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Foreword

This Memoir is devoted to constructive stability results in a class of Gagliardo-
Nirenberg-Sobolev inequalities. Beyond optimal constants and optimal functions, it
is a classical question in the study of functional inequalities to ask how to measure
the distance to the set of optimal functions in terms of the deficit functional, that
is, the difference of the two terms in the inequality with the optimal constant.

A famous example is provided by Sobolev’s inequalities. In 1991, G. Bianchi
and H. Egnell proved that the difference of the two terms in Sobolev’s inequalities is
bounded from below by a distance to the manifold of the Aubin-Talenti functions.
They argued by contradiction and gave a very elegant although not constructive
proof. Estimating the stability constant and giving a constructive proof has been
a challenge before this memoir and another more recent result.

Entropy methods and nonlinear flows for various functional inequalities are
popular in the context of mass transportation and abstract gradient flow theories.
They also relate optimal constants in functional inequalities with rates of decay
and convergence of the solutions of the flow to self-similar Barenblatt solutions.
Here we focus on Gagliardo-Nirenberg-Sobolev inequalities on the Euclidean space
associated with the fast diffusion flow, which have Sobolev, Onofri and logarithmic
Sobolev inequalities as limit cases.

Proving stability amounts to establishing, under constraints compatible with
the nonlinear flow, a new version of the entropy – entropy production inequality with
an improved constant. This is a refined version of the nonlinear carré du champ
method based on some ideas of D. Bakry and M. Emery with a few additional
ingredients. During an initial time layer, we obtain a nonlinear improvement of
the convergence rate to the Barenblatt solutions based on a backward in time
estimate. A constructive Harnack inequality based on J. Moser’s methods allows
us to prove a fully quantitative global Harnack Principle for the nonlinear flow and
quantify the threshold time after which the solution of the evolution problem enters
a neighborhood of the optimal functions in a relative uniform norm. From there on,
we have an asymptotic time layer improvement of the rates as a consequence of an
improved Hardy-Poincaré inequality based on spectral analysis. Properly rewritten
so that Barenblatt solutions are transformed into Aubin-Talenti type functions,
the improved entropy – entropy production inequality which measures the rate of
convergence to equilibrium becomes a stability estimate where the distance to the
manifold of optimal functions is measured either by a relative entropy or by a
nonlinear relative Fisher information.

The whole method relies on entropies, which suppose a finite second moment,
and on a global Harnack Principle, which holds if and only if the tails of the solutions
have a certain decay. These limitations are the price we have to pay in order to get
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a constructive stability estimate with an explicit constant. All functions with finite
entropy and sufficient decay, including of course all smooth compactly supported
functions, are covered by our assumptions. This is the first result in such a large
function space in which explicit stability results with a strong notion of distance
and constructive constants are obtained.

Beyond sharp functional inequalities, the issue of stability is the next step. The
purpose of analysis in mathematics is to compare quantities which, in the context
of partial differential equations, are based on functions or their derivatives. With-
out explicit estimates on the constants, it is to some extend useless, particularly
in view of applications for scientific computing or for predictions on models used
in other areas of science, for instance in physics or biology. From a purely math-
ematical point of view, providing explicit estimates, especially in the perspective
of stability questions, gives a far more better picture of the variational structure
of functional inequalities than any argument by contradiction or based on a com-
pactness method. This also puts in evidence phenomena that cooperate, like the
role of modes associated with higher order eigenvalues in asymptotic regimes or
purely nonlinear properties in improved entropy - entropy production inequalities
away from optimal functions of the standard inequalities. As far as decay rates are
concerned, it is of course crucial for applications to have explicit estimates.
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Abstract

We start by discussing stability results in Gagliardo-Nirenberg-Sobolev in-
equalities from a variational point of view. Using a non scale invariant form of the
inequalities, which is equivalent to entropy - entropy production inequalities arising
in the study of large time asymptotics of solutions to fast diffusion equations, we
first establish non constructive estimates where the distance to the manifold of op-
timal functions is measured by a relative Fisher information. When the tails of the
initial data have a certain decay, solutions to the fast diffusion equation converge
to self-similar Barenblatt functions in the strong topology of uniform convergence
in relative error after some finite time. This threshold time plays a fundamental
role in obtaining a constructive stability result. Up to the threshold time, that is,
in the initial time layer, the carré du champ method provides improved decay rates
of the relative entropy. After the threshold time, in the asymptotic time layer, im-
proved rates of decay can be deduced from improved spectral gap estimates in the
linearized problem, under appropriate orthogonality conditions. In the subcritical
regime, these orthogonality conditions follow from an appropriate choice of the co-
ordinates which amount to fix the center of mass at the origin. In the critical case,
that is for Sobolev’s inequality, scale invariance has to be taken into account. This
can be rephrased as a strategy for computing the relative entropy with respect to
a notion of best matching self-similar Barenblatt functions in place of the standard
approach where entropy is defined relatively to a fixed family of self-similar solu-
tions. Best matching is adapted to nonlinear evolution equations and degenerate
in the asymptotic regime into more standard orthogonality conditions. With this
method, we provide fully constructive stability estimates, to the price of a small
restriction of the functional space which is inherent to the method.
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Introduction

The purpose of this memoir is to establish a quantitative and constructive
stability result for a class of Gagliardo-Nirenberg-Sobolev inequalities. We develop
a new strategy in which the flow of the fast diffusion equation is used as a tool: a
stability result in the inequality is equivalent to an improved rate of convergence
to equilibrium for the flow. In both cases, the tail behaviour of the functions
plays a key role. The regularizing effect of the parabolic flow allow us to connect
an improved entropy - entropy production inequality during the initial time layer
to spectral properties of a suitably linearized problem which is relevant for the
asymptotic time layer. The key issue is to determine a threshold time between the
two regimes as a consequence of a global Harnack Principle and a uniform relative
convergence towards Barenblatt self-similar solutions of the flow. Altogether, the
stability in the inequalities is measured by a deficit functional which controls in
strong norms the distance to the manifold of optimal functions.

The fast diffusion equation determines the family of inequalities that we con-
sider, which includes Sobolev’s inequality as an endpoint, and dictates the func-
tional setting and the strategy, including for results based on variational methods.
We extend the Bianchi-Egnell stability result in the subcritical range, but even in
the critical case of Sobolev’s inequality, we provide a new stability result, with a
strong norm that differs from the usual ones and arises from the entropy methods.
The main advantage compared to pure variational approaches is that we have a
completely constructive method, with elementary estimates of the constants. This
comes to the price of a slight restriction on the functional space (uniform integral
condition on the tail behaviour of the functions) which is intrinsic to the global Har-
nack Principle. The critical case of Sobolev’s inequality is handled as a limit case,
which requires an additional control of the convergence needed to control dilations.

Apart from stability results which are entirely new, some of the other results
have already appeared, but we give new or simplified proofs for most of our state-
ments. Except for the Pólya–Szegő principle, we rely only on elementary tools and
present a large and consistent picture of the Gagliardo-Nirenberg-Sobolev inequal-
ities in connection with entropy methods and fast diffusion equations.

Let us give a general overview of our strategy for proving stability, outline of
the contents of the chapters and state some key results. We consider the Gagliardo-
Nirenberg-Sobolev interpolation inequalities

‖∇f‖θ2 ‖f‖
1−θ
s ≥ C ‖f‖t

where ‖f‖q denotes the Lq norm of f with respect to Lebesgue’s measure on the
Euclidean space Rd, d ≥ 1. The exponents s and t are such that 1 < s < t,
and t ≤ 2 d/(d − 2) if d ≥ 3. By scaling invariance, the exponent θ is uniquely
determined, such that (d − 2) θ/2 + d (1 − θ)/s = d/t. We assume that C is the

1



2 INTRODUCTION

best possible constant in the inequality, for all smooth functions with compact
support, and by a standard completion argument, in the natural Sobolev space.
Existence of optimal functions, i.e., of functions which realize the equality case
in the inequality, is a classical result of the Calculus of Variations. Homogeneity,
invariance under translations and dilations mean that there is a whole manifold M
of optimal functions. It is a well known issue to prove stability results like

‖∇f‖2 θ2 ‖f‖2 (1−θ)
s − C ‖f‖2t ≥ κ inf

g∈M
d2(f, g)

where κ is a positive constant and d(f, g) is a notion of distance. For instance,
in the critical case of Sobolev’s inequality corresponding to t = 2 d/(d − 2), with
d ≥ 3 and θ = 1 (so that ‖f‖s plays no role), G. Bianchi and H. Egnell proved
in the celebrated paper [BE91] that the stability inequality holds with d(f, g) =
‖∇f −∇g‖2 while M is the manifold of the Aubin-Talenti functions generated
from the profile g(x) =

(
1 + |x|2

)−(d−2)/2 by the invariances of the inequality.
Such a result is said quantitative because the dependence on d is explicit, but
not constructive as the constant κ is obtained by a compactness argument and no
estimate of κ can be deduced in this approach. Our purpose is to give constructive
estimates, which requires a completely different approach. We use entropy methods
and the fast diffusion equation for this purpose.

A first restriction is that the exponents s and t have to satisfy the condition
t = 2 (s−1) = 2 p for some p > 1, with p ≤ d/(d−2) if d ≥ 3. Under this condition,
it has been shown in [DPD02] that M is (d + 2)-dimensional manifold generated
by

g(x) =
(
1 + |x|2

)− 1
p−1 ∀x ∈ Rd

using multiplications, translations and scalings. The Gagliardo-Nirenberg-Sobolev
inequality becomes

(GNS) ‖∇f‖θ2 ‖f‖
1−θ
p+1 ≥ CGNS ‖f‖2 p .

It is equivalent to the entropy - entropy production inequality

J [f |g] ≥ 4 E [f |g]

for nonnegative functions f , where

E [f |g] :=
2 p

1− p

∫
Rd

(
fp+1 − gp+1 − 1+p

2 p g
1−p (f2p − g2p

))
dx

is the relative entropy of f with respect to g ∈M, and

J [f |g] :=
p+ 1

p− 1

∫
Rd

∣∣(p− 1)∇f + fp∇g1−p∣∣2 dx

is a nonlinear relative Fisher information. There are various ways to measure
the distance which separates an arbitrary function f from M and it turns out to
be particularly convenient to use E [f |gf ] where gf is determined by the moment
condition

(MC)
∫
Rd

(
1, x
)
f2p dx =

∫
Rd

(
1, x
)
g2p dx

and, although nonlinear, E [f |gf ] is a good notion of distance as, for instance, it
controls

∥∥|f |2p − |gf |2p∥∥1
by the Csiszár-Kullback inequality. With this specific
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choice of g = gf , we aim at proving an improved entropy - entropy production
inequality

(E) J [f |g]− 4 (1 + ζ) E [f |g] ≥ 0

for some ζ > 0, which is equivalent to

J [f |g]− 4 E [f |g] ≥ κJ [f |g]

with κ = ζ/(1 + ζ). Also it is not an H1
0(Rd) measure of the distance to M as

in [BE91], the right-hand side of this new inequality provides us with a stabil-
ity result, which has a counterpart for (GNS). In Chapter 1, we review exist-
ing related stability results and give a proof of existence of κ > 0 by variational
(concentration-compactness) methods. Measuring stability by the relative Fisher
information J [f |g] is an entirely new approach. However, at this stage, we have no
estimate of κ.

So far, we did not make use of any nonlinear flow nor of entropy methods. Let
us explain how fast diffusion equations enter into play. In self-similar variables,
the fast diffusion equation, posed on Rd, d ≥ 2, with exponent m ∈ [m1, 1) and
m1 := 1− 1/d, is

(FDE)
∂v

∂t
+∇ ·

(
v∇vm−1

)
= 2∇ · (x v) , v(t = 0, ·) = v0 .

By applying this flow to the relative entropy

F [v] :=
1

m− 1

∫
Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

where B is the Barenblatt function

B(x) :=
(
1 + |x|2

) 1
m−1 ∀x ∈ Rd ,

we obtain by a standard computation that a solution v of (FDE) satisfies

d

dt
F [v(t, ·)] = −I[v(t, ·)]

for the relative Fisher information functional I defined by

I[v] :=
m

1−m

∫
Rd
v
∣∣∇vm−1 −∇Bm−1

∣∣2 dx .

It is a key step to recognise that we are dealing with the same quantities as in the
variational approach. With

p =
1

2m− 1
⇐⇒ m =

p+ 1

2 p
, v = f2p , B = g2p

and in particular with the condition 1 < p ≤ d/(d− 2), d ≥ 3, which is equivalent
to m1 ≤ m < 1, it turns out that

F [v] = E [f |g] and I[v] = J [f |g] .

As observed in [DPD02], (GNS) with sharp constant is equivalent to the decay
estimate

F [v(t, ·)] ≤ F [v0] e−4t ∀ t ≥ 0
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if v solves (FDE). Our overall strategy is now to consider E [f |gf ] with gf as in (MC),
which is equivalent to specify that f is such that gf = g at least at t = 0 and prove
that F [v(t, ·)] decays with the rate

(R) F [v(t, ·)] ≤ F [v0] e−(4+ζ)t ∀ t ≥ 0

using the properties of (FDE). In a word, we look for improved decay rates of the
entropy in order to establish an improved entropy - entropy production inequality.
Details are given in Chapter 2.

Why is it that we can expect to obtain an improved decay rate of F [v(t, ·)] ? Let
us start with the asymptotic regime as t → +∞. It is of standard knowledge, see
for instance [Váz03], that solutions to (FDE) converge to B in strong topologies.
Hence, it makes sense to consider the Taylor expansions of the entropy and the
Fisher information around B. Let us consider the two quadratic forms

F[h] = lim
ε→0

ε−2 F
[
B + εB2−m h

]
and I[h] = lim

ε→0
ε−2 I

[
B + εB2−m h

]
.

By a Hardy-Poincaré inequality detailed in Chapter 2, we have

I[h] ≥ ΛF[h]

with Λ = 4 if
∫
Rd hB

2−m dx = 0 and Λ = 4
(
1 + d (m − m1)

)
if, additionally,

we assume that
∫
Rd xhB

2−m dx = 0. In other words, the optimal decay rate of
F [v(t, ·)] is characterized in the asymptotic regime as t→ +∞ by the spectral gap
Λ = 4. Under the additional moment condition (MC) (on the center of mass), we
obtain ζ = Λ−4 > 0 ifm > m1. Recall thatm > m1 means p < d/(d−2) and covers
the whole subcritical range in (GNS). Altogether, we have an improved decay rate
on an asymptotic time layer [T?,+∞), that has been explored in [BBD+09] and
subsequent papers. An important feature is that the estimates on Λ are explicit
but require strong regularity conditions.

Under the additional moment condition (MC), the nonlinear generalization of
the carré du champ method of D. Bakry and M. Emery shows that an improved
entropy - entropy production inequality holds whenever F [v(t, ·)] is bounded away
from 0, as shown in [DT13], and provides an explicit estimate, which is also given
in Chapter 2. This means that there is an improved decay rate on the initial time
layer [0, T?], which is also explicit. However, the precise value of the improvement
ζ depends on the threshold time T?, which has to be carefully estimated in terms of
the initial datum v0. In Chapter 3, we follow J. Moser’s original ideas in [Mos64,
Mos71] for proving regularity estimates for solutions of linear parabolic equations
and establish explicit constants which are not available from the literature, with new
expressions and simplified proofs of the Harnack inequality and the corresponding
Hölder continuity estimates. In Chapter 4, these results are applied to the fast
diffusion equation

∂u

∂t
= ∆um , u(t = 0, ·) = u0 ≥ 0 ,

which is equivalent to (FDE) up to a change of variables. By a global Harnack
Principle, we obtain the uniform convergence in relative error of the solutions
to (FDE), with an explicit rate:
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Theorem A. Assume that d ≥ 2, m ∈ [m1, 1). If v solves (FDE) for some
initial datum v0 ≥ 0 such that

∫
Rd v0 dx =

∫
Rd B dx, and

‖v0‖Xm := sup
R>0

R
1+d (m−m1)

1−m

∫
|x|>R

v0(x) dx <∞ ,

then there exists an explicit ε? such that, for any ε ∈ (0, ε?),

sup
x∈Rd

∣∣∣ v(t, x)

B(t, x)
− 1
∣∣∣ ≤ ε ∀ t ≥ T? := C? ε

−a .

Here ε? and a > 0 are numerical constants which depend only on d and m while C?
depends also on ‖v0‖Xm . We refer to Theorem 4.1 and Proposition 4.12 for a more
detailed statement which also covers the case d = 1. Theorem A is a fully construc-
tive version of various earlier qualitative results that can be found in [BV06, BS20].
Notice that we have a simplified form using Corollary 7.4, which allows us to control
F [v0] in terms of ‖v0‖Xm . Chapters 4 and 5 are at the core of our method: we use
regularization properties of the fast diffusion equation, made fully quantitative, to
control the threshold time T?. This induces the limitation ‖v0‖Xm < ∞, which is
discussed in Chapter 7 and is the main limitation of our approach.

Summarizing, the combination of the improved decay rates in the initial time
layer and in the asymptotic time layer based on the explicit estimate of the threshold
time T? of Theorem A establishes (R) for some explicit ζ > 0. Since (R) holds for
any t ≥ 0 and in particular at t = 0, this proves an improved entropy - entropy
production inequality (E) in the subcritical range. In Chapter 5, we establish the
following result (see Theorem 5.1 for a refined statement).

Theorem B. Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1. Then

I[v] ≥ (4 + ζ)F [v]

for any nonnegative function v ∈ L1(Rd) such that ‖v‖Xm < ∞,
∫
Rd v dx =∫

Rd B dx,
∫
Rd x v dx = 0, for some ζ depending only on ‖v‖Xm , m and d.

When d ≥ 3, in the critical case m = m1 corresponding to p = d/(d − 2),
that is, when (GNS) is Sobolev’s inequality, our result fails because we have no
more an improved spectral gap in the Hardy-Poincaré inequality if we assume only
that

∫
Rd (1, x)hB2−m dx = (0, 0). This is because Λ = 4

(
1 + d (m−m1)

)
= 4. To

restore an improved spectral gap, one has to impose the additional constraint that∫
Rd |x|

2 hB2−m dx = 0. This is not as easy as for the lower order moments, because
the second moment is not conserved by (FDE): if v is a solution, then

d

dt

∫
Rd
|x|2 v(t, x) dx = 2 d

1−m
m

∫
Rd
vm(t, x) dx− 4

∫
Rd
|x|2 v(t, x) dx .

This differential equation does not have a simple, explicit expression. However, we
overcome this problem by using a different relative entropy E [f |gf ], where gf is the
best matching function in M in the sense of relative entropy, that is,

E [f |gf ] = min
g∈M
E [f |g] ,

where gf is uniquely determined by the condition∫
Rd

(
1, x, |x|2

)
f2p dx =

∫
Rd

(
1, x, |x|2

)
g2p dx .
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Notice that we have added a condition on the second moment of f2p. In terms
of quantities related to the flow, we have ming∈M E [f |g] = Fλ[v] where Fλ[v] :=

1
m−1

∫
Rd
(
vm − Bmλ −mB

m−1
λ (v − Bλ)

)
dx is the relative entropy for the fast diffu-

sion equation taken with respect to the best matching Barenblatt function Bλ(x) =

λ−d/2 B
(
x/
√
λ
)
, which is such that∫

Rd
|x|2Bλ(x) dx =

∫
Rd
|x|2 v(t, x) dx ,

and it involves a scaling parameter λ = λ(t) which is not explicit. However, in
Chapter 6, we are able to find estimates on λ(t) such that a refined version of the
relative entropy, namely the relative entropy of v with respect to best matching
Barenblatt function at any time t ≥ 0, can be used. In the asymptotic regime
as t → +∞, we gain an improved Hardy-Poincaré inequality, which guarantees an
improved entropy - entropy production inequality and allows us to extend the result
of Theorem B to the critical case.

The improvements in the entropy formulation can be recast into the framework
of the functional inequality (GNS). Our main stability results of Chapters 5 and 6
can be summarized as follows. Let us define the deficit functional by

δ[f ] := (p− 1)2 ‖∇f‖22 + 4 d−p (d−2)
p+1 ‖f‖p+1

p+1 −KGNS ‖f‖2 p γ2 p

with γ = d+2−p (d−2)
d−p (d−4) and KGNS chosen so that δ[g] = 0. Up to a scaling, δ[f ] ≥ 0

is equivalent to (GNS) and KGNS can be computed in terms of CGNS.

Theorem C. Let d ≥ 3 and assume that 1 < p ≤ d/(d− 2), or d = 1, 2 and
p ∈ (1,+∞). For any f ∈ L2p(Rd) with ∇f ∈ L2(Rd) such that

A := sup
r>0

r
d−p (d−4)

p−1

∫
|x|>r

|f |2p dx <∞ ,

we have the estimate

δ[f ] ≥ κ inf
ϕ∈M

∫
Rd

∣∣(p− 1)∇f + fp∇ϕ1−p∣∣2 dx

for some explicit positive constant κ which depends only on d, p, ‖f‖2p, A, and
takes positive values on M.

In the right-hand side of the stability estimate, the exponent is optimal, as will
be discussed in Section 5.3, point (ii). More detailed statements can be found
in Corollary 5.4 and Theorem 6.1. Notice that the critical case p = d/(d − 2)
corresponding to Sobolev’s inequality is covered, thus providing a stability estimate
with an explicit stability constant. The parabolic equation (FDE) is finally no
more than a technical tool which allows us to relate an initial datum v0 = |f |2p
to an asymptotic solution v(t, ·) satisfying a spectral gap property as t → +∞.
Controlling the threshold time T? however requires the property that ‖v0‖Xm is
finite. While this is clearly a restriction due to the method, we emphasize that a
stability result based on the relative entropy for measuring the distance toM cannot
be true without an assumption of uniform boundedness of the second moment. This
restriction and the limitations of our method are discussed in Chapter 7.
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CHAPTER 1

Gagliardo-Nirenberg-Sobolev inequalities by
variational methods

This chapter is devoted to the study of a family of Gagliardo-Nirenberg-Sobolev
inequalities which contains the classical Sobolev inequality as an endpoint. We give
a self-contained presentation of various results based on the identification of all
optimal functions. Our goal is to consistently collect and expose those results, for
which we claim no originality, but with some new proofs. We also include some
considerations on stability, which motivate the whole memoir. In this chapter,
we rely only on classical methods of the Calculus of Variations and tools of the
concentration-compactness method. Except for standard symmetrization and reg-
ularity results, we put an effort in using only elementary techniques and keep the
proofs as self-contained as possible. Sources and references to further results or
alternative methods are collected at the end of the chapter.

1.1. Gagliardo-Nirenberg-Sobolev inequalities

1.1.1. A one-parameter family of inequalities. In this memoir, we con-
sider the family of Gagliardo-Nirenberg-Sobolev inequalities given by

(1.1) ‖∇f‖θ2 ‖f‖
1−θ
p+1 ≥ CGNS(p) ‖f‖2p ∀ f ∈ Hp(Rd) .

The invariance of (1.1) under dilations determines the exponent

(1.2) θ =
d (p− 1)(

d+ 2− p (d− 2)
)
p
,

and the space Hp(Rd) is defined as the completion of the space of infinitely differ-
entiable functions on Rd with compact support, with respect to the norm

f 7→ (1− θ) ‖f‖p+1 + θ ‖∇f‖2 .

Norms are defined by ‖f‖q =
(∫

Rd |f |
q dx

)1/q for any q > 1 and ‖f‖∞ denotes the
L∞(Rd) norm. We shall say that the exponent p is admissible if

p ∈ (1,+∞) if d = 1 or 2 , p ∈ (1, p?] if d ≥ 3 with p? := d
d−2 .

In the limit case where p = p?, d ≥ 3 for which θ = 1, we are left with the
Beppo-Levi space (see [DL54])

Hp?(Rd) :=
{
f ∈ L2 p?(Rd) : |∇f | ∈ L2(Rd)

}
.

9
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1.1.2. Optimality. Let us consider the manifold of the Aubin-Talenti func-
tions

M :=
{
gλ,µ,y : (λ, µ, y) ∈ (0,+∞)× R× Rd

}
where gλ,µ,y(x) := λ

d
2p µ

1
2p g
(
λ (x− y)

)
with the convention µq = |µ|q−1 µ if µ < 0

and

(1.3) g(x) =
(
1 + |x|2

)− 1
p−1 ∀x ∈ Rd .

Strictly speaking, Aubin-Talenti functions correspond only to the critical case p =
p?, but we shall use this denomination also in the subcritical case p < p?. The com-
plete statement on Gagliardo-Nirenberg-Sobolev inequalities (1.1) goes as follows.

Theorem 1.1. Assume that d ≥ 1 is an integer and let p be an admissible
exponent. Then equality case in (1.1) is achieved if and only if f ∈ M. As a
consequence, the optimal constant is

CGNS(p) =

(
4 d
p−1 π

) θ
2 (2 (p+1))

1−θ
p+1

(d+2−p (d−2))
d−p (d−4)

2 p (d+2−p (d−2))

Γ
(

2 p
p−1

)− θd
Γ
(

2 p
p−1 −

d
2

) θ
d

.

1.1.3. Related inequalities. Inequalities (1.1) have various interesting lim-
its. First of all, if d ≥ 3, the case p = p? is simply Sobolev’s inequality

(1.4) ‖∇f‖2 ≥ Sd ‖f‖2 p? ∀ f ∈ Hp?(Rd) ,

where

Sd = CGNS(p?) =
√
π d (d− 2)

(
Γ
(
d
2

)
Γ (d)

)1
d

is the optimal constant in Sobolev’s inequality. The other classical expression

S2
d =

1

4
d (d− 2)

2
2
d π1+ 1

d

Γ
(
d+1

2

) 2
d

=
1

4
d (d− 2) |Sd| 2d

can be easily recovered using the duplication formula Γ(d2 ) Γ
(
d+1

2

)
= 21−d√π Γ(d).

If d = 2, another interesting limit endpoint is the Euclidean Onofri inequality∫
R2

eh−h̄ dx
π (1+|x|2)2

≤ e 1
16π

∫
R2 |∇h|

2 dx where h̄ =

∫
R2

h(x) dx
π (1+|x|2)2

,

that can be recovered by taking the limit in (1.1) as p→ +∞ of

fp(x) := g(x)
(

1 + 1
2 p (h(x)− h̄)

)
.

The last remarkable endpoint is the limit as p → 1. We obtain the Euclidean
logarithmic Sobolev inequality in scale invariant form

d

2
log

(
2

π d e

∫
Rd
|∇f |2 dx

)
≥
∫
Rd
|f |2 log |f |2 dx

for any function f ∈ H1(Rd, dx) such that
∫
Rd |f |

2 dx = 1, which is probably better
known in the non-scale invariant form, or Euclidean logarithmic Sobolev inequality,∫

Rd
|∇f |2 dx ≥ 1

2

∫
Rd
|f |2 log

(
|f |2

‖f‖22

)
dx+

d

4
log
(
2π e2

) ∫
Rd
|f |2 dx

for any function f ∈ H1(Rd, dx) \ {0}.
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1.2. An elementary proof of the inequalities

1.2.1. Sobolev’s inequality in a nutshell. Many proofs of Sobolev’s in-
equality (1.4) can be found in the literature. Here is a sketch of a proof which
is of particular interest for the general strategy of this memoir. Some details on
regularity and the justification of the boundary conditions are omitted, which can
be recovered by considering smooth and compactly supported functions and then
by arguing by density.

1.2.1.1. Schwarz symmetrization. The Schwarz symmetrization of a nonnega-
tive measurable function f on Rd such that |{f > µ}| <∞ for all µ > 0 is defined
as

f∗(x) =

∫ ∞
0

1{f>µ}∗(x) dµ ,

where
{f > µ}∗ =

{
x ∈ Rd; Ωd|x|d < |{f > µ}|

}
,

Ωd being the volume of the unit ball. The function f∗ is nonincreasing, radial and
it has the property that ∫

Rd
|f∗|q dx =

∫
Rd
|f |q dx

for all q > 0. The Pólya–Szegő principle asserts that, for any nonnegative measur-
able function f on Rd such that |{f > µ}| <∞ for all µ > 0, if

∫
Rd |∇f |

2 dx <∞,
then ∫

Rd
|∇f∗|2 dx ≤

∫
Rd
|∇f |2 dx .

Using
∫
Rd |∇f |

2 dx =
∫
Rd
∣∣∇|f |∣∣2 dx, it is then clear that the proof of (1.4) can

be reduced to nonnegative radial nonincreasing functions on Rd. By density, it is
enough to prove that∫ ∞

0

|f ′(r)|2 rd−1 dr ≥ S2
d |Sd−1|−

2
d

(∫ ∞
0

|f(r)|
2 d
d−2 rd−1 dr

) d−2
d

for nonincreasing functions f ∈ C1(0,+∞).

1.2.1.2. Equivalent formulations. With the Emden-Fowler transformation

f(r) = r−
d−2
2 g(log r) ,

the problem is reduced to

(1.5)
∫
R
|g′(s)|2 ds+ (d−2)2

4

∫
R
|g(s)|2 ds ≥ S2

d |Sd−1|−
2
d

(∫
R
|g(s)|

2 d
d−2 ds

) d−2
d

for a C1 function g of s ∈ (−∞,+∞) which vanishes at infinity. By homogeneity,
there is no restriction in assuming that

∫
R |g(s)|2 ds = 1. With the change of

variables and unknown function

z(t) =

∫ t

−∞
|g(s)|2 ds and h(z(t)) = |g(t)|2 ,
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the new variable z is now defined on the interval [0, 1] with h(0) = 0 and h(1) = 0
and the inequality is reduced to

(1.6)
∫ 1

0

|h′(z)|2 dz + (d− 2)2 ≥ 4 S2
d |Sd−1|−

2
d

(∫ 1

0

|h(z)|
2
d−2 dz

)d−2
d

.

This last inequality, with a non optimal constant, follows from

0 ≤ h(z) ≤
∫ z

0

|h′(t)| dt ≤
√
z

(∫ 1

0

|h′(z)|2 dz

)1
2

so that (∫ 1

0

|h(z)|
2
d−2 dz

)d−2
d

≤
(
d−2
d−1

)d−2
d

(∫ 1

0

|h′(z)|2 dz

)1
d

.

1.2.1.3. Existence and uniqueness of an optimal function. The existence of an
optimal function in (1.6) is a consequence of the compactness in the Arzelà-Ascoli
theorem (see for instance [Rud91, p. 394]), since any bounded sequence in H1

0 (0, 1)
is equicontinuous. Coming back to the equivalent formulation (1.5), we also know
that there is an optimal nonnegative function g ∈ C1 ∩ H1(R), which solves the
Euler-Lagrange equation

(1.7) − g′′ + (d−2)2

4 g = g
d+2
d−2

where, using the homogeneity of (1.5) again, we assume now that

S2
d

∣∣Sd−1
∣∣− 2

d

(∫
R
|g(s)|

2 d
d−2 ds

)− 2
d

= 1 .

This problem is of course invariant under translation, but we know from the condi-
tion that the H1(R)-norm is finite that lims→±∞ g(s) = 0 and lims→±∞ g′(s) = 0,
so that there is a maximum point for some s0 ∈ R. At such a point, we have
g(s0) = g0 > 0 and g′(s0) = 0. By multiplying (1.7) by g′(s) and integrating
from −∞ to s we find that

−|g′(s)|2 + (d−2)2

4 |g(s)|2 − d−2
d |g(s)|

2 d
d−2 = C ∀ s ∈ R .

for some constant C. After taking into account the limit as s→ −∞, we learn that
C = 0. As a consequence, this determines g(s0) = g0 as the unique positive root,
i.e.,

g0 =
(

1
4 d (d− 2)

) d−2
4 .

In order to complete the proof, we notice that (1.7) has a unique solution with
maximum point at s = s0. On the other hand, it is easy to check that for a unique
choice of the positive parameters a and b, the function

g(s) = a cosh(b s)−
2
d−2 ∀ s ∈ R

solves (1.7) with s0 = 0. This completes this elementary proof of Sobolev’s inequal-
ity (1.4) and the computation of the optimal constant. The only non-elementary
point of the proof is of course the Pólya–Szegő principle.

The above scheme is interesting in the case of radial functions, but also applies
to functions on the half-line in presence of weights. After symmetrization, the
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fact that d is an integer plays no role. As a consequence, for any real number
n ∈ (2,+∞), we can write that the inequality (with optimal constant)∫ ∞

0

|f ′(r)|2 rn−1 dr ≥ 1

4
n (n− 2)

(
π Γ
(
n
2

)
Γ
(
n+1

2

)) 2
n
(∫ ∞

0

|f(r)|
2n
n−2 rn−1 dr

)n−2
n

holds for any f ∈ C1(R+). Moreover, equality is achieved if and only if f(r) =
(1 + r2)−(n−2)/2, up to a multiplication by a constant and a dilation.

1.2.2. Existence of an optimal function in the subcritical range.

1.2.2.1. Non-scale invariant Gagliardo-Nirenberg-Sobolev inequalities. Inequal-
ity (1.1) can also be written in non-scale invariant form as

(1.8) (p− 1)2 ‖∇f‖22 + 4
d− p (d− 2)

p+ 1
‖f‖p+1

p+1−KGNS ‖f‖2pγ2p ≥ 0 ∀ f ∈ Hp(Rd)

where

(1.9) γ =
d+ 2− p (d− 2)

d− p (d− 4)
.

According to [DT16b, Section 4.1], the best constant KGNS in (1.8) is related with
the optimal constant CGNS in (1.1) as follows.

Lemma 1.2. Assume that d ≥ 1 is an integer and let p be an admissible expo-
nent. Then (1.8) holds with optimal constant

(1.10) KGNS = C(p, d) C2 p γ
GNS

where γ is given by (1.9) and C(p, d) is an explicit positive constant given by

(1.11) C(p, d) = c(p, d)

(
(p− 1)θ

(
4 d−p (d−2)

p+1

) 1−θ
p+1

)2 p γ

where c(p, d) =
(
d
2

p−1
d−p (d−2)

)2
d−p (d−2)
d−p (d−4)

+
(

2
d
d−p (d−2)

p−1

) d (p−1)
d−p (d−4)

.

Let us define the deficit functional

(1.12) δ[f ] := (p− 1)2 ‖∇f‖22 + 4
d− p (d− 2)

p+ 1
‖f‖p+1

p+1 −KGNS ‖f‖2pγ2p .

Proof. With a = 2 − d + d/p and b = d (p − 1)/(2 p), the optimization with
respect to σ > 0 of h(σ) := σaX + σ−b Y shows that

h(σ) ≥ c(p, d)X
b
a+b Y

a
a+b where c(p, d) :=

(
b
a

) a
a+b +

(
a
b

) b
a+b ,

with equality if and only if σ =
(
b Y
aX

)1/(a+b), and we can check that
2 b
a+b + (p+1) a

a+b = 2 p γ ,

where γ is defined by (1.9). We apply this optimization to h(σ) = δ[fσ], where fσ
is given by the scaling

(1.13) fσ(x) = σ
d
2 p f(σ x) ∀x ∈ Rd .

We have ‖fσ‖2p = ‖f‖2p and, for the optimal choice of σ, that is,

σ =

(
b Y

aX

) 1
a+b

where X = (p− 1)2 ‖∇f‖22 and Y = 4 d−p (d−2)
p+1 ‖f‖p+1

p+1 ,
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we have the inequality

(p− 1)2 ‖∇f‖22 + 4 d−p (d−2)
p+1 ‖f‖p+1

p+1

‖f‖2pγ2p

≥
(p− 1)2 ‖∇fσ‖22 + 4 d−p (d−2)

p+1 ‖fσ‖p+1
p+1

‖fσ‖2pγ2p

= C(p, d)

(
‖∇f‖θ2 ‖f‖

1−θ
p+1

‖f‖2p

)2pγ

,

with θ as in (1.2) and C(p, d) given by (1.11). Inequalities (1.1) and (1.8) written
with optimal constants are therefore equivalent and the proof of (1.10) is completed.

�

1.2.2.2. Restriction to nonnegative functions. Since δ[f ] = δ
[
|f |
]
for any func-

tion f ∈ Hp(Rd), we shall from now on assume that all functions are nonnegative
unless it is explicitly specified. Stability results for sign-changing functions will be
discussed in Corollary 1.17.

1.2.2.3. A variational problem. The optimality in (1.8) can be reformulated as

KGNS = inf
{

(p− 1)2 ‖∇f‖22 + 4 d−p (d−2)
p+1 ‖f‖p+1

p+1 : f ∈ Hp(Rd) , ‖f‖2p2p = 1
}
.

As a preliminary remark, let us observe that the minimization problem

IM = inf
{

(p− 1)2 ‖∇f‖22 + 4 d−p (d−2)
p+1 ‖f‖p+1

p+1 : f ∈ Hp(Rd) , ‖f‖2p2p = M
}

enters in the framework of the concentration-compactness method for any M > 0.
As a consequence, we have I1 = KGNS and

IM = I1M
γ ∀M > 0

according to Lemma 1.2 and its proof.

Lemma 1.3. Assume that d ≥ 1 is an integer and let p be an admissible expo-
nent. With the above notations, we have

IM1+M2
< IM1

+ IM2
∀M1, M2 > 0 .

Proof. For an admissible p, it is elementary to check that γ defined by (1.9)
has a monotone dependance in p, with value 1−2/d at p = 2? and limit 1 as p goes to
1, which implies that γ ∈ (0, 1). Hence Lemma 1.3 follows with z = M1/(M1 +M2)
from the inequality zγ + (1 − z)γ > 1 for any z ∈ (0, 1), which is a consequence of
the concavity of z 7→ zγ + (1− z)γ . �

1.2.2.4. Concentration-compactness and the subcritical inequalities. Lemma 1.3
shows what is the reason for compactness, but we do not need the full concentration-
compactness method in the subcritical range. Let us simply recall a special case
of [Lio84b, Lemma I.1, p. 231] which is of direct interest for our purpose.

Lemma 1.4. Assume that d ≥ 1 is an integer and let p be an admissible exponent
with p < p? if d ≥ 3. If (fn)n is bounded in Hp(Rd) and if

lim sup
n→+∞

sup
y∈Rd

∫
B1(y)

|fn|p+1 dx = 0 ,

then limn→∞ ‖fn‖2p = 0.
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With this lemma, we are now in position to prove the existence of an optimal
function for (1.8) in the subcritical range.

Theorem 1.5. Assume that d ≥ 1 is an integer and let p be an admissible
exponent with p < p? if d ≥ 3. Then there is an optimal function f ∈ Hp(Rd)
for (1.1) and (1.8).

Proof. Let us consider a sequence (fn)n∈N of functions in Hp(Rd) such that
‖fn‖2p = 1 for any n ∈ N and

lim
n→+∞

(
(p− 1)2 ‖∇fn‖22 + 4

d− p (d− 2)

p+ 1
‖fn‖p+1

p+1

)
= KGNS .

For any n ∈ N, we can find yn ∈ Rd such that

sup
y∈Rd

∫
B1(y)

|fn|p+1 dx =

∫
|y−yn|<1

|fn|p+1 dx

and consider the translated functions fn(· − yn) which have the same properties
as fn. As a consequence, we can assume that yn = 0 for any n ∈ N, without loss
of generality. Because of the boundedness in Hp(Rd), up to the extraction of a
subsequence, we know that there exists some function f ∈ Hp(Rd) such that

fn ⇀ f in Lp+1(Rd) and ∇fn ⇀ ∇f in L2(Rd) ,

and also fn → f in Lp+1
loc (Rd) and a.e. By applying Lemma 1.4, we know that f is

non-trivial because ‖fn‖2p = 1 for any n ∈ N is incompatible with lim
n→∞

‖fn‖2p = 0.
By the Brezis-Lieb Lemma (see [BL83, Theorem 1]), we know that

1 = ‖fn‖2p2p = ‖f‖2p2p + lim
n→∞

‖fn − f‖2p2p ,

lim
n→∞

(
‖fn‖p+1

p+1 − ‖f‖
p+1
p+1 − ‖fn − f‖

p+1
p+1

)
= 0 ,

lim
n→∞

(
‖∇fn‖22 − ‖∇f‖

2
2 − ‖∇fn −∇f‖

2
2

)
= 0 .

Using (1.8) applied to f and to fn − f , we find that

KGNS ≥ KGNS (zγ + (1− z)γ)

with z = ‖f‖2p2p ∈ (0, 1] and γ defined by (1.9), so that z = 1. This proves that f is
an optimal function because, by semi-continuity, we already know that

(p− 1)2 ‖∇f‖22 + 4
d− p (d− 2)

p+ 1
‖f‖p+1

p+1 ≤ KGNS .

�



16 1. GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES BY VARIATIONAL METHODS

1.2.3. Relative entropy, uncertainty principle and functional setting.

1.2.3.1. Definitions and functional settings. The free energy or relative entropy
functional of a nonnegative function f with respect to a nonnegative function g ∈M
is defined by

(1.14) E [f |g] :=
2 p

1− p

∫
Rd

(
fp+1 − gp+1 − 1+p

2 p g
1−p (f2p − g2p

))
dx .

If we assume that, for some function g ∈M,

(1.15)
∫
Rd
f2p dx =

∫
Rd
g2p dx ,

∫
Rd
x f2p dx =

∫
Rd
x g2p dx

and
∫
Rd
|x|2 f2p dx =

∫
Rd
|x|2 g2p dx ,

then E [f |g] is simplified and can be written as

(1.16) E [f |g] =
2 p

1− p

∫
Rd

(
fp+1 − gp+1

)
dx .

The relative Fisher information is defined by

(1.17) J [f |g] :=
p+ 1

p− 1

∫
Rd

∣∣(p− 1)∇f + fp∇g1−p∣∣2 dx .

When g = g, we obtain the inequality
d

p+ 1

∫
Rd
fp+1 dx ≤ p− 1

4

∫
Rd
|∇f |2 dx+

1

p− 1

∫
Rd
|x|2 f2p dx

after expanding the square and integrating by parts the cross term. An optimization
under scaling proves that

(1.18)
(

d

p+ 1

∫
Rd
fp+1 dx

)2

≤
∫
Rd
|∇f |2 dx

∫
Rd
|x|2 f2p dx .

This is, for p > 1, a nonlinear extension of the Heisenberg uncertainty principle
whose standard form corresponds to p = 1. Such an extension is known, including
in the presence of weights, see for instance [Xia07]. Because of (1.18), the space

Wp(Rd) :=
{
f ∈ Hp(Rd) : 〈x〉 |f |p ∈ L2(Rd)

}
where 〈x〉 :=

√
1 + |x|2, is a natural space for stability properties in Gagliardo-

Nirenberg inequalities when the distance to the manifold of the Aubin-Talenti func-
tions is measured by the relative Fisher information.

1.2.3.2. Basic properties of relative entropies. Let us recall some known results
on relative entropies.

Lemma 1.6. Assume that d ≥ 1 and p > 1. For any nonnegative f ∈ Wp(Rd)
and any g ∈M, we have E [f |g] ≥ 0 with equality if and only if f = g.

Proof. Letm = (p+1)/(2 p) ∈ (0, 1) and consider the strictly convex function
ϕ(s) = sm/(m− 1). Since

(1.19) E [f |g] =

∫
Rd

(
ϕ
(
f2p
)
− ϕ

(
g2p
)
− ϕ′

(
g2p
) (
f2p − g2p

) )
dx ,

the result easily follows. �
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A standard improvement of Lemma 1.6 is obtained using a Taylor expansion.
By the Csiszár-Kullback inequality, E [f |g] controls the L1(Rd) distance between f2p

and g2p. The precise statement goes as follows.

Lemma 1.7. Let d ≥ 1 and p > 1. Then the inequality

∥∥f2p − g2p
∥∥2

1
≤ 8 p

p+ 1

(∫
Rd
g3p−1 dx

)
E [f |g]

holds for any nonnegative functions f ∈ Wp(Rd), g ∈ Wp(Rd) ∩ L3p−1(Rd) such
that ‖g‖2p = ‖f‖2p.

Proof. Let ϕ be as in the proof of Lemma 1.6 and notice that ϕ(t)− ϕ(s)−
ϕ′(s) (t − s) ≥ m

2 s
m−2 (s − t)2 for any s and t such that 0 ≤ t ≤ s. Applied with

s = g2p and t = f2p, we deduce that

1

4

∥∥f2p − g2p
∥∥2

1
=

(∫
f≤g

∣∣f2p − g2p
∣∣ dx

)2

≤ 2

m

(∫
Rd
g2 p (2−m) dx

)
E [f |g]

by the Cauchy-Schwarz inequality and the conclusion follows fromm = (p+1)/(2 p).
See Section 2.4.6 for more details in a special case. �

Since |t− 1|2p <
∣∣t2p − 1

∣∣ for any t ∈ (0, 1) ∪ (1,+∞), we can notice that

‖f − g‖2p2p ≤
∥∥f2p − g2p

∥∥
1
≤
√

8 p
p+1

(∫
Rd g

3p−1 dx
)
E [f |g]

so that, if limn→+∞ E [fn|g] = 0, then the sequence (fn)n∈N converges to g in
L2p(Rd).

Let g be as in (1.3). For any nonnegative f ∈ Wp(Rd) \ {0}, let us define

(1.20) µ[f ] :=
‖f‖2p2p
‖g‖2p2p

, y[f ] :=

∫
Rd x f

2p dx∫
Rd f

2p dx

and λ[f ] :=

√√√√ d (p−1)
d+2−p (d−2)

∫
Rd f

2p dx∫
Rd
∣∣x− y[f ]

∣∣2 f2p dx
.

The numerical coefficients in the definitions of µ[f ] and λ[f ] are such that µ[g] = 1

and λ[g] = 1. We recall that gλ,µ,y(x) = λ
d
2p µ

1
2p g
(
λ (x − y)

)
where g(x) is as

in (1.3) and define

(1.21) gf := gλ[f ],µ[f ],y[f ] .

When there is no ambiguity, we also use the shorter notation xf := y[f ]. For any
nonnegative f ∈ Wp(Rd), we have that∫

Rd

(
1, x, |x− xf |2

)
f2p dx =

∫
Rd

(
1, x, |x− xf |2

)
g2p
f dx .
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The unique g ∈M such that f satisfies (1.15) is g = gf because∫
Rd
|x|2 f2p dx =

∫
Rd

(
|x− xf |2 + 2 (x− xf ) · xf + |xf |2

)
f2p dx

=

∫
Rd
|x− xf |2 f2p dx+ |xf |2

∫
Rd
f2p dx

=

∫
Rd
|x− xf |2 g2p

f dx+ |xf |2
∫
Rd

g2p
f dx =

∫
Rd
|x|2 g2p

f dx

Optimizing the relative entropy of a given nonnegative function in f ∈ Wp(Rd)
with respect to the set of the Aubin-Talenti functions is the main reason for intro-
ducing (1.20) and (1.21).

Lemma 1.8. Assume that d ≥ 1 and p > 1. For any nonnegative and non-trivial
function f ∈ Wp(Rd), we have

E [f |gf ] = inf
g∈M
E [f |g] .

In other words, among all functions g ∈ M, gf is the best matching Aubin-
Talenti function in the sense of relative entropy.

Proof. From the two identities∫
Rd

gp+1 dx = −1

d

∫
Rd
x · ∇gp+1 dx =

2

d

p+ 1

p− 1

∫
Rd
|x|2 g2p dx ,∫

Rd
gp+1 dx =

∫
Rd

g1−p g2p dx =

∫
Rd

(
1 + |x|2

)
g2p dx = ‖g‖2p2p +

∫
Rd
|x|2 g2p dx ,

we obtain that∫
Rd

gp+1 dx =
d (p− 1)

d+ 2− p (d− 2)
‖g‖2p2p

and
∫
Rd
|x|2 g2p dx =

2 (p+ 1)

d+ 2− p (d− 2)
‖g‖2p2p .

For a given nonnegative f ∈ Wp(Rd), let us consider the relative entropy with
respect to gλ,µ,y, that is, of

E [f |gλ,µ,y] =
2 p

1− p

∫
Rd
fp+1 dx+ µ

p+1
2 p λ−d

p−1
2 p

∫
Rd

gp+1 dx

+ µ
p+1
2 p λ−d

p−1
2 p

p+ 1

p− 1

∫
Rd

(
1 + λ−2 |x− y|2

) (
f2p − g2p

)
dx .

An optimization on (λ, µ, y) ∈ (0,+∞) × (0,+∞) × Rd shows that the minimum
of (λ, µ, y) 7→ E [f |gλ,µ,y] is achieved if (λ, µ, y) = (λ[f ], µ[f ], y[f ]), which concludes
the proof using (1.21). �

As we shall see later, gf plays an important role in stability results. Since
the whole manifold M is generated by mutiplications by a constant, translations
and scalings, we can alternatively choose an arbitrary given function in M, for
simplicity g, and restrict our study to the functions such that gf = g, without loss
of generality. Such a choice simply amounts to require that f satisfies (1.15).



1.2. AN ELEMENTARY PROOF OF THE INEQUALITIES 19

1.2.4. Optimal functions and optimal constant.
1.2.4.1. Radial optimal functions. From the Schwarz symmetrization and The-

orem 1.5, we know that there is an optimal, nonnegative function f ∈ Wp(Rd)
which is radial and non-increasing, and moreover solves the equation

(1.22) − 2 (p− 1)2 ∆f + 4
(
d− p (d− 2)

)
fp − C f2 p−1 = 0

for some constant C > 0 to be determined. Notice that f = g solves (1.22) if
C = 8 p. Let us prove that this is indeed the case. A first step is to establish some
decay estimates.

Lemma 1.9. Assume that f ∈ Wp(Rd) is nonnegative and radial. Then for any
x ∈ Rd \ {0}, we have the estimate

|f(x)| ≤
(
|Sd−1| |x|d

)− 1
p+1

(
(p+ 1) ‖∇f‖2

(∫
Rd
|x|2 f2p dx

)1/2

+ d ‖f‖p+1
p+1

) 1
p+1

.

Proof. This estimate is inspired by the Lemma of W. Strauss in [Str77,
p. 155]. If we abusively write that f is a function of r = |x|, then we can compute

d

dr

(
rd |f(r)|p+1

)
= r

d−1
2 f ′(r) · r

d+1
2 |f(r)|p−1 f(r) + d rd−1 |f(r)|p+1 .

If f has compact support, an integration on the interval (r,+∞) and a Cauchy-
Schwarz inequality for the first term of the right-hand side gives the desired in-
equality. A density argument completes the proof. �

1.2.4.2. A rigidity result. Let us define the function

(1.23) P =
p+ 1

p− 1
f1−p .

With these notations, a lengthy but elementary computation which exactly follows
the steps of [DT16a, Sections 3.1 and 3.2] shows the following rigidity identity.
We shall come back on a flow interpretation of this computation in Chapter 2.

Lemma 1.10. Assume that d ≥ 1 is an integer and let p be an admissible
exponent with p < p? if d ≥ 3. If f ∈ Wp(Rd) is an optimal function for (1.8)
which solves (1.22) and if f is smooth and sufficiently decreasing, then we have

(1.24)
(
d− p (d− 2)

) ∫
Rd
fp+1

∣∣∣∣∆P− (p+ 1)2

∫
Rd |∇f |

2 dx∫
Rd f

p+1 dx

∣∣∣∣2 dx

+ 2 d p

∫
Rd
fp+1

∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥2

dx = 0 .

Here ‖m‖2 denotes the sum of the square of the elements of the matrix m
and D2P denotes the Hessian matrix of P. In view of the general strategy, it is
interesting to give an elliptic proof of Lemma 1.10, which makes the link with the
carré du champ method. From here on, we shall assume that f is smooth and
sufficiently decreasing so that we can perform all necessary integrations by parts
on Rd without taking into account asymptotic boundary terms. Here sufficiently
decreasing means that the function has the same decay as g as well as its derivatives
up to order 2. We already know that these properties hold true for the radial and
non-increasing optimal function of Lemma 1.10, but the computations that we
present below require no a priori symmetry.
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Proof of Lemma 1.10. Let us consider a solution f of (1.22). If we test this
equation by f and by x · ∇f , we find that

2 (p− 1)2 ‖∇f‖22 + 4
(
d− p (d− 2)

)
‖f‖p+1

p+1 − C ‖f‖
2p
2p = 0 ,

(d− 2) (p− 1)2 ‖∇f‖22 + 4 d
d− p (d− 2)

p+ 1
‖f‖p+1

p+1 −
dC

2 p
‖f‖2p2p = 0 ,

where the second identity is the standard Pohožaev computation. As a consequence,
we have

‖f‖p+1
p+1 =

p2 − 1

2 d
‖∇f‖22 ,

(1.25) C ‖f‖2p2p = p
d+ 2− 2− p (d− 2)

d (p− 1)
‖∇f‖22 .

In particular, with this observation, (1.24) takes the form

(
d− p (d− 2)

) ∫
Rd
fp+1

∣∣∣∣∆P− 2 d
p+ 1

p− 1

∣∣∣∣2 dx

+ 2 d p

∫
Rd
fp+1

∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥2

dx = 0 .

After these preliminaries, let us rewrite (1.22) as

−∆f + 2
d− p (d− 2)

(p− 1)2
fp − C

2 (p− 1)2
f2 p−1 = 0 .

By testing this equation with −f1−p ∆f and p f−p |∇f |2, we obtain∫
Rd
f1−p (∆f)2 dx+ 2

d− p (d− 2)

(p− 1)2

∫
Rd
|∇f |2 dx =

pC

2 (p− 1)2

∫
Rd
fp−1 |∇f |2 dx

and

− p
∫
Rd
f−p ∆f |∇f |2 dx+ 2 p

d− p (d− 2)

(p− 1)2

∫
Rd
|∇f |2 dx

=
pC

2 (p− 1)2

∫
Rd
fp−1 |∇f |2 dx ,

so that, by subtraction
(1.26)∫

Rd
f1−p (∆f)2 dx+ p

∫
Rd
f−p ∆f |∇f |2 dx− 2

d− p (d− 2)

p− 1

∫
Rd
|∇f |2 dx = 0 .

To exploit this identity, we need two elementary formulae.
1) Let P be given by (1.23) and expand∫

Rd
fp+1 (∆P− λ)2 dx = (p+ 1)2

∫
Rd
f1−p

(
∆f − p |∇f |

2

f

)2

dx

+ λ2

∫
Rd
fp+1 dx− 2λ (p+ 1)2

∫
Rd
|∇f |2 dx .

With the choice

λ = (p+ 1)2

∫
Rd |∇f |

2 dx∫
Rd f

p+1 dx
= 2 d

p+ 1

p− 1
,
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we obtain
1

(p+ 1)2

∫
Rd
fp+1 (∆P− λ)2 dx

=

∫
Rd
f1−p

(
∆f − p |∇f |

2

f

)2

dx− 2 d
p+ 1

p− 1

∫
Rd
|∇f |2 dx .

2) Using the elementary identity
1

2
∆ |∇P|2 =

∥∥D2P− 1
d ∆P Id

∥∥2
+ 1

d (∆P)2 +∇P · ∇∆P

applied with P given by (1.23), we obtain after multiplication by fp+1 and some
integrations by parts that

1

2
(p+ 1)

∫
Rd
f−p

(
∆f + p

|∇f |2

f

)
|∇f |2 dx

=
1

(p+ 1)2

∫
Rd
fp+1

∥∥D2P− 1
d ∆P Id

∥∥2
dx+

1

d

∫
Rd
f1−p

(
∆f − p |∇f |

2

f

)2

dx

−
∫
Rd
f1−p

(
∆f +

|∇f |2

f

)(
∆f − p |∇f |

2

f

)
dx ,

so that
1

(p+ 1)2

∫
Rd
fp+1

∥∥D2P− 1
d ∆P Id

∥∥2
dx

=

(
1− 1

d

)∫
Rd
f1−p (∆f)2 dx− p (d− 4)− 3 d

2 d

∫
Rd
f−p ∆f |∇f |2 dx

− p d− p (d− 2)

2 d

∫
Rd
f−(p+1) |∇f |4 dx .

Collecting terms, we find that (1.26) is equivalent to (1.24) because

d− p (d− 2)

d (p+ 1)3

∫
Rd
fp+1

∣∣∣∣∆P− 2 d
p+ 1

p− 1

∣∣∣∣2 dx

+
2 d p

d (p+ 1)3

∫
Rd
fp+1

∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥2

dx

=

∫
Rd
f1−p (∆f)2 dx+ p

∫
Rd
f−p ∆f |∇f |2 dx− 2

d− p (d− 2)

p− 1

∫
Rd
|∇f |2 dx .

This concludes the proof of Lemma 1.10. �

Corollary 1.11. Assume that d ≥ 1 is an integer and let p be an admissible
exponent with p < p? if d ≥ 3. If f ∈ Wp(Rd) is a radial and non-increasing
optimal function for (1.8) which solves (1.22) such that ‖f‖2p = ‖g‖2p, then f = g

and the constant in (1.22) is C = 8 p.

Proof. Since p < p?, nonnegative solutions of (1.22) turn out to be bounded
and Hölder continuous, hence classical and even C∞ by standard elliptic bootstrap.
By standard tail-analysis of radial solutions, it is possible to show that f(r) decays
like g(r) ∼ r−2/(p−1) as r → +∞, and the same property holds for all derivatives.

We can therefore apply Lemma 1.10, and ∆P is constant, which means that
P(r) = a r2 +b for some positive constants a and b. A simple algebraic computation
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taking the constraint ‖f‖2p = ‖g‖2p and (1.22) into account shows that a = b = 1

and C = 8 p using (1.25). �

At this point, Inequality (1.8) is established with optimal constant KGNS de-
termined by the equality case when f = g. Using Lemma 1.2, this also establishes
Inequality (1.1) with optimal constant CGNS and the equality case if f = g. In
order to complete the proof of Theorem 1.1, it remains to characterize all optimal
functions and compute the value of CGNS.

1.2.4.3. A first stability result. Let us consider the deficit functional δ as defined
in (1.12). We recall that E , J and (λ, µ) are defined respectively by (1.14), (1.17)
and (1.20).

Lemma 1.12. Assume that d ≥ 1 is an integer and let p be an admissible
exponent. Then the following properties hold:

(i) We have the inequality

δ[f ] ≥ 0 ∀ f ∈ Wp(Rd)

with equality if and only if f ∈M and

(1.27) λ[f ]µ[f ]
p−1

d−p (d−4) =
√

d (p−1)
d+2−p (d−2) .

(ii) For any f ∈ Wp(Rd) and g ∈M satisfying (1.27), if ‖g‖2p = ‖f‖2p, then
we have the identity

(1.28)
p+ 1

p− 1
δ[f ] = J [f |g]− 4 E [f |g] .

(iii) If d ≤ 2, or d ≥ 3 and p < p?, and if f satisfies (1.15) with g = g, then

(1.29) δ[f ] ≥ c
(
E [f |g]

)2

for some positive constant c.

Proof. The inequality δ[f ] ≥ 0 is a simple consequence of Corollary 1.11 and
of the definitions (1.12), (1.14) and (1.17) of δ[f ], E [f |g] and J [f |g]. The proof
of (iii) is given in [DT16b, Theorem 7]. For completeness, let us give the main
idea. With the notations of the proof of Lemma 1.2, the result can be recovered as
a consequence of

δ[f ] = inf
λ>0

δ[fλ] +

(
δ[f ]− inf

λ>0
δ[fλ]

)
≥ δ[f ]− inf

λ>0
δ[fλ] ≥ c (E [f |g])2 ,

where fλ is as in (1.13) and using (1.16). As a consequence of Lemma 1.6, we read
that δ[f ] = 0 if and only if f = g, under the conditions of (iii).

Next, let us consider the equality case in (i). With the change of variables

f(x) = µ
1
2p λ

d
2p f̃

(
λ (x− xf )

)
and the specific choice

µ = µ[f ] and λ = µ[f ]−
p−1

d−p (d−4) ,

which amounts to (1.27), we find that

δ[f ] = µ[f ]−γ δ
[
f̃
]
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with γ as in (1.9). Since f̃ satisfies (1.15) with g = g, δ[f ] = 0 means that f̃ = g,
i.e., f = gλ,µ,y. This completes the proof of (i).

Concerning (ii), taking g = gλ,µ,y with ‖g‖2p = ‖f‖2p means µ[f ] = µ[g] while
Condition (1.27) amounts to

gλ,µ,y(x) =
(
µ[f ]−

2 (p−1)
d−p (d−4) + |x− y|2

)− 1
p−1

∀x ∈ Rd .

In the computation of J [f |g] − 4 E [f |g], it is then clear that the terms involving
|x− y|2 cancel while the term with x− y disappears after an integration by parts.
This completes the proof. �

Lemma 1.12 deserves some comments. In (i), changing (1.1) into (1.8) in
Lemma 1.2 determines a scale. The equality case puts this scale in evidence, as
shown by (1.27). The inequality δ[f ] ≥ 0, i.e., Inequality (1.8), is a simple conse-
quence of Corollary 1.11 but the optimal functions are identified as a consequence
of (iii). For a given mass ‖f‖2p2p, only y ∈ Rd is a free parameter, which reflects the
fact that (1.8) is translation invariant. Inequality (1.29) is a first stability estimate,
which is however weaker than the one we look for, as we aim at removing the square
in the right-hand side. Finally, in (iii), let us notice that we assume: gf = g, so
that λ[f ] = 1, µ[f ] = 1, y[f ] = 0 and δ[f ] as defined in (1.12) can be rewritten
using δ[g] = 0 and ‖g‖2p = ‖f‖2p as

(1.30) δ[f ] = (p− 1)2
(
‖∇f‖22 − ‖∇g‖

2
2

)
+ 4

d− p (d− 2)

p+ 1

(
‖f‖p+1

p+1 − ‖g‖
p+1
p+1

)
.

1.2.4.4. Uniqueness of the optimal functions up to the invariances. A straight-
forward but very important consequence of Lemma 1.6 is the following result, which
characterizes all optimal functions of (1.1) in the subcritical range.

Corollary 1.13. Assume that d ≥ 1 is an integer and let p be an admissible
exponent with p < p? if d ≥ 3. There is equality in (1.1) if and only if f = gf
and in particular there is a unique nonnegative optimal function f ∈ Wp(Rd) such
that (1.15) holds with g = g.

In other words, we have identified all optimal functions as the Aubin-Talenti
functions of M, which are obtained from g by the multiplications by a real constant,
the dilations and the translations, that is, the transformations associated with
the natural invariances of (1.1). Up to these transformations, Corollary 1.13 is a
uniqueness result of the minimizers. Also notice that the result of Lemma 1.12, (iii),
is a stability result, with the major drawback that δ[f ] controls (E [f |g])2 while we
expect that it controls E [f |g] under the condition that gf = g.

1.2.4.5. Proof of Theorem 1.1. With g given by (1.3), we may notice that

‖∇g‖22
‖g‖2p2p

=
4 d

(d+ 2− p (d− 2)) (p− 1)
and

‖g‖p+1
p+1

‖g‖2p2p
=

2 (p+ 1)

d+ 2− p (d− 2)

using integrations by parts, so that after taking into account

|Sd−1| = 2π
d
2

Γ(d/2)
and

∫ +∞

0

(
1 + r2

)− 2p
p−1 rd−1 dr =

d

p2 − 1
B
(
d
2 ,

p+1
p−1 −

d
2

)
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where B is the Euler Beta function

(1.31) B(a, b) :=

∫ 1

0

ta−1 (1− t)b−1 dt =
Γ(a) Γ(b)

Γ(a+ b)
,

so that

‖g‖2p2p = π
d
2

Γ
(

2 p
p−1 −

d
2

)
Γ
(

2 p
p−1

) .

Using the fact that θ
2 + θ

p+1 −
1
2p = θ

d and collecting the above estimates, we obtain

CGNS(p) =
‖∇g‖θ2 ‖g‖

1−θ
p+1

‖g‖2p
=

(
4 d
p−1

) θ
2 (2 (p+1))

1−θ
p+1

(d+2−p (d−2))
d−p (d−4)

2 p (d+2−p (d−2))

π d2 Γ
(

2 p
p−1 −

d
2

)
Γ
(

2 p
p−1

)

θ
d

.

1.2.4.6. An important remark. The symmetry of the optimal functions arises
from the uniqueness, up to multiplications by a real constant, dilations and trans-
lations and the fact that, by Lemma 1.12, (iii), optimal functions are minimizers of
the entropy E [f |gf ].

1.3. Stability results by variational methods

Stability is a step beyond the identification of the optimal functions and the
optimal constant in an inequality. The goal is to introduce the deficit as the differ-
ence of the two terms of the inequality, in our case δ[f ], and bound it from below
by a distance to the set of optimal functions, in our case the manifold M of the
Aubin-Talenti functions.

Such a question has been answered in a celebrated paper of G. Bianchi and
H. Egnell in the critical case (Sobolev’s inequality) and more recently in the sub-
critical case by F. Seuffert using a clever reformulation of (1.1) which appeared in
the book of D. Bakry, I. Gentil and M. Ledoux. This is a very interesting strategy
and we will give a few steps of the proof here, although the complete proof is rather
difficult and technical.

In Section 1.3.2, we state and prove a new stability result by a direct variational
method. Like all results of this chapter, we obtain a quantitative result, in the sense
that we prove the existence of a positive constant and obtain a standard notion of
distance, but the method is not constructive because the value of the constant is
unknown. The purpose of the next chapters is to remedy this issue.

1.3.1. Stability results based on the Bianchi-Egnell result.
After briefly recalling the result of [BE91] in the critical case, we explain with

some details how to reformulate the subcritical inequality (1.1) as a critical case
using the strategy of [BGL14] and state the result of [Seu17]. This section is given
only for providing a complete picture of the stability results associated with (1.1)
and can be skipped at first reading.

1.3.1.1. The Bianchi-Egnell result in the critical case. If p = p?, d ≥ 3, G. Bian-
chi and H. Egnell proved in [BE91] the existence of a positive constant C such that

(1.32) ‖∇f‖22 − S2
d ‖f‖

2
2∗ ≥ C inf ‖∇f −∇g‖22 ,

where S2
d is the optimal constant in Sobolev’s inequality and the infimum is taken

over the (d + 2)-dimensional manifold of the Aubin-Talenti functions gλ,µ,y. This
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result was immediately recognized as a major breakthrough, with the irritating
drawback that the constant C was unknown, because the existence of C is obtained
by concentration-compactness methods and a contradiction argument. It is only
recently that the proof has been made constructive, in [DEF+23].

1.3.1.2. Equivalence with a critical Sobolev’s inequality in higher dimension.
The subcritical Gagliardo-Nirenberg-Sobolev inequalities (1.1) can be reinterpreted
as critical inequalities.

Let us start by collecting some useful identities. The reader interested in further
details is invited to refer to [AS64]. Let us consider the function (ν, β) 7→ I(ν, β)
defined by

I(ν, β) :=

∫ ∞
0

z2 ν−1

(1 + z2)
β

dz = 1
2 B(β − ν, ν)

for any ν < β, where B is the Beta function defined in (1.31). If we write that(
1 + z2

)−β
=
(
1 + z2

) (
1 + z2

)−(β+1), we find that

I(ν, β) = I(ν, β + 1) + I(ν + 1, β + 1) .

On the other hand, if we write z
(
1 + z2

)−(β+1)
= − 1

2 β
d
dz

(
1 + z2

)−β , using one
integration by parts we find that

I(ν + 1, β + 1) =
ν

β
I(ν, β) .

This also shows that

I(ν, β + 1) =
β − ν
β

I(ν, β) .

From these two identities, we get that

(1.33) I(ν + 1, β) =
β

β − ν − 1
I(ν + 1, β + 1) =

ν

β − ν − 1
I(ν, β) .

The following results are inspired from [BGL14, Section 6.10]. The goal is
to relate the Gagliardo-Nirenberg-Sobolev inequalities (1.8) with exponent p to a
Sobolev type inequality in a non-integer higher dimension N , by taking advantage
of the fact that the exponent (N −2)/2 of the Aubin-Talenti functions is increasing
with N so that there is a chance that

g(x) =
(
1 + |x|2

)− 1
p−1 ,

which is optimal for (1.8) in the subcritical range corresponding to an exponent
p < p?, could be seen as an optimal function for a critical Sobolev inequality in
a higher dimension, i.e., as one of the Aubin-Talenti functions in the usual sense.
Since p is a real number, we cannot expect that this dimension is an integer, except
for an at most countable number of values of p. However, the notion of dimension
appears only for scaling properties, so that it is possible to introduce weights in
order to account for non-integer values.

On Rd+1
+ := Rd × R+ 3 (x, z), we consider the measure dµ := z2 ν−1 dx dz for

some ν > 0 and functions w which take the form

(1.34) w(x, z) =
(
h(x) + z2

)1−β ∀ (x, z) ∈ Rd × R+



26 1. GAGLIARDO-NIRENBERG-SOBOLEV INEQUALITIES BY VARIATIONAL METHODS

for some nonnegative function h defined on Rd and some β > 1. Let us introduce
the notations

Dw :=
(
∇w, ∂w∂z

)
and ‖w‖q,N :=

(∫∫
Rd+1

|w|q zN−d−1 dx dz

)1/q

with N := d + 2 ν. When N > d is an integer, the function w can be considered
as a function of (x, y) ∈ Rd×RN−d which is radially symmetric in y and such that
z = |y|, which corresponds to functions with cylindrical symmetry, but we shall
also consider the case N ∈ R \ N of non-integer dimensions. A simple change of
variables shows that

‖w‖qq,N =

∫∫
Rd+1

+

wq z2 ν−1 dx dz = I (ν, (β − 1) q)

∫ ∞
0

∫
Sd−1

hν−(β−1) q rd
dr

r
dω ,

where we use spherical coordinates (r, ω) ∈ R+ × Sd−1 with r = |x| and ω = x/r
for any r > 0. Since

|Dw|2 = |∇w|2 +
∣∣∂w
∂z

∣∣2 = (1− β)2
(
|∇h|2 + 4 z2

) (
h(x) + z2

)−2β
,

we also obtain that

‖Dw‖22,N =

∫∫
Rd+1

+

(
|∇w|2 +

∣∣∂w
∂z

∣∣2) z2 ν−1 dx dz

= (1− β)2 I(ν, 2β)

∫ ∞
0

∫
Sd−1

|∇h|2 hν−2 β rd
dr

r
dω

+ 4 (1− β)2 I(ν + 1, 2β)

∫ ∞
0

∫
Sd−1

hν−2 β+1 rd
dr

r
dω .

According to (1.33) the identity I(ν + 1, 2β) = ν
2 β−ν−1 I(ν, 2β) holds, so that we

can write

‖Dw‖22,N = (1− β)2 I(ν, 2β)

(∫ ∞
0

∫
Sd−1

|∇h|2 hν−2 β rd
dr

r
dω

+
4 ν

2β − ν − 1

∫ ∞
0

∫
Sd−1

hν−2 β+1 rd
dr

r
dω

)
.

We identify the various terms of the change of variables by imposing that

f = h
ν
2−β+1 , fp+1 = hν−2 β+1 and f2p = hν−(β−1) q .

This provides two equations,

(p+ 1)
(ν

2
− β + 1

)
= ν − 2β + 1 and 2 p

(ν
2
− β + 1

)
= ν − (β − 1) q ,

which can be combined with

N = d+ 2 ν and q =
2N

N − 2

to provide the relations

N = d+ 2 ν , ν =
d− p (d− 2)

p− 1
, q =

2N

N − 2
and β =

N

2
.

As a consequence we have the identities (β − 1) q = N = 2β, (ν − 2β + 1) =
p+1
2 p (ν − (β − 1) q) = − p+1

p−1 and
(
ν
2 − β + 1

)
= 1

2 p (ν − (β − 1) q) = − 1
p−1 . Hence,

if we let
f = h

ν
2−β+1 = h

ν−2 β+1
p+1 = h

ν−(β−1) q
2 p ,
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then
‖w‖qq,N = I(ν,N) ‖f‖2p2p

and

‖Dw‖22,N =
(
N−2

2

)2
I(ν,N)

(
(p− 1)2 ‖∇f‖22 +

4 ν

2β − ν − 1
‖f‖p+1

p+1

)
.

Upon noting that
4 ν

2β − ν − 1
= 4

d− p (d− 2)

p+ 1
,

we obtain that (1.8) can be rewritten as

‖Dw‖22,N(
N−2

2

)2
I(ν,N)

≥ KGNS(p, d)

(
‖w‖qq,N
I(ν,N)

) 2
q

with q =
2N

N − 2

for all w as in (1.34), because 2
q = d+2−p (d−2)

d−p (d−4) = γ with γ as in (1.9). Here we
recognize a Sobolev inequality on the space of dimension N , which suggests to
consider the radial Aubin-Talenti function

w?(x, z) :=
(
1 + |x|2 + z2

)−N−2
2 ∀ (x, z) ∈ Rd+1

+ .

With p = N+d
N+d−4 , let us define

Sd,N :=
22+ 2

N I(ν,N)−
N+2
N

(N − 2)2KGNS(p, d)
.

Theorem 1.14. [BGL14] Assume that d ≥ 1 is an integer, N > min{2, d} is
a real number. Then the inequality

(1.35)
(∫

Rd+1

w
2N
N−2 dµ

)1− 2
N

≤ Sd,N

∫
Rd+1

|Dw|2 dµ

holds for any smooth compactly supported function w on Rd, with optimal con-
stant Sd,N and equality is achieved, up to a multiplication by a constant, a transla-
tion in the s variable and a dilation, if and only if w = w?.

1.3.1.3. A stability result in the sub-critical case. A result of stability à la
Bianchi-Egnell for (1.35) can be found in [Seu16]. The stability of the manifold M
of optimal functions for (1.1), for any p > 1 if d = 1 or d = 2, or for any p ∈ (1, p?)
if d ≥ 3 then follows from the computations of Section 1.3.1.2. It has been proved
in [Seu17, Theorem 1.10] that there is a constant κ > 0 such that

‖∇f‖θ2 ‖f‖
1−θ
p+1 − CGNS(p) ‖f‖2p ≥ κ inf

g

∥∥f2p − g2p
∥∥

1
∀ f ∈ Hp(Rd) ,

where the infimum is taken on the submanifold of the functions g ∈ M such that
‖f‖2p = ‖g‖2p. Estimates with other distances have been obtained in [Ngu19]. No
estimate of the constant κ can be given in this approach.

Our next purpose is to give a direct proof of the stability in (1.1) without
relying on Theorem 1.14, still by variational methods and without estimating the
constant. We shall also use the relative entropy E [f |g] defined by (1.14) as a measure
of the distance to M, in preparation for the next chapters which are devoted to
constructive estimates of the constant κ.
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1.3.2. A new abstract stability result. After taking into account Theo-
rem 1.1 and the preliminary stability results of Lemma 1.12, we can state a result
in the subcritical case.

Theorem 1.15. If d ≤ 2, or d ≥ 3 and p < p?, and if f ∈ Wp(Rd) is a
nonnegative function which satisfies (1.15) with g = g, that is, if∫

Rd

(
1, x, |x|2

)
f2p dx =

∫
Rd

(
1, x, |x|2

)
g2p dx ,

then
δ[f ] ≥ C E [f |g]

for some positive constant C.

For the convenience of the reader, we split the proof of this result in several
cases and observations which are detailed below. The general strategy is based
on the concentration-compactness method as in [BE91] and we argue by contra-
diction, so that, in this chapter, we obtain no estimate on C. The exponent in
Theorem 1.15 is optimal, as shown by an expansion around the Aubin-Talenti
functions. Combined with Lemma 1.7 (Csiszár-Kullback inequality), Theorem 1.15
gives a stability result in terms of infg∈M ‖f2p − g2p‖2L1(Rd) which has been used
for instance in [CF13, DT13]. Stronger notions of stability will be given later in
Section 1.3.3 (Corollary 1.17) as well as their counterparts for Gagliardo-Nirenberg-
Sobolev inequalities (Theorems 5.7 and 6.1). The assumption on the boundedness
of the second moment is further discussed in Section 7.3.

1.3.2.1. A variational approach: minimizing sequences and possible limits. Let
us consider a minimizing sequence (fn)n∈N ∈ Wp(Rd) for f 7→ δ[f ]/E [f |g], for which
we assume that gfn = g holds for any n ∈ N. It follows from Lemma 1.12, (iii),
that (E [fn|g])n∈N is bounded and, up to the extraction of a subsequence, has a
nonnegative limit ` = limn→∞ E [fn|g].

If ` > 0, we have thanks to Lemma 1.12, that

lim inf
n→+∞

δ[fn]

E [fn|g]
≥ c ` > 0.

The difficult case is ` = 0, which means that we have simultaneously

lim
n→+∞

E [fn|g] = 0 and lim
n→+∞

δ[fn] = 0 ,

so that we know that fn converges as n→ +∞ to g in Lp+1(Rd)∩L2p(Rd, 〈x〉2 dx)
and also ∇fn → ∇g in L2(Rd). Let us write

(1.36) fn = g + ηn hn with ηn := ‖∇fn −∇g‖2 +

(∫
Rd
|fn − g|2p 〈x〉2 dx

) 1
2p

.

Collecting what we already know, we obtain

lim
n→+∞

ηn = 0

while (hn)n∈N is bounded in Wp(Rd), so that there is a function h ∈ Wp(Rd) such
that, up to the extraction of a subsequence,

hn ⇀ h in Lp+1(Rd) , hn ⇀ h in L2p(Rd, 〈x〉2 dx)

and ∇hn ⇀ ∇h in L2(Rd) ,
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and also hn → h in Lp+1
loc (Rd) and a.e. We also know from (1.15) that∫

Rd
|g + ηn hn|2p dx =

∫
Rd
|g|2p dx ,

∫
Rd
x |g + ηn hn|2p dx =

∫
Rd
x |g|2p dx

and
∫
Rd
|x|2 |g + ηn hn|2p dx =

∫
Rd
|x|2 |g|2p dx .

Our goal is now to compute a lower bound for δ[fn]/E [fn|g] by linearizing around g.

1.3.2.2. The linearized problem.
The analysis of the stability relies on a proper linearization of the problem.

For sake of completenesss, let us collect here the results (without proofs) that are
needed and for which we claim no originality. The following results are taken mostly
from [DT11], with minor adaptations.

On Rd, let us consider the measure dµa := µa dx, where µa(x) := (1 + |x|2)a,
and the operator La,d on L2(Rd,dµa−1) such that

La,d u = −µ1−a div [µa∇u ] .

The fundamental property of La,d is
∫
Rd u (La,d u) dµa−1 =

∫
Rd |∇u|

2 dµa. The
measure dµa is a bounded positive measure if a ∈ (−∞,−d/2) and

∫
Rd |x|

2 dµa is
also finite if a < −(d+ 2)/2.

Proposition 1.16 ([DT11]). The essential spectrum of La,d is [Λess,+∞)
where

Λess :=
(
a+ 1

2 (d− 2)
)2
.

The operator La,d has discrete spectrum only for a < −(d − 2)/2. For d ≥ 2, it is
made of the eigenvalues

λ`k = − 2 a (`+ 2 k)− 4 k
(
k + `+ d

2 − 1
)

with `, k = 0, 1, . . . provided (`, k) 6= (0, 0) and `+ 2 k−1 < −(d+ 2 a)/2. If d = 1,
the discrete spectrum is made of λk = k (1 − 2 a − k) with k ∈ N ∩ [1, 1/2 − a].
The eigenspaces corresponding to λ0,0, λ1,0 and λ0,1 are generated respectively by
x 7→ 1, x 7→ xi with i = 1, 2,. . .d, and x 7→ |x|2 + d/(2 a).

Let us consider the case a = 2 p/(1 − p) for some admissible p. In that case,
the spectral gap inequality associated with La,d is the Hardy-Poincaré inequality

(1.37)
∫
Rd
|∇u|2 g2p dx ≥ Λ

∫
Rd
|u|2 g3 p−1 dx ,

which holds for any function u such that
∫
Rd u g

3 p−1 dx = 0, with optimal constant
Λ = 4 p/(p− 1), for any d ≥ 1.

Under the constraint that

(1.38)
∫
Rd

(
1, x, |x|2

)
u(x) g(x)3 p−1 dx = 0 ,

we obtain the improved Hardy-Poincaré inequality

(1.39)
∫
Rd
|∇u|2 g2p dx ≥ Λ?

∫
Rd
|u|2 g3 p−1 dx

where the optimal constant Λ? > 4 p/(p− 1) depends on the dimension:
(i) if d = 1 and 1 < p ≤ 1 + 2

d , then Λ? = 6 p+6
p−1 ,
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(ii) if either d = 2, or d ≥ 3 and 1 < p ≤ 1 + 2
d , then Λ? = 8 p

p−1 ,

(iii) if d ≥ 3 and 1 + 2
d ≤ p ≤ min

{
1 + 4

d+2 , p
?
}
, then Λ? = 16 p

p−1 − 4 (d+ 2),

(iv) if 3 ≤ d ≤ 5 and 1 + 4
d+2 < p ≤ p?, then Λ =

(
d−2

2 −
2 p
p+1

)2.
In dimension d = 1, we have Λ? = λ3, while for d = 2, Λ? is determined by
min{λ0,2, λ2,0,Λess}. See [DT11, p. 710] for details.

The Hardy-Poincaré inequality (1.37) can be rewritten for h = u gp as∫
Rd

∣∣∣∣∇h+
2 p

p− 1

xh

1 + |x|2

∣∣∣∣2 dx ≥ Λ

∫
Rd

|h|2

1 + |x|2
dx .

By expanding the square, we obtain the inequality∫
Rd
|∇h|2 dx+

(
2 p

d− 2− p (d− 4)

(p− 1)2
− Λ

)∫
Rd

|h|2

1 + |x|2
dx

≥ 4 p
2 p− 1

(p− 1)2

∫
Rd

|h|2

(1 + |x|2)
2 dx .

Under the condition
∫
Rd

h
1+|x|2 dx = 0, the optimal constant in (1.37) is Λ = 4 p

p−1 ,
and it is straightforward to check that

2 p
d− p (d− 2)

(p− 1)2
= 2 p

d− 2− p (d− 4)

(p− 1)2
− Λ .

As a consequence, Inequality (1.37) means that the quadratic form
(1.40)

Q[h] :=

∫
Rd
|∇h|2 dx+2

d− p (d− 2)

(p− 1)2

∫
Rd

|h|2

1 + |x|2
dx−4 p

2 p− 1

(p− 1)2

∫
Rd

|h|2

(1 + |x|2)
2 dx

is nonnegative under the condition
∫
Rd

h
1+|x|2 dx = 0. Furthermore, under Condi-

tion (1.38), that is,

(1.41)
∫
Rd

(
1, x, |x|2

)
h(x)

1 + |x|2
dx = 0 ,

the improved Hardy-Poincaré inequality amounts to

(1.42) Q[h] ≥ (Λ? − Λ)

∫
Rd

|h|2

1 + |x|2
dx

Concerning the essential spectrum of Lα,d, according to a characterization due
to A. Persson, we have

Λess = lim
R→+∞

inf
u

∫
Rd |∇u|

2 g2p dx∫
Rd |u|2 g3 p−1 dx

where the infimum is taken on all functions u which are smooth with compact
support in Rd \BR. Because 1 + |x|2 can be replaced by |x|2 in the expression of g
in the above Rayleigh quotient, after a dilation,

(1.43) Λess =
1

4

(
d− 2− 4 p

p+ 1

)2

is the optimal constant in the weighted Hardy inequality

(1.44)
∫
Rd
|∇u|2 |x|−

4 p
p−1 dx ≥ Λess

∫
Rd
|u|2 |x|−

4 p
p−1−2 dx .
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The proof of such an inequality is easy, as it is enough to expand the square and
perform one integration by part in the trivial inequality∫

Rd

∣∣∣∣∇u+
√

Λess
x

|x|2
u

∣∣∣∣2 dx ≥ 0

for a smooth compactly supported function with support in Rd \ {0}, and argue by
density. For optimality, it is enough to construct a smooth approximation of the
function x 7→ |x|−

√
Λess .

As a consequence, we can also write that (1.42) holds for h = u gp with Λ∗ =
Λ + 1

2 (Λess − Λ) if h is supported in BcR? for some R? large enough.

1.3.2.3. A heuristic point of view. Let f be a nonnegative function and consider
the relative entropy E [f |g] and the relative Fisher information J [f |g] respectively
defined by (1.14) and (1.17). If we specialize to g = g, notice that g(x)1−p = 1+|x|2,
so that

E [f |g] =
2 p

1− p

(
‖f‖p+1

p+1 − ‖g‖
p+1
p+1

)
− p+ 1

p− 1

∫
Rd

(
1 + |x|2

) (
f2p − g2p

)
dx ,

and we can also expand J [f |g] as

J [f |g] =
(
p2 − 1

) ∫
Rd
|∇f |2 dx+ 4

∫
Rd
x · ∇

(
fp+1

)
dx

+ 4
p+ 1

p− 1

∫
Rd
|x|2

(
f2p − g2p

)
dx .

Using one integration by parts and |x|2 =
(
1 + |x|2

)
− 1, we obtain

J [f |g] =
(
p2 − 1

) (
‖∇f‖22 − ‖∇g‖

2
2

)
− 4 d

(
‖f‖p+1

p+1 − ‖g‖
p+1
p+1

)
+ 4

p+ 1

p− 1

∫
Rd

(
1 + |x|2

) (
f2p − g2p

)
dx− 4

p+ 1

p− 1

(
‖f‖2p2p − ‖g‖

2p
2p

)
.

As a consequence, we can measure the deficit as

p+ 1

p− 1
δ[f |g] = J

[
f |g
]
− 4 E

[
f |g
]

=
(
p2 − 1

) (
‖∇f‖22 − ‖∇g‖

2
2

)
+ 4

d− p (d− 2)

p− 1

(
‖f‖p+1

p+1 − ‖g‖
p+1
p+1

)
− 4

p+ 1

p− 1

(
‖f‖2p2p − ‖g‖

2p
2p

)
.

Let fη = g + η h for some smooth and sufficiently decaying function h. Using
the fact that g(x)p−1 =

(
1+|x|2)−1, g(x)2p−2 =

(
1+|x|2)−2 and a Taylor expansion

as η → 0+, we obtain

δ[fη|g] = 2 η

∫
Rd

(
−(p− 1)2 ∆g + 2

(
d− p (d− 2)

)
gp − 4 p g2 p−1

)
h dx

+ (p− 1)2 Q[h] η2 + o
(
η2
)

where Q is defined by (1.40). Hence δ[fη|g] = (p− 1)2 Q[h] η2 + o
(
η2
)
because

−(p− 1)2 ∆g + 2
(
d− p (d− 2)

)
gp − 4 p g2 p−1 = 0 .
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Similarly a simple Taylor expansion shows that

E [fη|g] = p (p+ 1) η2

∫
Rd
g2 (p−1) h2 dx+ o(η2) .

As a consequence, under Condition (1.41), we have

lim
η→0

δ[fη]

E [fη|g]
≥ (p− 1)2

p (p+ 1)
(Λ? − Λ)

with Λ = 4 p
p−1 and Λ? as in (1.39). A similar improvement is obtained if, instead of

Condition (1.41), we assume that h is supported in BcR? .

1.3.2.4. A Taylor expansion. In order to prove Theorem 1.15, we have to adapt
the formal Taylor expansion to the minimizing sequence (fn)n∈N introduced in
(1.36). The constraint that fn satisfies (1.15) with gfn = g means that (1.41) can
be expected only for the linearized problem in the limit as n→ +∞.

Let us introduce the function Ψ : η 7→ E
[
g + η hn|g

]
. By a standard Taylor

expansion, there exists some ζn ∈ [0, ηn] such that

Ψ(ηn) = Ψ(0) + Ψ′(0) ηn +
1

2
Ψ′′(ζn) η2

n .

From Lemma 1.6, we learn that Ψ(0) = Ψ′(0) = 0. With m = 2 p/(p + 1) ∈ (0, 1)
and using the strictly convex function ϕ(s) = sm/(m− 1) as in (1.19), we obtain

1− p
2 p
E [fn|g] = ‖fn‖p+1

p+1 − ‖g‖
p+1
p+1 −m

∫
Rd
|g2p|m−1

(
f2p
n − g2p

)
dx

= − 1

2
(p2 − 1) η2

n

∫
Rd

(
gp−1 +Gn

)
h2
n dx

where

Gn =

(
1 +

2 p− 1

p− 1

gp−1
n

gp−1

)(
gp−1
n − gp−1

)
and gn = g + ζn hn .

Notice that gn takes values in the interval (min{fn, g},max{fn, g}). Since fn
strongly converges in Wp(Rd) to g as n → +∞, we know that gn strongly con-
verges in Wp(Rd) to g. Since g(x)1−p = 〈x〉2 = 1 + |x|2, the key point is to observe
that

∣∣∫
Rd Gn h

2
n dx

∣∣ can be estimated using Hölder’s inequality first with exponents
(p+1)/(p−1) and (p+1)/2, and then with exponents 2 p/(p−1), p and 2 p/(p−1)
and the measure g(x)1−p dx = 〈x〉2 dx, to get the bounds∣∣∫

Rd
(
gp−1
n − gp−1

)
h2
n dx

∣∣ ≤ (∫Rd |gp−1
n − gp−1|

p+1
p−1 dx

) p−1
p+1 (∫

Rd h
p+1
n dx

) 2
p+1 ,∣∣∫

Rd g
p−1
n

(
gp−1
n − gp−1

)
h2
n 〈x〉2 dx

∣∣
≤
(∫

Rd g
2p
n 〈x〉2 dx

) p−1
2 p
(∫

Rd h
2 p
n 〈x〉2 dx

) 1
p

(∫
Rd |g

p−1
n − gp−1|

2 p
p−1 〈x〉2 dx

) p−1
2 p

.

• If 1 < p ≤ 2, using the estimate |gp−1
n − gp−1| ≤ |gn − g|p−1 and the conver-

gence of gn to g in Lp+1(Rd, dx) ∩ L2p(Rd, 〈x〉2 dx) as n→ +∞, we conclude that
limn→+∞

∣∣∫
Rd Gn h

2
n dx

∣∣ = 0.
• If p > 2, we have the estimate |gp−1

n − gp−1| ≤ (p − 1) |gn − g| (gn + g)
p−2 and
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notice that∫
Rd

(
|gn − g| (gn + g)

p−2
) p+1
p−1

dx

≤
(∫

Rd |gn − g|p+1 dx
) 1
p−1

(∫
Rd (gn + g)

p+1
dx
) p−2
p−1

,∫
Rd

(
|gn − g| (gn + g)

p−2
) 2 p
p−1 〈x〉2 dx

≤
(∫

Rd |gn − g|2p 〈x〉2 dx
) 1
p−1

(∫
Rd (gn + g)

2p 〈x〉2 dx
) p−2
p−1

,

using Hölder’s inequality twice with exponents p− 1 and (p− 1)/(p− 2). Again we
conclude that limn→+∞

∣∣∫
Rd Gn h

2
n dx

∣∣ = 0.
Altogether, this proves that

(1.45)
1

η2
n

E [fn|g] = p (p+ 1)

∫
Rd

gp−1 h2
n dx+ o(1) as n→ +∞ .

By Hölder’s inequality,∫
BcR

gp−1 h2
n dx ≤

(∫
BcR

gp+1 dx

) p−1
p+1
(∫

BcR

hp+1
n dx

) 2
p+1

can be made small uniformly in n, for R > 0 large enough. Inside the ball BR =
BR(0), by writing∫

BR

gp−1
∣∣h2
n − h2

∣∣ dx ≤ ‖g‖p−1
p+1

(∫
BR

|h2
n − h2|

p+1
2 dx

) 2
p+1

and using the fact that hn → h strongly in Lp+1
loc (Rd), eventually after extracting a

subsequence, we obtain

(1.46) lim
n→+∞

1

η2
n

E [fn|g] = p (p+ 1)

∫
Rd

gp−1 h2 dx = p (p+ 1)

∫
Rd

h2

1 + |x|2
dx .

By applying (1.30) to fn, we also know that

p+ 1

p− 1
δ[fn] = (p2 − 1)

(
‖∇fn‖22 − ‖∇g‖

2
2

)
+ 4

d− p (d− 2)

p− 1

(
‖fn‖p+1

p+1 − ‖g‖
p+1
p+1

)
− 4

p+ 1

p− 1

(
‖fn‖2p2p − ‖g‖

2p
2p

)
.

Using again a Taylor expansion, we find some gn trapped between g and fn hence
strongly converging to g in Wp such that

1

η2
n

δ[fn] = (p− 1)2 Q[hn] + 2 p
(
d− p (d− 2)

)(∫
Rd
gp−1
n h2

n dx−
∫
Rd

gp−1 h2
n dx

)
− 4 p (2 p− 1)

(∫
Rd
g2 p−2
n h2

n dx−
∫
Rd

g2 p−2 h2
n dx

)
.

By arguing as above, we obtain

(1.47)
1

η2
n

δ[fn] = (p− 1)2 Q[hn] + o(1) as n→ +∞
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and, because hn → h strongly in L2p
loc(Rd), eventually after extracting a subse-

quence, and ∇hn → ∇h weakly in L2(Rd),

(1.48) lim
n→+∞

1

η2
n

δ[fn] ≥ (p− 1)2 Q[h] .

1.3.2.5. The locally compact case.
Assume now that h 6= 0. We deduce from (1.46) and (1.48) that

lim
n→+∞

δ[fn]

E [fn|g]
≥ (p− 1)2 Q[h]

p (p+ 1)
∫
Rd

h2

1+|x|2 dx
.

It remains to prove that h satisfies (1.38). We can first notice that

0 =
1

ηn

∫
Rd
|x|2

(
f2p
n − g2p

)
dx = 2 p

∫
Rd
|x|2 g2 p−1 hn dx

+ p (2 p− 1) ηn

∫
Rd
|x|2 g2 (p−1)

n h2
n dx

for some (new) sequence of functions gn, which strongly converge in Wp to g as
n→ +∞. Passing to the limit then leads to∫

Rd
|x|2 g2p−1h dx = 0 .

We repeat exactly the same argument for 1 and x to get (1.38). Finally, the
improved Hardy-Poincaré inequality (1.39) provides the contradiction that

0 = ` = lim
n→+∞

δ[fn]

E [fn|g]
≥ (p− 1)2

p (p+ 1)
(Λ? − Λ) .

1.3.2.6. The vanishing case. To complete the proof of Theorem 1.15, we have
to discard the only remaining case: h = 0. In that case, we know that

lim
n→+∞

1

η2
n

E [fn|g] = 0

and, as a consequence, limn→+∞ δ[fn]/η2
n = 0 and limn→+∞ ‖∇hn‖2 = 0. Taking

into account the fact that limn→+∞ ‖hn‖2p = 0 and, by definition of ηn,

lim
n→+∞

∫
Rd
〈x〉2 h2p

n dx = 1 ,

vanishing (in the language of concentration-compactness) occurs, which means that
the same type of estimates as the one from the Hardy-Poincaré inequality holds,
except that Λ in (1.37) has to be replaced by the gap associated with the essential
spectrum, Λess given by (1.43). Making this idea rigorous requires some explana-
tions.

Let us introduce the IMS decomposition (IMS stands for for Ismagilov, Morgan,
Morgan-Simon and Sigal: see [Mor79, Sim83]) h2

n = h2
n,R,1 +h2

n,R,2 where R > 0,
hn,R,1 (resp. hn,R,2) is supported in B2R (resp. BcR) and, for some constant C > 0,∣∣∣|∇h|2 − |∇hn,R,1|2 − |∇hn,R,2|2∣∣∣ ≤ C h2

n

R2
1{R≤|x|≤2R} .

We also have that

lim
n→+∞

∫
R≤|x|≤2R

h2
n dx ≤ (ωdR)

p−1
p+1 ‖hn‖p+1

p+1 = 0
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where ωd := |Sd−1|. Let us first fix some R > 0 such that (1.39) is valid for any
function supported in BcR with constant Λ? = (Λess+Λ)/2. We can then decompose
the estimates (1.45) and (1.47) into a part on B2R that converges to 0 and a part for
which we use the improved Hardy-Poincaré inequality on BcR. As a consequence,
we again obtain a contradiction because

0 = ` = lim
n→+∞

δ[fn]

E [fn|g]
≥ (p− 1)2

2 p (p+ 1)
(Λess − Λ) > 0 .

1.3.3. Comparison with the Bianchi-Egnell result for the critical case.
In (1.32), the distance to the manifold of the Aubin-Talenti functions is measured
in the H1

0(Rd) norm, while the result of Theorem 1.15 is a essentially a stability
result in a Lebesgue space, according to Lemma 1.7. However, it is possible to
reformulate the result also in the stronger sense of, essentially, a Sobolev norm.

According to Lemma 1.2, the Gagliardo-Nirenberg-Sobolev inequalities (1.1)
in the subcritical range are equivalent to the inequality δ[f ] ≥ 0. According to
Theorem 1.15, under the condition (1.15) with g = g, then with K = 1

4
p+1
p−1 C, the

inequality δ[f ] ≥ C E [f |g] can be rewritten as

J [f |g]− 4 (1 +K) E [f |g] ≥ 0 ,

which is equivalent to

J [f |g]− 4 E [f |g] ≥
(

1

1 +K
J [f |g]− 4 E [f |g]

)
+

K

1 +K
J [f |g] ≥ K

1 +K
J [f |g] .

Hence we have

δ[f ] ≥ p− 1

p+ 1

K

1 +K
J [f |g] .

In the right-hand side of the inequality, we have a measure of the distance to the
Aubin-Talenti function g in a stronger sense than in the result of Theorem 1.15.

Theorem 1.15 is limited to nonnegative functions. In case of a sign-changing
function f ∈ Wp(Rd), let us extend the definition (1.17) of the relative Fisher
information by

(1.49) J [f |g] :=
p+ 1

p− 1

∫
Rd

∣∣(p− 1)∇f + |f |p−1 f ∇g1−p∣∣2 dx .

Corollary 1.17. If d ≤ 2, or d ≥ 3 and p < p?, there is a positive constant κ
such that, for any f ∈ Wp(Rd) satisfying∫

Rd

(
1, x, |x|2

)
|f |2p dx =

∫
Rd

(
1, x, |x|2

)
g2p dx ,

we have
δ[f ] ≥ κJ [f |g] .

Proof. It follows from the above considerations that κ = p−1
p+1

K
1+K for non-

negative functions. In the general case, it is straightforward to notice that

J [f |g] = J
[
|f | | g

]
,

which concludes the proof. �
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The stability estimates of Theorem 1.15 and Corollary 1.17 differ in nature
from (1.32) because the Lp+1 norm plays a key role, which is not present in
the Bianchi-Egnell result, and also because we work in the slightly smaller space
Wp(Rd), in order to properly define J [f |g]. In [BE91], it is only required that the
functions are in L2 p?(Rd) with gradient in L2(Rd). Here we use estimates based
on the relative entropy functional, which explains why our function space Wp(Rd)
involves L2p(Rd, 〈x〉2 dx) and why our estimates are done either for nonnegative
functions f or for |f |.

1.4. Bibliographical comments

The characterization of optimal functions in functional inequalities is a standard
problem in nonlinear analysis and in the calculus of variations. Various proofs of
the optimality of the Aubin-Talenti functions defined by (1.3) are known: by direct
variational methods, symmetry and ODE techniques in [DPD02]; using the carré
du champ method at formal level in [CT00, CV03] and then with a complete
proof in [CJM+01] (also see the simpler presentation of [J1̈6]); by mass transport
in [CENV04]; by a continuous dimension argument in [BGL14, CF13, Seu17].
We will not review here the methods based on the carré du champ, except to quote
the large overview provided by the book [BGL14]. More details will be given in
the next chapters.

The issue of the stability of the optimal functions started with the study of
solitary waves obtained by minimization methods as in [CL82, GSS87, Wei83].
In the case of Sobolev and Gagliardo-Nirenberg inequalities, some pioneering re-
sults were obtained in bounded domains in [BL85, EPT89], but the breakthrough
came with the result [BE91] of G. Bianchi and H. Egnell finally made construc-
tive in [DEF+23, DEF+24]. In recent years, the problem of finding stability
results for various sharp inequalities in analysis and geometry, such as the isoperi-
metric inequality, the Brunn–Minkowski inequality, the Sobolev inequality, the
logarithmic Sobolev inequality, etc., has been intensively studied. See for in-
stance [FMP08, FMP10, FMP13, FI13, FJ17]. The stability of the Sobolev’s
inequalities in the case of an Lq norm of the gradient with q 6= 2 was proven by
A. Cianchi, N. Fusco, F. Maggi and A. Pratelli in [CFMP09] and improved recently
by A. Figalli, R. Neumayer and Y. R.-L. Zhang in [FN18, Neu20, FZ20] by a
different method. Also see [FG20] for a related result for q = 2. For the Gagliardo-
Nirenberg inequality (1.1), some stability results have been obtained by A. Figalli
and E. Carlen in [CF13], F. Seuffert in [Seu17] and V.H. Nguyen in [Ngu19],
with non-constructive constants. In [CFW13], remainder terms are obtained in
the fractional Sobolev inequality, with a nice treatment of the linearization based
on the inequality written on the sphere using the inverse stereographic projection.
We can refer to [Fig13] for a general introduction to stability issues and some
consequences of the known results, and [CFL14, Ruf14] for stability results for
some Gagliardo-Nirenberg-Sobolev inequalities. All these results are quantitative,
in the sense that a precise notion of distance is controlled by the deficit of the in-
equality, but the proportionality constant is achieved by compactness, or through
a contradiction argument, and no estimate on the constant is given. In this sense,
except in [FMP10], [FMP13, Theorem 1.1, p. 83] and [DEF+23], these methods
are not constructive. This is due to the fact that a typical strategy is to reduce
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the problem to a critical Sobolev inequality and adapt the method of [BE91].
In [FMP10, FMP13], the authors obtain constructive stability estimates for 1-
Sobolev inequalities but no consequences are known so far in our setting. However,
by duality (see [Lie83]) and flows, quantitative and constructive results were ob-
tained in [Dol11, DJ14], although with a weaker norm than in [BE91].

In the subcritical regime, the situation is slightly better than for the critical
case of Sobolev inequalities. Constructive results have been obtained in [BDGV10]
and can also be deduced from [BBD+09] in a very restricted neighborhood of the
manifold of the Aubin-Talenti functions (as it is measured in the uniform norm
associated with the relative error). The global result of [DT13] is explicit but
clearly sub-optimal as the remainder term is of the order of the square of the
entropy while one would expect a linear dependence. This result has been rephrased
in [DT16b] using scaling considerations, and we use it here to prove the uniqueness
up to the trivial invariances of the optimizers in (1.1). Progresses have been achieved
in subcritical interpolation inequalities on the sphere in [DEL17, DE20], with a
constant which is obtained through an explicit, standard minimization problem
(whose value is not known), except in the limit case of the logarithmic Sobolev
inequality or if additional symmetry assumptions are imposed. Also see [Fra22,
BDS23, BDS24a, BDS24b, Kön23, Kön22] for recent advances.

Gagliardo-Nirenberg inequalities go back to [Gag58, Nir59]. An interesting
account is given in [Nir20] of the first meeting of E. Gagliardo and L. Niren-
berg in a special issue in memoriam of E. Gagliardo, and how these inequalities
became known as the Gagliardo-Nirenberg inequalities. The special class of inequal-
ities (1.1) appears in [Gun91, DPD02] and the link with fast diffusion equations
was made clear in [DPD02].

Now, let us enter in the details of the results of this chapter. Although classical,
the concentration-compactness method has not been, as far as we know, applied to
the Gagliardo-Nirenberg-Sobolev inequalities (1.1), except in [Lio84b, page 280]
at a rather abstract level. Methods are however standard and we primarily refer
to [Lio84a, Lio84b, Lio85a, Lio85b]. For the analysis of the behaviour of min-
imizing sequences from the point of view of concentration-compactness, we shall
refer to [Gér98]. Also see [Str08, Chapter I, Section 4] for a concise introduction
to concentration-compactness. In [DPD02], the existence of an optimal function
is obtained first on a centred ball of radius R, for which it is known that opti-
mal functions are radial by the moving plane method on the ball, see [GNN79],
as well as on the whole space according to [GNN81]. The solutions are unique
by [PS98, ST00]. Using barrier functions, the minimizer on the whole space is
obtained by taking the limit as R→ +∞. Other proofs of the existence of optimal
functions in (1.1) have been obtained by mass transport in [CENV04] or by reduc-
ing the problem of Gagliardo-Nirenberg-Sobolev inequalities to a Sobolev inequality
in a higher dimension, see [BGL14, CF13, Seu17]. There is also a proof by en-
tropy methods which is given in [CJM+01] but whose ideas go back to [CT00,
CV03]. Last but not least, in [Gun91], J. Gunson noticed the role of Aubin-
Talenti functions, however with only a sketch of a proof, and without making the
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link with fast diffusion equations as, for instance, in [DPD02]. The concentration-
compactness method has also been used in the Caffarelli-Kohn-Nirenberg inequali-
ties, see [CKN84], which are similar to the Gagliardo-Nirenberg-Sobolev inequal-
ities, except that they involve weights: see for instance [CW01, DE12]. Be-
cause of the Emden-Fowler transformation, the two families of inequalities are
closely related, as critical Caffarelli-Kohn-Nirenberg inequalities can be rewritten
as Gagliardo-Nirenberg-Sobolev interpolation inequalities without weights on cylin-
ders.

Concerning our presentation of Sobolev’s inequalities, here are a few additional
details. Symmetry obtained by spherically symmetric rearrangements is used in
this chaper. We refer to [Tal94, Kaw85, FV03, Kes06] of an overview of sym-
metrization methods. The Pólya–Szegő principle goes back to [PS51]. A simpler
proof based on the Riesz lemma and monotonicity properties of the heat kernel,
due to E. Lieb in [Lie77], can be found in [LL01]. Equality cases for the Dirich-
let integral in spherically symmetric rearrangement are known to be radial up to
translation (see for instance [BZ88, p. 154]) but this is by no way elementary. In
order to establish the uniqueness among radial functions, we use the Emden-Fowler
transformation. This transformation was known for a long time in astrophysics, at
least in dimension d = 3 for the critical exponent 2∗ = 6, as it is discussed at
length in [Cha57, Chapter IV, on Polytropic and isothermal gas spheres], with im-
portant contributions (for the equations of polytropic gases) going back at least to
H. Lane in 1870 in [Lan70]. After the Emden-Fowler transformation, the problem
becomes one-dimensional: see [DELL14] for detailed considerations concerning
Gagliardo-Nirenberg inequalities on the line. Details on a mass transport proof can
also be found there, which are of course connected with the result of [CENV04]
(also see [AGK04]) and [Agu08]. Notice that the knowledge of the optimal func-
tions points in the direction of a duality approach using mass transport methods:
see [DELL14, Section 2] for an application to (1.5). The change of variable z(s)
in Section 1.2.1.1 is also reminiscent of mass transport. This change of variables
appears in [BL04, Sections 2 and 4]. As far as we know, it has not been used so
far to obtain a compactness result.

On optimality in Sobolev’s inequalities, we refer to the classical papers of
T. Aubin and G. Talenti [Aub76, Tal76] for the optimal Sobolev inequality , with
earlier contributions by G. Rosen in [Ros71], and G. Bliss in [Bli30]. E. Ro-
demich’s seminar [Rod66] is probably the first complete proof (see [GT01, p. 158]
for a quote) although this reference is not widely known and difficult to find. The
Onofri inequality can be seen as a limit case of Sobolev’s inequalities in dimen-
sion d = 2. The inequality was established in [Ono82] with optimal constant, but
already appears in [Mos70]. See [DEJ15] for a collection of various methods of
proof, [CL92, Bec93] and [DPD12] for extensions to dimensions d > 2. The
Euclidean logarithmic Sobolev seen as a limit case of (1.1) appears in [DPD02],
long after the well known papers [Gro75, Fed69] in the Euclidean case, [Wei78,
Theorem 2] for the scale invariant form of the inequality, and also [Sta59, Inequal-
ity (2.3)]. The optimality case is characterized in [Car91, Inequality (26)] and
we refer to [BGRS14, FIL16, DT16b, CF20, ELS20, BDS24b, DEF+23,
DEF+24] for some recent stability results.

Dilations and homogeneity play an essential role in this chapter. Property (i)
of Lemma 1.12 is a consequence of scalings and homogeneity, as in Lemma 1.2: for
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details, see [DT13]. Property (ii) of Lemma 1.12 arises from a simple computation
which is detailed in [DPD02]. Concerning the stability result of Lemma 1.12, (iii),
an expression of C is given in [DT16b, Theorem 6], based on the comparison of the
non-scale invariant inequality δ[f ] ≥ 0 with (1.1), using dilations. An earlier proof
based on the carré du champ method appeared in [DT13]. This stability result
is rather weak but has anyway important consequences, starting with uniqueness
issues.

In this chapter, in order to identify the optimal functions, we proceed in two
steps. First we identify the radial optimal functions: the result of Lemma 1.10 is
exactly the computation for Rényi entropies of [DT16a] except that we do it only
for a critical point, with sufficient decay properties and regularity. It is actually a
rigidity result, in the sense that we do not use the optimality of the solution, but
only that it is a critical point. See [GS81, BVV91, BL96, DEL14, DEL18]
for related results on manifolds. The strategy of Lemma 1.10 is very similar to
the strategy of [DEL16b] and not limited to radial functions. A major advantage
of critical points is that, by elliptic regularity, computations are much easier to
justify than, for instance, along the flow of a parabolic equation: see [DEL16a] for
a discussion. The price to pay is that the strategy for ordering the computations
in the proof of Lemma 1.10 is by no way obvious. On the contrary, the parabolic
version of the method offers a clearer strategy, to the price of computations which
are more difficult to justify, as we shall see in the next chapter.

The uniqueness result (up to trivial invariances) of Corollary 1.13 is a remark-
able result, which is a direct consequence of the stability result of Lemma 1.12, (iii)
and arises from the nonlinearity rather than from the geometry, as there is no cur-
vature involved in the case of the Euclidean space. This observation goes back
to [DT16b], although a parabolic proof appeared earlier in [DT13]. There are a
number of alternative proofs which have appeared in the literature. Equality cases
for the Dirichlet integral in spherically symmetric rearrangement are known to be
radial up to translation (see for instance [BZ88, p. 154]) but this is by no way ele-
mentary. It is also possible to work directly on the Euler-Lagrange equation: up to
an analysis of the regularity and the decay properties of the solutions as |x| → +∞,
the moving plane methods can be applied and the result of [GNN81] shows that
optimal functions are radial up to translation. This is the approach of [DPD02]
and again uniqueness is by no way elementary. Knowing that the solution is radial
is not enough to guarantee uniqueness and one has then to rely on delicate ODE
arguments that can be found in [PS98, ST00]. The uniqueness (up to trivial in-
variances) is also a consequence of the proof by mass transport in [CENV04] and
ultimately of the underlying gradient flow structure with respect to the Wasserstein
distance (see for instance [AGK04]). The carré du champ method on which we will
rely in the next chapters is even stronger, as it proves that not only the minimiz-
ers but also all nonnegative critical points are in M, a much stronger result which
has to do with a convexity property along the flow and the improved inequality
of Lemma 1.12, (iii). The computation of Lemma 1.10, is a close analogue of the
results of M.-F. Bidaut-Véron and L. Véron in [BVV91], adapted to the Euclidean
case. The counterpart of the carré du champ method in elliptic theory goes back
to [GS81] and has been exploited in [BVV91]: the link has been made clear for
instance in [DEL14] in the case of compact manifolds. The Euclidean case is more
delicate than the case of compact manifolds: see [DEL16a] for a discussion. The
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key point is then to obtain regularity and decay estimates for non-radial solutions
of (1.22) and their derivatives, which involves for instance a Moser iteration scheme.
To our knowledge, this has not been done yet but presents no real difficulties. With
these precautions, Lemma 1.10 applies to all critical points, and not only to smooth
and sufficiently decreasing functions.

In Section 1.2.3.2, there is a number of observations on the relative entropy
which are borrowed from entropy methods, that is, from the topic of the next
chapter. Let us emphasize that the elliptic point of view of Chapter 1 can be
considered as a special case of the entropy methods in the parabolic case applied
either to self-similar situations in original variables, or to stationary solutions in
self-similar variables. For instance, the idea of using best matching Aubin-Talenti
functions in Lemma 1.8 refers to the notion of best matching Barenblatt functions
which will be exploited in the next chapters and was introduced in [DT13, DT16a]
or [DT15, Section 4]. Similar remarks apply to the Csiszár-Kullback inequality,
which is a classical tool of entropy methods and will be further discussed in 2.4.6.

Linearization and the spectral analysis of the corresponding operators are es-
sential in the stability analysis of (1.1), as we need to linearize around an Aubin-
Talenti function. Spectral gap properties in connection with Gagliardo-Nirenberg-
Sobolev inequalities (and fast diffusion flows) go back to [Sch01, DM03, DM05,
BBD+07]. Here are a few entry points in the literature of the weighted Hardy
inequality and the Hardy-Poincaré inequality. The proof of (1.44) is classical: see
for instance [BBD+07]. Persson’s characterization of the bottom of the essential
spectrum, Λess, is well known in spectral theory and one of the classical paper on the
topic is [Per60]. For results concerning more specifically the measure dµa, the dis-
crete spectrum of the operator La,d and the computation of Λ and Λ? in (1.37)
and (1.39), we refer to [DT11, Corollaries 1 and 2] and to [DM03, DM05,
BBD+07, BBD+09, BDGV10] for earlier partial results. The role of (1.44)
and the analysis of the essential spectrum, in connection with [Per60], is clarified
in [BDLS20, Appendix A.1]. In Section 1.3.2 (proof of Theorem 1.15), we perform
a Taylor expansion similar to the one of the slightly more complicated framework
of Caffarelli-Kohn-Nirenberg inequalities, in [BDMN17a].

Inequality (1.35) in Theorem 1.14 is of Caffarelli-Kohn-Nirenberg type. The
computation of Section 1.3.1.2 can be found in [BGL14, Section 6.10] and a sketch
of a proof of Theorem 1.14 is also provided there when the dimensionN is an integer,
based on the curvature-dimension criterion. The case of a non-integer dimension is
more subtle because the property that “the carré du champ operator Γ [is] defined
on a suitable algebra A of functions in the L2(Sd,dµn)-domain” of the diffusion
operator is to some extent formal and cannot be assumed as in [BGL14, page 71]
(notations have been adapted). The Sobolev inequality (1.35) with a non-integer
dimension N can indeed be seen as a weighted inequality on a standard Euclidean
space, eventually with some cylindrical symmetry, but weights are a serious source
of trouble even for the simplest versions of the carré du champ method : see for
instance [DMN17, DEL16b, DELM17], and [DEL16a] for the discussion of the
regularity which is needed in the proofs. In any case, V.H. Nguyen in [Ngu15] gave
an alternative proof of Theorem 1.14 based on an adaptation of the mass transport
method of [CENV04], which also covers various other cases. Recently F. Seuffert
extended the first result of [CF13] and generalized to Inequality (1.35) the result of
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Bianchi-Egnell in [Seu16, Theorem 1.10], while [Ngu19] contains additional stabil-
ity results for (1.1), with various notions of distance to the manifold M. All these
quantitative results are based on the equivalence with Sobolev’s inequality (1.35)
with a non-integer dimension.





CHAPTER 2

The fast diffusion equation and the entropy
methods

In this chapter, we explain how Gagliardo-Nirenberg-Sobolev inequalities (1.1)
can be used in the study of the fast diffusion equation, through various entropy
methods. By carré du champ computations, the flow can also be used to provide
a proof of (1.1). In preparation for the next chapters, we will also establish a
few additional estimates. Many integrations by parts are needed, that we shall
not justify in details, but we will indicate how they can be proved and where the
corresponding proofs can be found in the literature.

2.1. Gagliardo-Nirenberg-Sobolev inequalities and fast diffusion

Let us consider the diffusion equation

(2.1)
∂u

∂t
= ∆um , u(t = 0, ·) = u0

acting on nonnegative functions u defined on R+×Rd. The case m = 1 corresponds
to the heat equation and m > 1 is known as the porous medium case. Here we
shall focus on the fast diffusion case

m < 1 .

2.1.1. Mass, moment, entropy and Fisher information. The following
properties are well known:

(i) Mass conservation. If u0 ∈ L1
+(Rd) and m ≥ mc := (d− 2)/d, then

d

dt

∫
Rd
u(t, x) dx = 0 .

In other words, the massM =
∫
Rd u(t, x) dx =

∫
Rd u0 dx does not depend

on t ≥ 0.
(ii) Growth of the second moment. If u0 ∈ L1

+

(
Rd, (1 + |x|2) dx

)
and m > m̃1

where m̃1 := d/(d+ 2), then
d

dt

∫
Rd
|x|2 u(t, x) dx = 2 d

∫
Rd
um(t, x) dx .

Also notice that, by Hölder’s inequality,∫
Rd
um dx =

∫
Rd

(
1 + |x|2

)m
um ·

(
1 + |x|2

)−m
dx

≤
(∫

Rd

(
1 + |x|2

)
u dx

)m(∫
Rd

(
1 + |x|2

)− m
1−m dx

)1−m

so that
∫
Rd u

m(t, x) dx is well defined as soon as u0∈L1
+

(
Rd, (1 + |x|2) dx

)
.

43
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(iii) Entropy estimate. If u0 ∈ L1
+

(
Rd, (1 + |x|2) dx

)
is such that um0 ∈ L1(Rd),

and if m ≥ m1 := (d− 1)/d, then

(2.2)
d

dt

∫
Rd
um(t, x) dx =

m2

1−m

∫
Rd
u |∇um−1|2 dx .

Let us define an entropy functional E and an associated Fisher information func-
tional I respectively by

E[u] :=

∫
Rd
um dx and I[u] :=

m2

(1−m)2

∫
Rd
u |∇um−1|2 dx .

If u solves (2.1) and with the notation E(t) = E[u(t, ·)], E′ = d
dtE[u(t, ·)], then (2.2)

can be rewritten as
E′ = (1−m) I .

2.1.2. Entropy growth rate. In order to relate (2.1) with (1.1), it is conve-
nient to introduce

(2.3) p =
1

2m− 1
⇐⇒ m =

p+ 1

2 p
,

consider f such that u = f2 p, and notice that um = fp+1 and u |∇um−1|2 =
(p− 1)2 |∇f |2, so that

M = ‖f‖2 p2 p , E[u] = ‖f‖p+1
p+1 and I[u] = (p+ 1)2 ‖∇f‖22 .

As a consequence, if u solves (2.1), we obtain from (2.2) that

E′ =
p− 1

2 p
I =

p− 1

2 p
(p+ 1)2

∫
Rd
|∇f |2 dx

≥ p− 1

2 p
(p+ 1)2 (CGNS(p))

2
θ ‖f‖

2
θ
2 p ‖f‖

− 2 (1−θ)
θ

p+1 .

using (1.1) with θ given by (1.2). Hence

(2.4) E′ ≥ C0 E
1− m−mc

1−m

with C0 := p−1
2 p (p+ 1)2 (CGNS(p))

2
θ M

(d+2)m−d
d (1−m) and M = ‖u0‖1.

Lemma 2.1. Assume that d ≥ 1, m ∈ [m1, 1)∩ (1/2, 1) and consider a solution
of (2.1) with initial datum u0 ∈ L1

+

(
Rd, (1 + |x|2) dx

)
such that um0 ∈ L1(Rd).

Then

(2.5)
∫
Rd
um(t, x) dx ≥

((∫
Rd
um0 dx

)m−mc
1−m

+ (1−m)C0

m−mc t

) 1−m
m−mc

∀ t ≥ 0 .

The proof follows from an integration of (2.4) on [0, t]. It turns out that the
estimate (2.5) is sharp. Let us consider the Barenblatt self-similar solution of (2.1)
of mass M defined by

(2.6) B
(
t , x ; M

)
:=
(
M
M
) 2
α

λd•
R(t)d

B
((

M
M
) 1−m

α
λ• x

R(t)

)
,

whereM :=
∫
Rd B dx,

(2.7) B(x) :=
(
1 + |x|2

) 1
m−1 ∀x ∈ Rd
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and where λ• and R are given respectively

(2.8) λ• :=
(

1−m
2m

)1/α
and

(2.9) R(t) := (1 + α t)1/α , α := d (m−mc) .

Notice that

(2.10) M = π
d
2

Γ
(

1
1−m −

d
2

)
Γ
(

1
1−m

)
andM = ‖g‖2p2p because g defined as in (1.3) is such that B = g2p.

Lemma 2.2. Assume that d ≥ 1, m ∈ [m1, 1) and take M > 0. Then u = B as
defined in (2.6) solves (2.1), with equality in (2.5).

Proof. Equation (2.1) applied to B means that B solves

∇ ·
(
B
(
∇Bm−1 + 2x

) )
= 0 ∀x ∈ Rd ,

which is easy to check. The function g such that g2 p = B is optimal for the
Gagliardo-Nirenberg-Sobolev inequalities (1.1). Taking into account the expression
of R and (2.6), we obtain that B(·, ·;M) is also optimal in (2.4) for any t ≥ 0, which
means that we have equality in (2.4) and, as a consequence, in (2.5). �

2.2. Rényi entropy powers

The results of Lemma 2.1 and Lemma 2.2 rely on the Gagliardo-Nirenberg-
Sobolev inequalities (1.1) and the corresponding optimality case. It turns out that
the evolution equation (2.1) can be used to establish the inequalities and identify
the equality cases. Let us sketch the main steps of the proof of such results, at
formal level. We assume here that the solution of (2.1) has all regularity and decay
properties needed to justify the integrations by parts.

2.2.1. Pressure variable and decay of the Fisher information.
Let us introduce the pressure variable

P :=
m

1−m
um−1 .

The Fisher information can be rewritten as

I[u] =

∫
Rd
u |∇P|2 dx .

If u is a solution of (2.1), that is, of
∂u

∂t
+∇ · (u∇P) = 0 ,

then P solves

(2.11)
∂P

∂t
= (1−m)P∆P− |∇P|2 .

Using (2.1) and (2.11), we compute the time derivative of I(t) = I[u(t, ·)] as

(2.12) I′ =

∫
Rd

∆(um) |∇P|2 dx+ 2

∫
Rd
u∇P · ∇

(
(m− 1)P∆P + |∇P|2

)
dx .
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As a preliminary step, we start by establishing a useful identity. This result and
its proof are taken from [DEL16a] and reproduced here with no changes, for sake
of completeness. Similar computations can be found in earlier papers like [DT16a]
or [ST14, Appendix B].

Lemma 2.3 ([DEL16a]). Let m ∈ (0, 1). Assume that u is a smooth, positive
and sufficiently decreasing function on Rd, with smooth and sufficiently decreasing
derivatives. If we let P = m

1−m um−1, then we have

(2.13)
∫
Rd

∆(um) |∇P|2 dx+ 2

∫
Rd
u∇P · ∇

(
(m− 1)P∆P + |∇P|2

)
dx

= − 2

∫
Rd
um
(
‖D2P‖2 − (1−m) (∆P)2

)
dx .

If we take into account (2.3) and consider u = f2 p, the definition of the pressure
variable P is the same as in (1.23) and the result of Lemma 2.3 coincides with
Lemma 1.10. Let us give a more detailed proof.

Proof. Let us start by computing∫
Rd

∆(um) |∇P|2 dx+ 2

∫
Rd
u∇P · ∇

(
(1−m)P∆P− |∇P|2

)
dx

=

∫
Rd
um ∆ |∇P|2 dx+ 2 (1−m)

∫
Rd
uP∇P · ∇∆P dx

+ 2 (1−m)

∫
Rd
u |∇P|2 ∆P dx− 2

∫
Rd
u∇P · ∇ |∇P|2 dx

= −
∫
Rd
um ∆ |∇P|2 dx+ 2 (1−m)

∫
Rd
uP∇P · ∇∆P dx

+ 2 (1−m)

∫
Rd
u |∇P|2 ∆P dx

where the last line is given by the observation that u∇P = −∇(um) and an inte-
gration by parts:

−
∫
Rd
u∇P · ∇ |∇P|2 dx =

∫
Rd
∇(um) · ∇ |∇P|2 dx = −

∫
Rd
um ∆ |∇P|2 dx .

1) Using the elementary identity

1

2
∆ |∇P|2 = ‖D2P‖2 +∇P · ∇∆P ,

we get that∫
Rd
um ∆ |∇P|2 dx = 2

∫
Rd
um ‖D2P‖2 dx+ 2

∫
Rd
um∇P · ∇∆P dx .

2) Since u∇P = −∇(um), an integration by parts gives∫
Rd
u |∇P|2 ∆P dx = −

∫
Rd
∇(um) · ∇P∆P dx

=

∫
Rd
um (∆P)2 dx+

∫
Rd
um∇P · ∇∆P dx
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and with uP = m
1−m um we find that

2 (1−m)

∫
Rd
uP∇P · ∇∆P dx+ 2 (1−m)

∫
Rd
u |∇P|2 ∆P dx

= 2 (1−m)

∫
Rd
um (∆P)2 dx+ 2

∫
Rd
um∇P · ∇∆P dx .

Collecting terms establishes (2.13). �

In Lemma 2.3, one can check that the Barenblatt self-similar solutions defined
by (2.6) are sufficiently decreasing functions on Rd in the sense that B and its
derivatives decay as |x| → +∞ sufficiently fast so that no asymptotic boundary
term appears in the integrations by parts of the proof of Lemma 2.3.

Corollary 2.4. Let d ≥ 1 and assume that m ∈ [m1, 1). If u solves (2.1) with
smooth initial datum u0 ∈ L1

+(Rd) such that
∫
Rd |x|

2 u0 dx < +∞ and if, for any
t ≥ 0, u(t, ·) is a smooth and sufficiently decreasing function on Rd, then

I′ = − 2

∫
Rd
um

∥∥D2P− 1
d ∆P Id

∥∥2
dx− 2 (m−m1)

∫
Rd
um (∆P)2 dx ∀ t ≥ 0 .

Proof. The result follows from (2.12), (2.13) and as a consequence of the
elementary identity

‖D2P‖2 = 1
d (∆P)2 +

∥∥D2P− 1
d ∆P Id

∥∥2
.

�

2.2.2. Rényi entropy powers and interpolation inequalities. With the
notations of Section 2.1, the Gagliardo-Nirenberg-Sobolev inequalities are equiva-
lent to

I[u]θ E[u]2
1−θ
p+1 ≥ (p+ 1)2 θ

(
CGNS(p)

)2 θ
M

2 θ
p .

While the right-hand side is independent of t if u solves (2.1), it turns out that the
left-hand side is monotone with respect to t. In order to prove this, it is convenient
to rephrase this property using the pressure variable P.

Lemma 2.5. Let d ≥ 1 and assume that m ∈ [m1, 1). If u solves (2.1) with
smooth initial datum u0 ∈ L1

+(Rd) such that
∫
Rd |x|

2 u0 dx < +∞ and if u(t, ·) is a
smooth and sufficiently decreasing function on Rd, then for any t ≥ 0 we have

− I

2 θ

d

dt
log
(
Iθ E2 1−θ

p+1

)
=

∫
Rd
um

∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥2

dx+ (m−m1)

∫
Rd
um

∣∣∣∣∆P +
I

E

∣∣∣∣2 dx .

Proof. The result follows from

−1

θ

d

dt
log
(
Iθ E2 1−θ

p+1

)
= − I′

I
− 1− θ
p+ 1

2

θ

E′

E
= −1

I

(
I′ +

1− θ
p+ 1

2

θ
(1−m)

I2

E

)
with the observation that

∫
Rd u

m ∆P dx =
∫
Rd u |∇P|

2 dx and that 1−θ
p+1

2
θ (1−m) =

2 (m−m1), and from Corollary 2.4. �



48 2. THE FAST DIFFUSION EQUATION AND THE ENTROPY METHODS

Proposition 2.6. Let d ≥ 1 and assume that m ∈ (m1, 1). If u solves (2.1)
with smooth initial datum u0 ∈ L1

+(Rd) such that
∫
Rd |x|

2 u0 dx < +∞ and if, for
any t ≥ 0, u(t, ·) is a smooth and sufficiently decreasing function on Rd, then

lim
t→+∞

I[u(t, ·)]θ E[u(t, ·)]2
1−θ
p+1

M
2 θ
p

= lim
t→+∞

I[B(t, ·;M)]θ E[B(t, ·;M)]2
1−θ
p+1

M
2 θ
p

=
I[B]θ E[B]2

1−θ
p+1

‖B‖
2 θ
p

1

= (p+ 1)2 θ (CGNS(p))
2 θ

.

For solutions of (2.1) with initial data in L1
+(Rd), it is well known that Baren-

blatt self-similar solutions defined by (2.6) play the role of an attractor in various
norms if m ∈ (m1, 1). However, a direct proof that

lim
t→+∞

I[u(t, ·)]
I[B(t, ·;M)]

= 1 and lim
t→+∞

E[u(t, ·)]
E[B(t, ·;M)]

= 1

is delicate. The scheme of a proof of a similar result can be found in Section 2.3, in
the easier framework of self-similar variables and relative entropies. The equivalence
of the two approaches is discussed in details in [DEL16a]. With the results of
Lemma 2.5 and Proposition 2.6 in hand, we deduce the following estimate for a
solution of (2.1).

Corollary 2.7. Let d ≥ 1 and assume that m ∈ [m1, 1). If u solves (2.1) with
smooth initial datum u0 ∈ L1

+(Rd) such that
∫
Rd |x|

2 u0 dx < +∞ and if, for any
t ≥ 0, u(t, ·) is a smooth and sufficiently decreasing function on Rd, then

I[u(t, ·)]θ E[u(t, ·)]2 (1−θ)

M
2 θ
p

≥ I[B]θ E[B]2 (1−θ)

‖B‖
2 θ
p

1

= (p+ 1)2 θ
(
CGNS(p)

)2 θ ∀ t ≥ 0 .

Altogether, Corollary 2.7 provides us with the scheme of a second proof of (1.1),
under minor restrictions like

∫
Rd |x|

2 u0 dx < +∞. Notice that the estimate holds
up to t = 0, so that it holds true for an arbitrary initial datum: written for u0,
the inequality is the generic form of the inequality, which can be extended to an
arbitrary function in Hp(Rd) by density.

According to [ST14], generalized Rényi entropy powers are defined as

F[u] := E[u]
2
θ (1−θ)+1 = E[u]

2
d

1
1−m−1 .

If u solves (2.1), it is straightforward that the concavity of t 7→ F[u(t, ·)] is a
consequence of Lemma 2.5. The exponent in the definition of F[u] is chosen in order
that t 7→ F[B(t, ·;M)] is an affine function. We do not really use further properties
of the Rényi entropy powers, but it is convenient to refer to the computations of
this section as the Rényi entropy method in order to distinguish them from other
entropy methods.

2.2.3. About the integrations by parts. All computations of Sections 2.1.2
and 2.2 are formal as we did not justify the integrations by parts. In Section 2.4,
we will consider a relative entropy method which has been proved to be equivalent
to the method based on Rényi entropy powers in [DEL16a], and for which inte-
grations by parts are much easier to justify. This is why we have kept the proofs
of Lemma 2.5, Proposition 2.6 and Corollary 2.7 formal.



2.3. THE FAST DIFFUSION EQUATION IN SELF-SIMILAR VARIABLES 49

2.3. The fast diffusion equation in self-similar variables

2.3.1. Rescaling and self-similar variables. We rewrite the solutions of
(2.1) in the scale given by the Barenblatt self-similar solution B(·, ·;M), with same
mass M , which is defined by (2.6): if v is such that

(2.14) u(t, x) =
λd•

R(t)d
v

(
1

2
logR(t),

λ• x

R(t)

)
where λ• and R are given respectively by (2.8) and (2.9), then v solves the fast
diffusion equation in self-similar variables

(2.15)
∂v

∂t
+∇ ·

(
v∇vm−1

)
= 2∇ · (x v) , v(t = 0, ·) = v0

with nonnegative initial datum v0 = λ−d• u0(·/λ•) ∈ L1(Rd). Notice that B(·, ·;M)
is transformed into a stationary solution of (2.15). Assuming that B has a fi-
nite mass introduces the limitation m > mc, but we shall further assume that
m ∈ [m1, 1) in view of the application to the Gagliardo-Nirenberg-Sobolev inequal-
ities (1.1). With m and p related by (2.3) and d ≥ 3, the range m ≥ m1 indeed
means p ≤ p? with the notations of Chapter 1. As a special case, Equation (2.15)
admits the Barenblatt profile B defined by (2.7) as a stationary solution of massM.

2.3.2. The entropy - entropy production inequality. We shall assume
that the mass of v0 is taken equal toM. It is well known that the mass is conserved,
i.e., if v solves (2.15) with initial datum v0, then∫

Rd
v(t, x) dx =M ∀ t ≥ 0 .

If the initial datum is centered, in the sense that
∫
Rd x v0(x) dx = 0, then the

position of the center of mass is also conserved and we have∫
Rd
x v(t, x) dx = 0 ∀ t ≥ 0 .

The free energy (or relative entropy) and the Fisher information (or relative entropy
production) are defined respectively by

F [v] :=
1

m− 1

∫
Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

and
I[v] :=

m

1−m

∫
Rd
v
∣∣∇vm−1 −∇Bm−1

∣∣2 dx .

With v = |f |2 p and p given in terms of m by (2.3), Inequality (1.8) is equivalent to
the entropy - entropy production inequality

(2.16) I[v] ≥ 4F [v]

by Lemma 1.12, (ii).
If v solves (2.15), it is a straightforward computation to check that

(2.17)
d

dt
F [v(t, ·)] = −I[v(t, ·)]

after one integration by parts (which has to be justified), and as a consequence, we
obtain that

F [v(t, ·)] ≤ F [v0] e−4 t ∀ t ≥ 0 .
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This estimate is equivalent to (2.16), as one can check by writing at t = 0 that

I[v(t, ·)] = − d

dt
F [v(t, ·)] ≥ − d

dt

(
F [v0] e−4 t

)
= 4F [v0] e−4 t ∀ t ≥ 0 .

On the other hand, exactly as in the case of the Rényi entropy powers, the flow
associated with (2.15) can be used to establish the non-scale invariant form of the
Gagliardo-Nirenberg-Sobolev inequalities (1.8). The key estimate goes as follows.
Let us define a relative pressure variable P by

(2.18) P(t, x) := vm−1(t, x)− |x|2 ∀ (t, x) ∈ R+ × Rd .
The relative Fisher information can be rewritten as

I[v] =

∫
Rd
v |∇P|2 dx .

Proposition 2.8. Let d ≥ 1 and assume that m ∈ (m1, 1). If v solves (2.15)
with initial datum v0 ∈ L1

+(Rd) such that
∫
Rd |x|

2 v0 dx < +∞, then for any t ≥ 0
we have

− 1

2

d

dt

(
I[v(t, ·)]− 4F [v(t, ·)]

)
≥
∫
Rd
vm

∥∥∥∥D2P − 1

d
∆P Id

∥∥∥∥2

dx+ (m−m1)

∫
Rd
vm |∆P|2 dx .

This result holds with no assumption on the regularity nor on the decay of v.
The strategy of the proof goes as follows. Along the flow, I − 4F is monotone
nonincreasing and strictly monotone unless ∆P = 0 on the support of v, in which
case v is a stationary Barenblatt function. The case m = m1 is, as usual, more
delicate and will not be covered here, but one can formally notice that D2P −
1
d ∆P = 0 also proves that v is a stationary Barenblatt function, but takes into
account the conformal invariance associated to Sobolev’s inequality. Details on the
proof of Proposition 2.8 are given below in Section 2.3.3.

An important consequence of Proposition 2.8 is the fact that

(2.19)
d

dt
I[v(t, ·)] ≤ − 4 I[v(t, ·)] ,

which guarantees that

I[v(t, ·)] ≤ I[v0] e−4 t ∀ t ≥ 0 .

As a consequence, this means that limt→+∞ I[v(t, ·)] = 0. In addition, we have

(2.20) lim
t→+∞

F [v(t, ·)] = 0 .

Indeed, since t 7→ F [v(t, ·)] is monotone, it has a limit as t → +∞. We then
learn from Proposition 2.8 that the corresponding relative pressure P is strongly
converging to P∞ satisfying ∆P∞ = 0 a.e. on the support of the limit v∞ of v,
which implies that v∞ is the Barenblatt profile and finally (2.20) follows from the
strong convergence of v(t, ·) that can be found for instance in [BBD+09]. Now,
since t 7→ I[v(t, ·)]− 4F [v(t, ·)] is monotone non-increasing, we obtain

I[v(t, ·)]− 4F [v(t, ·)] ≥ 0 ∀ t ≥ 0

and, as a special case at t = 0. This proves the inequality I[v0]− 4F [v0] ≥ 0 for an
arbitrary function v0 satisfying the assumptions of Proposition 2.8. In other words,
this is a proof of (1.8), and then equivalently of (1.1), based on the flow of (2.15).
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This strategy is a nonlinear version of the carré du champ method, also known as
the Bakry-Emery method in the literature. More details are given in Section 2.5.

2.3.3. The carré du champ method. The following proof is inspired, up
to the normalization of the pressure variable, by [DT13, Section 2]. Also see [J1̈6,
Proof of Theorem 2.4, pp. 33-36] and [DEL16a, Section 2.2] for similar computa-
tions. For more clarity we first adapt the proof done for Rényi entropy powers to
the case of the relative entropy F using the flow (2.15) without taking care of the as-
ymptotic boundary conditions, i.e., by assuming that we deal only with smooth and
sufficiently decreasing solutions. Then we briefly sketch an approximation scheme
which justifies the computations in the general case.

2.3.3.1. Smooth and sufficiently decreasing solutions. If v solves (2.15), that is,
of

∂v

∂t
+∇ · (v∇P) = 0 ,

then the relative pressure variable defined by (2.18) solves

(2.21)
∂P
∂t

= (1−m) vm−2∇ · (v∇P) .

As in Section 2.2.2, let us assume that, for any t ≥ 0, v(t, ·) is a smooth and
sufficiently decreasing function on Rd, so that we can again do the integrations by
parts without taking care of asymptotic boundary terms.

Let us compute

d

dt

∫
Rd
v |∇P|2 dx =

∫
Rd

∂v

∂t
|∇P|2 dx+ 2

∫
Rd
v∇P · ∇

(
∂P
∂t

)
dx

=

∫
Rd
v∇P · ∇

(
|∇P|2

)
dx

− 2

∫
Rd
v∇P · ∇

(
∇P · ∇vm−1 + (m− 1) vm−1 ∆P

)
dx

using (2.15) and (2.21). By definition of ∇P, we have

d

dt

∫
Rd
v |∇P|2 dx =

∫
Rd
v∇P · ∇

(
|∇P|2

)
dx

− 2

∫
Rd
v∇P · ∇

(
|∇P|2 + 2∇P · x+ (m− 1) vm−1 ∆P

)
dx

=−
∫
Rd
v∇P · ∇

(
|∇P|2

)
dx

− 2

∫
Rd
v∇P · ∇

(
2∇P · x+ (m− 1) vm−1 ∆P

)
dx

=

∫
Rd

m−1
m vm ∆

(
|∇P|2

)
dx+ 2

∫
Rd
v x · ∇

(
|∇P|2

)
dx

− 4

∫
Rd
v∇P · ∇(∇P · x) dx

+ 2 (1−m)

∫
Rd

(
1−m
m vm (∆P)

2
+ 1

m vm∇P · ∇(∆P)
)

dx
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using v∇P = m−1
m ∇vm − 2x v and 0 =

∫
Rd ∇ · (v

m∇P∆P) dx. Using the ele-
mentary identity

1

2
∆
(
|∇P|2

)
=
∥∥D2P

∥∥2
+∇P · ∇(∆P) ,

we obtain that∫
Rd
vm ∆

(
|∇P|2

)
dx = 2

∫
Rd
vm

∥∥D2P
∥∥2

dx+ 2

∫
Rd
vm∇P · ∇(∆P) dx .

Using ∂2P/∂xi∂xj = ∂2P/∂xj∂xi we can also write

2

∫
Rd
v x · ∇

(
|∇P|2

)
dx− 4

∫
Rd
v∇P · ∇(∇P · x) dx = − 4

∫
Rd
v |∇P|2 dx .

Therefore, we have shown that

d

dt

∫
Rd
v |∇P|2 dx+ 4

∫
Rd
v |∇P|2 dx

= − 2
1−m
m

∫
Rd
vm
(∥∥D2P

∥∥2 − (1−m) (∆P)2
)

dx .

This completes the proof of Proposition 2.8 at formal level, i.e., up to asymptotic
boundary terms arising from the integrations by parts, as a consequence of the
elementary identity

‖D2P‖2 = 1
d (∆P)2 +

∥∥D2P − 1
d ∆P Id

∥∥2

and of the definition of I[v] = m
1−m

∫
Rd v |∇P|

2 dx.
2.3.3.2. An approximation method. In order to prove Proposition 2.8, bound-

ary terms have to be taken into account. As an approximating problem, we con-
sider (2.15) restricted to a centered ball BR with radius R > 0, large:

(2.22)
∂v

∂t
+∇ · (v∇P) = 0 in BR , ∇P · ω = 0 on ∂BR ,

where ω = x/|x| denotes the unit outgoing normal vector to ∂BR. After redoing the
above computations and keeping track of the boundary terms, we find an additional
term

1−m
m

∫
∂BR

um
(
ω · ∇ |∇P|2

)
dσR ≤ 0

where dσR denotes the surface measure on ∂BR induced by Lebesgue’s measure
on Rd. This terms is indeed nonpositive by Grisvard’s lemma (see [GST09,
Lemma 5.1] or [Gri85]).

As a second step, we have to approximate the problem on Rd by the solution
of (2.22) in the limit as R → +∞. This makes sense as the Barenblatt function
B, restricted to BR is always a stationary solution (it satisfies the boundary condi-
tions). However, one has for each R > 0 to adjust the mass of the solution so that
it coincides with

∫
BR
B dx. Altogether, we obtain that

d

dt

∫
Rd
v |∇P|2 dx+ 4

∫
Rd
v |∇P|2 dx

≤ − 2
1−m
m

∫
Rd
vm
(∥∥D2P

∥∥2 − (1−m) (∆P)2
)

dx .
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Notice here that we only have an inequality, as boundary terms were dropped, which
also explains why there is only an inequality in the statement of Proposition 2.8.

2.3.3.3. Changes of variables. The analogy of the computations of the Rényi
entropy powers of Section 2.2 with the above computations by the carré du champ
method applied to the solution of (2.15) are striking and this is of course not a
coincidence. Up to the self-similar change of variables (2.14), the computations
are formally the same. Details can be found in [DEL16a, Section 2.3]. The above
approximation method and (2.14) are probably the easiest method to make all com-
putations of Section 2.2 rigorous. With these remarks the proof of Proposition 2.6
can be completed as a consequence of (2.20).

2.4. Refined entropy estimates

2.4.1. A quotient reformulation. Let us consider the quotient

(2.23) Q[v] :=
I[v]

F [v]
,

which is well defined if v 6= B. As a consequence of (2.16), we have the bound

(2.24) Q[v] ≥ 4 ,

and this inequality is in fact equivalent to the entropy - entropy production inequal-
ity (2.16). We read from Proposition 2.8, (2.17) and (2.19) that

(2.25)
dQ
dt
≤ Q (Q− 4) .

Let us recall that for any solution v of (2.15), d
dtF [v(t, ·)] = −I[v(t, ·)] com-

bined with (2.19) establishes (2.25). Our goal in this section is to prove that
the bound (2.24) can be improved under additional conditions. We distinguish an
initial time layer (0, T ) and an asymptotic time layer (T,+∞). In the first case
(see Section 2.4.2) we exploit (2.25) while the improvement for large values of t is
based on spectral considerations (see Section 2.4.3).

2.4.2. The initial time layer improvement. On the interval (0, T ), we
prove a uniform positive lower bound on Q[v(t, ·)]− 4 if we know that Q[v(T, ·)]− 4
is positive. The precise result goes as follows.

Lemma 2.9. Let m ∈ [m1, 1). Assume that v is a solution to (2.15) with
nonnegative initial datum v0 ∈ L1(Rd) such that F [v0] < +∞ and

∫
Rd v0 dx =M.

If for some η > 0 and T > 0, we have Q[v(T, ·)] ≥ 4 + η, then we also have

(2.26) Q[v(t, ·)] ≥ 4 +
4 η e−4 (T−t)

4 + η − η e−4 (T−t) ∀ t ∈ [0, T ] .

Notice that the right-hand side in (2.26) is monotone increasing in t, so that
we also have the lower bound

Q[v(t, ·)] ≥ 4 +
4 η e−4T

4 + η − η e−4T
∀ t ∈ [0, T ] .

Proof. The estimate (2.26) follows by integrating the Bernoulli differential
inequality (2.25) on the interval [t, T ]. �
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2.4.3. The asymptotic time layer improvement. Let us define the lin-
earized free energy and the linearized Fisher information by

F[h] :=
m

2

∫
Rd
|h|2 B2−m dx and I[h] := m (1−m)

∫
Rd
|∇h|2 B dx ,

in such a way that

F[h] = lim
ε→0

ε−2 F [B + εB2−m h] and I[h] = lim
ε→0

ε−2 I[B + εB2−m h] .

By the Hardy-Poincaré inequality (1.37) if d ≥ 1 andm ∈ (m1, 1), then for any func-
tion h ∈ L2(Rd,B2−m dx) such that ∇h ∈ L2(Rd,B dx) and

∫
Rd hB

2−m dx = 0,
we have

I[h] ≥ 4F[h] .

According to the improved Hardy-Poincaré inequality (1.39), if additionally we as-
sume that

∫
Rd xhB

2−m dx = 0, then we have

(2.27) I[h] ≥ 4αF[h]

where α = 2− d (1−m).
Inequality (2.27) corresponds to an improved spectral gap. This deserves some

remarks. If we consider v0(x) = B(x − x0) for some x0 6= 0, then the solution v
of (2.15) with initial datum v0 is v(t, x) = B(x−x(t)) with x(t) = x0 e

−2t. Asymp-
totically as t → +∞, we find that v(t, x) − B(x) ∼ x0 · ∇B(x) e−2t and we find
that

lim
t→+∞

Q[v(t, ·)] = 4 .

In other words, we have found a solution of the nonlinear evolution equation (2.15)
which achieves the optimal rate in the asymptotic regime as t → +∞ so that the
minimum of Q is determined by the spectral gap associated with the Rayleigh
quotient h 7→ I[h]/F[h]. This spectral gap is determined by the properties of the
operator La,d and are given in Proposition 1.16. The same result also holds for any
direction, which simply means that the eigenspace corresponding to the first posi-
tive eigenvalue, λ1,0, is generated by all infinitesimal translations of the Barenblatt
functions. The condition

∫
Rd xhB

2−m dx = 0 can therefore be interpreted as an or-
thogonality condition in the linearized regime, which can also be enforced for the so-
lutions of the nonlinear evolution equation (2.15) by assuming

∫
Rd x v0 dx = 0, i.e.,

that the center of mass is at x = 0. There is another special solution (2.15) which
asymptotically generates the eigenspace corresponding to the next positive eigen-
value, λ0,1, when m ∈ (m1, 1): it is given by the initial datum v0(x) = λd B(λx)
for some positive λ 6= 1.

Our purpose is to use (2.27) in order to establish an improved lower bound for
Q[v(t, ·)] in the asymptotic time layer as t→ +∞. We have the following result on
a time-interval (T,+∞).

The next result is the first of a set of technical estimates that are needed to
produce constructive constants in the stability results of Chapters 5 and 6. The
detail of the proof can be skipped at first reading.

Proposition 2.10. Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/3, 1) if d = 1, η =
2 d (m−m1) and χ := 1

580 . If v is a nonnegative solution to (2.15) of massM, with

(Hε,T ) (1− ε)B ≤ v(t, ·) ≤ (1 + ε)B ∀ t ≥ T
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for some ε ∈ (0, χ η) and T > 0, and such that
∫
Rd x v(T, x) dx = 0, then we have

(2.28) Q[v(t, ·)] ≥ 4 + η ∀ t ≥ T .

Notice thatm = m1 has to be excluded while the restriction in dimension d = 1
arises from the fact that

∫
Rd |x|

2 B dx < +∞ is needed, which means m > m̃1, and
0 = m1 < m̃1 = 1/3 if d = 1. Notice that Assumption (Hε,T ) is not exactly the
same as in [BBD+09], which motivates the additional restriction m > 1/3 if d = 1.

Proof. We estimate the free energy F and the Fisher information I in terms
of their linearized counterparts F and I. Let

h := v Bm−2 − Bm−1 .

Under Assumption (Hε,T ), we learn from [BBD+09, Lemma 3] that

(2.29) (1 + ε)−b F[h(t, ·)] ≤ F [v(t, ·)] ≤ (1− ε)−b F[h(t, ·)] ∀ t ≥ T ,

where b = 2−m, and

(2.30) I[h] ≤ s1(ε) I[v] + s2(ε)F[h]

from [BBD+09, Lemma 7], where

(2.31) s1(ε) :=
(1 + ε)2 b

1− ε
and s2(ε) := 4 d (1−m)

(
(1 + ε)2 b

(1− ε)2 b
− 1

)
.

The estimate (2.29) follows from a simple Taylor expansion while (2.30) is a con-
sequence of some slightly more complicated but still elementary computations,
see [BBD+09, Lemma 3 and Lemma 7].

Let us explain how to compute χ. Collecting (2.27), (2.29) and (2.30), elemen-
tary computations show that (2.28) holds with η = f(ε), where

f(ε) =
4α (1− ε)b − 4 s1(ε)− (1 + ε)b s2(ε)

s1(ε)
.

We claim that
max

ε∈(0,χ η)
f(ε) ≥ 2 d (m−m1) .

Let us consider

g1(ε) := 1− (1− ε)1+b

(1 + ε)2 b
and g2(ε) :=

1− ε
(1 + ε)b

(
(1 + ε)2 b

(1− ε)2 b
− 1

)
and observe that g1 is concave and g1(ε) ≤ g′1(0) ε = (1 + 3 b) ε ≤ 7 ε for any
ε ∈ [0, 1] and b ∈ [1, 2], while g2 is convex and such that g2(ε) ≤ g′2(1/2) ε for any
ε ∈ [0, 1/2] with g′2(1/2) ≤ 133 for any b ∈ [1, 2]. By writing

f(ε) = 2 η − 4α g1(ε)− 4 d (1−m) g2(ε) ,

and after observing that 4α ≤ 8 and 4 d (1−m) ≤ 4 if m ∈ (m1, 1) and d ≥ 1, we
conclude that

f(ε) ≥ 2 η − ε
χ ≥ η ∀ ε ∈ (0, χ η) .

�
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2.4.4. Entropy, flow and inequalities. A very standard consequence of
(2.16) is that a solution of (2.15) with nonnegative initial datum v0 ∈ L1(Rd) such
that F [v0] < +∞ satisfies the estimate

(2.32) F [v(t, ·)] ≤ F [v0] e−4 t ∀ t ≥ 0 .

Under the assumptions of Lemma 2.9 and Proposition 2.10, we have the improved
decay estimate in both the initial and asymptotic time layers given by the following
Proposition.

Proposition 2.11. Under the assumptions of Lemma 2.9 and Proposition 2.10,
we have

F [v(t, ·)] ≤ F [v0] e− (4+ζ) t ∀ t ∈ [0, T ] , with ζ =
4 η e−4T

4 + η − η e−4T

and
F [v(t, ·)] ≤ F [v(T, ·)] e− (4+η) (t−T ) ∀ t ∈ [T,+∞) .

Let us summarize what we have achieved so far. The entropy - entropy produc-
tion inequality (2.16) is equivalent to (1.1). We look for an improvement of (2.16)
using the initial and the asymptotic time layers as in Sections 2.4.2 and 2.4.3. Our
task is of course to prove that (Hε,T ) is satisfied for some threshold time T > 0,
which is the purpose of the next two chapters.

2.4.5. Mass and self-similarity. Solutions of (2.1) with initial datum u0

are transformed into solutions of (2.15) with initial datum v0 = λ−d• u0(·/λ•) by
the self-similar change of variables (2.14). Reciprocally, the function

(2.33) B(t, x) :=
λd•

R(t)d
B
(
λ• x

R(t)

)
= B(t, x;M)

is a self-similar solution of (2.1) which describes the so-called intermediate asymp-
totics of the solution u of (2.1), that is, the large time behaviour of u under the
condition that

∫
Rd u0 dx = M. If we relax this condition, any nonnegative solu-

tion u of (2.1) such that
∫
Rd u0 dx = M is attracted by the Barenblatt self-similar

solution of (2.1) of mass M defined by (2.6).

2.4.6. A Csiszár-Kullback type inequality. The relative entropy F [v] with
respect to the Barenblatt function of same mass as v controls the L1 distance to
the Barenblatt function. If v ∈ L1

+(Rd) is such that
∫
Rd |x|

2 v dx =
∫
Rd |x|

2 B dx
and ‖v‖1 =M with B defined by (2.7), we learn from [DT13] that(∫

Rd
|v − B|

(
1 + |x|2

)
dx

)2

≤ 16M
(d+ 2)m− d

F [v] .

In the case m ∈ [m1, 1), the inequality that we need, without the second moment
condition, appears in [CV03], however with no proof, and also in [Ott01]. For
completeness, let us give a precise statement with the expression of the constant
and an elementary proof, which complements the result and the proof of Lemma 1.7.

Lemma 2.12. Let m ∈
(
m̃1, 1

)
, for any v ∈ L1

+(Rd) such that F [v] is finite and
‖v‖1 =M, we have

(2.34) ‖v − B‖21 ≤
4α

m
MF [v] .
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Proof. Since
∫
Rd (v − B) dx = 0, we have that

‖v − B‖1 =

∫
Rd
|v − B| dx =

∫
v≤B

(B− v) dx+

∫
v≥B

(v−B) dx = 2

∫
v≤B

(B− v) dx .

Let ϕ(s) = sm/(m − 1). If 0 ≤ t ≤ s, a Taylor expansion shows that for some
ξ ∈ (t, s) we have

ϕ(t)− ϕ(s)− ϕ′(s) (t− s) =
1

2
ϕ′′(ξ) (t− s)2 ≥ m

2 s
m−2 (s− t)2 ,

hence √
m
2 (s− t) ≤ s

2−m
2

(
ϕ(t)− ϕ(s)− ϕ′(s) (t− s)

)1/2
.

Using this inequality with s = B and t = v and the Cauchy-Schwarz inequality, we
deduce that
m

2

(∫
v≤B

(B − v) dx

)2

≤
(∫

v≤B
B

2−m
2

(
ϕ(v)− ϕ(B)− ϕ′(B) (v − B)

)1/2
dx

)2

≤
∫
v≤B
B2−m dx

∫
v≤B

(ϕ(v)− ϕ(B)− ϕ′(B) (v − B)) dx

≤
∫
Rd
B2−m dx F [v]

and the conclusion follows from the identity
∫
Rd B

2−m dx = α
2 M that we shall

establish as well as a bunch of useful formulae in the next subsection. �

2.4.7. Constants and useful identities. For the convenience of the reader,
we collect some elementary identities and definitions. See [DPD02] or [DT13,
Appendix A] for more details. Some computations are reminiscent of the proof of
Lemma 1.8. With B defined by (2.7), using ∇Bm = − 2m

1−m xB and an integration
by parts, we obtain∫

Rd
Bm dx = −1

d

∫
Rd
x · ∇Bm dx =

2m

d (1−m)

∫
Rd
|x|2 B dx .

On the other hand, we deduce from Bm = Bm−1 B =
(
1 + |x|2

)
B that∫

Rd
Bm dx =

∫
Rd

(
1 + |x|2

)
B dx =M+

∫
Rd
|x|2 B dx

where

M =

∫
Rd
B dx = ωd

∫ +∞

0

rd−1

(1 + r2)
1

1−m
dr = π

d
2

Γ
(

1
1−m −

d
2

)
Γ
(

1
1−m

) .

This gives the expressions∫
Rd
|x|2 B dx =

d (1−m)

(d+ 2)m− d
M and

∫
Rd
Bm dx =

2m

(d+ 2)m− d
M .

With the same method, we find that

M =

∫
Rd
B dx = −1

d

∫
Rd
x · ∇B dx =

2

d (1−m)

∫
Rd
|x|2 B2−m dx

and B = Bm−1 B2−m =
(
1 + |x|2

)
B2−m so that

M =

∫
Rd
B dx =

∫
Rd
B2−m dx+

∫
Rd
|x|2 B2−m dx .
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This amounts to∫
Rd
B2−m dx =

α

2
M and

∫
Rd
|x|2 B2−m dx =

d

2
(1−m)M .

2.5. Bibliographical comments

For an overview of the properties of the nonlinear diffusion (2.1) in the porous
medium regime m > 1 and in the fast diffusion regime m < 1, we primarily refer
to [Váz06, Váz07]. Mass conservation for m ∈ [mc, 1) goes back to [HP85] by
M. Herrero and M. Pierre. The role of self-similar solutions in large time asymp-
totics is, for instance, studied in [FK80] using comparison methods, and from the
point of view of functional inequalities in [DPD02]. However the precise link of
the flow with the Gagliardo-Nirenberg-Sobolev inequalities (1.1) in scale invariant
form (1.1) only appears in [DT16a].

Rényi entropies are inspired by papers in information theory. In [Cos85],
M. Costa was studying the Rényi entropy power associated to Shannon’s entropy
and C. Villani in [Vil00] gave a simple proof based on the carré du champ method.
So far, this was an essentially linear setting associated with the heat flow. In [ST14],
G. Savaré and G. Toscani noted that the formalism of Rényi entropy powers could be
extended to the nonlinear setting and the precise link, at least from a formal point
of view, was made in [DT16a]. The computation of Section 2.1.2 can be found in
the language of entropy powers in [CT14]. The reader interested in further details
is invited to refer to [Tos14] and references therein for a more detailed account. For
completeness, let us mention that, in [FW19], Gagliardo-Nirenberg interpolation
properties of functions very rapidly decaying in space are used to investigate large
time dynamics of some solutions to ultra-fast diffusion equations.

If the notion of entropy in self-similar variables can be found as early as
in [New84, Ral84], it has been connected with (1.1) only in [DPD02] and we
refer to [BBD+09] for a precise discussion on the range of the exponent m depend-
ing on the various quantities, like second moment, entropy or Fisher information,
which are at stake for implementing entropy methods. This is usually done in
self-similar variables, but can be recast in the framework of (2.1) in self-similar
variables: see [DEL16a] for details. The equivalence of the entropy - entropy pro-
duction inequality with (1.8) is known from [DPD02]. Spectral considerations
and in particular the fact that optimality is achieved in the asymptotic regime as
t → +∞, were later introduced in [BBD+09]. In statistical physics, the entropy
associated to (2.1) is known as Tsallis entropy, with motivations coming from poly-
tropic gases models and statistical models for gravitating systems: see [Tsa09] for
an overview.

A considerable amount of papers has been published on the carré du champ
method and we shall refer to [BGL14] for a rather exhaustive survey. Among
earlier important papers by D. Bakry and his collaborators, one can quote for in-
stance [BE85, Bak06]. The link with the entropy point of view in kinetic equations
was made by G. Toscani in [Tos97], which immediately sparked an enormous activ-
ity as can be seen for instance from [AMTU01, UAMT00] and [ACD+04]. These
results were at that point mostly devoted to the capture of asymptotic rates of con-
vergence and limited to linear evolution equations. In parallel with the variational
approach of [DPD02], J.A. Carrillo with G. Toscani and J.L. Vázquez started to
adapt, at a rather formal level, the carré du champ method to the fast diffusion and
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the porous media equations in [CT00, CV03]. A complete proof with an approxi-
mation scheme and a justification of the boundary terms can be found in [CJM+01]
in the context of convex Sobolev inequalities. Also see [J1̈6, DEL16a] for results
more focused on (2.1) and (2.15), with more direct proofs. The key of the ap-
proximation scheme is Grisvard’s lemma: see for instance to [GST09, Lemma
5.2], [LM13, Proposition 4.2] or [Gri85] (also see [DNS08] or [J1̈6, Lemma A.3]).
In an important contribution, [Dem05, Dem08], J. Demange extended the lin-
ear computations attached to Markov processes to nonlinear diffusions on mani-
folds. These computations are in a sense very close to the ones of [BVV91], and
also [BL96]: the point was further clarified in [DEL14]. As a side remark, let us
recall that the fast diffusion equation can be formally interpreted as the gradient
flow with respect to Wasserstein’s distance of the entropy, as arises from the early
results of [McC97, Ott01] and it is not a surprise that mass transportation also
plays a role in (1.1) as observed in [CENV04, AGK04, DELL14]. Such an in-
terpretation is possible only if the second moment is controlled, which corresponds
to the functional framework introduced in Chapter 1 (see Section 1.2.3). Concern-
ing the connection of nonlinear diffusions with the curvature-dimension criterion,
we refer to [Dem08, Dem05] and, in an abstract framework, to [LV09, Stu05,
Stu06a, Stu06b, EKS15]. See [AGS08, Vil09, ABS21, FG] for considerations
on gradient flows. Further efforts were done in, e.g., [CLSS10, AMS19] to better
justify the formal gradient flow point of view of [Ott01] in cases of practical interest
or simply in order to simplify the conceptual framework, while interesting related
applications can be found for instance in [ZM15, Zin19, IPS18].

Beyond the results of Chapter 1, the Hardy-Poincaré inequality (1.37) and the
improved Hardy-Poincaré inequality (1.39) are spectral gap inequalities that can
be obtained by an expansion around the Barenblatt function as a consequence
of (2.16), under the corresponding constraints: see [BBD+09] and [BDGV10,
Lemma 1]. We learn from [CLMT02, BBD+09] that the linearized problem, i.e.,
the sharp constant in the Hardy-Poincaré inequality, determines the global optimal
rate of convergence for (2.15).

The analysis of the spectral gap inequality, or of the decay rate of the entropy in
the asymptotic time layer, is more classical and essentially known from [BBD+07,
BBD+09] with various improvements in [DT11, BDGV10, DT13]. It relies on
spectral computations that go back to [Sch01, DM03, DM05] in the framework
of gradient flows with respect to the Wasserstein distance, and [DKM15, KM06].
Further details are available in [DT11, Proposition 1]. Quite remarkably, the lin-
earization of the evolution operator was performed first in the context of Wasser-
stein’s distances in [DM03, DM05] and later recast in the context of more stan-
dard Lebesgue spaces with weights [BBD+09, DT11, BDGV10, DT13]. See in
particular [BDGV10] for the equivalence of the spectra.

The improvements in [BDGV10] and [DT13] are of course linked with the
invariances of the fast diffusion equation (2.1) and the special solutions mentioned in
Section 2.4.3. Eigenfunctions associated with the lowest eigenvalues can be seen as
infinitesimal generators of these invariances, but similar ideas can also be exploited
for higher energy levels of the linearized operator, as was shown in [DKM15] (also
see [DKM16] for a summary).

Improvements of functional inequalities based on entropy methods and the use
of remainder terms in the carré du champ method have an already long history. As
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far as we know, the first contribution appeared in [AD05] and was later followed
by [ABD07, DNS08] in the case of linear diffusions. For nonlinear diffusions on
compact manifolds, we refer to [Dem08, DEKL14, DEL17, DGHM20, DE20]
in the case of the sphere, [BBD+07, BBD+09] and [BDGV10, DT11, DT15,
DT13, DT16a, DT16a, DT16b] when dealing with the Euclidean space. In
these papers, improvements are either of order 1 (in terms of powers of a relative
entropy) and obtained under orthogonality conditions which induce limitations on
the range of exponents, or of order 2 (typically given by the square of the relative
entropy) and obviously non-optimal. Moreover results so far cover only subcritical
regimes of the underlying functional inequalities or weaker notions of distance than
the natural strong distance: see for instance [Dol11, DJ14], in which constants are
explicit but the distance is measured in H−1(Rd) while H1

0(Rd) would be expected.
The Csiszár-Kullback inequality of Section 2.4.6, also known in the literature

as the Pinsker-Csiszár-Kullback inequality is an extension of the historical pa-
pers [Pin64, Csi67, Kul67], which correspond to the limit case p→ 1+. There are
many variants: see for instance [UAMT00, CCD02, CT00, CJM+01, Ott01,
DPD02, BDIK07] for some classical extensions. Also see [DT13] for the case
with a 〈x〉2 weight and Lemma 1.7.

The equivalence of the entropy - entropy production inequalities as in [DPD02]
and the concavity of the generalized Rényi entropy powers along the fast diffusion
flow is established in [DT16a, ST14] and further studied in [DEL16a]. Although
elementary, this is one of the key points for controlling the decay rate of the entropy
during the initial time layer (see Section 2.4.2). The analysis of the decay rate of
the entropy in the asymptotic time layer is more classical and essentially known
from [BBD+09]. The key issue of this paper is to control the threshold time
between these two regimes and relies on a quantitative regularity theory.



CHAPTER 3

Linear parabolic equations: interpolation and
regularity

This chapter is devoted to the computation of various explicit constants in
functional inequalities and regularity estimates for solutions of parabolic equations,
which are not available from the literature. We provide new expressions and simpli-
fied proofs of the Harnack inequality (Theorem 3.7) and the corresponding Hölder
continuity (Theorem 3.13) of the solution of a linear parabolic equation with mea-
surable coefficients, following J. Moser’s original ideas [Mos64, Mos71].

3.1. Interpolation inequalities and optimal constants

Let us denote by BR the ball of radius R > 0 centered at the origin, and define

p :=
2 d

d− 2
if d ≥ 3 ,

p := 4 if d = 2 ,

p ∈ (4,+∞) if d = 1 .

Theorem 3.1. Let d ≥ 1, R > 0. For d = 1, 2, we further assume that R ≤ 1.
With the above notation, the inequality

(3.1) ‖f‖2Lp(BR) ≤ K
(
‖∇f‖2L2(BR) + 1

R2 ‖f‖2L2(BR)

)
∀ f ∈ H1(BR)

holds for some constant

(3.2) K ≤


4 Γ
(
d+1

2

)2/d
2

2
d π1+ 1

d
if d ≥ 3 ,

4√
π

if d = 2 ,

21+ 2
p max

{
p−2
π2 ,

1
4

}
if d = 1 .

Inequality (3.1) is standard and the novelty is the estimate (3.2). The proof of
this result is split in several partial results (Lemmas 3.2, 3.3 and 3.4) depending on
the dimension.

3.1.1. A critical interpolation inequality in d ≥ 3. Since p = 2 d/(d− 2),
the constant K is independent of R and it is sufficient to provide its expression on
the unit ball B = B1. We consider the critical interpolation inequality, or Sobolev’s
inequality, associated with the critical embedding H1(B) ↪→ Lp(B),

(3.3) ‖∇f‖2L2(B) + d
d− 2

d− 1
‖f‖2L2(B) ≥ S2

B ‖f‖2Lp(B) ∀ f ∈ H1(B) .

Lemma 3.2. For any d ≥ 3, Inequality (3.3) holds with S2
B = S2

d/(d − 1),
where Sd is the optimal constant for Sobolev’s inequality (1.4).

61
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As a consequence, (3.1) holds with K−1 = d (d− 2)S2
d.

Proof. On Rd, Sobolev’s inequality (1.4) is invariant under Kelvin’s transform

u 7→ ũ(x) := |x|2−du
(

x

|x|2

)
because ‖∇ũ‖2 = ‖∇u‖2 and ‖ũ‖p = ‖u‖p. Let us consider a function f ∈ H1(B)

and extend it to Rd by u(x) = f(x) if x ∈ B and u(x) = f̃(x) if x ∈ Bc. We know
from (1.4) that

0 ≤ ‖∇u‖22 − S2
d ‖u‖

2
p

=

∫
B

|∇f |2 dx− S2
d

(∫
B

|f |p dx

)2/p

+

∫
Bc
|∇f̃ |2 dx− S2

d

(∫
Bc
|f̃ |p dx

)2/p

.

Let us assume that f is smooth and introduce spherical coordinates r = |x| and
ω = x/r for any x 6= 0. With f ′(r, ω) = ∂f/∂r, ∇ωf = ∇f − f ′(r)ω and s = 1/r,
for a given ω ∈ Sd−1, we compute∫ +∞

1

(
|f̃ ′|2 +

1

r2
|∇ω f̃ |2

)
rd−1 dr

=

∫ +∞

1

(
|f ′(s) + (d− 2) r f(s)|2 + r2 |∇ωf(s)|2

)
r−d−1 dr

=

∫ 1

0

(
|f ′|2 +

1

s2
|∇ωf |2

)
sd−1 ds+

∫ 1

0

(
(d− 2)2

s2
|f |2 +

d− 2

s
(f2)′

)
sd−1 ds

=

∫ 1

0

(
|f ′|2 +

1

s2
|∇ωf |2

)
sd−1 ds+ (d− 2) |f(1, ω)|2 ,

where the last line arises from an integration by parts. An integration with respect
to ω ∈ Sd−1 shows that

(3.4)
∫
B

|∇f |2 dx+
1

2
(d− 2)

∫
∂B

|f |2 dσ ≥ S2
d

(∫
B

|f |p dx

)2/p

,

where dσ denotes the measure induced by Lebesgue’s measure on Sd−1 = ∂B.
Similarly, by expanding

0 ≤
∫ 1

0

∣∣∣∣f ′ − r

1 + r2
f

∣∣∣∣2 rd−1 dr ≤
∫ 1

0

|f ′|2 rd−1 dr+d

∫ 1

0

|f |2 rd−1 dr− |f(1, ω)|2

2
,

we obtain

(3.5)
∫
∂B

|f |2 dσ ≤ 2

∫
B

|∇f |2 dx+ 2 d

∫
B

|f |2 dx .

Collecting the estimates of (3.4) and (3.5) concludes the proof for a smooth func-
tion f . The result in H1(B) follows by density. �

3.1.2. A two-dimensional interpolation inequality. In dimension d = 2
and d = 1, we cannot rely on the Sobolev’s inequality of Section 3.1.1. This is why
direct proofs for subcritical cases have to be established. Here we prove the result
in dimension d = 2.
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Lemma 3.3. Let d = 2. For any R > 0, we have

(3.6) ‖f‖2L4(BR) ≤
4R√
π

(
‖∇f‖2L2(BR) +

1

R2
‖f‖2L2(BR)

)
∀ f ∈ H1(BR) .

The constant 4/
√
π is not optimal. Numerically, we find that the optimal constant

for the inequality restricted to radial functions is approximatively 0.0564922... <
4/
√
π ≈ 2.25675. In the end of this section we explain how we obtained this value.

Proof. Let Ω = BR (the proof applies to more general domains, but we do
not need such a result). As a first step, we prove the inequality corresponding to
the embedding W1,1(Ω) ↪→ L2(Ω). Using Lebesgue’s version of the fundamental
theorem of calculus, we get

f(x, y) = f(x0, y) +

∫ x

x0

fx(ξ, y) dξ and f(x, y) = f(x, y0) +

∫ y

y0

fy(x, η) dη ,

which implies (letting Ωx and Ωy be x and y sections of Ω respectively)

|f(x, y)| ≤ |f(x0, y)|+
∫

Ωy

F (ξ, y) dξ and |f(x, y)| ≤ |f(x, y0)|+
∫

Ωx

G(x, η) dη

where F (ξ, y) = |fx(ξ, y)| and G(x, η) := |fy(x, η)|. Multiplying the two above
expressions, we get

|f(x, y)|2 ≤ A(x0, y)B(x, y0)

where

A(x0, y) := |f(x0, y)|+
∫

Ωy

F (ξ, y) dξ and B(x, y0) := |f(x, y0)|+
∫

Ωx

G(x, η) dη .

Integrating over Ω in dx dy and then again in Ω in dx0 dy0 we obtain

|Ω| ‖f‖2L2(Ω) =

∫∫
Ω

∫∫
Ω

|f(x, y)|2 dx dy dx0 dy0

≤
∫∫

Ω

A(x0, y) dx0 dy

∫∫
Ω

B(x, y0) dx dy0 .

Finally, notice that∫∫
Ω

A(x0, y) dx0 dy =

∫∫
Ω

(
|f(x0, y)|+

∫
Ωy

F (ξ, y) dξ

)
dx0 dy

≤ ‖f‖L1(Ω) + diam(Ω) ‖F‖L1(Ω)

and∫∫
Ω

B(x, y0) dx dy0 =

∫∫
Ω

(
|f(x, y0)|+

∫
Ωx

G(x, η) dη

)
dx dy0

≤ ‖f‖L1(Ω) + diam(Ω) ‖G‖L1(Ω) .

Summing up, we obtain

‖f‖2L2(Ω) ≤
1

|Ω|

(
‖f‖L1(Ω) + diam(Ω) ‖F‖L1(Ω)

)(
‖f‖L1(Ω) + diam(Ω) ‖G‖L1(Ω)

)
.

We recall that F = |fx|, G = |fy| and |∇f | =
√
F 2 +G2 ≥ max{F,G}, hence

‖f‖2L2(Ω) ≤
1

|Ω|

(
‖f‖L1(Ω) + diam(Ω) ‖∇f‖L1(Ω)

)2

.



64 3. LINEAR PARABOLIC EQUATIONS: INTERPOLATION AND REGULARITY

We apply this estimate to f2 to get

‖f‖2L4(Ω) ≤
1√
|Ω|

(
‖f‖2L2(Ω) + diam(Ω) ‖∇f2‖L1(Ω)

)
≤ 1√

|Ω|

(
‖f‖2L2(Ω) + 2 diam(Ω) ‖∇f‖L2(Ω) ‖f‖L2(Ω)

)
.

We use the elementary estimate

2 diam(Ω) ‖∇f‖L2(Ω) ‖f‖L2(Ω) ≤ ‖f‖
2
L2(Ω) + diam(Ω)2 ‖∇f‖2L2(Ω)

and finally obtain

‖f‖2L4(Ω) ≤
diam(Ω)2√
|Ω|

(
‖∇f‖2L2(BR) +

4

diam(Ω)2
‖f‖2L2(BR)

)
,

which completes the proof with diam(Ω) = 2R and |Ω| = π R2. �

We know from the proof that C ≤ 4/
√
π ≈ 2.25675. To compute the constant

in (3.6) numerically when the inequality is restricted to radial functions (equality
case is achieved by compactness), it is enough to solve the Euler-Lagrange equation

(3.7) − f ′′ − f ′

r
+ f = f3 , f(0) = a > 0 , f ′(0) = 0 .

To emphasize the dependence of the solution in the shooting parameter a, we denote
by fa the solution of (3.7) with f(0) = a. We look for the value of a for which fa
changes sign only once (as it is orthogonal to the constants) and such that f ′(1) = 0,
which is our shooting criterion. Let s(a) = f ′a(1) for the solution of (3.7). With
a = 1, we find that fa ≡ 1. Numerically, a shooting method with a > 1 provides us
with a? ≈ 7.52449 such that s(a?) = 0 corresponding to a solution fa? with only
one sign change. Using

2π

∫ 1

0

(
|f ′a? |

2 + |fa? |2
)
r dr = 2π

∫ 1

0

|fa? |4 r dr =
1

C

(
2π

∫ 1

0

|fa? |4 r dr

)1/2

,

we obtain that the constant is
(
2π
∫ 1

0
|fa? |4 r dr

)−1/2 ≈ 0.0564922.

3.1.3. One-dimensional interpolation inequalities. We prove the follow-
ing elementary result on an interval. We recall that, in d = 1, we have that
BR = (−R,R).

Lemma 3.4. Let p ∈ (2,∞). Then for all f ∈ H1(BR) we have

‖f‖2Lp(BR) ≤ (2R)1+ 2
p

(
p−2
π2 ‖f ′‖2L2(BR) + 1

4R2 ‖f‖2L2(BR)

)
and this inequality is sharp.

By sharp, we mean that the infimum of the quotient

QR[f ] :=
4R2 ‖f ′‖2L2(IR)

(2R)1− 2
p ‖f‖2Lp(IR) − ‖f‖

2
L2(IR)

is achieved by limn→+∞QR[fn] = π2

p−2 with fn(x) = 1 + 1
n sin

(
π x
2R

)
.
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Proof. Let us denote by CR the infimum of QR on the set HR of the non-
constant functions in H1(BR). To a function f ∈ HR, we associate a function g
on B2R by considering g(x − R) = f(x) in BR and g(x − R) = f(2R − x) in
(R, 3R). Since g(2R) = g(− 2R), g the function can be repeated periodically
and considered as a 4R-periodic function on R, or simply a function on B2R with
periodic boundary conditions. We can easily check that

QR[f ] =
1

4
Q2R[g] ,

and deduce that CR = infQ2R[g] where the infimum is taken on the set of the even
functions in H2R. Hence

(3.8) CR ≥
1

4
inf

g ∈ H2R,
g is periodic

Q2R[g] ,

where the inequality arises because we relax the symmetry condition g(x) = g(−x).
With the scaling g(x) = h

(
π x
2R

)
, we reduce the problem on the periodic functions

in H2R to the interpolation on the circle S1 with the uniform probability measure.
The optimal inequality on S1 is

‖h‖2Lp(S1) − ‖h‖
2
L2(S1) ≤ (p− 2) ‖h′‖2L2(S1)

for any p > 2, where S1 ≈ Bπ (with periodic boundary conditions), the measure is
dµ = dx

2π and

‖h‖2Lp(S1) =

(∫ +π

−π
|h|p dµ

)2/p

.

Moreover, the inequality in (3.8) is actually an equality, because the infimum is
obtained on S1 among functions which satisfy the symmetry condition g(x) =
g(−x): a minimizing sequence is for instance given by hn(x) = 1 + 1

n cosx.
With g(x) = h

(
π x
2R

)
, we find that(∫ +2R

−2R

|g|p dx

)2/p

≤ (4R)
2
p−1

(
(p− 2)

4R2

π2

∫ +2R

−2R

|g′|2 dx+

∫ +2R

−2R

|g|2 dx

)
.

With no restriction, as far as optimal constants are concerned, we can assume that
g(x) = g(−x), so that each of the integral in g is twice as big as the integral
computed with the restriction f of g to BR:(

2

∫ +R

−R
|f |p dx

)2/p

≤ 2 (4R)
2
p−1

(
(p− 2)

4R2

π2

∫ +R

−R
|f ′|2 dx+

∫ +R

−R
|f |2 dx

)
.

This proves that CR = p−2
π2 . �

As an easy consequence of Lemma 3.4 and to fit better the purpose of Sec-
tion 3.1, we can observe that the following (non optimal) inequality holds

‖f‖2Lp(BR) ≤ (2R)1+ 2
p max{p−2

π2 ,
1
4}
(
‖f ′‖2L2(BR) + 1

R2 ‖f‖2L2(BR)

)
.



66 3. LINEAR PARABOLIC EQUATIONS: INTERPOLATION AND REGULARITY

3.1.4. An interpolation between Lp and Cν norms. We give an explicit
constant as well as an elementary proof. We claim no originality except for the
computation of the constant. Let Ω ⊂ Rd be a bounded, open domain and define
the Cν(Ω) semi-norm as

(3.9) bucCν(Ω) := sup
x,y∈Ω
x 6=y

|u(x)− u(y)|
|x− y|ν

.

Lemma 3.5. Let d ≥ 1, p ≥ 1 and ν ∈ (0, 1). Then there exists a positive
constant Cd,ν,p such that, for any u ∈ Lp(B2R(x))∩Cν(B2R(x)), R > 0 and x ∈ Rd
(3.10)

‖u‖L∞(BR(x)) ≤ Cd,ν,p

(
buc

d
d+p ν

Cν(B2R(x)) ‖u‖
p ν
d+p ν

Lp(B2R(x)) +R−
d
p ‖u‖Lp(B2R(x))

)
.

Analogously, we have

(3.11) ‖u‖L∞(Rd) ≤ Cd,ν,p buc
d

d+p ν

Cν(Rd)
‖u‖

p ν
d+p ν

Lp(Rd)
∀u ∈ Lp(Rd) ∩ Cν(Rd) .

In both cases, the inequalities hold with the constant

Cd,ν,p = 2
(p−1)(d+p ν)+dp

p(d+p ν)

(
1 + d

ωd

) 1
p
(

1 +
(
d
p ν

) 1
p

) d
d+p ν

((
d
p ν

) p ν
d+p ν +

(
p ν
d

) d
d+p ν

) 1
p

.

Proof. For any z, y ∈ BR(x), by the triangle inequality and by definition of
b·cCν(B2R) given in (3.9), we have that

|u(z)|p ≤
(
|u(z)− u(y)|+ |u(y)|

)p
≤ 2p−1

(
|u(z)− u(y)|p + |u(y)|p

)
≤ 2p−1

[(
C + bucCν(B2R(x))

)p |z − y|p ν + |u(y)|p
]

for some C > 0 to be chosen later. Let 0 ≤ ρ < R. By averaging on a ball Bρ(z),
we have

|u(z)|p ≤ 2p−1d

ωd ρd

[(
C + bucCν(B2R(x))

)p ∫
Bρ(z)

|z − y|p ν dy +

∫
Bρ(z)

|u(y)|p dy

]

≤ 2p−1

(
1 +

d

ωd

)[
ρp ν

(
C + bucCν(B2R(x))

)p
+ ρ−d ‖u‖pLp(B2R(x))

]
.

(3.12)

The right-hand side of the above inequality achieves its minimum w.r.t. ρ > 0 at

ρ? :=

(
d ‖u‖pLp(B2R(x))

p ν
(
C + bucCν(B2R(x))

)p
) 1
d+p ν

.

With C > 0, the denominator in the right-hand side is never zero. With the choice

C :=
(
d
p ν

) 1
p ‖u‖Lp(B2R(x))

R
d+p ν
p

,

we are sure that ρ? < R. Hence, by evaluating (3.12) at ρ? we obtain

‖u‖L∞(BR(x)) ≤ 21− 1
p

(
1 +

d

ωd

) 1
p
((

d
p ν

) p ν
d+p ν

+
(
p ν
d

) d
d+p ν

)1/p

‖u‖
p ν
d+p ν

Lp(B2R(x))

(
C + bucCν(B2R(x))

) d
d+p ν .
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Inequality (3.10) is deduced from the above one. Inequality (3.11) can be deduced
from (3.10) by taking R→∞. The proof is completed. �

3.1.5. Weighted Poincaré inequalities on bounded domains.

Lemma 3.6. Let b ≥ 0 be a continuous compactly supported function such
that the domains {x ∈ Rd : b(x) ≥ const} are convex. Then for any function
f ∈ L2(Rd, b(x) dx) with |∇f | ∈ L2(Rd, b(x) dx), we have that

(3.13)
∫
Rd

∣∣f − f b∣∣2 b dx ≤ λb
∫
Rd
|∇f |2 b dx .

where f b =
∫
Rd f b dx/

∫
Rd b dx and

(3.14) λb =
|supp b| ‖b‖∞

2
∫
Rd b dx

diam(supp b)2 .

The proof follows from [Mos64, Lemma 3] and we recall it here as we need an
explicit constant λb.

Proof. We first notice that by symmetry in the x, y variables,∫
Rd

∣∣f(x)− f b
∣∣2 b(x) dx =

∫∫
Rd×Rd |f(x)− f(y)|2 b(x) b(y) dx dy

2
∫
Rd b(y) dy

=

∫∫
{b(x)≤b(y)} |f(x)− f(y)|2 b(x) b(y) dx dy∫

Rd b(y) dy

(3.15)

Let Ixy be the segment connecting x and y and let ds be the length element on
Ixy. In the domain {b(x) ≤ b(y)}, x and y are such that b(x) ≤ b(y), then the
Cauchy-Schwarz inequality gives

|f(x)− f(y)|2 b(x) b(y) ≤

(∫
Ixy

d∑
i=1

√
b (∂xif)

dxi√
b

)2

b(x) b(y)

≤

(∫
Ixy

b |∇f |2 ds

)(∫
Ixy

ds

b

)
b(x) b(y) .

Since Bx := {z ∈ Rd : b(z) ≥ b(x)} is convex and Ixy ⊂ Bx, we deduce that b
achieves its minimum at the end point of Ixy, i.e., at x. As a consequence, we have

b(x)

∫
Ixy

ds

b
≤
∫
Ixy

ds ≤ diam(supp b) .

Hence we obtain

|f(x)− f(y)|2 b(x) b(y) ≤ diam(supp b)

(∫
Ixy

b |∇f |2ds

)
b(y) .

The proof can be completed by integrating the above expression first in x and then
in y and using

∫
{b>0} dy = |supp b| and (3.15). �
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3.2. The constant in Moser’s Harnack inequality

Let Ω be an open domain and let us consider a positive weak solution to

(3.16)
∂v

∂t
= ∇ ·

(
A(t, x)∇v

)
on ΩT := (0, T )× Ω, where A(t, x) is a real symmetric matrix with bounded mea-
surable coefficients satisfying the uniform ellipticity condition

(3.17) 0 ≤ λ0 |ξ|2 ≤ ξ · (Aξ) ≤ λ1 |ξ|2 ∀ (t, x, ξ) ∈ R+ × ΩT × Rd ,

where ξ · (Aξ) =
∑d
i,j=1Ai,jξiξj and λ0, λ1 are positive constants.

3.2.1. Harnack inequality for linear parabolic equations. Let us con-
sider the neighborhoods

D+
R(t0, x0) := (t0 + 3

4 R
2, t0 +R2)×BR/2(x0) ,

D−R(t0, x0) :=
(
t0 − 3

4 R
2, t0 − 1

4 R
2
)
×BR/2(x0) ,

(3.18)

and the constant

(3.19) h := exp

[
2d+4 3d d+ c30 22 (d+2)+3

(
1 +

2d+2

(
√

2− 1)2 (d+2)

)
σ

]
where

(3.20) c0 = 3
2
d 2

(d+2) (3 d2+18 d+24)+13
2 d

(
(2+d)

1+ 4
d2

d
1+ 2

d2

)(d+1)(d+2)

K
2 d+4
d ,

(3.21) σ =

∞∑
j=0

(
3
4

)j (
(2 + j) (1 + j)

)2 d+4
.

The constant K in (3.20) is defined in (3.2) and it is the constant in the inequal-
ity (3.1). Let us define

(3.22) h := hλ1+1/λ0 .

We claim that the following Harnack inequality holds:

Theorem 3.7. Let T > 0, R ∈ (0,
√
T ), and take (t0, x0) ∈ (0, T ) × Ω such

that
(
t0 −R2, t0 +R2

)
×B2R(x0) ⊂ ΩT . Under Assumption (3.17), if v satisfies

(3.23)
∫∫

(0,T )×Ω

(
− ϕt v +∇ϕ · (A∇v)

)
dxdt = 0

for any ϕ ∈ C∞c ((0, T )× Ω), then

(3.24) sup
D−R (t0,x0)

v ≤ h inf
D+
R(t0,x0)

v .

This result is known from [Mos64, Mos71]. However, to the best of our
knowledge, a complete constructive proof and an expression of h like (3.22) was
still missing.
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3.2.2. Truncation functions. In what follows we introduce a family of par-
ticular truncation functions that we shall use as test functions in (3.23).

Lemma 3.8 ([BGV12]). Fix two balls BR1 ⊂ BR0 ⊂⊂ Ω. Then there exists a
test function ϕR1,R0 ∈ C1

0 (Ω), with ∇ϕR1,R0 ≡ 0 on ∂Ω, which is radially symmetric
and piecewise C2 as a function of r, satisfies supp(ϕR1,R0

) = BR0
and ϕR1,R0

= 1
on BR1

, and moreover satisfies the bounds

(3.25) ‖∇ϕR1,R0
‖∞ ≤

2

R0 −R1
and ‖∆ϕR1,R0

‖∞ ≤
4 d

(R0 −R1)2
.

Proof. With a standard abuse of notation, we write indifferently that a radial
function is a function of x or of |x|. Let us consider the radial test function defined
on BR0

(3.26) ϕR1,R0
(|x|) =



1 if 0 ≤ |x| ≤ R1

1− 2(|x|−R1)2

(R0−R1)2 if R1 < |x| ≤ R0+R1

2

2(R0−|x|)2
(R0−R1)2 if R0+R1

2 < |x| ≤ R0

0 if |x| > R0

for any 0 < R1 < R0. We have

∇ϕR1,R0
(|x|) =



0 if 0 ≤ |x| ≤ R1 or if |x| > R0

− 4(|x|−R1)
(R0−R1)2

x
|x| if R1 < |x| ≤ R0+R1

2

− 4(R0−|x|)
(R0−R1)2

x
|x| if R0+R1

2 < |x| ≤ R0

and, recalling that ∆ϕ(|x|) = ϕ′′(|x|) + (d− 1)ϕ′(|x|)/|x|, we have

∆ϕR1,R0
(|x|) =



0 if 0 ≤ |x| ≤ R1 or if |x| > R0

− 4
(R0−R1)2 −

d−1
|x|

4(|x|−R1)
(R0−R1)2 if R1 < |x| ≤ R0+R1

2

− 4
(R0−R1)2 −

d−1
|x|

4(R0−|x|)
(R0−R1)2 if R0+R1

2 < |x| ≤ R0

and easily obtain the bounds (3.25). �

3.2.3. Upper and lower Moser iteration. Let us start by recalling the
definition of the parabolic cylinders

Q% = Q%(0, 0) =
{
|t| < %2 , |x| < %

}
= (−%2, %2)×B%(0) ,

Q+
% = Q%(0, 0) =

{
0 < t < %2 , |x| < %

}
= (0, %2)×B%(0) ,

Q−% = Q%(0, 0) =
{

0 < −t < %2 , |x| < %
}

= (−%2, 0)×B%(0) .

(3.27)

The following Lemma is the result of a (nowadays standard) procedure called the
Moser iteration, which relies on the inequality (3.1). Here we provide a quantitative
and constructive proof, with explicit constants. From here on, we assume that u is
a positive solution.
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Lemma 3.9. Assume that r and ρ are such that 1/2 ≤ % ≤ r ≤ 1 and µ :=
λ1 + 1/λ0. Let v be a nonnegative solution to (3.16) which satisfies (3.23). Then
there exists a positive constant c1 depending only on d such that

(3.28) sup
Q%

vp ≤ c1
(r − %)d+2

∫∫
Qr

vp dxdt ∀ p ∈
(

0, 1
µ

)
and

(3.29) sup
Q−%

vp ≤ c1
(r − %)d+2

∫∫
Q−r

vp dx dt ∀ p ∈
(
− 1
µ , 0
)
.

The second estimate is a lower bound on v because p is negative. Our contri-
bution is to establish that the constant c1 = c1(d) is given by

(3.30) c1 = 3γ−1
(

22γ2+7(γ−1) γ(γ+1)(2γ−1) d(γ+1)(γ−1)Kγ−1
) γ

(γ−1)2

,

where γ = (d+ 2)/d if d ≥ 3, γ = 5/3 if d = 1 or 2, and K is as in (3.2).

Proof. We first notice that it is sufficient to prove the lemma for % = 1/2 and
r = 1. We can change variables according to

(3.31) t 7→ α2 t+ t0 and x 7→ αx+ x0

without changing the class of equations: λ0 and λ1 are invariant under (3.31).
Therefore it is sufficient to prove

sup
Qθ/2

vp ≤ c1
θd+2

∫∫
Qθ

vp dxdt ∀ θ > 0 .

We recover (3.28) by setting θ = r−% and applying the above inequality to all cylin-
ders in Qr obtained by translation from Qθ with admissible transformations (3.31).
The centers of the corresponding cylinders certainly cover Q% and (3.28) follows.
Analogously, one reduces (3.29) to the case % = 1/2 and r = 1.
Step 1. Energy estimates. By definition of weak solutions, we have

(3.32)
∫∫

Q1

(
− ϕt v +∇ϕ · (A∇v)

)
dxdt = 0

for any test function ϕ which is compactly supported in B1 = {x ∈ Rd : |x| < 1},
for any fixed t. For any p ∈ R \ {0, 1}, we define

w = vp/2 and ϕ = p vp−1 ψ2 ,

where ψ is a C∞ function. Both ϕ and ψ have compact support in B1 for fixed t.
We rewrite (3.32) in terms of w and ψ as

(3.33) 1
4

∫ t2

t1

∫
B1

ψ2 ∂tw
2 dxdt+ p−1

p

∫ t2

t1

∫
B1

ψ2∇w · (A∇w) dxdt

= −
∫ t2

t1

∫
B1

ψw∇ψ · (A∇w) dxdt

where we integrate over a slice t1 < t < t2 of Q1, i.e. |t1|, |t2| < 1. Setting p 6= 1,

ε = 1
2

∣∣∣1− 1
p

∣∣∣
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and recalling that

ψw∇ψ · (A∇w) ≤ 1

4 ε
w2∇ψ · (A∇ψ) + εψ2∇w · (A∇w) ,

we deduce from (3.33) that

± 1

4

∫ t2

t1

∫
B1

∂t
(
ψ2 w2

)
dxdt+ ε

∫ t2

t1

∫
B1

ψ2∇w · (A∇w) dx dt

≤ 1

4

∫ t2

t1

∫
B1

(
1

ε
∇ψ · (A∇ψ) + 2 |ψ ψt|

)
w2 dx dt ,

where the plus sign in front of the first integral corresponds to the case 1/p < 1,
while the minus sign corresponds to 1/p > 1. Recall that p can take negative values.
Using the ellipticity condition (3.17) and (3.33), we deduce

(3.34) ± 1

4

∫ t2

t1

∫
B1

∂t
(
ψ2 w2

)
dxdt+ λ0 ε

∫ t2

t1

∫
B1

ψ2 |∇w|2 dxdt

≤ 1

4

∫ t2

t1

∫
B1

(
λ1

ε
|∇ψ|2 + 2 |ψ ψt|

)
w2 dx dt ,

recall that t1 and t2 are arbitrarily chosen for the moment. By choosing a suitable
test function ψ, compactly supported in Qr ⊂ Q1, and such that

(3.35) ‖∇ψ‖L∞(Q1) ≤
2

r − %
and ‖ψt‖L∞(Q1) ≤

4

r − %
,

we have
1

4

∫∫
Q1

(
λ1

ε
|∇ψ|2 + 2 |ψ ψt|

)
w2 dxdt

≤
(
λ1

ε

1

(r − %)2
+

1

r − %

)∫∫
Qr

w2 dx dt

≤ 1

(r − %)2

(
λ1

ε
+ 1

)∫∫
Qr

w2 dxdt .

(3.36)

for any r and % such that 0 < % < r ≤ 1. The choice (3.35) is always possible, see
Lemma 3.8. If 1/p > 1, let us take t̃ ∈ (−%2, %2) to be such that∫

B%

w2(t̃, x) dx ≥ 1

4
sup

0<|t|<%2

∫
B%

w2(t, x) dx

and choose ψ such that ψ(0, x) = 1 on Q% and ψ(0, x) = 0 outside Qr, so that

sup
0<|t|<%2

∫
B%

w2(t, x) dx ≤ 4

∫
B%

w2(t̃, x) dx

≤ 4

∫
Br

w2(t̃, x)ψ2(t̃, x) dx

≤ 4

∫∫
Qr

∂t
(
ψ2 w2

)
dx dt ,

(3.37)

where in the last line we have used the Fundamental Theorem of Calculus. The
same holds true if we replace Qr by Q+

r and 0 < |t| < %2 by 0 < t < %2.
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If 1/p < 1 (which includes the case p < 0), similar arguments yield

(3.38) sup
−%2<t<0

∫
B%

w2(t, x) dx ≤ 4

∫∫
Q−r

∂t
(
ψ2 w2

)
dx dt .

Step 2. Space-time Sobolev’s inequality. For any f ∈ H1(QR), we have

(3.39)
∫∫

QR

f2 γ dxdt ≤ 2π2K
[

1

R2

∫∫
QR

f2 dxdt+

∫∫
QR

∣∣∇f ∣∣2 dxdt

]
× sup
|s|∈(0,%2)

[∫
BR

f2(s, x) dx

] 2
d

with γ = 1+2/d if d ≥ 3. If d = 1 or 2, we rely on (3.1), take γ = 5/3, use Hölder’s
inequality with 2 γ = 10/3 < 4 and p ≥ 4 if d = 2, p > 4 if d = 1. In order to fix
ideas, we take p = 4 if d = 2 and p = 8 if d = 1. Hence∫∫

QR

f2 γ dx dt ≤ |Q1|1−
2 γ
p

(∫∫
QR

fp dx dt

)1− 2 γ
p

.

From the numerical inequality ωd/d ≤ π2, we deduce that |Q1| = |(−1, 1)| |B1| ≤
2ωd/d ≤ 2π2 in any dimension.

Step 3. The case p > 0 and p 6= 1. Assume that 1/2 ≤ % < r ≤ 1. We work in the
cylinder Qr = supp(ψ). Here, we choose ψ(t, x) = ϕρ,r(|x|)ϕρ2,r2(|t|) where ϕρ,r
and ϕρ2,r2 are defined in (3.26), so that ψ = 1 on Q% and ψ = 0 outside Qr.

Collecting inequalities (3.34), (3.36) and (3.37), we obtain

sup
0<|t|<%2

∫
B%

w2(t, x) dx+ λ0 ε

∫∫
Q%

|∇w|2 dx dt ≤ ε−1 λ1 + 1

(r − %)2

∫∫
Qr

w2 dxdt .

Now apply (3.39) to f = w and use the above estimates to get∫∫
Q%

w2 γ dxdt

≤ 2π2K

[
1

%2

∫∫
Q%

w2 dxdt+

∫∫
Q%

∣∣∇w∣∣2 dxdt

]
sup

|s|∈(0,%2)

(∫
B%

w2(s, x) dx

) 2
d

≤ 2π2K

[
1

%2

∫∫
Q%

w2 dx dt+
ε−1 λ1 + 1

(r − %)2 λ0 ε

∫∫
Qr

w2 dx dt

]

×
(
ε−1 λ1 + 1

(r − %)2

∫∫
Qr

w2 dxdt

) 2
d

≤ 2π2K
[

1

%2
+

ε−1 λ1 + 1

(r − %)2 λ0 ε

] [
ε−1 λ1 + 1

(r − %)2

] 2
d
(∫∫

Qr

w2 dx dt

) 2
d+1

:= A(d, %, r, λ0, λ1, ε, 2π
2K)

(∫∫
Qr

w2 dxdt

)γ
.
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Using the fact that µ = λ1 + 1/λ0 > 1 and 1/2 ≤ % < r ≤ 1, we can estimate the
constant A as follows:

A ≤ 2π2K
[

1

%2
+

ε−1 λ1 + 1

(r − %)2 λ0 ε

](
ε−1 λ1 + 1

(r − %)2

) 2
d

≤ 2π2K
(r − %)2 γ

(
1
2 + λ1

ε2 λ0

) (
λ1

ε

) 2
d

≤ 2π2K
(r − %)2 γ

(
1 + µ2

ε2

) (
µ
ε

) 2
d ≤ 25K

(r − %)2 γ

(
1 + µ

ε

)γ+1

where we have used that λ1/λ0 ≤ 1
2 (λ2

1 + 1/λ2
0) ≤ 1

2 (λ1 + 1/λ0)2 = µ2 and π ≤ 4.

First iteration step. Recall that w = vp/2, ε = 1
2

∣∣∣1− 1
p

∣∣∣, and γ = 1 + 2
d if d ≥ 3,

γ = 5/3 if d = 1 or 2, µ = λ1 + 1/λ0 > 1 and 1/2 ≤ % < r ≤ 1. We can summarize
these results by(∫∫

Q%

vγ p dxdt

) 1
γ p

≤

(
(25K)

1
γ

(r − %)2

) 1
p (

1 + µ
ε

) γ+1
γ p

(∫∫
Qr

vp dxdt

) 1
p

for any p > 0 such that p 6= 1. For any n ∈ N, let

%n =
1

2

(
1− 2−n

)
, pn =

γ + 1

2
γn−n0 = p0 γ

n , εn =
1

2

∣∣∣∣1− 1

pn

∣∣∣∣
for some fixed n0 ∈ N. Note that %0 = 1, p0 = 1+γ

2 γn0
, %n monotonically decrease to

1/2, and pn monotonically increase to ∞. We observe that for all n, n0 ∈ N, we
have pn 6= 1 and, as a consequence, εn > 0. Indeed, if d ≥ 3, pn = 1 would mean
that

n0 − n =
log
(

1+γ
2

)
log γ

=
log
(
1 + 1

d

)
log
(
1 + 2

d

)
and, as a consequence, 0 < n0 − n ≤ log(4/3)/ log(5/3) < 1, a contradiction with
the fact that n and n0 are integers. The same argument holds if d = 1 or d = 2 with
n0 − n = log(4/3)/ log(5/3), as γ = 5/3 corresponds to the value of γ for d = 1, 2
or 3. It is easy to check that for any n ≥ 0,

|pn − 1| ≥ min{pn0 − 1, 1− pn0−1} = min
{

1
d ,

1
d+2

}
= 1

d+2 .

For an arbitrary p ∈ (0, 1/µ), we choose

n0 = i.p.

 log
(

1+γ
2 p

)
log γ

+ 1

where i.p. denotes the integer part, so that 0 < p0 ≤ p < γ p0. By monotonicity of
the Lq norms, that is,(∫∫

Qr

vp0
dxdt

|Qr|

) 1
p0

≤
(∫∫

Qr

vp
dxdt

|Qr|

) 1
p

≤
(∫∫

Qr

vγ p0
dxdt

|Qr|

) 1
γ p0

,

it is sufficient to prove inequality (3.28) for p = p0.
Let us define pµ ∈ (p0 µ, 1] such that

(3.40)

1 +
µ

εn
= 1 +

2µ pn
|pn − 1|

= 1 +
2µ p0 γ

n

|pn − 1|
≤ 1 + 2 (d+ 2) γn ≤ 4 (d+ 2) γn = 4 d γn+1
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because d+ 2 = d γ if d ≥ 3 and γ = 5/3 if d ≤ 3. Finally, let us define

Yn :=

(∫∫
Q%n

vpn dx dt

) 1
pn

, I0 = (25K)
1
γ (4 d γ2)

γ+1
γ

and C = 4 γ
γ+1
γ , θ = 1

γ ∈ (0, 1), and ξ = 1
p0
.

Iteration. Summing up, we have the following iterative inequality

Yn ≤

(
(25K)

1
γ

(%n−1 − %n)2

(
1 + µ

εn

) γ+1
γ

) 1
pn−1

Yn−1 .

Using %n−1 − %n = 2−n and inequality (3.40), we obtain

Yn ≤ I ξ θ
n−1

n−1 Yn−1 with In−1 ≤ I0 C n−1 .

Lemma 3.10 ([BGV12]). The sequence (Yn)n∈N is a bounded sequence and
satisfies

Y∞ := lim sup
n→+∞

Yn ≤ I
ξ

1−θ
0 C

ξ θ

(1−θ)2 Y0 .

The proof follows from the observation that

Yn ≤ I ξ θ
n−1

n−1 Yn−1 ≤
(
I0 C

n−1
) ξ θn−1

Yn−1 = I ξ θ
n−1

0 C ξ (n−1) θn−1

Yn−1

≤
n−1∏
j=0

I ξ θ
j

0 C ξ j θj Y0 = I
ξ
∑n−1
j=0 θ

j

0 C ξ
∑n−1
j=0 j θ

j

Y0 .

With the estimates(∫∫
Q1

vp0 dx dt

) 1
p0

≤ |Q1|
1
p0
− 1
p

(∫∫
Q1

vp dx dt

) 1
p

,

1
p0
− 1

p ≤
γ−1
p and |Q1| = 2 |B1| ≤ 2π2, we obtain

sup
Q1/2

v ≤
(
25K (4 d γ2)γ+1

) 1
p

γ
γ−1

(
4γ γγ+1

) 1
p

γ

(γ−1)2 (2π2)
γ−1
p

(∫∫
Q1

vp dxdt

) 1
p

which, using 2π2 ≤ 24 and after raising to the power p, is (3.28) with c1 given
by (3.30).

Step 4. The case p < 0. Assume that 1/2 ≤ % < r ≤ 1. We work in the cylinder
Q−r = supp(ψ). Here, we choose φ(t, x) = ϕρ,r(|x|)ϕρ2,r2(−t), where ϕρ,r and
ϕ(ρ2, r2) are as in (3.26), so that ψ = 1 on Q−% and ψ = 0 outside Q−r .

After collecting (3.34), (3.36) and (3.38), we obtain

sup
−%2<t<0

∫
B%

w2(t, x) + λ0 ε

∫∫
Q−%

|∇w|2 dx dt ≤ ε−1 λ1 + 1

(r − %)2

∫∫
Q−r

w2 dx dt .

Then the proof follows exactly the same scheme as for p > 0, with the simplification
that we do not have to take extra precautions in the choice of p. The constant c1
is the same. �
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3.2.4. Logarithmic Estimates. We prove level set estimates on the solutions
by means of Caccioppoli-type energy estimates in terms of

w = − log v ,

where v and w respectively solve (3.16) and

(3.41) wt = ∇ · (A∇w)−∇w · (A∇w) .

All computations below are quite standard and can be rigorously justified by testing
with − log(δ + v) for an arbitrarily small δ > 0 and then passing to the limit as
δ → 0+. Here we are interested in keeping track of the constants. We recall that
µ = λ1 + 1/λ0. Let us choose a test function ψ as follows:

(3.42) ψ(x) :=

d∏
ν=1

χν(xν), where χν(z) :=

 1 if |z| ≤ 1 ,
2− |z| if 1 ≤ |z| ≤ 2 ,
0 if |z| ≥ 2 .

Note that this test function has convex super-level sets, or equivalently said, on any
straight line segment, ψ(·) assumes its minimum at an end point.

Even if (3.41) is a nonlinear equation, the nonlinear term actually helps. The
reason for that lies in the following result.

Lemma 3.11. Assume that ψ is a smooth compactly supported test function as
in (3.42). If w is a (sub)solution to (3.41) in{

(t, x) ∈ R× Rd : |t| < 1 , |x| < 2
}

= (−1, 1)×B2(0) ,

then there exist positive constants a and c2(d) such that, for all s > 0,

(3.43)
∣∣{(t, x) ∈ Q+

1 : w(t, x) > s− a
}∣∣

+
∣∣{(t, x) ∈ Q−1 : w(t, x) < −s− a

}∣∣ ≤ c2 |B1|
µ

s
,

where

(3.44) c2 = 2d+2 3d d and a = −
∫
Rd w(0, x)ψ2(x) dx∫

Rd ψ
2(x) dx

.

Equivalently, the above inequality stated in terms of v reads

(3.45)
∣∣{(t, x) ∈ Q+

1 : log v(t, x) < −s+ a
}∣∣

+
∣∣{(t, x) ∈ Q−1 : log v(t, x) > s+ a

}∣∣ ≤ c2 |B1|
µ

s
,

with the choice a =
∫
Rd log v(0, x)ψ2(x) dx/

∫
Rd ψ

2(x) dx.

Proof. For better readability, we split the proof into several steps.
Step 1. Energy estimates. Testing equation (or inequality) (3.41) with ψ2(x), we
obtain∫

B2(0)

ψ2 w(t2) dx−
∫
B2(0)

ψ2 w(t1) dx+
1

2

∫ 1

−1

∫
B2(0)

ψ2∇w · (A∇w) dxdt

≤ 2

∫ 1

−1

∫
B2(0)

∇ψ · (A∇ψ) dx dt .
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Using the conditions (3.17), we have that

λ0

∫ 1

−1

∫
B2(0)

ψ2 |∇w|2 dxdt ≤
∫ 1

−1

∫
B2(0)

ψ2∇w · (A∇w) dxdt ,∫ 1

−1

∫
B2(0)

∇ψ · (A∇ψ) dxdt ≤ λ1

∫ 1

−1

∫
B2(0)

|∇ψ|2 dx dt .

Combining the above two inequalities, we obtain

∫
B2(0)

ψ2 w(t2) dx−
∫
B2(0)

ψ2 w(t1) +
λ0

2

∫ 1

−1

∫
B2(0)

ψ2 |∇w|2 dxdt

≤ 2λ1

∫ 1

−1

∫
B2(0)

|∇ψ|2 dx dt ≤ 2d λ1 (t2 − t1) |B1| ‖∇ψ‖2∞ .

(3.46)

Step 2. Poincaré inequality with weight ψ2. We use the weighted inequality (3.13)
with b = ψ2 and ψ as in (3.42). We have that diam(supp b) = 2 d and since
0 ≤ ψ ≤ 1, then ‖b‖∞ =

∥∥ψ2
∥∥
∞ = 1 and also |B1| ≤

∫
Rd ψ

2 dx ≤ 3d |B1| so that
the constant λb is given by

λb ≤
2 d |B2|

2
∫
B1
ψ2 dx

=
d |B2|
|B1|

= 2d d .

Hence we obtain
(3.47)∫ 1

−1

∫
B2(0)

∣∣∣w(t, x)− w(t)ψ

∣∣∣2 ψ2(x) dxdt ≤ 2d d

∫ 1

−1

∫
B2(0)

|∇w(t, x)|2 ψ2(x) dxdt ,

with

w(t)ψ :=

∫
Rd w(t, x)ψ2(x) dx∫

Rd ψ
2(x) dx

.

Step 3. Differential inequality. Let us recall that ‖∇ψ‖2∞ ≤ 1. We combine
inequalities (3.46) and (3.47) into∫
B1

ψ2 w(t2) dx−
∫
B1

ψ2 w(t1) dx+
λ0

2d+1 d

∫ t2

t1

∫
B1

∣∣∣w(t, x)− w(t)ψ

∣∣∣2 ψ2(x) dx dt

≤ 2d λ1 (t2 − t1) |B1| .

Recalling that ψ = 1 on B1 and the expression of w(t)ψ given in (3.47), we obtain

w(t2)ψ − w(t1)ψ
t2 − t1

+
λ0

2d+1 3d d

1

(t2 − t1) |B1|

∫ t2

t1

∫
B1

∣∣∣w(t, x)− w(t)ψ

∣∣∣2 dxdt

≤ 2d λ1 |B1|∫
Rd ψ

2 dx
≤ 2d λ1 .
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Here we have used that |B1| ≤
∫
Rd ψ

2 dx ≤ 3d |B1|. Recalling that µ = λ1 + 1/λ0,
so that λ0 µ > 1, we obtain

w(t2)ψ − w(t1)ψ
t2 − t1

+
1

2d+1 3d dµ

1

(t2 − t1) |B1|

∫ t2

t1

∫
B1

∣∣∣w(t, x)− w(t)ψ

∣∣∣2 dx dt

≤ 2d λ1 |B1|∫
Rd ψ

2 dx
≤ 2d µ .

Letting t2 → t1 we obtain the following differential inequality for w(t)ψ

(3.48)
d

dt
w(t)ψ +

1

2d+1 3d dµ

1

|B1|

∫
B1

∣∣∣w(t, x)− w(t)ψ

∣∣∣2 dx ≤ 2d µ .

The above inequality can be applied to

w(t, x) = w(t, x)− w(0)ψ − 2d µ t .

Notice that w is a subsolution to (3.41) since w is. With a = −w(0)ψ, we can
write (3.48) in terms of

W (t) = w(t)ψ + a− 2d µ t such that W (0) = 0

as
d

dt
W (t) +

1

2d+1 3d dµ

1

|B1|

∫
B1

|w(t, x)−W (t)|2 dx ≤ 0 .

An immediate consequence of the above inequality is that W (t) ≤W (0) = 0 for all
t ∈ (0, 1).

Let Qs(t) = {x ∈ B1 : w(t, x) > s}, for a given t ∈ (0, 1). For any s > 0, we
have

w(t, x)−W (t) ≥ s−W (t) ≥ 0 ∀x ∈ Qs(t) ,

because W (t) ≤ 0 for t ∈ (0, 1). Using d
dtW = − d

dt (s − W ), the integration
restricted to Qs in (3.48) gives

d

dt

(
s−W (t)

)
≥ 1

2d+1 3d dµ

|Bs(t)|
|B1|

(
s−W (t)

)2
.

By integrating over (0, 1), it follows that

∣∣{(t, x) ∈ Q+
1 : w(t, x) > s

}∣∣ =

∫∫
{w>s}∩Q+

1

dxdt =

∫ 1

0

|Qs(t)|dt

≤ 2d+1 3d dµ |B1|
(

1

s−W (0)
− 1

s−W (1)

)
≤ 2d+1 3d d |B1|

µ

s
,

which proves the first part of inequality (3.43).
Step 4. Estimating the second term of inequality (3.43). We just replace t by −t
and repeat the same proof. Upon setting a = −w(0)ψ, we obtain∣∣{(t, x) ∈ Q−1 : w < −s− a

}∣∣ ≤ 2d+1 3d d |B1|
µ

s
.

�
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3.2.5. A lemma by Bombieri and Giusti. The following lemma, attributed
to E. Bombieri and E. Giusti [BG72] and adapted by J. Moser [Mos71], is the
cornerstone of our method. We remark that the result applies to any measurable
function f , not necessarily solutions to a PDE, and to any family of nested domains
(Qr)0<r≤R, i.e., such that Qr0 ⊂ Qr1 whenever r0 < r1.

Lemma 3.12. Let β, c1, µ > 0, c2 ≥ 1/e, θ ∈ [1/2, 1) and p ∈ (0, 1/µ) be
positive constants, and let f > 0 be a positive measurable function defined on a
neighborhood of Q1 for which

(3.49) sup
Q%

fp <
c1

(r − %)β |Q1|

∫∫
Qr

fp dxdt

for any r and % such that θ ≤ % < r ≤ 1, and

(3.50)
∣∣{(t, x) ∈ Q1 : log f > s

}∣∣ < c2 |Q1|
µ

s
∀ s > 0 .

Let σ be as in (3.21). Then we have

(3.51) sup
Qθ

f < κµ0 , where κ0 := exp

[
2 c2 ∨

8 c31
(1− θ)2 β

]
.

The difference between the upper bounds (3.49) and (3.51) is subtle. The first
inequality depends on the solution on the whole space-time set Qr and is somehow
implicit. By assumption (3.50), if the set where f is super-exponential has small
measure, then on a slightly smaller set the solution is quantitatively bounded by
an explicit and uniform constant, given by (3.51).

Proof. We sketch the relevant steps of the proof of [Mos71, Lemma 3]. Our
goal is to provide some minor technical improvements and quantify all constants.
Without loss of generality, after replacing s by s µ, we reduce the problem to the
case µ = 1. Analogously, we also assume that |Q1| = 1. We define the nondecreasing
function

ϕ(%) = sup
Q%

(log f) ∀ % ∈ [θ, 1) .

We will prove that assumptions (3.49) and (3.50) imply the following dichotomy:
– either ϕ(r) ≤ 2 c2 and there is nothing to prove: κ0 = e2 c2 ,
– or ϕ(r) > 2 c2 and we have

(3.52) ϕ(%) ≤ 3

4
ϕ(r) +

8 c31
(r − %)2 β

for any r and % such that θ ≤ % < r ≤ 1. We postpone the proof of (3.52) and
observe that (3.52) can be iterated along a monotone increasing sequence (%k)k≥0

such that
θ ≤ %0 < %1 < · · · < %k ≤ 1

for any k ∈ N to get

ϕ(%0) <
3

4
ϕ(%k) + 8 c31

k−1∑
j=0

(
3
4

)j 1

(%j+1 − %j)2 β
.

By monotonicity, we have that ϕ(%k) ≤ ϕ(1) <∞, so that in the limit as k → +∞,
we obtain

ϕ(θ) ≤ ϕ(%0) ≤ 8 c31

∞∑
j=0

(
3
4

)j 1

(%j+1 − %j)2 β
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provided the right-hand side converges. This convergence holds true for the choice

%j = 1− 1− θ
1 + j

,

and in that case, the estimate

ϕ(θ) ≤ 8 c31 σ

(1− θ)2 β
:= κ̃0

implies inequality (3.51) with µ = 1 because

sup
Qθ

f ≤ exp

(
sup
Qθ

(log f)

)
= eϕ(θ) ≤ eκ̃0 := κ0 .

In order to complete the proof, we have to prove inequality (3.52).

Proof of Inequality (3.52). We are now under the assumption ϕ(r) > 2 c2. We first
estimate the integral∫∫

Qr

fp dx dt =

∫∫
{log f> 1

2 ϕ(r)}
fp dxdt+

∫∫
{log f≤ 1

2 ϕ(r)}
fp dx dt

≤ epϕ(r)
∣∣{(t, x) ∈ Q1 : log f > 1

2 ϕ(r)
}∣∣+ |Q1| e

p
2 ϕ(r)

≤ 2 c2
ϕ(r)

epϕ(r) + e
p
2 ϕ(r) ,

(3.53)

where we have estimated the first integral using that

sup
Qr

fp ≤ sup
Qr

ep log f ≤ ep supQr
log f = epϕ(r) .

In the present case, assumption (3.50) reads:

∣∣{(t, x) ∈ Q1 : log f > 1
2 ϕ(r)

}∣∣ < 2 c2
ϕ(r)

.

We choose

p =
2

ϕ(r)
log

(
ϕ(r)

2 c2

)
such that the last two terms of (3.53) are equal, which gives

(3.54)
∫∫

Qr

fp dxdt ≤ 2 e
p
2 ϕ(r) .

The exponent p is admissible, that is, 0 < p < 1/µ = 1, if ϕ(r) > 2/e, which follows
from the assumption c2 > 1/e. Now, using assumption (3.49) and inequality (3.54),
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we obtain

ϕ(%) =
1

p
sup
Q%

log(fp) =
1

p
log

(
sup
Q%

fp

)

≤ 1

p
log

(
c1

(r − %)β

∫∫
Qr

fp dxdt

)
≤ 1

p
log

(
2 c1 e

p
2 ϕ(r)

(r − %)β

)
=

1

p
log

(
2 c1

(r − %)β

)
+

1

2
ϕ(r)

=
1

2
ϕ(r)

(
1 +

log(2 c1)− log(r − %)β

log(ϕ(r))− log(2 c1)

)
≤ 1

2
ϕ(r)

(
1 +

1

2

)
=

3

4
ϕ(r) .

In the last line, we take

ϕ(r) ≥ 8 c31
(r − %)2 β

so that

(3.55)
log(2 c1)− log(r − %)β

log(ϕ(r))− log(2 c1)
≤ 1

2
.

We again have that either ϕ(r) <
8 c31

(r−%)2 β and (3.52) holds, or ϕ(r) ≥ 8 c31
(r−%)2 β

and (3.55) holds, hence ϕ(%) ≤ 3
4 ϕ(r). We conclude that (3.52) holds in all cases

and this completes the proof. �

3.2.6. Proof of Moser’s Harnack inequality.

Proof of Theorem 3.7. We prove the Harnack inequality

sup
D−

v ≤ hµ inf
D+

v

where h is as in (3.19) and D± are the parabolic cylinders given by

D+ =
{

3
4 < t < 1 , |x| < 1

2

}
=
(

3
4 , 1
)
×B1/2(0) ,

D− =
{
− 3

4 < t < − 1
4 , |x| <

1
2

}
=
(
− 3

4 ,−
1
4

)
×B1/2(0) .

The general inequality (3.24) follows by applying the change of variables (3.31),
which do not alter the values of λ0, λ1 and µ = λ1 + 1/λ0.

Let v be a positive solution to (3.16) and a =
∫
Rd log v(0,x)ψ2(x) dx∫

Rd ψ
2(x) dx

. In order to
use Lemma 3.9 and Lemma 3.11, we apply Lemma 3.12 to

v+(t, x) = e−a v(t, x) and v−(t, x) =
e+a

v(t, x)
.

Step 1. Upper estimates. Let us prove that

(3.56) sup
D−

v+ ≤ κµ0

where κ0 has an explicit expression, given below in (3.57). For all % ∈ [1/2, 1), let

Q% :=
{

(t, x) ∈ Q1 :
∣∣t+ 1

2

∣∣ < 1
2 %

2 , |x| < %/
√

2
}

=
(
− 1

2 (%2 + 1), 1
2 (%2 − 1)

)
×B%/√2(0) = Q%/

√
2

(
− 1

2 , 0
)
.
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Note that if % = 1/
√

2, then Q% = (−3/4,−1/4) × B1/2(0) = D−, and also that
Q% ⊂ Q1 = (−1, 0)×B1(0) = Q−1 for any % ∈ [1/2, 1).

The first assumption of Lemma 3.12, namely inequality (3.49) with β = d+2 is
nothing but inequality (3.28) of Lemma 3.9 applied to Q% = Q%/

√
2 (−1/2, 0), that

is,

sup
Q%

vp+ ≤
c1 2

d+2
2

(r − %)d+2

∫∫
Qr

vp+ dxdt ∀ p ∈ (0, 1/µ) .

Note that the results of Lemma 3.9 hold true for these cylinders as well, with the
same constants, since Q%/√2(−1/2, 0) can be obtained from Q%(0, 0) by means of
change of variables (3.31) which leave the class of equations unchanged, i.e., such
that λ1, λ0 and µ are the same.

The second assumption of Lemma 3.12, namely inequality (3.50) of Lemma 3.12,
if stated in terms of super-level sets of log v+, reads

|{x ∈ Q1 : log v+ > s}| =
∣∣{(t, x) ∈ Q−1 : log v > s+ a}

∣∣ ≤ c2 |B1|
µ

s

according to Lemma 3.11. Hence we are in the position to apply Lemma 3.12 with
θ = 1/

√
2 to conclude that (3.56) is true with

(3.57) κ0 := exp

[
2 c2 ∨

8 c31(
√

2)3 (d+2) σ

(1− 1/
√

2)2 (d+2)

]
.

This concludes the first step.
Step 2. Lower estimates. Let us prove that

(3.58) sup
D+

v− ≤ κµ0

where κ0 has an explicit expression, given below in (3.59). For all % ∈ [1/2, 1), let

Q% =
{

(t, x) ∈ Q1 : 0 < 1− t < %2 , |x| < %
}

=
(
1− %2, 1

)
×B%(0) = Q−% (1, 0) .

Note that if % = 1/2 then Q% = (3/4, 1) × B1/2(0) = D+, and Q% ⊂ Q1 = (0, 1) ×
B1(0) = Q+

1 for any % ∈ [1/2, 1).
The first assumption of Lemma 3.12, namely inequality (3.49) with β = d+ 2

is nothing but inequality (3.29) of Lemma 3.9 applied to Q% = Q−% (1, 0)

sup
Q%

vp− ≤
c1

(r − %)d+2

∫∫
Qr

vp− dxdt ∀ p ∈ (− 1
µ , 0) .

Note that the results of Lemma 3.9 hold true for these cylinders as well, with the
same constants, since Q−% (1, 0) can be obtained from Q%(0, 0) by means of change
of variables (3.31).

The second assumption of Lemma 3.12, namely inequality (3.50) of Lemma 3.12,
if stated in terms of super-level sets of log v−, reads

|{x ∈ Q1 : log v− > s}| =
∣∣{(t, x) ∈ Q+

1 : log v < −s+ a}
∣∣ ≤ c2 |B1|

µ

s
.

and follows from inequality (3.45) of Lemma 3.11. With the same a and c2, we are
in the position to apply Lemma 3.12 with θ = 1/2 to conclude that (3.58) is true
with

(3.59) κ0 := exp
[
2 c2 ∨ c3122 (d+2)+3 σ

]
.

This concludes the second step.
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Step 3. Harnack inequality and its constant. We deduce from (3.56) and (3.58)
that

κ−µ0 sup
D−

v ≤ ea ≤ κµ0 inf
D+

v

or, equivalently,
sup
D−

v ≤ (κ0 κ0)µ inf
D+

v = h̃µ inf
D+

v .

Using (3.57) and (3.59), we compute

h̃ = κ0 κ0 = exp
[
2 c2 ∨ c31 22 (d+2)+3 σ

]
exp

[
2 c2 ∨ 8 c31 (

√
2)3 (d+2)

(1−1/
√

2)2 (d+2)
σ
]

≤ exp
[
4 c2 + c31

(
22 (d+2)+3 + 8 (

√
2)3 (d+2)

(1−1/
√

2)2 (d+2)

)
σ
]

= exp
[
4 c2 + c31 22 (d+2)+3

(
1 + 2d+2

(
√

2−1)2 (d+2)

)
σ
]

:= h .

The expressions of c1 and c2 are given in (3.30) and (3.44) respectively. The above
expression of h agrees with the simplified expression of (3.19), which completes the
proof. �

3.2.7. Harnack inequality implies Hölder continuity. In this section,
we shall show a standard application of the Harnack inequality (3.24). It is well
known that (3.24) implies Hölder continuity of solutions to (3.16). The novelty
is that, here, we keep track of all constants and obtain a quantitative expression
of the Hölder continuity exponent, which only depends on the Harnack constant,
i.e., only depends on the dimension d and on the ellipticity constants λ0 and λ1

in (3.17).
Let Ω1 ⊂ Ω2 ⊂ Rd two bounded domains and let us consider Q1 := (T2, T3)×

Ω1 ⊂ (T1, T4) × Ω2 =: Q2, where 0 ≤ T1 < T2 < T3 < T < 4. We define the
parabolic distance between Q1 and Q2 as

(3.60) dist(Q1, Q2) := inf
(t,x)∈Q1

(s,y)∈[T1,T4]×∂Ω2∪{T1,T4}×Ω2

|x− y|+ |t− s| 12 .

In what follows, for simplicity, we shall consider Ω1 and Ω2 as convex sets. How-
ever, this is not necessary and the main result of this section holds without such
restriction.

Theorem 3.13. Let v be a nonnegative solution of (3.16) on Q2 which satis-
fies (3.23) and assume that A(t, x) satisfies (3.17). Then we have

(3.61) sup
(t,x),(s,y)∈Q1

|v(t, x)− v(s, y)|(
|x− y|+ |t− s|1/2

)ν ≤ 2

(
128

dist(Q1, Q2)

)ν
‖v‖L∞(Q2) .

where

(3.62) ν := log4

( h

h− 1

)
,

and h is as in (3.22).

From the expression of h in (3.19) it is clear that h ≥ 4
3 , from which we deduce

that ν ∈ (0, 1).
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Remark 3.14. We stated the above Theorem under the simplifying assumption
that both Ω1 and Ω2 are convex. As it shall appear in the proof, this hypothesis
is just technical and not needed. A more general statement, without any further
assumption on Ω1 and Ω2, can be proved by using a covering argument where Q1 is
covered by convex sets, open balls for instance. In this last case, the constant in the
right-hand-side of inequality (3.61) will change. However, the geometrical informa-
tion needed to compute the constant is the number of balls needed to cover Q1 and
the parabolic distance between Q1 and Q2.

Proof. We proceed in steps: in step 1 we shall show that inequality (3.24)
implies a reduction of oscillation on cylinders of the form (3.18). In step 2 we will
iterate such reduction of oscillation and directly show estimate (3.61).
Step 1. Reduction of oscillation. Let us define DR(t0, x0) = (t0 − R2, t0 + R2) ×
B2R(x0) and let D+

R(t0, x0), D−R(t0, x0) be as in (3.18). Let us define

M := max
DR(t0,x0)

v , M± = max
D±R (t0,x0)

v , m = min
DR(t0,x0)

v , m± = max
D±R (t0,x0)

v ,

and let us define the oscillations ω and ω+ namely

ω = M −m and ω+ = M+ −m+ .

We observe that the function M − v and v −m are nonnegative solution to (3.16)
which also satisfy (3.17) with λ0 and λ1 as in (3.17). We are therefore in the
position to apply inequality (3.24) to those functions and get

M −m− = sup
D−R (t0,x0)

M − v ≤ h inf
D+
R(t0,x0)

v −M = h
(
M −M+

)
,

M− −m = sup
D−R (t0,x0)

v −m ≤ h inf
D+
R(t0,x0)

v −m = h
(
m+ −m

)
.

Summing up the two above inequalities we get

ω ≤ ω + (M− −m−) ≤ hω − hω+

which can be rewritten as

(3.63) ω+ ≤ h− 1

h
ω =: ζ ω ,

which means that the oscillation on D+
R(t0, x0) is smaller then the oscillation on

DR(t0, x0), recall that ζ < 1. In the next step we will iterate such inequality in a
sequence of nested cylinders to get a geometric reduction of oscillations.
Step 2. Iteration. Let us define δ = dist(Q1, Q2)/64. The number δ has the
following property:

Let (t, x) ∈ Q1 and (s, y) ∈ (0,∞)× Rd.

If |x− y|+ |t− s| 12 ≤ δ then, (s, y) ∈ Q2 .
(P)

Let us consider (t, x), (s, y) ∈ Q1 such that (t, x) 6= (s, y), then either

(A) |x− y|+ |t− s| 12 < δ ,

or

(B) |x− y|+ |t− s| 12 ≥ δ .
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If (A) happens, then there exists an integer k ≥ 0 such that
δ

4k+1
≤ |x− y|+ |t− s| 12 ≤ δ

4k
.

Let us define z = x+y
2 and τ0 = t+s

2 . Since Q1 is a convex set we have that
z, τ0 ∈ Q1. Let us define,

Ri+1 := 4Ri τi+1 := τi − 14R2
i ∀ i ∈ {0, · · · , k − 1} where R0 =

δ

4k−1
.

With such choices we have that

(3.64) DRi(z, τi) ⊂ D+
Ri+1

(z, τi+1) ∀ i ∈ {0, · · · , k − 1} ,

and
(t, x) , (s, y) ∈ DR0(z, τ0) ⊂ D+

R1
(z, τ1) .

We also observe that, as a consequence of property (P) we have that DRk(z, τk) ⊂
Q2. Let us define, for any i ∈ {0, · · · , k − 1}

ωi := max
DRi (z,τi)

v − min
DRi (z,τi)

v and ω+
i := max

D+
Ri

(z,τi)
v − min

D+
Ri

(z,τi)
v .

As a consequence of (3.64)

(3.65) ωi ≤ ω+
i+1 .

By iterating inequalities (3.65) - (3.63), we obtain that

|v(t, x)− v(s, y)| ≤ ω0 ≤ ω+
1 ≤ ξ ω1

≤ ξk ωk =

(
1

4

)k ν
ωk

≤
(

4

δ

)ν (
δ

4k+1

)ν
ωk

≤ 2

(
4

δ

)ν (
|x− y|+ |t− s| 12

)ν
‖v‖L∞(Q2) .

This concludes the proof of (3.61) under Assumption (A).
Let us now assume that (B) happens. In this case we have that

|v(t, x)− v(s, y)| ≤ 2 ‖v‖L∞(Q2)
δν

δν
≤ 2 ‖v‖L∞(Q2)

(
|x− y|+ |t− s| 12

δ

)ν
≤ 2

(
4

δ

)ν (
|x− y|+ |t− s| 12

)ν
‖v‖L∞(Q2) .

The proof is then completed. �

3.3. Bibliographical comments

Sobolev’s inequalities on domains are classical and can be established in many
ways, see for instance [MTSO17]. The critical interpolation inequality (3.3) fol-
lows from [Eva10, Section 5.6], The constant in (3.3) is new, to our knowledge.
The proof of inequality (3.1) in dimension 2 is due to E. Gagliardo and L. Niren-
berg in [Gag58, Nir59], while, the proof in dimension 1 seems to be new. For
an introduction to Gagliardo-Nirenberg inequalities in dimension d = 1, we refer
to [GN11, DELL14]. In arbitrary dimensions d ≥ 1, the interpolation inequalities
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of Lemma 3.5 are due to E. Gagliardo and L. Nirenberg [Gag58, Nir59, Nir66]
but, to the best of our knowledge, the constants are not present in the existing lit-
erature. The proof of the weighted Poincaré inequality is due to J. Moser [Mos64,
Lemma 3], see also [CH89, p 488] for a previous contribution.

The constant in Lemma 3.2 is not optimal and, in the critical exponent case,
one can expect various regimes in Inequality (3.1) depending on the radius R of
the ball. This can be seen by direct methods when the space is restricted to radial
functions, but the problem is that optimal functions are expected to satisfy Neu-
mann homogeneous boundary conditions and that we cannot use the Pólya–Szegő
principle in this setting. Alternatively, in the large R regime, Sobolev’s inequality
should play a role, at least asymptotically, while in the small R regime, if there are
optimal functions corresponding to the inequality written with the optimal con-
stant, then these solutions enter in the framework of the Lin-Ni conjecture, and it
is expected that the only solutions are the constants. This is actually some rather
delicate matter, in which dimension plays a role: see [DRW12] and [DK17] for
results in the entropy framework. Hence in Lemma 3.2, and also in Lemma 3.3 for
similar reasons, we claim no optimality.

The Harnack inequality for the classical heat equation was first established by
B. Pini [Pin54] and J. Hadamard [Had54] independently. The first regularity re-
sult for linear parabolic equation with uniformly elliptic measurable coefficients was
established by J. Nash [Nas58]. The Harnack inequality of Theorem 3.7 (without
explicit constants) goes back to J. Moser [Mos64, Mos67, Mos71]. After the
seminal papers of J. Nash and J. Moser, several other results appeared for more
general linear parabolic equations including the case with unbounded lower order
terms [AB67, Ish99, Tru68, LSU95]. A proof of Moser’s parabolic Harnack in-
equality using the founding ideas of Nash, can be found in [FS86]. The relation be-
tween heat kernel bounds and Harnack inequalities was investigated by D.G. Aron-
son, E.B. Fabes and D.W. Stroock, [Aro67, FS84], and the complete equivalence
was established by M.T. Barlow, A. Grigor’yan and T. Kumagai in [BGK12].

Several regularity results were obtained also for linear operators with degenerate
or singular weights. Harnack inequalities where established in [CS84a, CS84b,
CS85] using similar techniques to [Mos71]. Pointwise estimates on solutions were
later obtained in [CS87]. Bounds on the heat kernel for such kind of operators were
obtained in [GN88]. Those papers deal with rather particular class of weights. We
remark that in this setting functional inequalities with weights of Sobolev and
Poincaré play a key role, see for instance [FGW94].

The correspondences between elliptic and parabolic Harnack inequalities were
investigated in [HSC01]. L. Saloff-Coste discovered an intriguing equivalence be-
tween Harnack inequalities and families of Poincaré inequalities with doubling mea-
sures [SC92, SC95], somehow already foreseen in [Gri91], together with the in-
triguing relation with Sobolev type inequalities [SC02, SC09].

In the Riemannian manifold setting, the differential Harnack inequality of
[Yau94, LY86] opened the door to a prolific field of research, see for instance the
monograph [Gri09] and references therein. We also refer to the survey [Kas07] for
more results on Harnack inequalities in various settings ranging from local and non-
local elliptic and parabolic equations, possibly in non-divergence form, to Harnack
inequalities in discrete settings, or for Brownian and Levy diffusion processes.
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The dependence of the constant h on the ellipticity constants λ0 and λ1 was
not clear before the paper of J. Moser [Mos71], where he showed that such a
dependence is optimal by providing an explicit example, [Mos71, p. 729]. The
fact that h only depends on the dimension d is also pointed out by C.E. Gutier-
rez and R.L. Wheeden in [GW90] after the statement of their Harnack inequal-
ities, [GW90, Theorem A]. The dependence of the constant h on the geometric
parameters of the cylinders D+

R and D−R were provided in [GW90, GW91].
The method of this chapter relies on several estimates of [Mos64, Mos71].

These two papers contain two different proofs of Theorem 3.7. In [Mos64], Moser
established a proof based on the same iteration which we use in Lemma 3.9. To
conclude the proof, however, he used a parabolic version of the BMO estimates
contained in the John-Nirenberg Lemma [JN61]. It turns out that the original
proof contained a mistake which was corrected only in [Mos67]. A slightly different
BMO approach can be found in [FG85]. The proof of the parabolic version of the
John-Nirenberg Lemma is technical and provides no explicit constants. For the
purpose of giving constructive estimates, it was desirable to use a different method.
Finally, in [Mos71], a simplified proof was obtained: the Moser iteration method
provides Lp − L∞ and L−p − L−∞ bounds for arbitrarily small p > 0, for some
constant which is independent of p. To combine the two bounds in a constructive
way and obtain Harnack inequalities, J. Moser used logarithmic estimates as in
Lemma 3.12, attributed to E. Bombieri, and first appeared in the Lecture Notes of a
course [BJ70], then published in the celebrated paper with E. Giusti [BG72]. This
is the approach that we have chosen for obtaining constructive Hölder continuity
continuity estimates: we use exactly this strategy with minor improvements, detail
each step, and quantify explicitly all constants.



CHAPTER 4

Uniform convergence in relative error and
threshold time

In this chapter, we aim at proving a uniform convergence result for the solutions
of the fast diffusion equation (2.1)

∂u

∂t
= ∆um , u(t = 0, ·) = u0 .

After some explicit threshold time t?, we establish uniform convergence in relative
error on the basis of the results of Chapter 3.

4.1. Statement

Fix m ∈ (mc, 1), let us define, for any u ∈ L1(Rd) the quantity

(4.1) ‖u‖Xm := sup
r>0

r
α

(1−m)

∫
|x|>r

|u| dx ,

where α = d (m−mc) is as in (2.9) so that α/(1−m) > 0 when ∈ (mc, 1); let

Xm := {u ∈ L1(Rd) : ‖u‖Xm <∞} .
After an explicit threshold time t?, the solution u of (2.1) converges uniformly in
relative error to the self-similar function B defined by (2.33).

Theorem 4.1. Let m ∈
[
m1, 1

)
if d ≥ 2 and m ∈

(
m̃1, 1

)
if d = 1, A, G > 0,

and let u be a solution of (2.1) corresponding to the nonnegative initial datum
u0 ∈ L1

+(Rd) ∩ Xm such that

(4.2)
∫
Rd
u0 dx =

∫
Rd
B dx , ‖u0‖Xm ≤ A , F [λ−d• u0(·/λ•)] ≤ G .

There exists an explicit εm,d ∈ (0, 1/2), such that for any ε ∈ (0, εm,d]

(4.3) sup
x∈Rd

∣∣∣∣ u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ ε ∀ t ≥ t? := c?
1 +A1−m +G

α
2

εa
,

where a and c? are explicit constants depending only on m, d.

The scaling parameter λ• is defined by (2.8). It is taken into account in (4.2)
only in order to simplify the conditions, in rescaled variables, for stability, which
are needed in the next two chapters. See Section 4.5.1 for details. In dimension
d = 1 the restriction on m is a consequence of

∫
Rd |x|

2 B dx < +∞, which means
m > m̃1, and 0 = m1 < m̃1 = 1/3 if d = 1.

4.2. Local estimates and an interpolation estimate

In this section we prove local estimates on solutions to (2.1) with L1 initial
datum.

87
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4.2.1. L1 mass displacement estimates. The following lemma gives infor-
mation on how mass moves both locally and at infinity.

Lemma 4.2. Let m ∈ (0, 1) and u(t, x) be a nonnegative solution to the Cauchy
problem (2.1). Then, for any t, τ ≥ 0 and r, R > 0 such that %0 r ≥ 2R for some
%0 > 0, we have

(4.4)
∫
B2R(x0)

u(t, x) dx ≤ 2
m

1−m

∫
B2R+r(x0)

u(τ, x) dx+ c3
|t− τ |

1
1−m

r
2−d (1−m)

1−m

,

where

(4.5) c3 := 2
m

1−m ωd

(
16 (d+ 1) (3 +m)

1−m

) 1
1−m

(%0 + 1) .

Under the same assumptions, we have that

(4.6)
∫
Rd\B2R+r(x0)

u(t, x) dx ≤ 2
m

1−m

∫
Rd\B2R(x0)

u(τ, x) dx+ c3
|t− τ |

1
1−m

r
2−d (1−m)

1−m

.

Proof. We begin by proving (4.4). Let φ = ϕβ , for some β > 0 (sufficiently
large, to be chosen later) be a radial cut-off function supported in B2R+r(x0) and
let ϕ = 1 in B2R(x0). We can take, for instance, ϕ = ϕ2R,2R+r, where ϕ2R,2R+r

is defined in (3.26). By Lemma 3.8 we have that

(4.7) ‖∇ϕ‖∞ ≤
2

r
and ‖∆ϕ‖∞ ≤

4 d

r2
.

Without loss of generality, we can assume that x0 = 0 by translation invariance,
and write BR instead of BR(x0). Let us compute

∣∣∣∣∣ d

dt

∫
B2R+r

u(t, x)φ (x) dx

∣∣∣∣∣ =

∣∣∣∣∣
∫
B2R+r

∆ (um)φdx

∣∣∣∣∣ =

∣∣∣∣∣
∫
B2R+r

um∆φ dx

∣∣∣∣∣
≤
∫
B2R+r

um
∣∣∆φ∣∣ dx

≤

(∫
B2R+r

uφdx

)m(∫
B2R+r

|∆φ|
1

1−m

φ
m

1−m
dx

)1−m

:= C (φ)

(∫
B2R+r

uφ (x) dx

)m
,

(4.8)

where we have used Hölder’s inequality with conjugate exponents 1
m and 1

1−m . We
have obtained the following closed differential inequality∣∣∣∣∣ d

dt

∫
B2R+r

u (t, x)φ (x) dx

∣∣∣∣∣ ≤ C(φ)

(∫
B2R+r

u (t, x)φ (x) dx

)m
.

An integration in time shows that, for all t, τ ≥ 0, we have(∫
B2R

u (t, x)φ (x) dx

)1−m

≤
(∫

B2R

u (τ, x)φ (x) dx

)1−m

+(1−m)C (φ) |t− τ | .
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Since φ is supported in 2R+r and equal to 1 in B2R, this implies (4.4), indeed, using

(a+ b)
1

1−m ≤ 2
1

1−m−1
(
a

1
1−m + b

1
1−m

)
,

we get∫
B2R

u(t, x) dx ≤ 2
m

1−m

(∫
B2R+r

u(τ, x) dx+
(
(1−m)C(φ)

) 1
1−m |t− τ |

1
1−m

)

≤ 2
m

1−m

∫
B2R+r

u(τ, x) dx+ c3
|t− τ |

1
1−m

r
2−d (1−m)

1−m

,

where
c3(r) := 2

m
1−m

(
(1−m)C(φ)

) 1
1−m r

2−d (1−m)
1−m .

The above proof is formal when considering weak or very weak solutions, in which
case, it is quite lengthy (although standard) to make it rigorous, cf. [HP85, Proof
of Lemma 3.1]; indeed, it is enough to consider the time-integrated version of esti-
mates (4.8), and conclude by a Grönwall-type argument.

The proof is completed once we show that the quantity c3(r) is bounded and
provide the expression (4.5). Recall that φ = ϕβ , so that

|∆ (φ(x))|
1

1−m φ(x)−
m

1−m = ϕ(x)−
βm
1−m

∣∣∣β (β − 1)ϕβ−2 |∇ϕ |2 + β ϕβ−1 ∆ϕ
∣∣∣ 1
1−m

≤
(
β (β − 1)

) 1
1−m ϕ

β−2−βm
1−m

∣∣∣ |∇ϕ |2 + |∆ϕ|
∣∣∣ 1
1−m

≤
(

4 (3+m)
(1−m)2

) 1
1−m

(
4 (d+1)
r2

) 1
1−m

.

(4.9)

The first inequality follow from the fact that we are considering a radial function
0 ≤ ϕ(x) ≤ 1, and we take β = 4

1−m > 2
1−m . The last one follows by (4.7). Finally:(

(1−m)C(φ)
) 1

1−m r
2−d (1−m)

1−m

= (1−m)
1

1−m

(∫
B2R+r\B2R

|∆φ|
1

1−m

φ
m

1−m
dx

)
r

2−d (1−m)
1−m

≤ (1−m)
1

1−m

(
4 (3+m)
(1−m)2

) 1
1−m

(
4 (d+1)
r2

) 1
1−m ∣∣B2R+r \B2R

∣∣ r 2−d (1−m)
1−m

= ωd

(
16 (d+1) (3+m)

1−m

) 1
1−m (2R+ r)d − (2R)d

d rd

≤ ωd
(

16 (d+1) (3+m)
1−m

) 1
1−m

(%0 + 1)

where we have used that the support of ∆φ is contained in the annulus B2R+r\B2R,
inequality (4.9) and in the last step we have used that %0 r ≥ 2R and

(2R+ r)d − (2R)d ≤ d (2R+ r)d−1 r ≤ d (%0 + 1) rd .

This concludes the proof of (4.4).
The proof of (4.6) is very similar to the previous one. Indeed, it is sufficient to

take ψ = (1− φ)
β and to derive in time the quantity∫

Rd\B2R+r

u(t, x)φ(x) dx ,
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and perform the same computations as in the previous case. The proof of the
Lemma is now completed. �

4.2.2. Local upper bounds. Our main result in this subsection is a local
L1 − L∞ smoothing effect for solutions to (2.1). We recall that α = d (m−mc) is
as in (2.9).

Lemma 4.3. Let d ≥ 1, m ∈
[
m1, 1

)
. Then there exists a positive constant κ

such that for any solution u of (2.1) with nonnegative initial datum u0 ∈ L1(Rd)
satisfies for all (t, R) ∈ (0,+∞)2 the estimate

(4.10) sup
y∈BR/2(x)

u(t, y) ≤ κ

 1

td/α

(∫
BR(x)

u0(y) dy

)2/α

+

(
t

R2

) 1
1−m

 .

Even if the above estimate is well known, cf. [DiB93, DGV12, DK07, BV10,
BS19], the expression of the constant κ was unknown, to the best of our knowledge.
We provide it here:

(4.11) κ = kK
2 q
β

where k = k(m, d, β, q) is such that

kβ =
(

4 β
β+2

)β ( 4
β+2

)2
π 8 (q+1) e8

∑∞
j=0 log(j+1) ( q

q+1 )
j

2
2m
1−m (1 + aωd)

2 b

with a = 3 (16 (d+1) (3+m))
1

1−m

(2−m) (1−m)
m

1−m
+ 2

d−m (d+1)
1−m

3d d
and b = 382 (q+1)(

1−(2/3)
β

4 (q+1)
)4 (q+1)

.

The constant K is the same constant as in (3.1) and corresponds to the inequality

(4.12) ‖f‖2Lpm (B) ≤ K
(
‖∇f‖2L2(B) + ‖f‖2L2(B)

)
.

In other words, (4.12) is (3.1) written for R = 1. The other parameters are given
in Table 1.

pm K q β

d ≥ 3 2 d
d−2

4 Γ
(
d+1

2

)2/d
2

2
d π1+ 1

d

d
2 α

d = 2 4 4√
π

2 2 (α− 1)

d = 1 4
m 21+m

2 max{ 2 (2−m)
mπ2 , 1

4}
2

2−m
2m

2−m

Table 1. Table of the parameters and the constant K in di-
mensions d = 1, d = 2 and d ≥ 3. The latter case corresponds
to the critical Sobolev exponent while the inequality for d ≤ 2 is
subcritical. In dimension d = 1, pm = 4/m, which makes the link
with (3.2).

Proof of Lemma 4.3. The proof presented here follows closely the scheme
of [BV10, BS19] so we shall only sketch the main steps, keeping track of the ex-
plicit expression of all constants. Without loss of generality we can assume that
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x = 0, by translation invariance. We also recall that u always possesses the regu-
larity needed to perform all computations throughout the following steps.

Let us introduce the rescaled function

(4.13) û(t, x) =

(
R2

τ

) 1
1−m

u(τ t, R x)

which solves (2.1) on the cylinder (0, 1]×B1. In Steps 1-3 we establish a L2 − L∞

smoothing inequality for v̂ = max{û, 1}, which we improve to a L1−L∞ smoothing
in Step 4, by means of a de Giorgi-type iteration. In Step 5, we rescale back the
estimate and obtain the desired result for u.

Step 1. We observe that v̂ = max{û, 1} solves ∂v̂
∂t ≤ ∆v̂m. According to [BV10,

Lemma 2.5], we know that

sup
s∈[T1,T ]

∫
BR1

v̂p0(s, x) dx+

∫∫
Q1

∣∣∣∇v̂ p0+m−1
2

∣∣∣2 dx dt

≤ 8

cm,p0

∫∫
Q0

(
v̂m+p0−1 + v̂p0

)
dx dt

where Qk = (Tk, T ] × BRk with 0 < T0 < T1 < T ≤ 1, 0 < R1 < R0 ≤ 1 and
cm,p0 = min

{
1− 1

p0
, 2 (p0−1)
p0+m−1

}
≥ 1

2 . We have v̂m+p0−1 ≤ v̂p0 because v̂ ≥ 1, so
that

(4.14) sup
s∈[T1,T ]

∫
BR1

v̂p0(s, x) dx+

∫∫
Q1

∣∣∣∇v̂ p0+m−1
2

∣∣∣2 dx dt ≤ C0
∫∫

Q0

v̂p0 dx dt

where

C0 = 32

(
1

(R0 −R1)2
+

1

T1 − T0

)
.

Step 2. Let pm be as defined in Table 1 and K be the constant in the inequality (3.1).
Let q = pm/(pm − 2) and Qi = (Ti, T ]×BRi as in Step 1. We claim that
(4.15)∫∫

Q1

v̂p1 dx dt ≤ K0

(∫∫
Q0

v̂p0 dx dt

)1+ 1
q

with K0 = K
(
R−2

1 + C0
)1+ 1

q .

Let us prove (4.15). Using Hölder’s inequality, for any a ∈ (2, pm) we may notice
that∫

BR1

|f(s, x)|a dx =

∫
BR1

|f(s, x)|2 |f(s, x)|a−2 dx ≤ ‖f‖2Lpm (BR1
) ‖f‖

a−2
Lb(BR1

)

with b = q (a− 2). Using (3.1), this leads to∫∫
Q1

|f(t, x)|a dx dt

≤ K
(
‖∇f‖2L2(Q1) + 1

R2
1
‖f‖2L2(Q1)

)
sup

s∈(T1,T )

(∫
BR1

|f(s, x)|b dx

) 1
q

.
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Choosing f2 = v̂p0+m−1 with a = 2 p1/(p0 +m− 1) and b = 2 p0/(p0 +m− 1) we
get∫∫

Q1

v̂p1 dx dt ≤ K
∫∫

Q1

(∣∣∣∇v̂ p0+m−1
2

∣∣∣2 +
v̂p0

R2
1

)
dx dt sup

s∈(T1,T )

(∫
BR1

v̂p0 dx

) 1
q

where

p1 =

(
1 +

1

q

)
p0 − 1 +m > p0 .

LettingX =
∥∥∇v̂(p0+m−1)/2

∥∥2

2
, Yi =

∫∫
Q1
v̂pi dx dt and Z = sups∈(T1,T )

∫
BR1

v̂p0 dx,

we get Y1 ≤ K (X + R−2
1 Y0)Z1/q, while (4.14) reads X + Z ≤ C0 Y0. Hence Y1 ≤

K
(
(R−2

1 + C0)Y0 − Z
)
Z1/q ≤ K

(
(R−2

1 + C0)Y0

)(q+1)/q, that is inequality (4.15).
Step 3. We perform a Moser-type iteration. In order to iterate (4.15), fix R∞ <
R0 < 1, T0 < T∞ < 1 and also assume that 2R∞ ≥ R0. We shall consider the
sequences (pk)k∈N, (Rk)k∈N, (Tk)k∈N and (Kk)k∈N defined as follows:

pk =

(
1 +

1

q

)k
(2− q (1−m)) + q (1−m) ,

Rk −Rk+1 =
6

π2

R0 −R∞
(k + 1)2

, Tk+1 − Tk =
90

π4

T∞ − T0

(k + 1)4
,

Kk = K
(
R−2
k+1 + Ck

)1+ 1
q , Ck = 32

(
1

(Rk −Rk+1)2
+

1

Tk+1 − Tk

)
,

using the Riemann sums
∑
k∈N(k+ 1)−2 = π2

6 and
∑
k∈N(k+ 1)−4 = π4

90 . It is clear
that lim

k→+∞
Rk = R∞, lim

k→+∞
Tk = T∞ and Ck diverge as k → +∞. In addition,

the assumption 2R∞ ≥ R0 leads to R−2
k+1 ≤ (R0 − R∞)−2 hence Kk is explicitly

bounded by

Kk ≤ K
(
π4 (k + 1)4L∞

)1+ 1
q , where L∞ :=

1

(R0 −R∞)2
+

1

(T∞ − T0)
.

Set Q∞ = (T∞, T ) × BR∞ and notice that Q∞ ⊂ Qk for any k ≥ 0. By iterat-
ing (4.15), we find that

‖v̂‖Lpk+1 (Q∞) ≤ ‖v̂‖Lpk+1 (Qk+1)

≤ K
1

pk+1

k ‖v̂‖
(q+1) pk
q pk+1

Lpk (Qk) ≤
k∏
j=0

K
1

pk+1
( q+1

q )
k−j

j ‖v̂‖
2 (q+1)k+1

qk+1 pk+1

L2(Q0)

and
k∏
j=0

K
1

pk+1
( q+1

q )
k−j

j ≤
[
K
(
π4 L∞

)1+ 1
q

] 1
pk+1

∑k
j=0(

q+1
q )

j k+1∏
j=1

j
4( q+1

q )
k+2−j

pk+1 .

By lower semicontinuity of the L∞ norm, letting k → +∞, we obtain

(4.16) ‖v̂‖L∞((T∞,T ]×BR∞ ) ≤ C ‖v̂‖
2

2−q (1−m)

L2((T0,T ]×BR0
)

where 0 < T0 < T∞ < T ≤ 1, 1/2 < R∞ < R0 ≤ 1, R0 ≤ 2R∞, and

C = K
q

2−q (1−m)
(
π4 L∞

) (q+1)
2−q (1−m) e

4 (q+1)
q(2−q (1−m))

∑∞
j=1(

q
q+1 )

j
log j .
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Step 4. We show how to improve the L2 − L∞ smoothing estimate (4.16) to a
L1 − L∞ estimate, using a de Giorgi-type iteration. Let us set

(4.17) β = 2− 2 q (1−m) =


α if d ≥ 3 ,

2 (α− 1) if d = 2 ,
2m

2−m if d = 1 ,

we recall that β > 0 for any m ∈ (m1, 1) and d ≥ 1. Then, from (4.16), we obtain,
using Hölder’s and Young’s inequalities,

(4.18) ‖v̂‖L∞((1/9,1]×B1/2) ≤ C ‖v̂‖
1

2−q (1−m)

L∞((τ1,1]×Br1 ) ‖v̂‖
1

2−q (1−m)

L1((τ1,1]×Br1 )

≤ 1

2
‖v̂‖L∞((τ1,1]×Br1 ) + C1 ‖v̂‖

2
β

L1((τ1,1]×Br1 ))

where 1/9 < τ1 < 1, 1/2 < r1 < 1 and

C1 = X

(
1(

r1 − 1
2

)2 +
1

1
9 − τ1

) 2 (q+1)
β

with

X = β
β+2

(
4

β+2

) 2
β K

2 q
β

(
πq e

∑∞
j=1(

q
q+1 )

j
log j

) 8 (q+1)
q β

.

To iterate (4.18) we shall consider sequences (ri)i∈N, (τi)i∈N such that

ri+1 − ri = 1
6 (1− ξ) ξi , τi − τi+1 = 1

9 (1− ξ2) ξ2i .

with ξ = (2/3)
β

4 (q+1) . Since 2/3 ≤ ξ ≤ 1, we have
1

1− ξ2
≤ 1

5 (1− ξ)2
,

and this iteration gives us

‖v̂‖L∞((1/9,1]×B1/2) ≤
1

2k
‖v̂‖L∞((τk,1]×Brk ) + ‖v̂‖

2
β

L1((τk,1]×Brk )

k−1∑
i=0

Ci+1

2i

where for all i ≥ 0
Ci+1

2i
≤
(

38
(1−ξ)2

) 2 (q+1)
β

X
(

3
4

)i
.

In the limit k →∞ we find

(4.19) ‖v̂‖L∞((1/9,1]×B1/2) ≤ C ‖v̂‖
2
β

L1((0,1]×B2/3)

where

(4.20) C = 4
(

38
(1−ξ)2

) 2 (q+1)
β

X .

Step 5. In this step we complete the proof of (4.10). We recall that v̂ = max{û, 1}
and then, using inequality (4.19) and the fact that û ≤ v̂ ≤ û d (1−m) + 1, we find

(4.21) sup
y∈B1/2

û(1, y) ≤ ‖û‖L∞((1/9,1]×B1/2)) ≤ C ‖û+ 1‖
2
β

L1((0,1]×B2/3)
.

The function û satisfies the following inequality for any s ∈ [0, 1]

(4.22)
∫
B2/3

û(s, x) dx ≤ 2
m

1−m

∫
B1

û0 dx+ C s
1

1−m ,
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where

(4.23) C = 2
m

1−m

(
3ωd

[
16 (d+ 1) (3 +m)

1−m

] 1
1−m

)
.

We recall that ωd = |Sd−1| = 2πd/2

Γ(d/2) . Inequality (4.22) is obtained by applying
Lemma 4.2 with R = 1/3, r = 1/3 and ρ = 2. Integrating inequality (4.22) over
[0, 1] we find

(4.24) ‖û‖L1((0,1]×B2/3) ≤ 2
m

1−m

∫
B1

û0 dx+ 1−m
2−m C .

We deduce from inequalities (4.21)-(4.24) that

(4.25) sup
y∈B1/2(x)

û(1, y) ≤ C

[
2

m
1−m

(∫
B1

û0 dx

)
+ 1−m

2−m C +
(

2
3

)d ωd
d

] 2
β

.

where β is as in (4.17). Let us define

κ := C
[
2

m
1−m + 1−m

2−m C +
(

2
3

)d ωd
d

] 2
β

,

with C given in (4.20) and C in (4.23). We first prove inequality (4.10) assuming

τ ≥ τ? := Rα‖u0‖1−mL1(BR) ,

which, by (4.13), is equivalent to the assumption ‖û0‖L1(B1) ≤ 1. Indeed, together
with (4.25), we get

(4.26) sup
y∈BR/2

u(τ, y) ≤ κ
( τ

R2

) 1
1−m ≤ κ

(
1

τ
d
α

‖u0‖
2
α

L1(BR) +
( τ

R2

) 1
1−m

)
,

which is exactly (4.10). Now, for any 0 < t ≤ τ?, we use the time monotonicity
estimate

u(τ) ≤ u(τ?)
(τ?
τ

) d
α

obtained by integrating in time the estimate ut ≥ − (d/α) (u/t) of Aronson and
Benilan (see [AB79]). Combined with the estimate (4.26) at time τ?, this leads to

sup
y∈BR/2

u(τ, y) ≤ sup
y∈BR/2

u(τ?, y)
(τ?
τ

) d
α ≤ κ

( τ?
R2

) 1
1−m

(τ?
τ

) d
α

= κ
‖u0‖

2
α

L1(BR)

τ
d
α

≤ κ
(

1

τ
d
α

‖u0‖
2
α

L1(BR) +
( τ

R2

) 1
1−m

)
and concludes the proof. �

4.2.3. A comparison result based on the Aleksandrov reflection prin-
ciple. In this section, we state and prove a version of the Aleksandrov reflection
principle, or moving plane method, a key tool for proving the lower bounds of
Lemma 4.5. Analogous results have been proven in [BV06, BV10, GV04] for
similar purposes, and we borrow some ideas from those proofs.

Proposition 4.4. Let d ≥ 1, m ∈
(
mc, 1

)
and let BλR(x0) ⊂ Rd be an open

ball with center in x0 ∈ Rd of radius λR with R > 0 and λ > 2. Let u be a solution
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of (2.1) with nonnegative initial datum u0 ∈ L1(Rd) such that supp(u0) ⊂ BR(x0).
Then

(4.27) u(t, x0) ≥ u(t, x)

for any t > 0 and for any x ∈ Dλ,R(x0) = BλR(x0) \B2R(x0). Hence,

(4.28) u(t, x0) ≥ |Dλ,R(x0)|−1
∫
Dλ,R(x0)

u(t, x) dx .

We use the mean value inequality (4.28) in following form:

(4.29)
∫
B2R+r(x0)\B

2bR
(x0)

u(t, x) dx ≤ Ad rd u(t, x0) ,

with b = 2 − (1/d), r > 2R(21− 1
d − 1) =: r0 and a suitable positive constant Ad.

This inequality can easily be obtained from (4.28). Let us first assume d ≥ 2, note
that in this case b− 1 ≥ 1/2 and therefore r ≥ 2R

(√
2− 1

)
. By Taylor expansion

we obtain that for some ξ ∈ (r0, r) that

|B2R+r(x0) \B2bR(x0)| = ωd
d

[
(2R+ r)d − 2bdRd

]
= ωd (2R+ ξ)d−1 (r − r0)

≤ ωd (2R+ ξ)d−1 r ≤ ωd r
d

( √
2√

2− 1

)d−1

,

a simple computation shows that
√

2/
(√

2− 1
)
≈ 3.4142135 ≤ 4. In the case d = 1,

we have that b = 1 and therefore

|B2R+r(x0) \B2R(x0)| = ω1 r .

In conclusion we obtain that, for r ≥ 2R (21− 1
d − 1), we have

(4.30) |B2R+r(x0) \B2bR(x0)| ≤ Ad rd where Ad := ωd 4d−1 .

Proof. Without loss of generality we may assume that x0 = 0 and write BR
instead of BR(0). Let us recall that the support of u0 is contained in BR. Let us
consider an hyperplane Π of equation Π = {x ∈ Rd | x1 = a} with a ≥ R > 0,
in this way Π is tangent to the the sphere of radius a centered in the origin. Let
us as well define Π+ = {x ∈ Rd | x1 > a} and Π− = {x ∈ Rd | x1 < a}, and the
reflection σ(z) = σ(z1, z2, . . . , zn) = (2a − z1, z2, . . . , zn). By these definitions we
have that σ(Π+) = Π− and σ(Π−) = Π+. Let us denote Q = (0,∞) × Π− and
the parabolic boundary ∂pQ := ∂Q. We now consider the Boundary Value Problem
(BVP) defined as {

ut = ∆(um) in Q,
u(t, x) = g(t, x) in ∂pQ,

(BVP)

for some (eventually continuous) function g(t, x). Let us define u1(t, x) to be the
restriction of u(t, x) to Q and u2(t, x) = u(t, σ(x)). We recall that u2(t, x) is still
a solution to (2.1). Also, both u1(t, x) and u2(t, x) are solutions to (BVP) with
boundary values g1(t, x) and g2(t, x). Furthermore, for any t > 0 and for any x ∈ Π,
we have that g1(t, x) = g2(t, x), as well g1(t, x) = u0 ≥ g2(t, x) = 0 for any x ∈ Π−.
By comparison principle we obtain for any (t, x) ∈ Q

u1(t, x) ≥ u2(t, x) ,
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which implies that for any t > 0

u(t, 0) ≥ u(t, (2a, . . . , 0)).

By moving a in the range (R, λR/2) we find that u(t, 0) ≥ u(t, x) for any x ∈ Dλ,R

such that x = (x1, 0, . . . , 0). It is clear that by rotating the hyperplane Π we can
generalize the above argument and obtain inequality (4.27). Lastly, we observe that
inequality (4.28) can be easily deduced by averaging inequality (4.27). The proof
is complete. �

4.2.4. Local lower bounds. The main estimate of this subsection is a lower
bound in which, again, the novelty is the explicit form of the numerical constants.

Lemma 4.5. Let d ≥ 1 and m ∈
[
m1, 1

)
. Let x0 ∈ Rd, u(t, x) be a solution

to (2.1) with nonnegative initial datum u0 ∈ L1(Rd) and let R > 0 such that
MR(x0) := ‖u0‖L1(BR(x0)) > 0. Then the inequality

(4.31) inf
|x−x0|≤R

u(t, x) ≥ κ
(
R−2 t

) 1
1−m ∀ t ∈ [0, 2 t]

holds with
t = 1

2 κ?M
1−m
R (x0)Rα .

Following the scheme of the proof of [BV06, Váz06], and exploiting the precise
results of Sections 4.2.1 and 4.2.3, we are able to provide an explicit expression of:

(4.32) κ? = 2 3α+2 dα and κ = αωd

(
(1−m)4

238 d 4 π16 (1−m)α κα
2 (1−m)

) 2
(1−m)2 αd

.

Proof. Without loss of generality we assume that x0 = 0. The proof is a
combination of several steps. Different positive constants that depend on m and d
are denoted by Ci.
Step 1. Reduction. By comparison we may assume supp(u0) ⊂ BR(0). Indeed, a
general u0 ≥ 0 is greater than u0χBR , χBR being the characteristic function of BR.
If v is the solution of the fast diffusion equation with initial data u0χBR (existence
and uniqueness are well known in this case), then we obtain by comparison:

inf
x∈BR

u(t, x) ≥ inf
x∈BR

v(t, x) .

Step 2. A priori estimates. The so-called smoothing effect (see e.g. [HP85, Theo-
rem 2.2] , or [Váz06]) asserts that, for any t > 0 and x ∈ Rd, we have:

(4.33) u(t, x) ≤ κ ‖u0‖
2
α
1

t
d
α

.

where α = 2 − d (1 − m). We remark that (4.33) can be deduced from inequal-
ity (4.10) of Lemma 4.3 by simply taking the limit R→∞. The explicit expression
of the constant κ is given in (4.11). We remark that ‖u0‖1 = MR since u0 is non-
negative and supported in BR, so that we get u(t, x) ≤ κM

2
α

R t−
d
α . Let b = 2− 1/d,

an integration over B2bR gives then:

(4.34)
∫
B

2bR

u(t, x) dx ≤ κ ωd
d

M
2
α

R

t
d
α

(
2bR

)d ≤ C2
M

2
α

R

t
d
α

Rd ,
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where C2 can be chosen as

(4.35) C2 := 2d max
{

1, κ
ωd
d

}
.

Step 3. In this step we use the so-called Aleksandrov reflection principle, see Propo-
sition 4.4 in Section 4.2.3 for its proof. This principle reads:

(4.36)
∫
B2R+r\B2bR

u(t, x) dx ≤ Ad rdu(t, 0)

where Ad is as in (4.30) and b = 2− 1/d. One has to remember of the condition

(4.37) r ≥ (2(d−1)/d − 1) 2R.

We refer to Proposition 4.4 and formula (4.29) in section 4.2.3 for more details.
Step 4. Integral estimate. Thanks to Lemma 4.2, for any r, R > 0 and s, t ≥ 0 one
has ∫

B2R

u(s, x) dx ≤ C3

[∫
B2R+r

u(t, x) dx+
|s− t|1/(1−m)

r(2−d (1−m))/(1−m)

]
,

where the constant C3 has to satisfy C3 ≥ max{1, c3} and c3 is defined in (4.5). In
what follows we prefer to take a larger constant (for reasons that will be clarified
later) and put

C3 =

(
16

1−m

) 1
1−m

max

{
1, 2ωd

[
16 (d+ 1) (3 +m)

1−m

] 1
1−m

}
.

We let s = 0 and rewrite it in a form more useful for our purposes:

(4.38)
∫
B2R+r

u(t, x) dx ≥ MR

C3
− t

1
1−m

r
α

1−m
.

We recall that M2R = MR since u0 is nonnegative and supported in BR.
Step 5. We now put together all previous calculations:∫

B2R+r

u(t, x) dx =

∫
B2R

u(t, x) dx+

∫
B2R+r\B2bR

u(t, x) dx

≤ C2
M

2
α

R Rd

t
d
α

+Ad r
d u(t, 0) .

This follows from (4.34) and (4.36). Next, we use (4.38) to obtain:

MR

C3
− t

1
1−m

r
α

1−m
≤
∫
B2R+r

u(t, x) dx ≤ C2
M

2
α

R Rd

t
d
α

+Ad r
du(t, 0) .

Finally we obtain

u(t, 0) ≥ 1

Ad

[(
MR

C3
− C2

M
2
α

R Rd

t
d
α

)
1

rd
− t

1
1−m

r
2

1−m

]
=

1

Ad

[
B(t)

rd
− t

1
1−m

r
2

1−m

]
.

Step 6. The function B(t) is positive when

B(t) =
MR

C3
− C2

M
2
α

R Rd

t
d
α

> 0⇐⇒ t > (C3 C2)
α
d .M1−m

R Rα
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Let us define

(4.39) κ̃? := 4 (C3 C2)
α
d and t̃ = 1

2 κ̃?M
1−m
R Rα .

We assume that t ≥ 2 t̃ and optimize the function

f(r) =
1

Ad

[
B(t)

rd
− t

1
1−m

r
2

1−m

]
with respect to r(t) = r > 0. The function f reaches its maximum at r = rmax(t)
given by

rmax(t) =

(
2

d (1−m)

) 1−m
α t

1
α

B(t)
1−m
α

.

We recall that we have to verify that rmax satisfies condition (4.37), namely that
rmax(t) >

(
2(d−1)/d − 1

)
2R. To check this we optimize in t the function rmax(t)

with respect to t ∈ (2t̃,+∞). The minimum of rmax(t) is attained at a time t = tmin
given by

tmin =

(
2

α
C2 C3

)α
d

M1−m
R Rα .

We compute rmax(tmin) and find that

rmax(tmin) =

(
2

d (1−m)

) 2 (1−m)
α

(
2

α
C2

) 1
d

C
2
dα
3 R .

Therefore the condition rmax(tmin) >
(
2(d−1)/d − 1

)
2R is nothing more than a

lower bound on the constants C2 and C3, namely that(
2

d (1−m)

) 2 (1−m)
α

(
2

α
C2

) 1
d

C
2
dα
3 ≥ 2(d−1)/d − 1 .

Such a lower bound is easily verified, by using the fact m ∈ (m1, 1), we have
(1−m)−1 > d and therefore we have the following inequalities

(4.40)
2

d (1−m)
≥ 2 ,

2

α
=

2

2− d (1−m)
≥ 1 , C2 ≥ 2d and C3 ≥ 16d dd ,

therefore, from the above inequalities we find that(
2

d (1−m)

) 2 (1−m)
α

(
2

α
C2

) 1
d

C
2
dα
3 ≥ 32 d ≥ 2(d−1)/d − 1 ,

and so the such a lower bound is verified. Let us now continue with the proof.
Step 7. After a few straightforward computations, we show that the maximum
value is attained for all t > 2 t̃ as follows:

f(rmax) = αAd
[d (1−m)]

d (1−m)
α

2
2
α

 1

C3
− C2

M
d (1−m)

α

R Rd

t
d
α

 2
α

M
2
α

R

t
d
α

> 0 .

We get in this way the estimate:

u(t, 0) ≥ K1H1(t)
M

2
α

R

t
d
α

,
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where

H1(t) =

 1

C3
− C2

M
d (1−m)

α

R Rd

t
d
α

 2
α

and K1 = αAd
[d (1−m)]

d (1−m)
α

2
2
α

.

A straightforward calculation shows that the function is non-decreasing in time,
thus if t ≥ 2 t̃:

H1(t) ≥ H1(2 t̃) = C
− 2
α

3

(
1− 4−

d
α

) 2
α

,

and finally we obtain for t ≥ 2 t̃ that

(4.41) u(t, 0) ≥ K1 C
− 2
α

3

(
1− 4−

d
α

) 2
α M

2
α

R

t
d
α

= κ̃
M

2
α

R

t
d
α

.

Step 8. From the center to the infimum. Now we want to obtain a positivity
estimate for the infimum of the solution u in the ball BR = BR(0). Suppose that
the infimum is attained in some point xm ∈ BR, so that infx∈BR u(t, x) = u(t, xm),
then one can apply (4.41) to this point and obtain:

u(t, xm) ≥ κ̃ M2R(xm)
2
α

t
d
α

for t > κ̃?M
1−m
R (xm)Rα. Since the point xm ∈ BR(0) then it is clear that BR(0) ⊂

B2R(xm) ⊂ B4R(x0), and this leads to the inequality:

M2R(xm) ≥MR(0) and M2R(xm) ≤M4R(0)

since M%(y) =
∫
B%(y)

u0(x) dx and u0 ≥ 0. Thus, we have found that:

inf
x∈BR(0)

u(t, x) = u(t, xm) ≥ κ̃
M

2
α

2R(xm)

t
d
α

≥ κ̃
M

2
α

2R(0)

t
d
α

= κ̃
M

2
α

R (0)

t
d
α

.

for t > 2 t̃(0) = κ̃?M
1−m
4R (0)Rα = κ̃?M

1−m
R (0)Rα, after noticing that M4R(0) =

M2R(0) = MR(0), since supp(u0) ⊂ BR(0). Finally we obtain the claimed estimate

inf
x∈BR(0)

u(t, x) ≥ κ̃
M

2
α

R

t
d
α

∀ t ≥ 2 t̃ .

Step 9. The last step consists in obtaining a lower estimate when 0 ≤ t ≤ 2 t̃. To
this end we consider the fundamental estimate of Bénilan-Crandall [BC81]:

ut(t, x) ≤ u(t, x)

(1−m)t
.

This easily implies that the function:

u(t, x)t−1/(1−m)

is non-increasing in time. Thus, for any t ∈ (0, 2 t̃), we have that

u(t, x) ≥ u(2 t, x)
t1/(1−m)

(2 t̃)1/(1−m)
≥ κ̃ κ̃

− 2
1−m

?

(
tR−2

) 1
1−m .

which is exactly inequality (4.31). It is straightforward to verify that the constant κ̃
has the value

(4.42) κ̃ = κ̃ κ̃
− 2

1−m
? = αAd

[d (1−m)]
d (1−m)

α

2
2
α

C
− 2
α

3

(
1− 4−

d
α

) 2
α

κ̃
− 2

1−m
? .
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Step 10. Simplification of the constants. In this step we are going to simplify
the expression of some constants in order to obtain the expression in (4.32). This
translates into estimates from below of the actual values of constants κ̃ and κ̃?,
and in order to do so, we need to estimate C2 and C3. Let us begin with C2, since
we only need an estimate from below. For any d ≥ 1 the numerical inequality
ωd/d ≤ π2 holds. It is then clear from (4.35) that

2d ≤ C2 ≤ 2d κπ2 .

In the case of C3 we already have a lower bound given in (4.40), in what follows
we compute the upper bound. A computation shows that the numerical inequality
ωd ≤ 16π3 /15 holds for any d ≥ 1. Since m < 1, we have that

16 (d+ 1) (3 +m) ≤ 64 (d+ 1) ≤ 128 d .

Combining the above inequality, with the estimates on ωd and the defintion of
C3 we get

(4d)
d ≤ C3 ≤

(
128 d

1−m

) 2
1−m

4π3 .

Therefore, we can estimate κ̃? and obtain the expression of κ?

κ̃? = 4 (C2 C3)
α
d ≥ 22

(
25 d dd

)α
d = 23α+2 dα =: κ? .

Let us simplify κ̃. By combining (4.42), (4.39) and (4.30), we get that

κ̃ ≥ αωd 22d−2− 2 (1−m)+4α
α(1−m) [d (1−m)]

d (1−m)
α C

− 4
αd (1−m)

3 C
− 2α
d (1−m)

2

(
1− 4−

d
α

) 2
α

.

Let us begin simplifying the expression
(

1− 4−
d
α

)
. We first notice that, since

α ∈ (1, 2), we have that 1 − 4−
d
α ≥ 1 − 4−

d
2 , which is an expression monotone

increasing in d. We have therefore that(
1− 4−

d
α

) 2
α ≥

(
1− 4−

1
2

) 2
α

= 2−
2
α .

Combining all together we find

κ̃ ≥ αωd 2−a π−b κ−
2α

d (1−m) d
d (1−m)

α − 8
α(1−m)2d (1−m)

d2 (1−m)3+8

α (1−m)2 d ,

where

a =
56 + 8 (1−m) + 2α2 d (1−m) + 2α (1−m)2 d

α (1−m)2 d
− 2 d and b =

12 + 4α2

d (1−m)
.

Since m1 < m < 1, and d (1 −m) < 1, we can simplify the expression of a and b
into

a ≤ 76

α (1−m)2 d
and b ≤ 32

d (1−m)
.

By summing up all estimates above and estimating the exponents of (1−m) and d,
we get

κ̃ ≥
αωd

(
1−m
d

) 8
α (1−m)2 d

2
76

α (1−m)2 d π
32

d (1−m) κ
2α

d (1−m)

= κ .

�
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4.3. Global Harnack Principle

In this section we show that the solution of (2.1) can be bounded from above
(Proposition 4.6) and from below (Proposition 4.7) by two Barenblatt functions
defined in (2.6), with (slightly) different masses and with (small) shifts in time.
Compared to the existing literature [BV06, BS19, Váz06], we provide a simpler
proof and explicit constants.

4.3.1. Control in terms of Barenblatt profile from above. The profile
B(t, x;M) as defined by (2.6) and translated in time by a parameter τ ≥ −1/α is
still a solution to (2.1). In particular, we have that

B
(
t− 1

α , x ; M
)
⇀M δx=0 as t→ 0+ ,

in the sense of distributions. Such a profile can be written as

(4.43) B
(
t− 1

α , x ; M
)

=
(
M
M
) 2
α
bd

t
d
α

B
((

M
M
) 1−m

α
b

t
1
α

x

)
with b =

(
1−m
2mα

) 1
α .

Proposition 4.6. Under the assumptions of Theorem 4.1, there exist positive
constants t and M such that any solution u satisfies

(4.44) u(t, x) ≤ B
(
t+ t− 1

α , x ; M
)
∀ (t, x) ∈ [ t,+∞)× Rd .

The expressions of t and M are given in (4.48) and in (4.49) respectively. Here M
is a numerical constant. The reader may notice that the factor 1/α causes no harm
in the definition of the Barenblatt profile, see (4.43) of Chapter 2.

Proof of Proposition 4.6. The proof is divided in several steps, and follows
the standard strategy, but here we keep track of all constants.
Step 1. A priori estimates on the solution. By taking R→∞ in (4.10), we deduce
that

(4.45) u(t, x) ≤ κM 2
α t−

d
α ∀ (t, x) ∈ (0,+∞)× Rd ,

where κ is as in Lemma 4.3. Let us choose

(4.46) t0 := A1−m ,

x0 6= 0 and R = |x0|/4, so that BR(x0) ⊂ BcR(0). Using (4.2) and (4.46), we deduce
from (4.10) that
(4.47)

u(t0, x0) ≤ κ

4
2

1−m

t
d
α
0

A
2
α

|x0|
2

1−m
+ 2

4
1−m

(
t0

|x0|2

) 1
1−m

 ≤ 21+ 4
1−m

t
1

1−m
0

|x0|
2

1−m
κ .

Step 2. Proof of (4.44) at time t0. Let us define

(4.48) c := max
{

1, 25−m κ1−m bα
}
, t := c t0 ,

and

(4.49) M := 2
α

2 (1−m) κ
α
2 (1 + c)

d
2 b−

dα
2 M2 ,

where b is as in (4.43). Let us also define the auxiliary function

λ(t) :=
(
M
M

) 1−m
α

b t−
1
α (1 + c)

− 1
α so that λ(t0) =

(
M
M

) 1−m
α

b
(
t0 + t

)− 1
α .
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If λ(t0) |x| ≤ 1, we deduce from (4.45), (4.49) and (4.43) that

u(t0, x) ≤ κM 2
α t
− d
α

0 =
(
M
M

) 2
α bd

2
1

1−m
t
− d
α

0 (1 + c)
− d
α ≤ B

(
t0 + t− 1

α , x ; M
)
.

If λ(t0) |x| ≥ 1, we deduce from (4.47), (4.48) and (4.43) that

u(t0, x) ≤ 21+ 4
1−m

t
1

1−m
0

|x0|
2

1−m
κ ≤

(
1 + c

2 bα

) 1
1−m t

1
1−m
0

|x0|
2

1−m
≤ B

(
t0 + t− 1

α , x ; M
)
.

Step 3. Comparison. Once we have obtained (4.44) at time t = t0, by comparison
it also holds for any t ≥ t0. In particular (4.44) holds for any t ≥ t ≥ t0, which
completes the proof. �

4.3.2. Control in terms of Barenblatt profile from below.

Proposition 4.7. Under the assumptions of Theorem 4.1, there exist positive
constants t and M such that any solution u satisfies

(4.50) u(t, x) ≥ B
(
t− t− 1

α , x ; M
)
∀ (t, x) ∈ [2 t,+∞)× Rd .

Compared to [BV06, Váz06, BS19], the novelty here is that, again, we pro-
vide constructive estimates of the constants. The value of the constant M is given
below by (4.59): it is a numerical constant, which is independent of u. An upper
bound on t is given by (4.55). This bound depends only on A and various numerical
constants. As an intermediate quantity, we define R? > 0 such that

(4.51)
∫
|x|≤R?

u0 dx =
1

2
M .

Proof. Our task is essentially to keep track of the constants and we claim no
originality in the strategy of the proof.
Step 1. Let R? > 0 be as in (4.51). We read from (4.2) that

(4.52) Rα? ≤
(

2A

M

)1−m

.

From Lemma 4.5 we have that

(4.53) inf
|x|≤R?

u(t, x) ≥ κ
(
R−2
? t

) 1
1−m ∀ t ∈ [0, 2 t]

for κ and κ? given in (4.32) and t given by

(4.54) t =
1

2
κ?

(
M
2

)1−m

Rα? .

After taking into account (4.52), we obtain

(4.55) t ≤ 1

2
κ?

(
M
2

)1−m (
2A

M

)1−m

=
κ?
2
A1−m.

Step 2. If |x| ≤ R?, we deduce from (4.43), (4.52) and (4.53) that

u(2 t, x) ≥ κ
(

2 t

R2
?

) 1
1−m

≥ B
(
t− 1

α , 0 ; M
)

=

(
M

M

) 2
α

bd t−
d
α ≥ B

(
t− 1

α , x ; M
)
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for any t > 0 and M > 0 such that

(4.56) M
2
α t−

d
α ≤ κ

bd

(
2 t

R2
?

) 1
1−m

M 2
α .

Let us notice that (4.56) at t = t with t given by (4.54) amounts to

(4.57) M ≤ κ
1

1−m
?

2
d
2

( κ
bd

)α
2 M2 .

This condition is independent of R?.
Step 3. If |x| = R?, we enforce the condition that

u(t+ t, x) ≥ κ
(
t+ t

R2
?

) 1
1−m

≥ B
(
t− 1

α , x ; M
)

for any t ∈ [0, t] by requesting that

κ

(
t

R2
?

) 1
1−m

≥ M

M
R−d? sup

λ>0
λd
(
1 + λ2

) 1
m−1 ≥ M

M
λ(t)d

Rd?

(
1 + λ(t)2

) 1
m−1

where the left-hand side is the estimate of u(t, x) deduced from (4.53), while the
right-hand side is the value of B(t− 1

α , x;M) for |x| = R? and

λ(t) :=
(
M
M
) 1−m

α b t−
1
α R? .

After taking into account (4.54), we obtain the condition

(4.58) M ≤ κκ
1

1−m
?

(d (1−m))
d/2

α
α

2 (1−m)

M2 ,

which is also independent of R?.
Step 4. We adapt [HP85, Lemma 3.4] as follows. We choose

(4.59) M := min

{
2− d/2

( κ
bd

)α/2
,

κ

(d (1−m))
d/2

α
α

2 (1−m)

}
κ

1
1−m
? M2

so that (4.57) and (4.58) are simultaneously true. Notice that M is independent
of R?.

The function u(t, x) := B(t− t− 1
α , x;M) is such that

(4.60) u(2 t, x) ≤ u(2 t, x) if |x| ≤ R?
by Step 2,

u(t, x) ≤ u(t, x) if (t, x) ∈ (t, 2 t)× Rd , |x| = R?

by Step 3, and, in the sense of distributions,

u(t, ·) ⇀M δx=0 as t→ t+ .

As a consequence, we also have that

lim
t→t+

u(t, ·) ≤ u (t , x) for any x ∈ Rd such that |x| ≥ R? .

The functions u and u solve (2.1). By arguing as in [HP85, Lemma 3.4], we find
that

u(t, x) ≤ u(t, x) ∀ (t, x) ∈ [t, 2 t]× Rd such that |x| ≥ R? .
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This inequality holds in particular for t = 2 t, which can be combined with (4.60)
to prove that

u(2 t, x) ≤ u(2 t, x) ∀x ∈ Rd .
Notice that [HP85, Lemma 3.4] holds only for smooth functions, so that an ap-
proximation scheme is needed, which is standard and will be omitted here.
Step 5. By standard comparison methods, if (4.50) is true at t = 2 t, it is also true
at any t ≥ 2 t. This completes the proof of (4.50). �

4.4. Convergence in relative error and the threshold time t?

This Section is devoted to the prove of the uniform convergence in relative error
and to the computation of the threshold time t? defined in Theorem 4.1.

We begin by observing that the prove of Theorem 4.1 boils down to the com-
putation of t?. Let us give some definitions

(4.61) ε :=
(
M/M

) 2
α − 1 , ε := 1− (M /M)

2
α , and εm,d := min

{
ε, ε, 1

2

}
,

where M and M are defined respectively by (4.49) and (4.59). As a byproduct of
Proposition 4.6, by integrating over Rd, we deduce from (4.44) that M /M > 1,
which proves that ε > 0. In the same way, by integrating over Rd, we deduce
from (4.50) that M /M < 1, which proves that ε > 0. We conclude that εm,d > 0.
With this definition, notice that ε, ε and εm,d are numerical constants that depend
only on d and m. We recall that R(t) = (1 + αt)

1
α and is defined in (2.9).

4.4.1. The outer estimates. So far, the upper and lower estimates of Propo-
sitions 4.6 and 4.7 correspond to Barenblatt functions which do not have the same
massM as u. The present sub-section is devoted to the comparison of the solution
u of (2.1) with the Barenblatt function B of mass M but up to a multiplicative
factor. This comparison will be done outside of a large ball in x, or for large values
of t. With the notation of (2.33) and (2.6), we recall that B(t, x) = B(t , x ; M).

Corollary 4.8. Under the assumptions of Theorem 4.1 and for any ε ∈ (0, ε),
there are some T (ε) and ρ(ε) for which any solution u of (2.1) satisfies

(4.62) u(t, x) ≥ (1− ε)B(t , x ) if |x| ≥ R(t) ρ(ε) and t ≥ T (ε) .

Furthermore, there exists C > 0 such that, for all x ∈ Rd,

(4.63) u(t, x) ≥ C B
(
t− 1

α , x
)

if t ≥ T (ε) .

The constants T (ε), ρ(ε) and C have an explicit expression which will be given
below in (4.64), (4.65) and (4.66) respectively.

Proof. The Barenblatt solution of massM as defined in (2.6) can be rewritten
as

B(t , x ; M) = λ(t)d
(

(M/M)
2 1−m

α + λ(t)2 |x|2
) 1
m−1

where λ(t) := λ•R(t)−1, λ• is a constant given by (2.8), and R(t) = (1 + α t)1/α,
so that

B
(
t− t− 1

α , x ; M
)

B(t , x )
=
λ
(
t− t− 1

α

)d
λ(t)d

(
1 + λ(t)2 |x|2

(1− ε)m−1 + λ
(
t− t− 1

α

)2 |x|2
) 1

1−m

.
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With

η(t) :=

(
t+ 1

α

t− t

) 1
α

and s(t, x) := λ(t)2 |x|2 ,

Inequality (4.62) amounts to

ηd
(

1 + s

(1− ε)m−1 + η2 s

) 1
1−m

≥ 1− ε .

It is sufficient to have

η(t)
α

(1− ε)1−m < 1 and s(t, x) =

(
λ• |x|
R(t)

)2

≥
η(t)

−d (1−m) ( 1−ε
1−ε
)1−m − 1

1− η(t)
α

(1− ε)1−m .

Using (4.55), the first condition is satisfied if t ≥ T (ε) with

(4.64) τ(ε) :=
2 t+ 1

α

(
1 + (1− ε)1−m)

1− (1− ε)1−m ≤
κ? (2A)

1−m
+ 2

α

1− (1− ε)1−m =: T (ε) .

Notice that T (ε) = O(1/ε) as ε→ 0 and also that Condition (4.64) guarantees that
T (ε) ≥ 2 t. Next, using

1 ≤ η(t) ≤ η
(
T (ε)

)
≤ 2

1
α(

1 + (1− ε)1−m
) 1
α

= η
(
τ(ε)

)
for any t ≥ T (ε), the second condition follows from s(t, x) ≥ λ2

• ρ
2(ε) with

(4.65) ρ(ε) :=
1

λ•

(1 + (1 + ε)1−m) ( 1−ε
1−ε

)1−m
− 1

1− (1− ε)1−m


1/2

.

It follows from a Taylor expansion that ρ(ε) = O(1/
√
ε) as ε→ 0.

With the above notation, we remark that

B
(
t− t− 1

α , x ; M
)

B
(
t− 1

α , x
) = γ(t)d

(
1 + σ

(1− ε)m−1 + γ2 σ

) 1
1−m

where

γ(t) =

(
t

t− t

) 1
α

and σ = λ
(
t− 1

α

)2 |x|2 .
Since γ > 1, inequality (4.63) amounts to find

inf
σ≥0

(
1 + σ

(1− ε)m−1 + γ2 σ

) 1
1−m

.

A straightforward computation shows that such an infimum is achieved either at 0
or at infinity. Since for any t ≥ T (ε) ≥ 2 t we have that γ(t) ≤ γ(2 t) = 2

1
α , we

obtain

(4.66) inf
σ≥0

(
1 + σ

(1− ε)m−1 + γ2 σ

) 1
1−m

≥ min
{

(1− ε) , γ−
2

1−m

}
≥ 1− ε

2
2

(1−m)α

=: C ,

where we have used that ε < 1 and 2
2

(1−m)α > 1. The proof is completed. �

Next we prove lower bounds. We recall that R(t) = (1 + αt)
1
α is as in (2.9).
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Corollary 4.9. Under the assumptions of Theorem 4.1 and for any ε ∈ (0, ε),
there are some T (ε) and ρ(ε) for which any solution u of (2.1) satisfies

(4.67) u(t, x) ≤ (1 + ε)B(t , x ) if |x| ≥ R(t) ρ(ε) and t ≥ T (ε) .

Furthermore, there exists C > 0 such that, for all x ∈ Rd,

u(t, x) ≤ C B
(
t− 1

α , x
)

if t ≥ T (ε) .

The constants T (ε), ρ(ε) and C have an explicit expression given below in (4.69),
(4.70) and (4.71) respectively.

Proof. The beginning of the proof is the same as for Corollary 4.8. With the
same notation except for η which is now defined by

η(t) :=

( 1
α + t

t+ t

) 1
α

,

where t is as in (4.48), Inequality (4.67) amounts to

ηd
(

1 + s

(1 + ε)m−1 + η2 s

) 1
1−m

≤ 1 + ε .

To prove the above inequality it is sufficient to have
(4.68)

η(t)
α

(1 + ε)1−m > 1 and s(t, x) =

(
λ• |x|
R(t)

)2

≥
1− η(t)

−d (1−m) ( 1+ε
1+ε

)1−m
η(t)

α
(1 + ε)1−m − 1

.

where R(t) = (1 + αt)
1
α is as in (2.9). Let us define

(4.69) T (ε) :=
2 t

(1 + ε)1−m − 1

where t is as in (4.48) and T (ε) = O(1/ε) as ε→ 0 follows from a Taylor expansion.
If t < 1/α then the first condition in (4.68) is always satisfied, while in the case
t ≥ 1/α, we need to ask that t ≥ T (ε). In both cases we have that

η(t) ≥
(

2

(1 + ε)1−m + 1

) 1
α

for any t ≥ T (ε). As a consequence, a sufficient condition the second inequality
in (4.68) is s(t, x) ≥ λ2

• ρ
2(ε) with

(4.70) ρ(ε) :=
1

λ•

(
(1 + ε)1−m + 1

(1 + ε)1−m − 1

) 1
2

.

It follows from a second order Taylor expansion that ρ(ε) = O(1/
√
ε) as ε→ 0.

As in Corollary 4.8, we remark that

B
(
t+ t− 1

α , x ; M
)

B
(
t− 1

α , x
) = γ(t)d

(
1 + σ

(1 + ε)m−1 + γ2 σ

) 1
1−m

where

γ(t) =

(
t

t+ t

) 1
α

and σ = λ
(
t− 1

α

)2 |x|2 .
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Since γ(t) ≤ 1, inequality (4.63) amounts to find

sup
σ≥0

(
1 + σ

(1 + ε)m−1 + γ2 σ

) 1
1−m

.

A straightforward computation shows that such infimum is achieved either at 0 or
at infinity. Since γ(t) ≥ (2/3)1/α for any t ≥ T (ε) ≥ 2 t, we can argue that
(4.71)

sup
σ≥0

(
1 + σ

(1 + ε)m−1 + γ2 σ

) 1
1−m

≤ max
{

(1 + ε) , γ−
2

1−m

}
≤ (1 + ε)

(
3
2

) 2
(1−m)α =: C .

The proof is completed. �

4.4.2. The inner estimate. Here we prove the uniform convergence in rela-
tive error inside a finite ball. Let us recall that

εm,d := min
{
ε, ε, 1

2

}
where, as in Section 4.4.1, ε =

(
M/M

) 2
α − 1 and ε = 1 − (M /M)

2
α are given in

terms of M and M defined respectively by (4.49) and (4.59). For any ε ∈ (0, εm,d),
let us define

(4.72) ρ(ε) := max
{
ρ(ε), ρ(ε)

}
and T (ε) := max

{
T (ε), T (ε)

}
where ρ(ε), ρ(ε), T (ε), and T (ε) are defined by (4.64), (4.65), (4.69), and (4.70).
We know that ρ(ε) = O(1/

√
ε) and T (ε) = O(1/ε) as ε → 0. The main result of

this sub-section is the following. Recall that R(t) = (1 + αt)
1
α is as in (2.9).

Proposition 4.10. Under the assumptions of Theorem 4.1, there exist a nu-
merical constant K > 0 and an exponent ϑ ∈ (0, 1) such that, for any ε ∈ (0, εm,d)
and for any t ≥ 4T (ε), any solution u of (2.1) satisfies

(4.73)
∣∣∣∣ u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ K

ε
1

1−m

(
1

t
+

√
G

R(t)

)ϑ
if |x| ≤ 2 ρ(ε)R(t) .

The exponent is ϑ = ν/(d+ν) and the numerical constants ν = ν(m, d) and K(m, d)
are explicit and given below in (4.76) and (4.91) respectively.

Proof. By the triangle inequality, the left-hand-side of (4.73) can be estimated
by ∣∣∣∣ u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤
∣∣∣∣∣B
(
t− 1

α , x
)

B(t, x)

∣∣∣∣∣
×
(∣∣∣∣ u(t, x)

B(t− 1
α , x )

− 1

∣∣∣∣+

∣∣∣∣ B(t, x)

B(t− 1
α , x )

− 1

∣∣∣∣) .

(4.74)

The supremum of the quotient B(t − 1/α, x)/B(t, x) is achieved at x = 0 for any
t ≥ 0. Using (2.33) and (4.43), we have that∥∥∥∥∥B

(
t− 1

α , x
)

B(t, x)

∥∥∥∥∥
L∞(Rd)

≤ R(t)d

α
d
α t

d
α

=: c1(t) .
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The supremum of the quotient B(t, x)/B(t−1/α, x) is achieved at infinity, therefore
a simple computation shows that∥∥∥∥ B(t, x)

B(t− 1
α , x )

− 1

∥∥∥∥
L∞(Rd)

=

(
1 +

1

α t

) 1
1−m

− 1 ≤ c3
t

+
c2
t2
.

A Taylor expansion shows that the values of c2 and c3 are

c3 =
1

1−m
and c2 =

m

2 (1−m)2 α2
.

Our task is to estimate the missing term |u(t, x)/B(t− 1/α , x )− 1|. This is done
by interpolating the above quantity between its Lp and Cν norms, by means of
inequality (3.10), in Section 3.1.4. In order to do so, we use parabolic regularity
theory to estimate the Cν norm of the quotient u(t, x)/B(t− 1/α , x ).
Step 1. We recall some elements of linear parabolic regularity theory. Let us define
the cylinders

Q1 := (1/2, 3/2)×B1(0) , Q2 := (1/4, 2)×B8(0) ,

Q3 := (1/2, 3/2)×B1(0) \B1/2(0) and Q4 := (1/4, 2)×B8(0) \B1/4(0) .

By Theorem 3.13 of Chapter 3 any nonnegative weak solution to (3.16) defined
on Q2 satisfies the following inequality

(4.75) sup
(t,x),(s,y)∈Qi

|v(t, x)− v(s, y)|(
|x− y|+ |t− s|1/2

)ν ≤ 2

(
128

dist(Qi, Qi+1)

)ν
‖v‖L∞(Qi+1)

where

(4.76) i ∈ {1, 2} , ν := log4

(
h

h− 1

)
∈ (0, 1) and h := hλ1+1/λ0 .

Notice that ν ≥ 1/h

ν ≥ 1

hλ1+λ−1
0

is a positive number, which only depends only on d, through h as defined in (3.19),
and on λ0, λ1. We remark that a solution u(t, x) to (2.1) is, also, a solution to the
linear equation (3.16) with coefficients

a(t, x) = mum−1(t, x) , A(t, x) = a(t, x) Id ,

where Id is the identity matrix on Rd × Rd. In what follows, we apply this linear
theory to nonlinear equations by choosing λ0 and λ1 appropriately, depending only
on m and d: see below (4.82) and equality (4.75) we deduce that a nonnegative
weak solution to (3.16) defined on Q2 satisfies, for any s ∈ (1/2, 3/2)

(4.77) max{bv(s, ·)cCν(B1(0)), bv(s, ·)cCν(B1(0)\B1/2(0))} ≤ c1 ‖v‖L∞(Q2)

where b·cCν(Ω) is defined in (3.9) and c1 = 210. In this first step we show how to
compute c1. By estimates (4.75) applying it is clear that the only ingredient needed
is to estimate from below dist(Q1, Q2) and dist(Q3, Q4), where dist(·, ·) is defined
in (3.60). Let us consider the case of dist(Q1, Q2). By symmetry, it is clear that the
infimum in (3.60) is achieved by a couple of points (t, x) ∈ Q1, (s, y) ∈ ∂Q2 such
that either |x| = 1, t ∈ (1/2, 3/2) and |y| = 8, s ∈ (1/2, 3/2) or t = 1/2, y = 1/4 and
x, y ∈ B1. In both cases we have that dist(Q1, Q2) = |x− y|+ |t− s| 12 ≥ 1/4. By
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a very similar argument we can also conclude that dist(Q3, Q4) ≥ 1/4. Therefore,
we conclude that, in both cases, c1 can be taken (accordingly to inequality (4.75)).

(4.78) 2 (128)
ν

max

{
1

dist(Q1, Q2)
,

1

dist(Q3, Q4)

}ν
≤ 2 (512)

ν ≤ 210 =: c1 ,

where we have used the fact that ν ∈ (0, 1).
Step 2. We estimate the Cν norm of u(t, x). For any k > 0 and τ > 0, let us define
the re-scaled function

(4.79) ûτ,k(t, x) := k
2

1−m τ
d
α u
(
τ t, k τ

1
α x
)
.

The function ûτ,k solves (2.1). Similarly, the Barenblatt profile B as defined
in (4.43) is rescaled according to

B̂τ,k
(
t− 1

α , x
)

= B
(
t− 1

α , x; k
α

1−mM
)
.

In this step we obtain estimates for the Cν-norm of ûτ,1(1, ·) and B(1− 1
α , ·). Let

us begin with the latter: for any γ ∈ (0, 1), we have

bB(1− 1
α , x)cCγ(Rd) ≤ 2 max

{
‖B(1− 1

α , ·)‖L∞(Rd), ‖∇B(1− 1
α , ·)‖L∞(Rd)

}
= 2 b max

{
1 , 2

3−2m
1−m

bd (2−m)2−m

√
1−m (3−m)

5−3m
2 (1−m)

}
=: c2 ,(4.80)

where b is as in (4.43) and ‖∇B(1− 1
α , ·)‖L∞(Rd) can be estimated as

‖∇B(1− 1
α , ·)‖L∞(Rd) =

(
λ•
α1/α

)d+1
sup
z>0

2 z
1−m

(
1 + z2

)−2 2−m
1−m

=
λd+1
•

α
d+1
α

2
1

m−1√
(1−m)(3−m)

(
3−m
2−m

) 2−m
1−m

.

By the results of Corollaries 4.8 and 4.9, there exist positive constants C and C
such that, for all x ∈ Rd, all t ≥ T (ε)/τ and all k ≥ 1,

(4.81) 0 < C ≤ ûτ,k(t, x)

B(t− 1
α , x; k

α
1−mM)

≤ C <∞ ,

where the expressions of C and C are given in (4.66) and in (4.71) respectively, and
depend only on m and d. Let us define

λ
1

m−1

0 := m
1

m−1 C max
{

sup
Q2

B
(
t− 1

α , x
)
, sup
k≥1

sup
Q4

B(t− 1
α , x; k

α
1−mM)

}
,

λ
1

m−1

1 := m
1

m−1 C min
{

inf
Q2

B
(
t− 1

α , x
)
, inf
k≥1

inf
Q4

B(t− 1
α , x; k

α
1−mM)

}
.

(4.82)

We remark that

sup
k≥1

sup
Q4

B
(
t− 1

α , x; k
α

1−mM
)

and inf
k≥1

inf
Q4

B
(
t− 1

α , x; k
α

1−mM
)

are bounded and bounded away from zero. Indeed, let us consider first the case of
B(t− 1

α , x): for any (t, x) ∈ (0,∞)× Rd, we have that

B(t− 1
α , x) =

t
1

1−m

b
α

1−m

(
t

2
α

b2
+ |x|2

) 1
m−1

where b =
(

1−m
2mα

) 1
α .
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We deduce therefore that, for any (t, x) ∈ Q2, we have that

1

4
1

1−m b
α

1−m

(
2

2
α

b2
+ 26

) 1
m−1

≤ B(t− 1
α , x) ≤ bd 4

d
α .

This is enough to prove that λ0 > 0 and λ1 < ∞. Let us consider B(t −
1
α , x; k

α
1−mM), we recall that

B(t− 1
α , x; k

α
1−mM) =

t
1

1−m

b
α

1−m

(
t

2
α

k2 b2
+ |x|2

) 1
m−1

.

Let us consider (t, x) ∈ Q4, we have therefore

1

4
1

1−m b
α

1−m

(
2

2
α

k2 b2
+ 64

) 1
m−1

≤ B(t− 1
α , x; k

α
1−mM)

≤ 2
1

1−m

b
α

1−m

(
1

b2 k2 4
2
α

+
1

16

) 1
m−1

.

From the above computation we deduce that

sup
k≥1

sup
Q4

B(t− 1
α , x; k

α
1−mM)

}
≤ 2

1
1−m

b
α

1−m

(
1

b2 4
2
α

+
1

16

) 1
m−1

,

while
1

2
7

1−m b
α

1−m
≤ inf
k≥1

inf
Q4

B(t− 1
α , x; k

α
1−mM) .

Combining all estimates together we obtain that 0 < λ0 ≤ λ1 <∞.
As a consequence of (4.81) we obtain that, for any τ ≥ 4T (ε) and for any

k ≥ 1, we have(
λ1

m

) 1
m−1 ≤ ûτ,k(t, x) ≤

(
λ0

m

) 1
m−1 ∀ (t, x) ∈ Q2 , Q4 .

The function ûτ,k is a nonnegative weak solution to (3.16) and, as a consequence
of inequality (4.77), we get that for any τ ≥ 4T (ε),

bûτ,1(1, ·)cCν(B1(0)) ≤ c1 ‖ûτ,1‖L∞(Q2) ,

bûτ,k(1, ·)cCν(B1(0)\B1/2(0)) ≤ c1 ‖ûτ,k‖L∞(Q4) ∀ k ≥ 2 ,
(4.83)

where ν is as in (4.76) and λ0, λ1 are as in (4.82). We observe that

bûτ,k(1, ·)cCν(B1(0)\B1/2(0)) = k
2

1−m+ν bûτ,1(1, ·)cCν(Bk(0)\Bk/2(0)) ,

‖ûτ,k‖L∞(Q4) = k
2

1−m ‖ûτ ,1‖L∞([1/4 ,2]×Bk(0)\Bk/2(0)) ≤ k
2

1−m ‖ûτ,1‖L∞([1/4 ,2]×Rd) .

(4.84)

We finally estimate the Cν-norm of ûτ,1(1, ·), combining (4.83) with (4.84) we get

bûτ ,1(1, ·)cCν(Rd) ≤ bûτ ,1(1, ·)cCν(B1(0)) +

∞∑
j=0

bûτ ,1(1, ·)cCν(B2j+1 (0)\B2j (0))

≤ c1 ‖ûτ ,1‖L∞([1/4 ,2]×Rd)
2ν

2ν−1 .
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Lastly, we notice that, as a consequence of (4.79) and inequality (4.10) where
we take the limit R→∞, we have

(4.85) ‖ûτ ,1‖L∞([1/4 ,2]×Rd) ≤ τ
d
α ‖u‖L∞([1/4 ,2]×Rd) ≤ τ

d
α κ

4
d
αM 2

α

τ
d
α

= 4
d
α κM 2

α .

Step 3. In this step we shall show that for any t ≥ 4T (ε), the following inequality

(4.86)
∣∣∣∣ u(t, x)

B(t− 1
α , x )

− 1

∣∣∣∣ ≤ C ‖u(t, x)−B(t− 1
α , x )‖ϑL1(Rd) if |x| ≤ 2Z ρ(ε) t

1
α

holds for any Z ≥ 1, with C as in (4.89) and

(4.87) ϑ =
ν

d+ ν
.

Let us define

C := Cd,ν,1

((
c1 4

d
α κM 2

α
2ν

2ν − 1
+ c2

) d
d+ν

+
1

(2Z ρ(ε))d
(2M)

d
d+ν

)
.

By inequalities (4.80), (4.83) - (4.85) and (3.10) we deduce that for any τ ≥ 4T (ε)

‖ûτ ,1(1, x)− B̂τ ,1(1− 1
α , x)‖L∞(B2Z ρ(ε)) ≤ C ‖ûτ ,1(1, x)− B̂τ ,1(1− 1

α , x)‖ϑL1(Rd) ,

(4.88)

where Cd,ν,1 is as in (3.10) and ϑ as in (4.87). Let us define

(4.89) C := bd
(
1 + 4 b2 Z2 ρ(ε)2

) 1
1−m C =

∥∥∥∥∥ 1

B̂τ (1− 1
α , ·)

∥∥∥∥∥
L∞(B2Z ρ(ε))

C .

From inequality (4.88), we deduce that, for any x ∈ Rd such that |x| ≤ 2Z ρ(ε),

(4.90)
∣∣∣ ûτ ,1(1, x)− B̂τ ,1(1− 1

α , x)

B̂τ ,1(1− 1
α , x)

∣∣∣ ≤ C
∥∥∥ûτ ,1(1, ·)− B̂τ ,1(1− 1

α , ·)
∥∥∥ϑ

L1(Rd)
.

Let us define y = τ
1
α x. By using (4.79), we can see that the left-hand-side of (4.90)

is as the left-hand-side of (4.86), indeed we can write∣∣∣∣ u(τ, y)

B(τ − 1
α , y )

− 1

∣∣∣∣ =
∣∣∣ ûτ ,1(1, x)− B̂τ ,1(1− 1

α , x)

B̂τ ,1(1− 1
α , x)

∣∣∣ .
The same holds for the right-hand-sides of those inequalities, indeed from (4.79) we
deduce that∥∥∥ûτ ,1(1, ·)− B̂τ ,1(1− 1

α , ·)
∥∥∥

L1(Rd)
=
∥∥u(τ, ·)−B(τ − 1

α , ·)
∥∥

L1(Rd)
.

Combining the above observation we deduce that inequality (4.86) holds.

Step 4. For t ≥ T (ε) ≥ 2/α we have that R(t) ≤ (2α)
1
α t1/α. By combining (4.86)

(where we set Z = (2α)
1/α) and (4.74) (where we have estimated c1(t) ≤ 2d/α) we

find that for any t ≥ T (ε) ≥ 2/α, we have that∣∣∣∣ u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ 2
d
α

(
C
∥∥u(t, ·)−B(t− 1

α , ·)
∥∥ϑ

1
+
(
c3 + 2

α c2
) 1

t

)
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if |x| ≤ 2R(t) ρ(ε). By the triangle inequality and the above estimate on the
quotients of two delayed Barenblatt solutions we obtain that for any t ≥ T (ε)∥∥u(t, x)−B

(
t− 1

α , x
)∥∥

1
≤ ‖u(t, x)−B(t, x)‖1 +

(
c3 + 2

α c2
)M
t
.

We take advantage of the Csiszár-Kullback inequality (2.34) of Section 2.4.6 in
Chapter 2, namely

‖u(t, x)−B(t, x)‖1 ≤
√

4αM
m

√
G

R(t)
,

where R(t) is as in (2.9). This inequality can be obtained from (2.34) and (2.32)
by applying the change of variables (2.14). This yields (4.73) with a constant in
the right-hand-side given by

C = 2
d
α

(
C +

(
c3 + 2

α c2
))(√

4αM
m +

(
c3 + 2

α c2
)
M
)ϑ

where the constant C is given by

C := bd
(
1 + 4 b2 Z2 ρ(ε)2

) 1
1−m Cd,ν,1

×

((
c1 4

d
α κM 2

α
2ν

2ν − 1
+ c2

) d
d+ν

+
1

(2Z ρ(ε))
d

(2M)
d
d+ν

)
.

where c1, c2 are defined in (4.78) and in (4.80) respectively, and Z = (2α)
1
α . Recall

that α ∈ (1, 2) so that

c3 +
2 c2
α

=
1

1−m
+

2m

2 (1−m)2 α3
≤ 1

1−m
+

m

(1−m)2
=

1

(1−m)2
,

hence

C ≤ 2
d
α

(
C + 1

(1−m)2

)(2α

m
+M+

M
(1−m)2

)ϑ
≤ 2

d
α+ϑ (1 + C)

mϑ(1−m)2(1+ϑ)
(α+M)ϑ .

Then, for any ε ∈ (0, εm,d) ⊂ (0, 1/2), we have that√
(1−ε)m(ε−ε)

21+m

1

λ•
√
ε
≤ ρ(ε) =

1

λ•

((
1 + (1 + ε)1−m) ( 1−ε

1−ε
)1−m

−1

1−(1−ε)1−m

)1/2

≤
2
√
ε

λ•
√
ε

and

1√
1−m

1

λ•
√
ε
≤ ρ(ε) =

1

λ•

(
(1 + ε)1−m + 1

(1 + ε)1−m − 1

) 1
2

≤ 4√
1−m

1

λ•
√
ε
.

We recall that ε < 1, we obtain therefore that

ρ(ε)2 := max{ρ(ε), ρ(ε)}2 ≤ max

{
4

λ2
• ε

,
16

(1−m)

1

λ2
• ε

}
≤ 16

(1−m)2 λ2
• ε

and also, since ε < 1/2, we have that

ρ(ε)2 ≥ 1

(1−m)λ2
• ε
≥ 2

(1−m)λ2
•
.
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Combining all above estimates together we find that

(
1 + 4 b2 (2α)

2
α ρ(ε)2

) 1
1−m ≤

(
λ2
• + 2

6α+2
α b2

(1−m)2, λ2
• ε

) 1
1−m

≤ 2
2+6α
α(1−m)

(1−m)
2

1−m ε
1

1−m

(
λ2
• + α

2
α b2

λ2
•

) 1
1−m

≤ 2
3+6α
α(1−m)

(1−m)
2

1−m ε
1

1−m
,

where in the last step we have used the identity λ• = bα
1
α .

Altogether, we finally obtain

C ≤ 2
d
α+ 3+6α

α(1−m)
+ϑ

ε
1

1−m

(α+M)ϑ

mϑ(1−m)2(1+ϑ)+ 2
1−m

×

[
1 + bd Cd,ν,1

((
210+ 2d

α κM 2
α

2ν

2ν − 1
+ c2

) d
d+ν

+

(
λ2
•

α
1
α

)d
(2M)

d
d+ν

)]

≤ 2
3d
α + 3+6α

α(1−m)
+ϑ+10

ε
1

1−m

(α+M)ϑ

mϑ(1−m)2(1+ϑ)+ 2
1−m

×

[
1 + bd Cd,ν,1

((
κM 2

α
2ν

2ν − 1
+ c2

) d
d+ν

+
λ2d
•

α
d
α

M
d
d+ν

)]
=:

K

ε
1

1−m
.

(4.91)

We recall that c2, κ, λ• and b are all numerical constants, which have been intro-
duced earlier in (4.80), (4.11), (2.8) and (4.43). The proof is completed. �

4.4.3. Proof of Theorem 4.1.

Proof. By definitions (4.64), (4.69) and (4.72), we have

T (ε) = max
{ 2 cA1−m

(1 + ε)1−m − 1
,
κ? (2A)

1−m
+ 2

α

1− (1− ε)1−m

}
≤ 1

4

(
κ1(ε,m)A1−m + κ3(ε,m)

)
where c and κ? are as in (4.48) and (4.32), and

κ1(ε,m) := max
{ 8 c

(1 + ε)1−m − 1
,

23−m κ?
1− (1− ε)1−m

}
, κ3(ε,m) :=

8α−1

1− (1− ε)1−m .

From Corollaries 4.8 and 4.9, we obtain that the inequality

(4.92)
∣∣∣∣ u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ ε
holds if t ≥ κ1(ε,m)A1−m + κ3(ε,m) and |x| ≥ ρ(ε)R(t). We also know from
inequality (4.73) that (4.92) also holds for any |x| ≤ 2 ρ(ε)R(t) if t ≥ 4T (ε) and t
is such that

(4.93)
K

ε
1

1−m

(
1

t
+

√
G

R(t)

)ϑ
≤ ε .
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Let us define

(4.94) a :=
α

ϑ

2−m
1−m

,

where ϑ is as in (4.87). Since R(t) ≤ (2α t)1/α for any t ≥ 2/α and 2α−1 (1 +

Gα/2 ) ≥ (1 +
√
G )α, (4.93) holds if

t ≥ max
{
κ2(ε,m)

(
1 +G

α
2

)
, 2
α

}
with κ2(ε,m) :=

(4α)
α−1 K

α
ϑ

εa
.

Let us define

(4.95) c?(m, d) = sup
ε∈(0,εm,d)

max
{
ε κ1(ε,m), εaκ2(ε,m), ε κ3(ε,m)

}
and let us recall that t? = c? ε

−a (1 +A1−m +G
α
2

)
. Since κ2(ε,m) + κ3(ε,m) ≥

2/α, then (4.92) holds for any x ∈ Rd if

t ≥ t? ≥ κ1(ε,m)A1−m + κ2(ε,m)G
α
2 + κ2(ε,m) + κ3(ε,m) .

With (m, ε) ∈ (0, 1)× (0, εm,d), we deduce from the elementary estimates
1

(1−m) ε ≤
1

(1+ε)1−m−1 ≤
4

(1−m) ε and 1
2

1
(1−m) ε ≤

1
1−(1−ε)1−m ≤

1
(1−m) ε

that κ2 dominates κ1 and κ3 as either ε → 0+. Up to elementary computations,
this proves that c?(m, d) is finite, which completes the proof. �

Remark 4.11. From the expression of c?(m, d) we obtain that

c?(m, d) ≥ ε κ3(ε,m) ≥ 8

α (1−m)
→∞ as m→ 1− .

As a consequence, we know that t? → +∞ as m → 1− for fixed ε > 0, which is a
limitation of the method that will be further discussed in Chapter 5.

4.4.4. The threshold time in self-similar variables.
The results of Theorem 4.1, in original variables, for a solution u of (2.1), can

be rephrased as follows for a solution v of (2.15), using (2.14). Let us define

(4.96) c? := c? λ
−α
• and T? :=

1

2α
log

(
1 + α c?

1 +A1−m +G
α
2

εa

)
.

Proposition 4.12. Let m ∈
[
m1, 1

)
if d ≥ 2, m ∈

(
m̃1, 1

)
if d = 1, A,

G > 0. Let ε ∈ (0,min{χη, εm,d}), with η and χ as in Proposition 2.10. For any
solution v to (2.15) with nonnegative initial datum v0 ∈ L1(Rd),

∫
Rd v0 dx = M,∫

Rd x v0 dx = 0 which satisfies

(4.97) ‖v0‖Xm ≤ A , F [v0] ≤ G ,
we have that

(4.98) (1− ε)B(x) ≤ v(t, x) ≤ (1 + ε)B(x) ∀ (t, x) ∈ [T?,+∞)× Rd .

Proof. As a consequence of (4.3), (2.14) and (2.33), the result holds for any

t ≥ 1

2
logR(t?) =

1

2α
log

(
1 + α c?

1 +A1−m λ−α• +G
α
2

εa

)
≥ T?

by the definition (2.9) of R, where t? is computed from ε ∈ (0,min{χη, εm,d}) as
in Theorem 4.1. The last inequality follows from taking into account that (4.97)
implies ‖u0‖Xm = λ

−α/(1−m)
• ‖v0‖Xm where u0 = λd• v0(λ•·), and that λ−α• ≥ 1. �
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4.5. Side results of interest and further observations

4.5.1. A different assumption for Theorem 4.1. Let us define

D :=
1

1−m

∫
Rd
Bm dx− m

1−m

∫
Rd
|x|2 B dx =

mM
(d+ 2)m− d

(
2

1−m
− d
)
> 0 .

We can avoid the introduction of λ• in (4.2) by considering the following lemma.

Lemma 4.13. Let m ∈ (m̃1, 1) and let u0 ∈ L1
+(Rd) be a nonnegative function

such that ∫
Rd
u0 dx =

∫
Rd
B dx and

∫
Rd
|x|2 u0 dx <∞ .

Then we have

F
[
λ−d• u0(·/λ•)

]
≤ max

{
λ
d (1−m)
• , D

(
1− λd (1−m)

•

)} (
1 + F [u0]

)
.

As a consequence, (4.3) holds under the more elegant assumption F [u0] ≤ G
and with slightly bigger constant c?.

Proof. Let us define X := m
1−m

∫
Rd |x|

2 u0 dx, Y := 1
1−m

∫
Rd u

m
0 dx. By

simple computations we deduce that F
[
λ−d• u0(·/λ•)

]
= λ2

•X−λ
d (1−m)
• Y +D and

F [u0] = X − Y +D ≥ 0. Since λ• < 1 and 2− d (1−m) > 0, we have that
λ2
•X−λ

d (1−m)
• Y+D

1+X−Y+D ≤ λ
d (1−m)
• (X−Y )+D

1+X−Y+D ≤ max
{
λ
d (1−m)
• , D

(
1− λd (1−m)

•

)}
,

where the last inequality can be obtained by computing the supremum of the func-
tion f(Z) =

(
λ
d (1−m)
• Z +D

)
/(1 + Z +D) on the interval Z ≥ −D. �

4.5.2. Decay rates in relative error.

Corollary 4.14. Let m ∈
[
m1, 1

)
if d ≥ 2, m ∈

(
m̃1, 1

)
if d = 1, A, G > 0,

and u be a solution of (2.1) corresponding to the nonnegative initial datum u0 ∈
L1

+(Rd) ∩ Xm such that∫
Rd
u0 dx =

∫
Rd
B dx , ‖u0‖Xm ≤ A , F [λ−d• u0(·/λ•)] ≤ G .

Then we have

(4.99) sup
x∈Rd

∣∣∣∣ u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ κ t−1/a ∀ t ≥ tm,d ,

where tm,d := ε−am,d and κ(a, A,G) :=
(
c?
(
1 +A1−m +Gα/2

) )1/a

.

Proof. In (4.3), at t = t?, we compute ε in terms of t and eliminate it,
provided ε ≤ εm,d. This proves (4.99) at time t = t?. Iterating the same procedure
for smaller values of ε proves (4.99) for any t > tm,d. �

4.5.3. On the uniform Hölder continuity of solutions to (2.1). One of
the most technical parts of this chapter is Proposition 4.10. In the proof, we obtain a
uniform bound on the modulus of continuity where the exponent ν does not depend
on the solution nor on the initial datum. This allows us to obtain inequality (4.73)
with an exponent ϑ which does not depend on u. As a consequence, the exponent a
only depends on m, d.

In the case of the linear parabolic equation (3.16) the uniform modulus of
continuity with an explicit exponent is obtained as a consequence of the Harnack
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inequality (3.24), as in Theorem 3.13. For the fast diffusion equation, this is more
subtle. The Harnack inequality for solutions of (2.1) holds on intrinsic cylinders,
whose size depend on the solution itself. This fact has been thoroughly studied
in [DK07, BV10, DGV12, BS19]. In general, the intrinsic geometry can cause
a dependence in the Hölder continuity exponent on some norms of the solution,
see for instance [BS19] for a thorough explanation. We overcome this difficulty by
using the Global Harnack Principle that allows us to exploit the linear parabolic
estimates of Section 3.2.7 and obtain a uniform exponent of the Hölder continuity
for the class of solutions considered.

4.5.4. Bibliographical comments. Many results of this chapter are known,
however without explicit constants. Let us review our sources.

Up to minor changes in the proof, Inequality (4.4) about local mass displace-
ment is originally containing [HP85, Lemma 3.1]. Inequality (4.6) appeared in
[BS20, Sim20]. Local Lp − L∞ smoothing estimates of Lemma 4.3 were essen-
tially known, by means of De Giorgi type iterations in [DiB93, DGV12], and
via Moser type iterations in [DK07, BV10, BS19]. Proposition 4.4 is stated
in [BV06, BGV10], see also for [GV04] for a previous contribution. The proof of
Proposition 4.4 is inspired by a comparison principle which is nowadays a classical
tool in the theory of parabolic equations, but for which we are not aware of a pre-
cise reference. For a general overview of the subject we refer to the books [DK07,
Váz06, Váz07, GV04] and to [HP85, Lemma 3.4], [AC83, Remark 1.5] for closer
statements. The local lower bounds (4.31) of Lemma 4.5 are originally contained
in [BV06], see also [Váz06] and [BS19] for a different proof. Global existence of
nonnegative solutions of (2.1) is established in [HP85], while uniqueness for L1

solutions follows by L1-contractivity estimates, see [CP82, CP72, Váz07]. Much
more is known on (2.1) and we refer to the monographs [Váz06, Váz07] for a
general overview. The Global Harnack Principle in the form of Propositions 4.7
and 4.6 goes back to [BV06], see also [Váz03] for a previous contribution. Those
results are essentially constructive, even if not all constants were explicitly com-
puted. We refer to [DKV91] for the Global Harnack Principle in the case of the
Dirichlet problem on a bounded domain.

Uniform convergence in relative error was first established in [CV03] in the
case of radial data, rates of convergence were also provided. The result was extended
to a bigger class of initial data in [KM06]. The Global Harnack Principle allows
to connect nonlinear and linearized entropy estimates, as unveiled in [BBD+07,
BBD+09, BGV10, BDGV10], and provides sharp decay rates in uniform relative
error and in weaker norms. A slightly more general version of Theorem 4.1 can be
found in [BS20, Sim20], without explicit constants. Analogous results have been
obtained in the more general case of fast diffusion equation with Caffarelli-Kohn-
Nirenberg weights in [BDMN17b, BDMN17a, BS20].



CHAPTER 5

Stability in Gagliardo-Nirenberg inequalities

In this chapter, we focus on the subcritical case p ∈ (1, p?) of the Gagliardo-
Nirenberg-Sobolev inequalities (1.1) and prove a stability result similar to Theo-
rem 1.15, however with an explicit constant C. Using the threshold time T? of
Proposition 4.12, and the fast diffusion equation (2.15) with exponent m given
by (2.3), we invoke the entropy estimates of the initial time layer (0, T?) and of the
asymptotic time layer (T?,+∞) to establish an improved decay rate of the relative
entropy the self-similar variables for any t ∈ (0,+∞), that is, an improved entropy
- entropy production inequality, which is interpreted as a stability result for the
Gagliardo-Nirenberg-Sobolev written in the non-scale invariant form (1.8).

5.1. Stability results in relative entropy

5.1.1. Improved entropy-entropy production inequality.

Theorem 5.1. Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, A > 0 and
G > 0. Then there is a positive number ζ such that

(5.1) I[v] ≥ (4 + ζ)F [v]

for any nonnegative function v ∈ L1(Rd) such that F [v] = G,
∫
Rd v dx = M,∫

Rd x v dx = 0 and v satisfies (4.97).

An expression of ζ is given below in (5.8) in terms of A and G. Inequality (5.1)
is an improvement of the entropy - entropy production inequality (2.16). We prove
that the inequality holds at any time t ≥ 0 for any solution of the evolution equa-
tion (2.15) and, as a special case, for its initial datum.

Proof. Proposition 4.12 determines an asymptotic time layer improvement:
according to Proposition 2.10, Inequality (2.28) holds with η = 2 d (m − m1) for
ε ∈ (0, χ η), that is,

I[v(t, .)] ≥ (4 + η)F [v(t, .)] ∀ t ≥ T? .
With the initial time layer improvement of Lemma 2.9, we obtain that

(5.2) I[v(t, .)] ≥ (4 + ζ)F [v(t, .)] ∀ t ∈ [0, T?] , where ζ =
4 η e−4T?

4 + η − η e−4T?
.

As a consequence, (5.1) holds for v(t, .), for any t ≥ 0, because ζ ≤ η, under the
condition

ε ∈ (0, 2 ε?) with ε? :=
1

2
min

{
εm,d, χ η

}
,

where εm,d is defined in (4.61). As a special case, it is true at t = 0 with ε = ε?
and for an arbitrary initial datum satisfying the assumptions of Theorem 5.1. This
completes the proof. �

117
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The fact that Inequality (5.1) holds true at any t ≥ 0 for a solution of (2.15)
is a stability property under the action of the nonlinear fast diffusion flow. The
improvement in inequality (5.1) has an interesting counterpart in terms of rates,
which goes as follows.

Corollary 5.2. Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, A > 0 and
G > 0 and let ζ be as in Theorem 5.1. If v is a solution of (2.15) with nonnegative
initial datum v0 ∈ L1(Rd) such that F [v0] = G,

∫
Rd v0 dx = M,

∫
Rd x v0 dx = 0

and v0 satisfies (4.2), then

(5.3) F [v(t, .)] ≤ F [v0] e− (4+ζ) t ∀ t ≥ 0 .

Let us give the sketch of a proof and some comments. We know from Theo-
rem 5.1 that

d

dt
F [v(t, ·)] = −I[v(t, ·)] ≤ − (4 + ζ)F [v(t, ·)]

and obtain (5.3) by a Grönwall estimate. Inequality (5.1) can be recovered as a
consequence of Corollary 5.2. It is indeed enough to notice that (5.3) is an equality
at t = 0 and differentiate it at t = 0+. Notice that the optimal decay rate in (5.3)
is the optimal constant in (5.1), as in [DPD02], in the non-improved version of the
inequality.

5.1.2. Improved estimate for the deficit functional. The deficit δ[f ] and
the free energy or relative entropy functional E [f |g] are defined by (1.12) and (1.14).

Theorem 5.3. Let d ≥ 1, p ∈ (1, p?), A > 0 and G > 0. There is a positive
constant C such that

(5.4) δ[f ] ≥ C E [f |g]

for any nonnegative f ∈ Wp(Rd) such that

(5.5)
∫
Rd
|f |2p dx =

∫
Rd
|g|2p dx and

∫
Rd
x |f |2p dx = 0 ,

(5.6) sup
r>0

r
d−p (d−4)

p−1

∫
|x|>r

|f |2p dx ≤ A and E [f |g] ≤ G .

Proof. Using (1.28), (2.3) where, p = 1/(2m − 1) and v = |f |2p, we learn
from Theorem 5.1 that

I[v]− 4F [v] = p+1
p−1 δ[f ] ≥ ζ F [v] = ζ E [f |g]

under Condition (5.5). As a consequence, Theorem 5.3 holds with C = p−1
p+1 ζ. �

The expression of ζ given in (5.2) can be rewritten using (4.96) as

ζ =
4 η

(4 + η) e4T? − η
,

where T? is given by (4.96). Since t? ≥ 2/α and e2αT? ≥ 1 + α t?, we obtain

ζ ≥ 4 η

4 + η

(
εa

2α c?

) 2
α (

1 +A1−m +G
α
2

)− 2
α
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with the notation of Theorem 4.1 and where c? is defined in (4.96). Let

(5.7) cα := inf
x>0, y≥0

1 + x2/α + y(
1 + x+ yα/2

)2/α .
Then we have

ζ ≥ Z
(
A,F [u0]

)
with

(5.8) Z(A,G) :=
ζ?

1 +A (1−m) 2
α +G

.

We adopt the convention that

Z(A,G) = 0 if A = +∞ .

We also make the choice ε = ε? as in Section 5.1.1, so that the numerical constant ζ?
is defined as

(5.9) ζ? :=
4 η

4 + η

(
εa?

2α c?

) 2
α

cα .

This is the explicit expression of the constant in Theorem 5.3.
The constant ζ? deserves some comments. First of all, we know that ε? ≤ χ

2 η,
where η = 2 d (m−m1) so that ζ? = ζ?(m) is at most of the order of (m−m1)1+2 a/α

where a
α = 2−m

ϑ (1−m) . As a consequence, we know that limm→m1
ζ?(m) = 0. This

also means that the estimate of the constant C in Theorem 5.3 decays to 0 if p→ p?

if d ≥ 2. On the other hand, it appears from (5.9) that limm→1− ζ?(m) = 0, see
Remark 4.11. Our method is therefore limited to the strictly subcritical range
max{1/2,m1} < m < 1, or 1 < p < p?.

Exactly as in Section 1.3.3, we also have a stability result in a stronger sense,
measured by the relative Fisher information.

Corollary 5.4. Under the assumptions of Theorem 5.3 and for the same
positive constant C, we have

(5.10) δ[f ] ≥ (p− 1)2 (p+ 1) C
(p+ 1) C + 4 (p− 1)

∫
Rd

∣∣∇f + 1
p−1 |f |

p−1 f ∇g1−p∣∣2 dx

for any f ∈ Wp(Rd) satisfying (5.5) and (5.6)

Proof. Inequality (5.1) can be rewritten as

(5.11) I[v]− 4F [v] ≥ ζ

4 + ζ
I[v] .

After taking into account

I[v] =
(
p2 − 1

) ∫
Rd

∣∣∇f + 1
p−1 f

p∇g1−p∣∣2 dx ,

this proves (5.10) in the case of non-negative functions. For a sign-changing solution
f ∈ Wp(Rd), one can notice that (5.10) holds as soon as it is established for |f |. �

5.2. Stability of scale invariant Gagliardo-Nirenberg inequalities

In this section, we establish a consequence of Theorem 5.3 for the scale invariant
Gagliardo-Nirenberg inequalities (1.1) which is a deep but technical result that
requires further notation.
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5.2.1. Invariances and related parameters. For any f ∈ Wp(Rd), let us
consider the best matching Aubin-Talenti profile gf defined by (1.21). With µ[f ],
λ[f ], and y[f ] = xf as in (1.20), let us further define

κ[f ] :=
M

1
2 p

‖f‖2 p
= µ[f ]−

1
2p ,

σ[f ] :=

(
2 d κ[f ]p−1

p2 − 1

‖f‖p+1
p+1

‖∇f‖22

) 2 p
d−p (d−4)

,

Ap[f ] :=
M

σ[f ]
d−p (d−4)

p−1 ‖f‖2p2 p
sup
r>0

r
d−p (d−4)

p−1

∫
|x|>r

|f(x+ xf )|2p dx ,

(5.12)

Ep[f ] := 2 p
1−p

∫
Rd

(
κ[f ]p+1

σ[f ]
d
p−1
2 p

|f |p+1 − gp+1 − 1+p
2 p g1−p

(
κ[f ]2p

σ[f ]2 |f |
2p − g2p

))
dx .

(5.13)

A computation shows that λ[gλ,µ,y]σ[gλ,µ,y]
d−p (d−4)

2 p = 1 for any Aubin-Talenti
function in gλ,µ,y ∈M, but for a function f which is not an Aubin-Talenti function,
the scales σ[f ] and λ[f ] generically differ.

On Wp(Rd), let us consider the normalization map N such that

(5.14) Nf(x) := σ[f ]
d
2 p κ[f ] f

(
σ[f ]x+ xf

)
∀x ∈ Rd .

With these definitions, we have the following useful relations.

Lemma 5.5. For any f ∈ Wp(Rd), we have ‖Nf‖2p = ‖g‖2p, xNf = 0 and

δ
[
Nf
]

= C(p, d)

(‖∇f‖θ2 ‖f‖1−θp+1

‖f‖2p

)2 p γ

− (CGNS)
2 p γ

 and Ep[f ] = E [Nf |g]

where γ and C(p, d) are defined respectively by (1.9) and (1.11).

Proof. Take some f ∈ Wp(Rd) and let us compute

‖Nf‖2p2p = ‖g‖2p2p ,
∫
Rd
|x|2 |Nf |2p dx = κ[f ]2p

σ[f ]2

∫
Rd
|x|2 |f |2p dx ,

‖Nf‖p+1
p+1 = κ[f ]p+1

σ[f ]
d
p−1
2 p

‖f‖p+1
p+1 , ‖∇Nf‖22 = κ[f ]2 σ[f ]

d−p (d−2)
p ‖∇f‖22 .

The expression of Ep[f ] follows. With the notations of Lemma 1.2 and of its proof,
we also find that δ[Nf ] = h

(
σ
[
f/ ‖f‖2p

])
where σ = σ

[
f/ ‖f‖2p

]
is precisely the

choice of the scaling which optimizes the deficit. �

5.2.2. A stability result in relative entropy. We can get rid of the con-
straints (5.5) and (5.6) of Theorem 5.3 using the invariances of (1.1).

Theorem 5.6. Let d ≥ 1 and p ∈ (1, p?). For any f ∈ Wp(Rd), we have

(5.15)
(
‖∇f‖θ2 ‖f‖

1−θ
p+1

)2 p γ

−
(
CGNS ‖f‖2 p

)2 p γ

≥ S[f ] ‖f‖2 p γ2 p Ep[f ]
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where γ is defined by (1.9) and, with C(p, d) as in (1.11) and Z as in (5.8),

S[f ] =
M

p−1
2 p

p2 − 1

1

C(p, d)
Z (Ap[f ], Ep[f ])

with Ap[f ] and Ep[f ] given respectively by (5.12) and (5.13).

Proof. Since ‖Nf‖2p2 p =M and
∫
Rd x |Nf |

2p dx = 0, Theorem 5.1 applies and,
as a consequence,

δ[Nf ] ≥ C E [Nf |g] .

We learn from Section 5.1.2 that

C = C[f ] = p−1
p+1 Z

(
A, E [Nf |g]

)
where A = sup

r>0
r
d−p (d−4)

p−1

∫
|x|>r

|Nf |2p dx .

Undoing the change of variables (5.14) with the help of Lemma 5.5 completes the
proof. �

5.2.3. A stability result in relative Fisher information. We also have
a scale invariant form of (5.10), that is, a stability result with respect to a strong
norm. Let us define

J[f ] :=

∫
Rd

∣∣∣σ[f ]
d−p (d−2)

2 p ∇f + κ[f ]p−1 σ[f ]−1 (x− xf ) |f |p−1 f
∣∣∣2 dx .

Theorem 5.7. Let d ≥ 1 and p ∈ (1, p?). For any f ∈ Wp(Rd), we have

(5.16) ‖∇f‖θ2 ‖f‖
1−θ
p+1 − CGNS ‖f‖2 p ≥

S?[f ] ‖f‖4 (p γ−1)
2 p(

‖∇f‖θ2 ‖f‖
1−θ
p+1

)2 p γ−1 J[f ]

where

S?[f ] :=
C2 p γ−2

GNS

2 p γM1/p

(
p2 − 1

)
C(p, d)

Z
(
Ap[f ], E

[
|f |
])

4 + Z
(
Ap[f ], E

[
|f |
]) .

Proof. By writing (5.11) for Nf , we find that

(
‖∇f‖θ2 ‖f‖

1−θ
p+1

)2 p γ

−
(
CGNS ‖f‖2 p

)2 p γ

≥ ‖f‖2 p γ2 p
(p2−1)
C(p,d)

Z(Ap[f ], Ep[f ])
4+Z(Ap[f ], Ep[f ])

×
∫
Rd

∣∣∣κ[f ]σ[f ]
d−p (d−2)

2 p ∇f + κ[f ]p

σ[f ] (x− xf ) |f |p−1 f
∣∣∣2 dx

for any function nonnegative f ∈ Wp(Rd). Up to the replacement of f by |f |, there
is no loss of generality in assuming that f is nonnegative. In terms of J[f ], this
means(
‖∇f‖θ2 ‖f‖

1−θ
p+1

)2 p γ

−
(
CGNS ‖f‖2 p

)2 p γ

≥ ‖f‖
2 p γ−2
2 p

M1/p

(p2−1)
C(p,d)

Z(Ap[f ], Ep[f ])
4+Z(Ap[f ], Ep[f ]) J[f ] .



122 5. STABILITY IN GAGLIARDO-NIRENBERG INEQUALITIES

The conclusion holds using (1 + t)q − 1 ≤ q t (1 + t)q−1 with q = 2 p γ > 1 and

t =
‖∇f‖θ2 ‖f‖

1−θ
p+1

CGNS ‖f‖2 p
− 1, so that

‖∇f‖θ2 ‖f‖
1−θ
p+1 − CGNS ‖f‖2 p

≥

(
CGNS ‖f‖2 p

)2 p γ−2

2 p γ
(
‖∇f‖θ2 ‖f‖

1−θ
p+1

)2 p γ−1

[(
‖∇f‖θ2 ‖f‖

1−θ
p+1

)2 p γ

−
(
CGNS ‖f‖2 p

)2 p γ
]
.

�

5.3. Stability results: some remarks

Theorems 5.6 and 5.7 are not easy to read and deserve some comments.

(i) The constant S[f ] in the right-hand side of (5.15) measures the stability. Al-
though it has a complicated expression, we have shown that it can be written in
terms of well-defined quantities depending on f and purely numerical constants.
As a special case, it is straightforward to check that

S[g] > 0

where g is the Aubin-Talenti function (1.3).

(ii) Stability results known so far from either the carré du champ method or from the
scaling properties of the deficit functional, according to [DT16b, DT13], involve
in the right-hand side an E [f |g]2 term, while here we achieve a linear lower estimate
in terms of E [f |g]. In fact, among all possible inequalities

δ[f ] ≥ CA E [f |g]A

for some appropriate constant CA depending on A > 0, we have proved in (5.4)
that A = 1 is achieved while only the case A = 2 was previously known. This
of course raises the question of the best possible A. The example of Section 2.4.3
corresponding to the solution of (2.15) with the initial datum v0(x) = λd B(λx),
λ 6= 1, shows that A < 1 is impossible, so that A = 1 is optimal. On the other
hand, there is a lot of space for improvements on the estimate of C = C1.
(iii) An easy consequence of (5.15) is an estimate of the deficit in the Gagliardo-
Nirenberg inequality (1.1), namely

‖∇f‖θ2 ‖f‖
1−θ
p+1 − CGNS ‖f‖2 p ≥

(2 p γ)
−1

S[f ] ‖f‖2 p γ2 p(
‖∇f‖θ2 ‖f‖

1−θ
p+1

)2 p γ−1 Ep[f ] ∀ f ∈ Wp(Rd) .

The proof is similar to the proof of Theorem 5.7.

(iv) While the restriction (5.5) has been lifted in Theorem 5.6, Condition (5.6) is
deeply rooted in our method. It is an open question to decide if this assumption
can be removed. Note that it is present in Theorem 5.6 because Ap[f ] = +∞ or
Ep[f ] = +∞ means S[f ] = 0. The same remark applies to (5.16).

(v) More subtle is the fact the natural space is not the space of all functions f in
L2p(Rd) with gradient in L2(Rd), but we also need that

∫
Rd |x|

2 |f |2p dx is finite,
for instance to define the free energy. Up to the condition that Ap[f ] < +∞, we
are therefore working in the space Wp(Rd). If p = p?, this is not the space of the
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stability result in the critical case by G. Bianchi and H. Egnell. It is however con-
sistent with the use of the Fisher information. See Section 1.2.3 for some properties
enjoyed by entropy related functionals in Wp(Rd).
(vi) The two quantities σ[f ] and λ[f ] define length scales. They are equal if f is an
Aubin-Talenti function but they are not generically equal.

(vii) The notion of best matching Aubin-Talenti functions in the sense of relative
entropies is well defined for nonnegative functions f ∈ Wp(Rd). The relative en-
tropy cannot be defined as a convex functional if f changes sign. However, our
method applies with no change when f is replaced by |f |. By the Csiszár-Kullback
inequality of Lemma 1.7 and Lemma 2.12, we obtain a standard measure of the dis-
tance to the manifold M of the Aubin-Talenti functions. Concerning sign-changing
solutions, see Corollary 1.17. The result of Theorem 5.7 applies to sign-changing
solutions because neither the deficit nor the relative Fisher information are sensitive
to the sign. The relative Fisher information measures a notion of strong distance to
the manifold M, but it is then clear that the best matching Aubin-Talenti function
with respect to |f | is in general not optimal if one optimizes J [f |g] as defined in
Chapter 1 with respect to g. This again leaves some space for improvements.

(viii) In Theorem 1.15, we assume that

(5.17)
∫
Rd
|x|2 f2p dx =

∫
Rd
|x|2 g2p dx .

Such a condition was needed to take advantage of a previous stability result where
the deficit controls E [f |g]2 as a distance towards M. It is also used in the proof
of Theorem 1.15 as a technical tool to obtain the limit of a minimization sequence
and, as well, to get an improved spectral gap in the linearization analysis, although
a mode detailed analysis could eventually be done without this assumption. Con-
dition (5.17) is not required in the constructive stability estimate of Theorem 5.3.
Reciprocally, Condition (5.6) in Theorem 5.3 is not present in Theorem 1.15. The
boundedness of

∫
Rd |x|

2 f2p dx will be further discussed in Section 7.3 of Chapter 7.

(ix) The whole strategy of our proof is to reduce the issue of stability results for
Gagliardo-Nirenberg-Sobolev inequalities to improved entropy - entropy production
inequalities as in Theorem 5.1. An important consequence is given in Corollary 5.2:
under the appropriate conditions, improved decay rates are obtained along the fast
diffusion flow, which put into light the role the eigenstates corresponding to the
lowest eigenvalues. Best matching is the counterpart of this observation: the choice
of an adapted Barenblatt function instead of the standard Barenblatt self-similar
solution provides us with a more accurate expansion of the solutions to the fast
diffusion equation for large time values.





CHAPTER 6

Constructive stability for Sobolev’s inequality

This chapter is devoted to a stability estimate for Sobolev’s inequality corre-
sponding to (1.1) in the critical case p = p?. The main novelty compared to the
result of G. Bianchi and H. Egnell is that we provide a constructive estimate with
an explicit constant and prove that the deficit in Sobolev’s inequality controls a
strong distance to the Aubin-Talenti manifold of optimal functions measured by a
nonlinear relative Fisher information.

Compared to the subcritical case p < p?, i.e.,m > m1, the main difference when
p = p? and m = m1 with d ≥ 3 is that the Hardy-Poincaré inequality (2.27) admits
no improved spectral gap under the additional constraint

∫
Rd xhB

2−m dx = 0. As
a consequence, there is no improved entropy-entropy production inequality as in
Theorem 5.1. An improved spectral gap holds only if one further assumes that∫
Rd |x|

2 hB2−m dx = 0, which arises only as a consequence of second moment es-
timates of the solutions of (2.15). This is an important difficulty, as

∫
Rd |x|

2 v dx

is not conserved. We recall that
∫
Rd x v dx = 0 if

∫
Rd x v0 dx = 0 where v is the

solution of (2.15) with initial datum v0. The key idea is to use the best match-
ing Barenblatt function, which involves an additional, finite scaling compared to
the self-similar solutions. This can be interpreted as the next order term in an
asymptotic expansion, that is, a refinement of the self-similar scaling: among all
Barenblatt self-similar solutions written for the unscaled problem (2.1), at main
order, the scale is R(t) ∼ t1/α → +∞ as t → +∞ given by (2.9). However, best
matching is in general achieved up to a lower order term: an additional rescaling of
order o(R(t)) gives rise to a time-dependent rescaled equation (6.9) which preserves
the second moment. This new rescaling can also be seen as a simple time-shift. Our
goal is to estimate the corresponding delay τ(t) in the rescaled variables.

This chapter is organised as follows: results are stated in Section 6.1.2 and the
definition of the delay is given in Section 6.1.3. The core of the argument is to prove
that the time delay is finite, which is done in Section 6.2 using a phase portrait
analysis. Up to technicalities, the remainder of the proof is similar to the sub-
critical case of Chapter 5: see Sections 6.3, 6.4 and 6.5. Because of the criticality,
we have θ = 1 in (1.2) and the computations needed to deduce the stability in case
of Sobolev’s inequality from the entropy - entropy production inequality, that is,
for the conclusion of the proof of Theorem 6.1, are even simpler.

6.1. A result in the critical case

6.1.1. Functional framework and definitions. On the Euclidean space
Rd with d ≥ 3, the Bianchi-Egnell result stability estimate (1.32) holds for any
function f in the Beppo Levi space

{
f ∈ L2∗(Rd) : ∇f ∈ L2(Rd)

}
, where ∇f is

defined in the sense of distributions. With 2 p? = 2d/(d− 2) = 2∗, we work in the

125
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slightly smaller space

Wp?(Rd) =
{
f ∈ L2∗(Rd) : ∇f ∈ L2(Rd) , |x| |f | p

?

∈ L2(Rd)
}
.

6.1.2. A constructive stability result.

Theorem 6.1. Let d ≥ 3 and A > 0. Then for any nonnegative function
f ∈ Wp?(Rd) such that∫

Rd
(1, x, |x|2) f2∗ dx =

∫
Rd

(1, x, |x|2) g dx and sup
r>0

rd
∫
|x|>r

f2∗ dx ≤ A ,

we have

(6.1) ‖∇f‖22 − S2
d ‖f‖

2
2∗ ≥ C?(A)

∫
Rd

(
g2 d−1

d−2 − f2 d−1
d−2

)
dx ≥ 0

and

(6.2) ‖∇f‖22 − S2
d ‖f‖

2
2∗ ≥

C?(A)

4 + C?(A)

∫
Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣2 dx .

The stability constant is C?(A) = C?
(
1+A1/(2 d)

)−1 where C? > 0 depends only
on d.

As in Chapter 5, the main point in this result is that C?(A) is explicit. Let us
define

A[f ] := sup
r>0

rd
∫
r>0

|f |2
∗
(x+ xf ) and Z[f ] :=

(
1 + µ[f ]−d λ[f ]dA[f ]

)
where µ[f ], λ[f ] and xf = y[f ] are as in (1.20). With E [f |g] and J [f |g] and gf as
in (1.14), (1.17) and (1.21), we have the following result.

Corollary 6.2. Let d ≥ 3. Then for any nonnegative function f ∈ Wp?(Rd)
such that A[f ] <∞, we have

(6.3) δ[f ] ≥ C?
µ[f ]

d−3
d λ[f ]

1
2

Z[f ]
E [f |gf ] .

and

(6.4) δ[f ] ≥ C?
Z[f ]

4 + Z[f ]
J [f |gf ] .

Up to the replacement of gf by g|f |, Inequality (6.4) applies to sign-changing
functions f ∈ Wp?(Rd) using the Fisher information J [f |g] defined by (1.49), pro-
viding a constructive version of Corollary 1.17. As a consequence, we have a stability
result of Bianchi-Egnell type, that can be written as

δ[f ] ≥ C?
Z[f ]

4 + Z[f ]
inf
g∈M
J [f |g] .

At this point is it important to notice that the best matching Aubin-Talenti func-
tion gf in terms of the relative entropy E [f |g] does not minimize J [f |g]. Best
matching Aubin-Talenti function in terms of the relative Fisher information can be
characterized as follows.
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Proposition 6.3. Let d ≥ 3. Then for any function f ∈ Wp?(Rd), we have

inf
g∈M
J [f |g] = J [f |gλ,µ,xf ] = 4 d−1

(d−2)2 ‖∇f‖
2
2 −

d2 ‖f‖2
d−1
d−2

2 d−1
d−2

(d− 1)
∫
Rd |f |2

∗ |x− xf |2 dx

where

µ = ‖f‖2
∗

2∗ and λ =
d

2 (d− 1)

‖f‖
2
d−2

2∗ ‖f‖2
d−1
d−2

2 d−1
d−2∫

Rd |f |2
∗ |x− xf |2 dx

.

Notice that J [f |gλ,µ,xf ] is nonnegative as it is the integral of the square, but
the expanded version is also nonnegative according to the generalized Heisenberg
uncertainty principle (1.18).

An interesting alternative to a measure of the distance to a single function of
the Aubin-Talenti manifold is suggested by the observation that entropy methods
are efficient for nonnegative functions. Let us denote by f± = (|f | ± f)/2 the
positive and the negative part of a sign-changing function f ∈ Wp?(Rd). Using
Minkowski’s inequality applied to f2 = f2

+ + f2
−, we have that

‖f‖22 p? =
∥∥f2

∥∥
p?
≤
∥∥f2

+

∥∥
p?

+
∥∥f2
−
∥∥
p?

= ‖f+‖22 p? + ‖f−‖22 p? ,

which proves that the deficit (1.12) has the property that

δ[f ] ≥ δ[f+] + δ[f−]

in the critical case p = p?. As an easy consequence, we have the following result.

Corollary 6.4. Let d ≥ 3. Then for any function f ∈ Wp?(Rd) such that
A[f ] <∞, we have

δ[f ] ≥ C?

(
Z[f+]

4 + Z[f+]
J [f+|gf+ ] +

Z[f−]

4 + Z[f−]
J [f−|gf− ]

)
.

6.1.3. Flow: a refined rescaling and consequences. Let us consider the
fast diffusion equation in self-similar variables (2.15), which we recall for conve-
nience:

∂v

∂t
+∇ ·

(
v∇vm−1

)
= 2∇ · (x v) , v(t = 0, ·) = v0 .

For any x ∈ Rd, let us consider the Barenblatt profile Bλ defined by

(6.5) Bλ(x) = λ−
d
2 B
(
x√
λ

)
where B(x) =

(
1 + |x|2

)1/(m−1) as in (2.7) is the unique stationary solution of (2.15)
with

∫
Rd B dx =M. We are interested in the specific choice of λ corresponding to

(6.6) λ(t) :=
1

K?R(t)2

∫
Rd
|x|2 v(t, x) dx with K? :=

∫
Rd
|x|2 B dx ,

where v solves (2.15) and t 7→ R(t) is obtained by solving
(6.7)
dτ

dt
=

(
1

K?

∫
Rd
|x|2 v dx

)− d2 (m−mc)

−1 , τ(0) = 0 and R(t) = e2 τ(t) ∀ t ≥ 0 .
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With these definitions, let us consider the change of variables

(6.8) v(t, x) =
1

R(t)d
w

(
t+ τ(t),

x

R(t)

)
∀ (t, x) ∈ R+ × Rd .

The role of the delay t 7→ τ(t) is to introduce an additional, finite rescaling on
the set of the Barenblatt profiles in order to produce a better matching in an
asymptotic expansion of the relative entropy. Technically, the advantage of this
change of variables is a gain of control of the |x|2 moment.

Lemma 6.5. Let d ≥ 3 and m ∈ [m1, 1). Assume that v0 is a nonnegative
function in L1

(
Rd, (1 + |x|2) dx

)
such that vm0 ∈ L1(Rd, dx) and

∫
Rd (1, x) v0 dx =

(M, 0). If v solves (2.15) with initial datum v0 and w is obtained by (6.6), (6.7)
and (6.8), then w solves

(6.9)
∂w

∂s
+ λ?(s)

d
2 (m−mc)∇ ·

(
w∇wm−1

)
= 2∇ · (xw) , w(t = 0, ·) = v0 ,

where the function t 7→ s(t) := t + τ(t) is monotone increasing on R+, λ? is
defined by

λ?
(
s(t)

)
= λ(t) ∀ t ≥ 0

and the function B?(s, x) := Bλ?(s)(x) is such that for all s ≥ 0

(6.10)
∫
Rd

(
1, x, |x|2

)
w(s, x) dx =

∫
Rd

(
1, x, |x|2

)
B?(s, x) dx.

Proof. We read from (6.8) that w solves(
1 +

dτ

dt

)
∂w

∂s
+ R(t)−d (m−1)−2∇ ·

(
w∇wm−1

)
= 2

(
1 +

1

2R

dR

dt

)
∇ · (xw).

Taking into account (6.6) and (6.7) concludes the proof after simple changes of
variables based on (6.7). �

Identity (6.10) means that B? is the best matching Barenblatt function associ-
ated with w(s, ·) and solves

λ
d
2 (m−mc)
? ∇ ·

(
w∇wm−1

)
= 2∇ · (xw) ,

so that B? is not a solution of (6.9) if λ? depends on s, i.e., if λ depends on t.
The fact that τ is bounded for any t > 0 in terms of the initial data was proved
in [DT15], however in a rather implicit form. Our task here is now to provide
explicit estimates.

6.2. Time delay estimates

In this Section, we prove estimates on t 7→ τ(t) based on the study of the
solutions of (2.15).

6.2.1. Definitions and constraints. Let us define the relative second mo-
ment K and the entropy S respectively by

K[v] :=

∫
Rd
|x|2 v(x) dx−

∫
Rd
|x|2 B(x) dx =

∫
Rd
|x|2 v(x) dx− K? ,

S[v] :=

∫
Rd
vm dx−

∫
Rd
Bm dx =

∫
Rd
vm dx− S? ,
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where the constants K? and S? are given according to Section 2.4.7 by

K? :=

∫
Rd
|x|2 B(x) dx =

d (1−m)

(d+ 2)m− d
M ,

S? :=

∫
Rd
Bm dx =

2m

(d+ 2)m− d
M .

Lemma 6.6. Let d ≥ 1, m ∈ [m1, 1) and assume that v ∈ L1
+(Rd) is such that

‖v‖1 =M and (|x|2 v + vm) ∈ L1(Rd). Then we have

(6.11) −K? ≤ K[v] and −S? ≤ S[v] ≤ S?
(

1 + d
1−m
2mK?

K[v]

)m
−S? ≤ mK[v] .

Proof. The lower bounds are consequences of the positivity of v. By Hölder’s
inequality, we have that∫

Rd
vm dx =

∫
Rd
Bm (m−1) vm · Bm (1−m) dx ≤

(∫
Rd

(
1 + |x|2

)
v dx

)m
S1−m
? ,

which can be rephrased into

(6.12) S[v] ≤ ψ
(
K[v]

)
where

ψ(z) := S?
(

1 +
z

S?

)m
− S? = S?

(
1 + d

1−m
2m

z

K?

)m
− S? .

The last inequality, ψ
(
K[v]

)
≤ mK[v] is a consequence of the inequality (1 +x)m−

1−mx ≤ 0 for any x > −1. �

6.2.2. Dynamical estimates. We consider the solution v of (2.15). Using

d

dt

∫
Rd
|x|2 v dx = 2 d

1−m
m

∫
Rd
vm dx− 4

∫
Rd
|x|2 v dx ,

d

dt

∫
Rd
vm dx = (1−m) I[v] +m

(
2 d

1−m
m

∫
Rd
vm dx− 4

∫
Rd
|x|2 v dx

)
,

we can rewrite these two identities on K(t) = K[v(t, ·)] and S(t) = S[v(t, ·)] as

K′ = aS − 4K , S ′ = −bS +mδ ,

with

a = 2 d
1−m
m

, b = 2 d (m−mc) = 2α ,

and mδ = (1 − m) I − 4 (mK − S) ≥ 0. With I[v] and F [v] defined as in Sec-
tion 2.3.2, we have indeed that

δ[v] =
1−m
m

(
I[v]− 4F [v]

)
where δ coincides with the notion of deficit in (1.12), the above relation is stated
in (1.28) up to a slight abuse of notations because δ is defined in Chapter 1 as
f 7→ δ[f ] with f2p = v, and not as a functional acting directly on v: also see
Lemma 1.12 with I[v] = J [f |g] and F [v] = E [f |g].
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6.2.3. Dynamical system and phase portrait. Let us consider the system
of differential equations

(6.13) X ′ = aY − 4X , Y ′ = −bY .

Lemma 6.7. Let d ≥ 1, m ∈ [m1, 1). The region

(6.14) X ≥ −K? and Y ≥ −S?
is stable under the action of the flow corresponding to (6.13). Within this region,
{Y ≥ 0}, {Y ≤ 0} and {X ≥ 0, 0 ≤ Y ≤ 4X/a} are all stable. Moreover, for any
solution of (6.13), we have

(6.15)
1

2

d

dt

(
(aY − 4X)2 + 4 bX2

)
= −(b + 4) (aY − 4X)2 .

Proof. If either X = −K? or Y = −S?, the flow (6.13) is entering the region
defined by (6.14). The stability of the other regions follows from similar reasons.
The energy estimate (6.15) follows by a direct computation. �

See Fig. 1. The straight line aY − 4X = 0 contains the points (−K?,−S?)
and (0, 0). Whether Y > 4X/a or not decides the sign of X ′. Also notice that
S?
(
1 + S−1

? X
)m − S? ≥ 4X/a if and only if X ≤ 0. The next results deals with a

special energy level.

Lemma 6.8. The ellipse defined by

(6.16) (aY − 4X)2 + 4 bX2 =
a2 b
4 + b

S2
?

has the following properties:
(i) it is contained in the region X > −K? and Y ≥ −S?,
(ii) it is tangent to the line Y = −S? at X = − a

4+b S? > −K?,
(iii) it is tangent to the line X = X? := − a

2
√

4+b S? > −K? at a point which
intersects the line aY − 4X = 0, i.e., (X,Y ) = (X?, Y?) with Y? = 4

a X?.

This lemma follows from simple computations which are not detailed here. The
motivation for studying (6.13) comes from the following comparison result.

Lemma 6.9. Let d ≥ 1, m ∈ [m1, 1) and assume that v0 ∈ L1
+(Rd) is such that

‖v0‖1 = M and (|x|2 v0 + vm0 ) ∈ L1(Rd). Then the solution of (2.15) with initial
datum v0 satisfies

K(t) = K[v(t, ·)] ≥ X(t) and S(t) = S[v(t, ·)] ≥ Y (t) ∀ t ≥ 0

if (X,Y ) solves (6.13) with initial data

X(0) = K[v0] , Y (0) = E [v0] .

Proof. It is a consequence of δ ≥ 0 and

d

dt

(
eb t S(t)

)
= meb t δ ≥ 0 =

d

dt

(
eb t Y (t)

)
,

d

dt

(
e4 tK(t)

)
= a e4 t S(t) ≥ a e4 t Y (t) =

d

dt

(
e4 tX(t)

)
.

�
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-
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−K?
Figure 1. In (X,Y ) coordinates, arrows represent the vector
field which corresponds to (6.13), i.e., (aY − 4X,−bY ). The
line aY − 4X = 0 determines the sign of X ′. The ellipse de-
fined by (6.16) is also represented. White areas are the regions
such that (6.11) holds: the upper limit is Y = ψ(X). Here we
have d = 3, m = m1 = 2/3, a = 2 d (1 − m)/m = 3 and
b = 2 d (m−mc) = 2α and scales are in units of M. The qual-
itative properties are independent of the dimension d ≥ 3 and of
the exponent m ∈ [m1, 1).

Let us define three regions:

• Region A:

−K? < X ≤ 0 and
4

a
X ≤ Y ≤ ψ(X)

with ψ as in (6.12).

• Region B:

− S? ≤ Y < min

{
4

a
X,ψ(X)

}

and

{
either (aY − 4X)2 + 4 bX2 ≤ a2 b

4 + b
S2
? ,

or X > − a
4 + b

.

• Region C:

−K? < X < − a
4 + b

S? , −S? < Y <
4

a
X and (aY − 4X)2 + 4 bX2 >

a2 b
4 + b

S2
? .

See Fig. 2 for an illustration of the three regions.

Corollary 6.10. Let d ≥ 1, m ∈ [m1, 1) and assume that v0 ∈ L1
+(Rd) is

such that ‖v0‖1 =M and (|x|2 v0 +vm0 ) ∈ L1(Rd). Then the solution of (2.15) with
initial datum v0 satisfies K[v(t, ·)] > −K? for all t ≥ 0, and more precisely:

(i) If (K[v0],S[v0]) is in Region A, then

K[v(t, ·)] ≥ K[v0] ∀ t ≥ 0 .
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Figure 2. Regions A, B, C appear (from left to right) in green
with d = 3, m = m1 = 2/3, a = 2 d

m (1−m) and b = 2 d (m−mc).

(ii) If (K[v0],S[v0]) is in Region B, then

K[v(t, ·)] ≥ X? = − a
2
√

4 + b
S? ∀ t ≥ 0 .

(iii) If (K[v0],S[v0]) is in Region C, then

K[v(t, ·)] ≥ − 1√
b

√
(4 + b)K[v0]2 − 2 aK[v0]S[v0] + a2 S[v0]2/4 ∀ t ≥ 0 .

As a consequence, we have that for any t ≥ 0

(6.17) K[v(t, ·)] ≥ X(t) =
1−m
m

F(0) e−4t +
1

4m
S(0)

(
3 e−4t + e−2α t

)
> −K? .

Proof. The proof follows from (6.15), the properties of Lemma 6.8 and Lem-
ma 6.9, with elementary but tedious computations. The lower bound in Region C
is obtained by writing(

aY (t)− 4X(t)
)2

+ 4 bX(t)2 ≤
(
aY (0)− 4X(0)

)2
+ 4 bX(0)2

for any t ≥ 0 and looking for the value of a vertical tangent to the ellipse correspond-
ing to the equality case. Inequality (6.17) is obtained by an explicit integration
of (6.13)

(6.18) X(t) = X(s) e−4(t−s) +
a

4− b

(
e−b(t−s) − e−4(t−s)

)
Y (s) ∀ t ≥ s ≥ 0 ,

using a/(4−b) = 1/(4m) andmK−S = (1−m)F , X(0) = K(0), Y (0) = S(0). �

Depending whether (K[v0],S[v0]) is in Region A, B and C respectively, we
define
(6.19)

K• :=


K[v0] in Region A ,

X? = − a
2
√

4+b S? > −K? in Region B ,

− 1√
b
√

(4 + b)K[v0]2 − 2 aK[v0]S[v0] + a2 S[v0]2/4 in Region C .

We learn from Corollary 6.10 that τ defined according to (6.7) by

dτ

dt
=
(

1 + K
K?

)−α/2
− 1 , τ(0) = 0 ∀ t ≥ 0 ,
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is well defined on R+ and

(6.20) − t < τ(t) ≤
[(

1 + K•
K?

)−α/2
− 1

]
t ∀ t > 0 .

As a special case, if K[v0] = 0, we have −K(t)
K? ≤

X?
K? = 2√

4+b = 1√
1+α

and

− t < τ(t) ≤

[(
1− 1√

1 + α

)−α/2
− 1

]
t ∀ t > 0 .

6.2.4. A bound on the delay τ .

Theorem 6.11. Let d ≥ 3 and m ∈ [m1, 1). Assume that v0 is a nonnegative
function in L1

(
Rd, (1 + |x|2) dx

)
such that vm0 ∈ L1(Rd, dx) and

∫
Rd v0 dx = M.

We consider the solution v of (2.15) with initial datum v0 and τ defined by (6.7).
Then we have

|τ(t)| ≤ max

{
1,

[(
1 + K•

K?

)−α/2
− 1

]}
t1 +

K?
8

∀ t ≥ 0 ,

where K• is defined by (6.19),

t1 :=
1

2α
log

(
max

{
1,
|max{0,S(0)}|

2mK?

})
.

If additionally K[v0] = 0, then τ is uniformly bounded by a constant τ• which
depends only on m and d.

Proof. We deduce from (6.17) that X(t) ≥ −K?/2 if
1

m
S(0) e−2α t > − 1

2
K? ,

that is, for any t ≥ t1. Using (6.20), we know that

|τ(t1)| ≤ max

{
1,

[(
1 + K•

K?

)−α/2
− 1

]}
t1 .

For any t ≥ t1, we deduce from (6.18)

K(t) ≥ X(t) =
1−m
m

F(t1) e−4 (t−t1) +
1

m
S(t1) e−2α (t−t1) > − 1

2
K? e−2α (t−t1)

because 1 ≤ α ≤ 2 and max
{
e−4 (t−t1), e−2α (t−t1)

}
= e−2α (t−t1). After taking

into account (6.7), we find that

dτ

dt
≤
(

1− 1

2
e−2α (t−t1)

)−α/2
− 1 ∀ t ≥ t1 ,

which gives the estimate

|τ(t)| ≤ |τ(t1)|+ cα
2
K? ∀ t ≥ 0

with

cα :=

∫ +∞

0

((
1− 1

2 e
−2α s

)−α/2 − 1
)

ds <
α

2

∫ +∞

0

e−2α s ds =
1

4
< +∞

because α ≤ 2. Also notice that S(0) ≥ −S? = 4K?/a so that t1 is bounded
uniformly for given m and d by

t1 ≤
1

2α
log

(
max

{
1,

4

d (1−m)

})
.
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Hence, if K[v0] = 0, we have that for all t ≥ 0

(6.21) |τ(t)| ≤ max

{
1,

[(
1− 1√

1 + α

)−α/2
− 1

]}
t1 +

K?
8

=: τ• ,

which concludes the proof. �

6.3. Entropy-entropy production inequalities and refinements

We revisit the results of Chapter 2 in the framework of the solutions of (6.9)
instead of the solutions of (2.15).

6.3.1. The quotient reformulation. For any given λ > 0, let us define

Qλ[w] := mλ
d
2 (m−mc)

∫
Rd w

∣∣∇wm−1 −∇Bm−1
λ

∣∣2 dx∫
Rd (Bmλ − wm) dx

.

Changing variables with

(6.22) wλ(x) := λd/2 w
(√
λx
)
,

we notice that

Qλ[w] = Q1[wλ] =
I[wλ]

F [wλ]
≥ 4

as a consequence of (2.16). This has already been noticed in [DT11]. In particular,
the carré du champ method has been used in [DT13] and shows, among other
results, that

(6.23)
dQλ

dt
≤ Qλ (Qλ − 4) .

where, for brevity, we write Qλ(t) = Qλ[w(t, ·)] and w solves (6.9).

6.3.2. Initial time layer. With almost no change except that m ∈ [m1, 1),
Equation (2.15) being replaced by (6.9) andQ1 byQλ, the initial time layer estimate
of Lemma 2.9 applies: on the interval (0, T ), we have a uniform positive lower bound
on Qλ[w(t, ·)]− 4 if we know that Qλ[w(T, ·)]− 4 > 0.

Lemma 6.12. Let d ≥ 3 and m ∈ [m1, 1). Assume that w is a solution to (6.9)
with nonnegative initial datum v0 ∈ L1(Rd) such that F [v0] < +∞ and

∫
Rd v0 dx =

M. With the notation of Section 6.3.1, if for some η > 0 and T > 0, we have
Qλ(T ) ≥ 4 + η, then we also have

Qλ(t) ≥ 4 +
4 η e−4 (T−t)

4 + η − η e−4 (T−t) ∀ t ∈ [0, T ] .

Proof. Exactly as for Lemma 2.9, it is an easy consequence of a backward
estimate based on (6.23). �

As a consequence, we obtain a uniform estimate on the initial time layer. Under
the assumptions of Lemma 6.12, with ζ = 4 η e−4T

4+η−η e−4T , we obtain

Qλ(t) ≥ 4 + ζ ∀ t ∈ [0, T ] .
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6.3.3. Asymptotic time layer. As in Section 2.4.3, let us consider the lin-
earized free energy h 7→ F[h] and the linearized Fisher information h 7→ I[h].
By the Hardy-Poincaré inequality (1.37), for any h ∈ L2(Rd,B2−m dx) such that
∇h ∈ L2(Rd,B dx) and

∫
Rd hB

2−m dx = 0, we have

(6.24) I[h] ≥ 4 aF[h]

with a = 1. The improved Hardy-Poincaré inequality holds with a = 2 − d (1 −
m) under the additional constraint

∫
Rd xhB

2−m dx = 0 if m ∈ (m1, 1) but this
constraint provides no improvement on the spectral gap in the limit case m = m1,
as we still have a = 1. See (2.27) for more details. Finally, if m = m1 and h ∈
L2(Rd,B2−m dx) is such that ∇h ∈ L2(Rd,B dx) and

∫
Rd
(
1, x, |x|2

)
hB2−m dx = 0,

according to [DT11, Corollary 2], Inequality (6.24) holds with

(6.25) a =
(d+ 2)2

8 d
if 3 ≤ d ≤ 6 and a = 2

d− 2

d
if d ≥ 6 .

As in Proposition 2.10, the improved spectral gap in (6.24) can be used to establish
an improved lower bound for Qλ(t)[w(t, ·)] in the asymptotic time layer, as t→ +∞.

Proposition 6.13. Let d ≥ 3, m = m1 and let us define

η :=
(d− 2)2

8 d
if 3 ≤ d ≤ 6 and η := 2

d− 4

d
if d ≥ 6 ,

and χ = 1/580. If w is a nonnegative solution to (6.9) with initial datum as
in Lemma 6.5 such that

∫
Rd v0 dx =M,

∫
Rd x v0 dx = 0 and

(6.26) (1− ε)Bλ(t)(x) ≤ w(t, x) ≤ (1 + ε)Bλ(t)(x) ∀x ∈ Rd , ∀ t ≥ T

for some ε ∈ (0, χ η) and T > 0, then we have

(6.27) Qλ(t)[w(t, ·)] ≥ 4 + η ∀ t ≥ T .

Proof. Since (6.26) and (6.27) are pointwise in t, we can write λ = λ(t) and
forget about the dependence in t. Up to the rescaling (6.22), we follow the proof of
Proposition 2.10. Let Fλ[w] := F [wλ], Iλ[w] := I[wλ] and consider the linearized
functionals

Fλ[h] :=
m

2

∫
Rd
|h|2 B2−m

λ dx and Iλ[h] := m (1−m)λ
α
2

∫
Rd
|∇h|2 Bλ dx .

Changing variables in (6.24), we obtain as in [DT11, Corollary 3] the inequality

λ
α
2 Iλ[h] ≥ 4 aFλ[h] ∀h ∈ L2(Rd,B2−m

λ dx) s.t.
∫
Rd

(
1, x, |x|2

)
hB2−m

λ dx = 0 .

Let us consider h := v Bm−2
λ − Bm−1

λ . As in Proposition 2.10, we use [BBD+09,
Lemma 3] to get that under Assumption (6.26), we have

(1 + ε)−b Fλ[h] ≤ Fλ[w] ≤ (1− ε)−b Fλ[h]

where b = 2−m and, with s1 and s2 as in (2.31),

Iλ[h] ≤ s1(ε) Iλ[w] + s2(ε)Fλ[h] .

The remainder of the proof is identical to the one of Proposition 2.10, up to the
replacement of a = 1 by a given by (6.25). �
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6.4. Uniform convergence in relative error

After incorporating the additional rescaling corresponding to the delay τ(t) in
our computations, we have the convergence in relative error of the solution w. Let
us define q := (d+ 2)−1 21−d/2 and

(6.28) T (ε,A) :=
1

2α
log

(
1 + α c?

1 +A1−m

εa

)
where

(6.29) c? := α c? q
−a
(

1 +
S?

1−m

)α
2 (

1 + e2α τ•
)
,

with c? as in (4.96), a as in Theorem 4.1, S? as in (6.2.1) and τ• as in 6.21. We
observe that c? is such that T (ε,A) > T?(q ε,A,S?/(1−m)) + τ• for any ε, A > 0.

Theorem 6.14. Let d ≥ 3, m ∈ [m1, 1) and ε ∈ (0, χ η). Assume that v0 is a
nonnegative function in L1

(
Rd, (1 + |x|2) dx

)
such that

(6.30)∫
Rd

(1, x, |x|2) v0 dx =

∫
Rd

(1, x, |x|2)B dx and sup
r>0

rd
∫
|x|>r

v0 dx ≤ A .

If v solves (2.15) with initial datum v0 and w is obtained by (6.6), (6.7) and (6.8),
then

(6.31) (1− ε)B?(s, x) ≤ w(s, x) ≤ (1 + ε)B?(s, x) ∀x ∈ Rd , ∀ s ≥ T ,
where T is as in (6.28).

Proof. Using

1− w

B?
=

(
1− w

BR(t)

) BR(t)

B?
+

(
1−
BR(t)

B?

)
and ‖1− v/B‖∞ =

∥∥1− w/BR(t)

∥∥
∞ because of the change of variables (6.8), we

have the estimate

(6.32)
∥∥∥∥w(s)− B?(s)

B?(s)

∥∥∥∥
∞
≤
∥∥∥∥v(t)− B

B

∥∥∥∥
∞

∥∥∥∥BR(t)

B?(s)

∥∥∥∥
∞

+

∥∥∥∥BR(t) − B?(s)
B?(s)

∥∥∥∥
∞
,

where BR(t) is as in (6.5). Notice that
∥∥BR(t)/B? − c

∥∥
∞ =

∥∥∥B√λ(t)R(t)/B − c
∥∥∥
∞

for c = 0 and c = 1. A simple computation shows that the supremum and the
infimum in B√λ(t)R(t)/B are achieved either at the origin or as a limit for |y| → ∞.
As a consequence, we deduce that∥∥∥∥BR(t)

B?(s)

∥∥∥∥
∞

= max
{√

λ(t)R(t),
1√

λ(t)R(t)

}d
and∥∥∥∥BR(t)

B?(s)
− 1

∥∥∥∥
∞

= 1−min
{(√

λ(t)R(t)
)d
,
(√

λ(t)R(t)
)−d }

.

Recall that q = (d+2)−1 21−d/2. The inequality F [v0] = S[v0]/(m−1) ≤ S?/(1−m)
holds since K[v0] = 0. As a consequence, we deduce from inequality (4.98) and
identity (6.6) that,

(6.33) 1− q ε ≤ R2(t)λ(t) ≤ 1 + q ε ∀ t ≥ T? = T?

(
q ε,A,

S?
1−m

)
,
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where T? is as in (4.96). Since the functions x 7→ 1− (1∓ x)
±d/2 are concave, non-

decreasing functions, by a Taylor expansion around 0 and from (6.33), we deduce∥∥∥∥BR(t)

B?(s)
− 1

∥∥∥∥
∞
≤ 1

2
d ε q and

∥∥∥∥BR(t)

B?(s)

∥∥∥∥
∞
≤ 2

d
2 .

Combining the above two inequalities with (6.32), we obtain (6.31) for any s ≥
T?(q ε,A,S?/(1 −m)) + τ(T?). Since K[v0] = 0, we have the estimate τ(T?) ≤ τ•,
as a consequence we have that T > T?(q ε,A,S?/(1 − m)) + τ• and the proof is
completed. �

6.5. Computation of the stability constant

Proof of Theorem 6.1. Let us assume first that gf = g. Exactly as in
Section 5.1.1, we obtain the improved entropy - entropy production inequality (5.1)
with η as in Proposition 6.13, ζ = 4 η e−4T

4+η−η e−4T as in Lemma 6.12 and T given
by (6.28). This proves that I[v] ≥ (4 + ζ)F [v] as in (5.1). As in the proof of
Theorem 5.3, from the expression on ζ we deduce that

ζ ≥
(
1+A1/(2 d)

)−1 4 η

4 + η

(
ηa χa

21+a α c?

)2/α

cα ,

where ε? = η χ/2 where η and χ are as in Proposition 6.13, a as in Theorem 4.1, c?
as in (6.28), cα as in (5.7). From the identity (1.28), we deduce that inequality (6.1)
holds with

C? = (d− 1)−1 4 η

4 + η

(
ηa χa

21+a α c?

)2/α

cα .

Inequality (6.2) can be deduced from (6.1) as in Section 5.1.2. �

Proof of Corollary 6.2. We proceed as in Section 5.2.3. Let us define the
normalized function Nf as

Nf(x) := λ[f ]
2−d
2 µ[f ]

2−d
2d f

(
xf + x/λ[f ]

)
∀x ∈ Rd

so that gNf = g. From inequalities (6.1) and (6.2), we deduce that

δ[Nf ] ≥ C?(A) E [Nf |g] and δ[Nf ] ≥ C?(A)/ (4 + C?(A))J [Nf |g] .

Inequalities (6.3) and (6.4) follow from

E [Nf |g] =
λ[f ]

1
2

µ[f ]
1
d

E [f |gf ] , J [Nf |g] = µ[f ]
2−d
d J [f |gf ]

and A[Nf ] = µ[f ]−d λ[f ]−dA[f ] , δ[f ] = µ[f ]
d−2
d δ[Nf ] .

�

Proof of Proposition 6.3. Let (λ, µ, y) ∈ (0,+∞)× (0,+∞)× Rd and re-
call that gλ,µ,y(x) = λ

d
2p µ

1
2p g
(
λ (x − y)

)
, so that ∇g1−p?

λ,µ,y = 2λµ−
1
d (x − y). By

expanding the square in J
[
|f | | gλ,µ,y

]
and integrating by parts (x− y) |f |p? ∇f we
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get

(d− 2)2

4 (d− 1)
J
[
|f | | gλ,µ,y

]
= ‖∇f‖22

+ (d− 2)2 λ2 µ−
2
d

∫
Rd
|f |2 p

?

|x− y|2 dx− d (d− 2)2

d− 1
λµ−

1
d

∫
Rd
|f |p

?+1 dx .

A minimization in y reveals that, for any λ, µ > 0 the minimum is attained at
y = y[f ] = xf where y[f ] = xf are as in (1.20). Let us call f(z) = z2 (d −
2)2

∫
Rd |f |

2 p? |x− xf |2 dx− z d (d− 2)2 (d− 1)−1
∫
Rd |f |

p?+1 dx+ ‖∇f‖22. A mini-
mization in z reveals that f(x) attains its minimum at

z =
d

2 (d− 1)

∫
Rd |f |

p?+1 dx∫
Rd |f |2 p

? |x− xf |2 dx
.

Since δ[f ] = δ
[
|f |
]
and J

[
|f | | gλ,µ,y

]
= J

[
f | gλ,µ,y

]
, the result follows. �

6.6. Concluding comments

In the setting of Chapter 6, we can handle not only the critical case m = m1,
but also any m ∈ [m1, 1). We do not insist so much on this point as m ∈ (m1, 1) is
already covered in Chapter 5, with simpler estimate. The estimates of Chapter 5 fail
in the limit as m→ m1, as a consequence of the expression of ζ? defined by (5.9).
The bigger advantage of the setting of Chapter 6, is that we obtain for the constant
an expression which has a finite, positive limit as m → m1, to the price of a more
complicated setting.

The estimate of t1 in Theorem 6.11 is rather rough. Actually, from Lemma 2.1,
one can easily notice that a solution of the fast diffusion equation (2.1) has a second
moment which grows at least like t2/α as t → +∞, which in turns provides upper
and lower estimates of t1. This is exactly the rate of growth of the second moment
of the self-similar solutions of (2.15), certainly not a surprise. In original variables,
one can analogously introduce a delay for the best matching self-similar solution
and prove a similar monotonicity property, cf. [DT13, DT15, DT16a]. This
latter delay is related with the function t 7→ τ(t). However, the self-similar change
of variables makes things rather involved and the analysis requires some care, as
seen in Section 6.2.

In any case the overall message is somewhat simple. When studying the in-
termediate asymptotic of (2.1), we are performing an asymptotic expansion of the
solutions around the self-similar profiles. By fixing mass and center of mass, quan-
tities preserved along the fast diffusion flow, we are able to use improved weighted
Poincaré inequalities by killing the lowest modes. In this way, we obtain faster rates
of convergence towards Barenblatt profiles, which are equivalent to the stability es-
timates. This is the strategy adopted in Chapter 5, and it breaks down at m = m1

since the energy levels of the linearized problem associated to translations and to
scalings coincide. In order to get an improved Poincaré inequality if m = m1, we
need the second moments to be preserved along the nonlinear flow. Unfortunately,
this is not the case for equation (2.15). We need to find another flow, adjusting
the time scale with a delay as in (6.7). This fits the time scale to preserve the
second moments and kill the next term in the linearized problem. The key obser-
vation here is that a time-shift in a Barenblatt self-similar solution amounts to a
rescaling. This is the reason why the rescaling (6.7) results in a non-autonomous



6.6. CONCLUDING COMMENTS 139

equation (6.9) which involves also a non-local term, λ?, given by the second moment
appropriately normalized. Only the presence of this time dependent nonlocal term
λ? can guarantee that the second moment is the same as the natural Barenblatt
function associated to the equation, along the nonlinear flow. This allows to get
rid of the next mode and exploit the improved spectral gap to get our constructive
and quantitative stability estimates also in the critical case.





CHAPTER 7

Discussion of the method

The stability results of Chapters 5 and 6 are obtained under a tail decay con-
dition which is not present in Theorem 1.15. So far, this is the price we have to
pay for constructing an explicit constant. Here we discuss why such a tail decay
condition is natural in our method.

7.1. Decay properties

In this section, we consider decay properties of the solutions of (2.1) and (2.15)
as measured by ‖u‖Xm := supr>0 r

α/(1−m)
∫
|x|>r |u| dx defined in (4.1).

7.1.1. Decay properties in original and in self-similar variables. Ac-
cording to [BS20, Proposition 5.3] and [Sim20, Chapter 4], the solution of the fast
diffusion equation has a growth property in Xm, which can be stated as follows.

Proposition 7.1. Let d ≥ 1 and m ∈ (mc, 1). Any nonnegative solution u
to (2.1) with initial datum u0 ∈ L1

+(Rd) ∩ Xm satisfies

‖u(t, ·)‖Xm ≤ 2
2α

1−m max
{

1, c3 α
−1/α

} (
1 + ‖u0‖Xm

)
R(t)

α
1−m ∀ t ≥ 0

with R(t) given by (2.9) and c3 given by (4.5).

Proof. Inequality (4.6) applied with ρ0 = 1, r = 2R and τ = 0 gives

R
α

1−m

∫
|x|>4R

u(t, x) dx ≤ 2
m

1−m R
α

1−m

∫
|x|>2R

u0(x) dx+ c3 t
1

1−m

for any t ≥ 0. By taking the supremum in R in both sides of the above inequality,
we find that

‖u(t, ·)‖Xm ≤ 2
α+m
1−m ‖u0‖Xm + 2

2α
1−m c3 t

1
1−m

and the conclusion follows. �

The above result turns out to be a stability result of Xm under the fast diffusion
flow in self-similar variables.

Corollary 7.2. Let d ≥ 1 and m ∈ (mc, 1). With the same constant h > 0 as
in Proposition 7.1, if v0 ∈ L1

+(Rd) ∩ Xm, then the solution v to (2.15) with initial
datum v0 is such that

‖v(t)‖Xm ≤ 2
2α

1−m max
{

1, c3 α
−1/α

}
(1 + ‖v0‖Xm) ∀ t ≥ 0 .

141
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7.1.2. On the spaces Xm, Hp(Rd) and Wp(Rd).
The space Xm gives the right framework to investigate the convergence in rel-

ative error for the flows (2.1) and (2.15). We remark that the relative entropy F [v]
is well defined for initial data in L1

+(Rd) whose second moment is finite. This is the
case for data in Xm. Indeed, we have the following

Proposition 7.3. Let d ≥ 1 and m ∈
(
m̃1, 1

)
. If u ∈ Xm, then∫

Rd
|x|2 |u|dx ≤ ‖u‖L1(Rd) + 4

(
1− 22− α

1−m
)−1 ‖u‖Xm .

Proof. Let us split the integral of |x|2 |u| as∫
Rd
|x|2 |u|dx =

∫
|x|≤1

|x|2 |u|dx+

∞∑
j=0

∫
2j <|x|≤2j+1

|x|2 |u|dx .

The first term in the right-hand-side can be bounded by the L1(Rd) norm of |u|.
For the second term we proceed as follows. Let j ≥ 0 be an integer, we have then,
by definition of (4.1)∫

2j <|x|≤2j+1

|x|2 |u|dx ≤ 22(j+1)

∫
|x|>2j

|u|dx ≤ 22−( α
1−m−2)j ‖u‖Xm .

Summing up on j ≥ 0, we find
∞∑
j=0

∫
2j <|x|≤2j+1

|x|2 |u|dx ≤ 4 ‖u‖Xm
∞∑
j=0

2−( α
1−m−2)j ,

the series converges since α
1−m > 2. The proof is concluded. �

In order to relate the Gagliardo-Nirenberg-Sobolev inequalities to the fast dif-
fusion flow (2.1), we consider u = |f |2p where p and m are related through (2.3).
In this way, the hypothesis u ∈ Xm is satisfied if and only if f ∈ L2p(Rd) and

(7.1) sup
r>0

r
d−p(d−4)
p−1

∫
|x|>r

|f |2p dx <∞ .

As a consequence, functions f ∈ Hp(Rd) that satisfy (7.1), are in Wp(Rd).

Corollary 7.4. Let p ∈ (1, p?] if d ≥ 3 and p ∈ (1, p?) if d = 1 or d = 2. If
f ∈ Hp(Rd) and f satisfies (7.1), then f ∈ Wp(Rd).

Proof. Since f ∈ Hp(Rd) implies that f ∈ L2p(Rd) for any p ∈ (1, p?] if d ≥ 3
and p ∈ (1, p?) if d = 1 or d = 2, we only need to prove that |x||f |p ∈ L2(Rd). This
follows from Proposition (7.3) and the relation (2.3). �

7.2. A limitation of the method

The stability results of Chapter 5 and 6 are based on Theorem 4.1, on the
convergence in relative error for the fast diffusion flow (2.1). According to [BS20]
and [Sim20], the assumption u = |f |2p ∈ Xm is not only sufficient but also neces-
sary. For completeness, let us state a result and give a short proof.
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Proposition 7.5. Let m ∈ [m1, 1) if d ≥ 2 and m ∈ (1/3, 1) if d = 1. If u is
a solution of (2.1) with initial datum u0 ∈ L1

+(Rd) such that
∫
Rd u0 dx =

∫
Rd B dx

and if

(7.2) lim
t→+∞

sup
x∈Rd

∣∣∣ u(t, x)

B(t, x)
− 1
∣∣∣ = 0

then u0 ∈ Xm.

Proof. Assume that the limit (7.2) holds. As a consequence of (7.2), there
exists a time T > 0 such that

|u(t, x)| ≤ 2B(t, x) ∀x ∈ Rd , ∀ t > T .

By applying inequality (4.6) with ρ0 = 1, r = 2R > 0, τ = T and t = 0, we find

R
α

1−m

∫
|x|>4R

u0(x) dx ≤ 2
m

1−m R
α

1−m

∫
|x|>2R

|u(T, x)|dx+ c3 T
1

1−m

≤ 2
1

1−m R
α

1−m

∫
|x|>2R

B(T, x) dx+ c3 T
1

1−m .

Taking the supremum in both sides of the inequality, we are left with

‖u0‖Xm ≤ c1 ‖B(T )‖Xm + c2 T <∞

for some finite constants c1, c2 > 0. The proof is concluded. �

As a consequence of Theorem 4.1 and Proposition 7.5, we have the following
side observation.

Corollary 7.6. Let m ∈ [m1, 1) if d ≥ 2 and m ∈ (1/3, 1) if d = 1. If u is a
solution of (2.1) with initial datum u0 ∈ L1

+(Rd) and if u0 6∈ Xm, then u(t, ·) 6∈ Xm
for any t > 0.

7.3. Boundedness of the second moment

In Theorem 1.15 the assumptions about the mass and center of mass are rather
natural since they contribute to chose the right profile g, while the assumption∫

Rd
|x|2 f2p dx =

∫
Rd
|x|2 g2p dx

is a subtle one. Contrary to Theorem 5.3 where the space Xm, m = (p + 1)/(2 p),
is clearly a restriction, the boundedness of the second moment in Theorem 1.15 is
necessary for obtaining a stability result where the entropy measures the distance
to M. This necessity comes from the fact that both the quantities E [f |g] and I[f |g]
involve the second moment of f while the deficit functional δ does not. Playing
on this, one can construct sequences whose second moment diverges (and so does
the relative entropy and the Fisher information) while the deficit converges to zero
(this also happens for the Log-Sobolev inequality as previously noted in [ELS20]).
Such sequences may even lie in Xm but this does not provide a counterexample
to Theorem 5.3: indeed the dependence in ‖f2p‖Xm of the constant C appearing
in (5.4) makes the right-hand-side of inequality go to zero, suggesting that such a
dependence may be optimal. We recall that ‖u‖Xm := supr>0 r

α/(1−m)
∫
|x|>r |u| dx

is defined in (4.1); the exponent α/(1 −m) may be expressed as a function of p,
see (7.1).
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Proposition 7.7. Let d ≤ 2 or d ≥ 3 and 1 < p < p? and set m = (p+1)/(2 p).
There exists a sequence {fk} ∈ Wp(Rd) ∩ Xm with∫

Rd
(1, x) f2p

k dx =

∫
Rd

(1, x) g2p dx and lim
k→∞

∫
Rd
|x|2 f2p

k dx =∞

such that

lim
k→∞

δ[fk] = 0 , lim
k→∞

E [fk|g] =∞ and lim
k→∞

E [fk|g]

‖f2p
k ‖

2(1−m)
α

Xm

= 0

where α = 2− d (1−m) is as in (2.9).

In the subcritical range, this means that the condition on the second moment in
Theorems 1.15 and 5.6 is not a technical condition. However, by Proposition 7.3,
the bound on ‖f2p‖Xm is a slightly stronger condition.

Proof. Let xk be a sequence of points in Rd such that limk→∞ |xk|2/k =∞.
Let us define

fk(x)2p :=
(
1− 2

k

)
g2p(x) + 1

k g
2p(x+ xk) + 1

k g
2p(x− xk) .

We will first prove that the relative entropy diverges as k goes to infinity. A simple
computation proves that

∫
Rd (1, x) f2p

k dx =
∫
Rd (1, x) g2p dx and∫

Rd
|x|2 f2p

k dx =
(
1− 2

k

) ∫
Rd
|x|2 g2p(x) dx

+ 2
k

(∫
Rd
|x|2 g2p(x) dx + |xk|2

∫
Rd

g2p(x) dx

)
.

The relative entropy can be written as

E [fk|g] = S +
2 p

1− p
‖fk‖p+1

p+1 +
p+ 1

p− 1

∫
Rd
|x|2 f2p

k dx ,

where S does not depend on k. The norm ‖fk‖p+1
p+1 is bounded in k since

|fk(x)|p+1 ≤ hk(x)

with

(7.3) hk(x) := 3
p+1
2p

[(
1− 2

k

) p+1
2p gp+1(x) +

gp+1(x+ xk)

k
p+1
2p

+
gp+1(x− xk)

k
p+1
2p

]
,

implying that

‖f‖p+1
p+1 ≤ 3

p+1
2p

[(
1− 2

k

) p+1
2p + 2 k−

p+1
2p

]
‖g‖p+1

p+1 .

As a consequence, since |xk|2/k →∞ we obtain, for k large enough, that

E [fk|g] ≥ c |xk|
2

k

∫
Rd

g2p dx→∞ for k →∞ ,

where the constant c does not depend on k.
Let us now consider the deficit, since ‖fk‖2p = ‖g‖2p we can write

δ[fk] = (p− 1)2 ‖∇fk‖22 + 4
d− p (d− 2)

p+ 1
‖fk‖p+1

p+1 −KGNSM2pγ .

To prove that δ[fk] converges to zero we shall prove that lim supk→∞ ‖fk‖2 ≤ ‖∇g‖2
and that ‖fk‖p+1 → ‖g‖p+1. We will start with the last assertion: we have that
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fp+1
k → gp+1 a.e. and fp+1

k ≤ hk (hk being defined in (7.3)). Since
∫
Rd hk dx →∫

Rd h∞ dx = 3
p+1
2p
∫
Rd g

p+1 dx we are in the position of using a generalized version
of the dominated convergence theorem (see [Roy88, Proposition 18, p. 270]), so
that ‖fk‖p+1 → ‖g‖p+1 as k → ∞. A simple computation show that the gradient
of fk is given by

∇fk = f1−2p
k

( (
1− 2

k

)
g2p−1(x)∇g(x) + 1

k g
2p−1(x+ xk)∇g(x+ xk)

+ 1
k g

2p−1(x− xk)∇g(x− xk)
)
.

Therefore we have that

|∇fk| ≤ |fk|2p
( (

1− 2
k

)
g2p−1(x) |∇g(x)|+ 1

k g
2p−1(x+ xk) |∇g(x+ xk)|

+ 1
k g

2p−1(x− xk) |∇g(x− xk)|
)

≤
(
1− 2

k

) 1
2p |∇g(x)|+ 1

k
1
2p

|∇g(x+ xk)|+ 1

k
1
2p

|∇g(x− xk)|

where we have used the fact that

fk(x) ≥ max{
(
1− 2

k

) 1
2p g2p−1(x) , k−2p g(x+ xk) , k−2p g(x− xk)} .

By taking the square in the above inequality and using the Cauchy-Schwarz in-
equality we obtain

‖∇fk‖22 ≤
(
1− 2

k

) 1
p ‖∇g‖22 + k−

1
p ‖∇g(x+ xk)‖22 + k−

1
p ‖∇g(x− xk)‖22

+ 2
(
1− 2

k

) 1
p k−

1
p ‖∇g‖2 ‖∇g(x+ xk)‖2

+ 2
(
1− 2

k

) 1
p k−

1
p ‖∇g‖2 ‖∇g(x− xk)‖2 .

Since ‖∇g(x± xk)‖2 = ‖∇g‖2, we have that lim supk→∞ ‖∇fk‖
2
2 ≤ ‖∇g‖

2
2 and as

a consequence
0 ≤ lim sup

k→∞
δ[fk] ≤ δ[g] = 0 ,

which proves ones of the assertions.

It remains to prove that E [fk|g]/‖f2p
k ‖

2(1−m)
α

Xm → 0 as k → ∞. We only need
to bound from below the quantity in ‖f2p

k ‖Xm . Take k large enough such that
|x|k >> 1, we have that

‖f2p
k ‖ ≥C |xk|

α
1−m

∫
|x|≥|xk|/2

g2p(x+ xk) dx

≥C |xk|
α

1−m

∫
|x+xk|≤1

g2p(x+ xk) dx = C |xk|
α

1−m

∫
|x|≤1

g2p(x) dx .

By previous computations we know there exists a positive constant C such that
E [fk|g] ≤ C |xk|2/k. Therefore, we obtain

0 ≤ E [fk|g]

‖f2p
k ‖

2(1−m)
α

Xm

≤ C
|xk|2

k

k
2 (1−m)

α

|xk|2
= C k

(d+2)(1−m)−2
α → 0 as k →∞ ,

since 2−(d+2) (1−m) > 0 if m > d/(d+2) which holds in our range of parameters
because, for d ≥ 3, m > (d− 1)/d while for d = 1, 2, m > 1/2. �
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7.4. Conclusion

The space Xm is the space of well-behaved functions in which our method
applies, and Proposition 7.5 clearly shows that it cannot be extended to Wp(Rd).
From Theorem 1.15, we know that there is a constant of stability even for functions
of Hp(Rd) and Wp(Rd) which are not in Xm, m = (p + 1)/(2 p), with stability
measured in, respectively, Hp(Rd) or using the relative Fisher information. It is
therefore an intriguing and challenging question to find an alternative strategy
based on fast diffusion flows and entropy estimates for functions which are not
well-behaved.



Notations

Throughout the memoir, d is the dimension of the Euclidean space Rd. Lq

stands for Lebesgue’s spaces, Lq+ for nonnegative functions in Lq, while H1 and
W1,1 are standard notations for Sobolev spaces: we refer to [AF03, Bre83, LL01,
Wil91] and [Eva10, page xix] for definitions.

On Lq(Rd), we use the norm ‖f‖q for any q ∈ [1,+∞]. By default, we use
Lebesgue’s measure dx on Rd. In case of subdomains in Rd, the domain of integra-
tion will be specified. Other measures, for instance in presence of a weight b, are
used and we denote for instance by Lq(Ω, b(x) dx) such a space. For convenience,
we use the notation Lq even if q < 1 for any f such that

∫
Rd |f |

q dx < +∞.

Sets
B BR(x0) ball of radius R > 0 centered at x0 ∈ Rd
B BR ball of radius R > 0 centered at the origin
B B unit ball centered at the origin, |B| = ωd/d
B Sd unit sphere in Rd+1

B Ω open bounded domain in Rd

Miscellaneous notations
B If x = (x1, x2, . . . xd) ∈ Rd, |x|2 =

∑d
i=1 x

2
i and 〈x〉 =

√
1 + |x|2

B ωd = |Sd−1| = 2πd/2/Γ(d/2)
B ∇ ·W stands for the divergence of the vector field W
B diam(Ω) = supx,y∈Ω |x− y|
B ‖m‖2 denotes the sum of the square of the elements of the matrix m

Convention. Chapters or identities below mostly refer for the first occurrence
after the introduction. Some of the symbols already appear in the introduction,
but their definitions are then repeated in the other chapters.

Chapter 1

Exponents and constants in functional inequalities. CGNS(p) denotes the
optimal constant in the Gagliardo-Nirenberg-Sobolev inequality (1.1) and KGNS is
the optimal constant in the non-scale invariant inequality (1.8). Both inequalities
are related in Lemma 1.2 through (1.10) which involves the constant C(p, d) given
by (1.11). The optimal constant in Sobolev’s inequality (1.4) is Sd = CGNS(p?).
Parameters and exponents obey the following conditions:

B p? = d/(d− 2) and p ∈ (1, p?] if d ≥ 3, p ∈ (1,+∞) if d = 1 or 2
B 2∗ = 2 p? = 2 d/(d− 2)
B θ =

(
d (p− 1)

)
/
((
d+ 2− p (d− 2)

)
p
)
: the exponent in (1.1)

B γ =
(
d+ 2− p (d− 2)

)
/
(
d− p (d− 4)

)
: the exponent in (1.8)

147
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B p = 1/(2m− 1) or m = (p+ 1)/(2 p) as, e.g., in (2.3)
Function spaces

B Hp(Rd) =
{
f ∈ Lp+1(Rd) ∩ L2 p(Rd) : |∇f | ∈ L2(Rd)

}
B Hp?(Rd) =

{
f ∈ L2 p?(Rd) : |∇f | ∈ L2(Rd)

}
B Wp(Rd) =

{
f ∈ Hp(Rd) : 〈x〉 |f |p ∈ L2(Rd)

}
Aubin-Talenti functions

B g(x) =
(
1 + |x|2

)− 1
p−1

B gλ,µ,y(x) = λ
d
2p µ

1
2p g
(
λ (x−y)

)
with the convention µq = |µ|q−1 µ if µ < 0

B M =
{
gλ,µ,y : (λ, µ, y) ∈ (0,+∞)× R× Rd

}
Functionals

B δ[f ] Deficit functional defined by (1.12)
B Free energy or relative entropy functional:
E [f |g] = 2 p (1− p)−1

∫
Rd

(
fp+1 − gp+1 − 1+p

2 p g
1−p (f2p − g2p

))
dx

B Relative Fisher information:
J [f |g] = (p+ 1) (p− 1)−1

∫
Rd
∣∣(p− 1)∇f + fp∇g1−p

∣∣2 dx

Linear operator and spectrum
B dµa = µa dx, µa(x) = (1 + |x|2)a

B La,d u = −µ1−a div [µa∇u ]

B Λess = (a+ (d− 2)/2)
2: bottom of the essential spectrum of La,d, a < 0

B λ`k: discrete eigenvalues of La,d, a < 0, given in Proposition 1.16
B Λ: spectral gap in the Hardy-Poincaré inequality (1.37)
B Λess: spectral gap in the improved Hardy-Poincaré (1.39)

Miscellaneous notations
B ϕ(s) = sm/(m− 1) for any s ≥ 0, m ∈ (0, 1)
B µ[f ], y[f ] = xf and λ[f ]: defined in (1.20), such that µ[gλ,µ,y], y[gλ,µ,y]

and λ[gλ,µ,y] coincide with λ, µ and y for any gλ,µ,y ∈M
B gf = gλ[f ],µ[f ],y[f ]

B Pressure variable P: defined in (1.23), consistently reused in Section 2.2.1
B D2P denotes the Hessian matrix of P
B Dw =

(
∇w, ∂w∂z

)
and N = d+ 2 ν

B Q: quadratic form given by (1.40)

Chapter 2

Parameters
B m denotes the exponent in the fast-diffusion equation (2.1) and M is the

mass of the solution u, that is, M =
∫
Rd u dx.

B mc = 0 if d = 1 (by convention), and mc = (d − 2)/d if d ≥ 2 is the
threshold exponent for B ∈ L1(Rd) for mass conservation in (2.1)

B m1 = (d−1)/d is the threshold exponent for inequality (2.16) andm = m1

corresponds to p = p? according to (2.3), if d ≥ 3
B m̃1 = d/(d+ 2): threshold exponent for the integrability of |x|2 B and Bm
B α = d (m−mc)
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B λ• =
(
(1 − m)/(2m)

)
1/α is a scaling parameter given by (2.8) which

appears in the change of variables (2.14) that transforms the solution u
of (2.1) into the solution v of (2.15)

B M =
∫
Rd B dx = ‖g‖2p2p = πd/2 Γ

(
(1−m)−1−d/2

)
/Γ
(
(1−m)−1

)
, see (2.10)

Barenblatt solutions and self-similar scale
B B(x) =

(
1 + |x|2

)1/(m−1)
= g2p is the Barenblatt function (or profile).

B R(t) = (1 + α t)1/α

B B
(
t , x ; M

)
= (M/M)

2/α
λd•R(t)−d B

(
(M/M)

(1−m)/α
λ• x/R(t)

)
B B(t, x) = λd•R(t)−d B (λ• x/R(t)) = B(t, x;M)

Entropy and entropy production functionals
B The Rényi entropy functional E[u] =

∫
Rd u

m dx and the Rényi Fisher in-
formation functional I[u] = m2

(1−m)2

∫
Rd u |∇u

m−1|2 dx are associated with
the solution u of (2.1). With the pressure variable P = mum−1/(1−m),
we have I[u] =

∫
Rd u |∇P|

2 dx.
B Attached to the solution v of(2.15), the free energy or relative entropy

and the Fisher information or relative entropy production are defined
respectively by F [v] = (m−1)−1

∫
Rd
(
vm − Bm −mBm−1 (v − B)

)
dx and

I[v] = m (1 − m)−1
∫
Rd v

∣∣∇vm−1 −∇Bm−1
∣∣2 dx. The relative pressure

variable P(t, x) = vm−1(x)− |x|2 is such that I[v] =
∫
Rd v |∇Q|

2 dx.
B Linearized free energy: F[h] = m

2

∫
Rd |h|

2 B2−m dx and linearized Fisher
information: I[h] = m (1−m)

∫
Rd |∇h|

2 B dx

Chapter 3

Sets
B ΩT = (0, T )× Ω
B D+

R(t0, x0), D−R(t0, x0), cylinders of the Harnack inequality (3.24) defined
in (3.18)

B Q%, Q
+
% , Q

−
% cylinders in the Moser’s iteration, defines in (3.27)

Functions
B v is a solution to (3.16).
B w = vp/2 is a power of a solution to (3.16) used in Section 3.2.3.
B w = − log v is the logarithm of a solution to (3.16) used in Section (3.2.4)

Constants
B K, constant of inequality (3.1)
B SB , constant of inequality (3.3)
B λb, constant of the weighted Poincaré inequality (3.14)
B µ = λ−1

0 + λ1, where λ0 > 0 and λ1 > 0 are the lower and upper bound
of the uniformly ellipticity condition (3.17)

B h is given by (3.19)
B h = hλ1+1/λ0 is given by (3.22)
B ν exponent of the Cν continuity of solutions to (3.16) defined in (3.62)

Miscellaneous notations
B Av stand for the standard multiplication of a matrix A for a vector v.
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B v · (Aw) =
∑d
i,j=1Ai,j vi wj where A is a matrix and v, w are vectors

B bucCν(Ω), Cν semi-norm defined in (3.9) in a domain Ω
B dist(·, ·), distance between cylinders, defined in (3.60)

Chapter 4

Miscellaneous notations
B B(t, x) = B

(
t , x ; M

)
= λd•R(t)−d B (λ• x/R(t))

B b =
(

1−m
2mα

)1/α appears in the definition of the self-similar profiles in (4.43).

Function spaces
B Xm = {u ∈ L1(Rd) : ‖u‖Xm <∞}
B ‖u‖Xm = supr>0 r

α
(1−m)

∫
|x|>r |u|dx

Constants
B A and G are the two main bounds on the initial data which appear in The-

orem 4.1 in (4.2) and play a key role in the computation of the threshold
time t? in (4.3) and subsequent stability estimates. It turns out that G
can be estimated by A and M : see [BDNS23, Section 1.3].

B ε :=
(
M/M

)2/α − 1

B ε := 1− (M /M)
2/α

B εm,d := min
{
ε, ε, 1/2

}
B λ0 and λ1 are used in the estimates of the Cν continuity of solutions

to (2.1) and are defined in (4.82).
B ν is the exponent of the Hölder continuity of solutions to (2.1).
B ϑ = d

d+ν is defined in (4.87).
B a and c? appear in the computation of t? and whose expression is given

in (4.94) and (4.95).
B t? := c?

(
1 +A1−m +G

α
2

)
/εa

B T? := 1
2α log

(
1 + α c?

1+A1−m+G
α
2

εa

)
and c? is defined in (4.96).

Chapter 5

Constants
B ζ? = 4 η

4+η

( εa?
2α c?

)2/α
cα

B cα = infx, y>0

(
1 + x2/α + y

)(
1 + x+ yα/2

)−2/α

B Z(A,G) = ζ?/
(
1 +A2 (1−m)/α +G

)
Functionals

B κ[f ] = µ[f ]−1/(2p) =M1/(2p) ‖f‖2 p

B σ[f ] =

(
2 d κ[f ]p−1

p2−1

‖f‖p+1
p+1

‖∇f‖22

) 2 p
d−p (d−4)

B Ap[f ] =Mσ[f ]−
d−p (d−4)

p−1 ‖f‖−2p
2 p supr>0 r

d−p (d−4)
p−1

∫
|x|>r |f(x+ xf )|2p dx

B Ep[f ] = 2 p
1−p

∫
Rd

(
κ[f ]p+1

σ[f ]
d
p−1
2 p

|f |p+1−gp+1− 1+p
2 p g1−p

(
κ[f ]2p

σ[f ]2 |f |
2p−g2p

))
dx

B Nf(x) = σ[f ]
d
2 p κ[f ] f

(
σ[f ]x+ xf

)
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B S[f ] = M
p−1
2 p

p2−1
1

C(p,d) Z (A[f ], E[f ])

B C[f ] = p−1
p+1 Z

(
A, E [Nf |g]

)
B J[f ] =

∫
Rd

∣∣∣σ[f ]
d−p (d−2)

2 p ∇f + κ[f ]p−1 σ[f ]−1 x |f |p
∣∣∣2 dx

B S?[f ] =
C2 p γ−2
GNS

2 p γM1/p

(p2−1)
C(p,d)

Z
(
A[f ], E

[
|f |
])

4+Z
(
A[f ], E

[
|f |
])

Chapter 6

Constant and Parameters

B C? = (d − 1)−1 4 η
4+η

(
ηa χa

21+a α c?

)2/α

cα , constant defined in the proof of
Theorem 6.1, where ε? = η χ/2 and η, χ are as in Proposition 6.13, a as
in Theorem 4.1, c? as in (6.28), cα as in (5.7)

B C?(A) = C?
(
1+A1/(2 d)

)−1 where A is in Theorem 6.1
B K? =

∫
Rd |x|

2 B dx defined in (6.6)
B S? =

∫
Rd B

m dx defined in Section 6.2.1.
B a = 2 d 1−m

m
B b = 2 d (m−mc) = 2α
B τ• defined in (6.21)
B a = (d+2)2

8 d if 3 ≤ d ≤ 6 and a = 2 d−2
d if d ≥ 6 defined in (6.25)

B η = (d−2)2

8 d if 3 ≤ d ≤ 6 and η = 2 d−4
d if d ≥ 6

B χ = 1/580
B q = (d+ 2)−1 21−d/2

B T (ε,A) := log
(
1 + α c?

(
1 +A1−m) /εa) defined in (6.28) where c? is de-

fined in (6.29) and a is as in (4.94)

Functionals
B A[f ] = supr>0 r

d
∫
r>0
|f |2∗(x+ xf ) where xf is as in (1.20)

B Z[f ] :=
(

1 + µ[f ]−d λ[f ]dA[f ]
)

where µ[f ], λ[f ] and xf = y[f ] are as
in (1.20)

Miscellaneous notations
B Bλ(x) = λ−

d
2 B
(
x/
√
λ
)
is defined in (6.5).

B λ(t), R(t) and τ(t) are defined in (6.7).
B λ? is defined in (6.5).
B Qλ[w] = mλ

d
2 (m−mc)

∫
Rd w

∣∣∇wm−1 −∇Bm−1
λ

∣∣2 dx/
∫
Rd (Bmλ − wm) dx

defined in Section 6.3.1
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