not provide us with a glorious improvement of
the constant, but this is definitely a step in the understanding of explicit sta-
bility results and, as a consequence, better estimates of decay rates in nonlinear
evolution problems.
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