Construire des estimations de stabilité dans des inégalités de type Sobolev

Jean Dolbeault

Ceremade, CNRS & Université Paris-Dauphine [http://www.ceremade.dauphine.fr/](http://www.ceremade.dauphine.fr/~dolbeaul)∼dolbeaul

Colloquium Institut de Mathématiques de Toulouse

October 11, 2024

メロト メタト メミト メミト

 $2Q$

重

Introduction

Sobolev inequality on \mathbb{R}^d with $d \geq 3$, $2^* = \frac{2d}{d-2}$ and sharp constant S_d

$$
\|\nabla f\|_{\mathbb{L}^{2}(\mathbb{R}^{d})}^{2} \geq S_{d} \|f\|_{\mathbb{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \quad \forall f \in \mathscr{D}^{1,2}(\mathbb{R}^{d})
$$
 (S)

Equality holds on the manifold M of the Aubin–Talenti functions

$$
g_{a,b,c}(x)=c\left(a+|x-b|^2\right)^{-\frac{d-2}{2}},\quad a\in(0,\infty),\quad b\in\mathbb{R}^d\,,\quad c\in\mathbb{R}
$$

[Bianchi, Egnell, 1991] there is some non-explicit $c_{\text{BE}} > 0$ such that

$$
\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2 \geq c_{\text{BE}} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2
$$

 \triangle How do we estimate c_{BE} ? as $d \rightarrow +\infty$? Stability & improved entropy – entropy production inequalities Improved inequalities & faster decay rates for entropies

イロメ イ何 メラモメ スラメー

Outline

- ¹ [Results based on entropy methods and fast diffusion equations](#page-3-0)
	- [Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0)
	- [Stability, fast diffusion equation and entropy methods](#page-12-0)
- 2 [Explicit stability for Sobolev and LSI on](#page-23-0) \mathbb{R}^d
	- [Main results, optimal dimensional dependence; history](#page-24-0)
	- [Sketch of the proof, definitions & preliminary results](#page-29-0)
	- [The main steps of the proof](#page-34-0)
- ³ [More stability results for LSI and related inequalities](#page-42-0)
	- [Subcritical interpolation inequalities on the sphere](#page-43-0)
	- [The large dimensional limit](#page-45-0)
	- [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

→ イ何 ト → ミ ト → ミ ト

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Results based on entropy methods and fast diffusion equations

Joint paper with G. Jankowiak Sobolev and Hardy–Littlewood–Sobolev inequalities J. Differential Equations, 257, 2014

> Joint research project with with M. Bonforte, B. Nazaret, N. Simonov

> > イタン イチン イチン

Sobolev and Hardy-Littlewood-Sobolev inequalities

- \triangleright Stability in a weaker norm, with explicit constants
- \triangleright From duality to improved estimates
- \triangleright Fast diffusion equation with Yamabe's exponent
- \triangleright Explicit stability constants

 -17.5

メタト メミト メミト

后

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$
\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \geq S_d \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \quad \forall f \in \dot{\mathrm{H}}^1(\mathbb{R}^d) = \mathscr{D}^{1,2}(\mathbb{R}^d) \qquad (S)
$$

and the Hardy-Littlewood-Sobolev inequality

$$
||g||_{L^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \geq S_d \int_{\mathbb{R}^d} g(-\Delta)^{-1} g dx \quad \forall g \in L^{\frac{2d}{d+2}}(\mathbb{R}^d)
$$
 (HLS)

are dual of each other. Here S_d is the Aubin-Talenti constant, $2^* = \frac{2d}{d-2}$, $(2^*)' = \frac{2d}{d+2}$ and by the Legendre transform

$$
\sup_{f \in \mathscr{D}^{1,2}(\mathbb{R}^d)} \left(\int_{\mathbb{R}^d} f g \, dx - \frac{1}{2} \| f \|_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2 \right) = \frac{1}{2} \| g \|_{\mathbf{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2
$$
\n
$$
\sup_{f \in \mathscr{D}^{1,2}(\mathbb{R}^d)} \left(\int_{\mathbb{R}^d} f g \, dx - \frac{1}{2} \| \nabla f \|_{\mathbf{L}^2(\mathbb{R}^d)}^2 \right) = \frac{1}{2} \int_{\mathbb{R}^d} g \, (-\Delta)^{-1} g \, dx
$$

メロメ メ都 メメ きょうくぼ メー

 \equiv

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Improved Sobolev inequality by duality

Theorem

[JD, Jankowiak] Assume that $d \geq 3$ and let $q = \frac{d+2}{d-2}$. There exists a positive constant $C \in [\frac{d}{d+4}, 1)$ such that

$$
||f^{q}||^{2}_{L^{\frac{2d}{d+2}}(\mathbb{R}^{d})} - S_{d} \int_{\mathbb{R}^{d}} f^{q} (-\Delta)^{-1} f^{q} dx
$$

$$
\leq C S_{d}^{-1} ||f||_{L^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left(||\nabla f||^{2}_{L^{2}(\mathbb{R}^{d})} - S_{d} ||f||^{2}_{L^{2^{*}}(\mathbb{R}^{d})} \right)
$$

for any $f \in \mathscr{D}^{1,2}(\mathbb{R}^d)$

 \leftarrow \Box

 $\langle \langle \bigcap \Phi \rangle \rangle \rangle$ $\langle \Phi \rangle \rangle$ $\langle \Phi \rangle$

 \equiv

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

The completion of a square

Integrations by parts show that

$$
\int_{\mathbb{R}^d} |\nabla(-\Delta)^{-1} g|^2 dx = \int_{\mathbb{R}^d} g(-\Delta)^{-1} g dx
$$

and, if $g = f^q$ with $q = \frac{d+2}{d-2}$,

$$
\int_{\mathbb{R}^d} \nabla f \cdot \nabla (-\Delta)^{-1} g \ dx = \int_{\mathbb{R}^d} f g \ dx = \int_{\mathbb{R}^d} g^q \ dx = \int_{\mathbb{R}^d} f^{2^*} dx
$$

Hence the expansion of the square

$$
0 \leq \int_{\mathbb{R}^d} \left| \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^{\frac{4}{d-2}} \nabla f - \mathsf{S}_d \, \nabla (-\Delta)^{-1} \, g \right|^2 dx
$$

shows that (with $\mathcal{C} = 1$)

$$
0 \leq ||f||_{\mathbf{L}^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left(||\nabla f||^{2}_{\mathbf{L}^{2}(\mathbb{R}^{d})} - S_{d} ||f||^{2}_{\mathbf{L}^{2^{*}}(\mathbb{R}^{d})} \right) - S_{d} \left(S_{d} ||f^{q}||^{2}_{\mathbf{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})} - \int_{\mathbb{R}^{d}} f^{q} (-\Delta)^{-1} f^{q} dx \right)
$$

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

$$
\frac{\partial v}{\partial t} = \Delta v^m, \quad t > 0, \quad x \in \mathbb{R}^d \tag{Y}
$$

If we define $H(t) := H_d[v(t, \cdot)]$, where

$$
\mathsf{H}_{d}[v] := \mathsf{S}_{d} \, \int_{\mathbb{R}^{d}} v \, (-\Delta)^{-1} v \, dx - ||v||_{\mathsf{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} \leq 0
$$

is, up to the sign, the deficit in [\(HLS\)](#page-5-0), then we observe that

$$
\frac{1}{2}H' = -S_d \int_{\mathbb{R}^d} v^{m+1} dx + \left(\int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} dx \right)^{\frac{2}{d}} \int_{\mathbb{R}^d} \nabla v^m \cdot \nabla v^{\frac{d-2}{d+2}} dx
$$

where $v = v(t, \cdot)$ is a solution of [\(Y\)](#page-8-0). With the choice $m = \frac{d-2}{d+2}$, we find that $m + 1 = \frac{2d}{d+2} = q$, which corresponds to the Yamabe flow

イロメ イ何メ イラメ イラメー

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

A simple observation

Proposition

Assume that $d \geq 3$ and $m = \frac{d-2}{d+2}$. If v is a solution of (Y) with nonnegative initial datum in $\mathrm{L}^{2d/(d+2)}(\mathbb R^d)$, then

$$
\frac{1}{2} \frac{d}{dt} \left(\int_{\mathbb{R}^d} v \left(-\Delta \right)^{-1} v \, dx - S_d^{-1} ||v||_{\mathcal{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right) \n= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left(S_d^{-1} ||\nabla u||_{\mathcal{L}^2(\mathbb{R}^d)}^2 - ||u||_{\mathcal{L}^{2^*}(\mathbb{R}^d)}^2 \right) \geq 0
$$

The HLS inequality amounts to $H \leq 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$

Notice that $u = v^m$ is an optimal function for [\(S\)](#page-1-0) if v is optimal for [\(HLS\)](#page-5-0)

イロト イ押 トイヨ トイヨ トーヨ

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Solutions with separation of variables

Consider the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ vanishing at $t = T$:

$$
\overline{v}_T(t,x)=c(T-t)^{\alpha}\left(F(x)\right)^{\frac{d+2}{d-2}}
$$

where F is the Aubin-Talenti solution of

$$
-\Delta F = d (d-2) F^{(d+2)/(d-2)}
$$

Let $||v||_* := \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d+2} |v(x)|$

Lemma

[del Pino, Saez], [Vázquez, Esteban, Rodriguez] For any solution v with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d)$, $v_0 > 0$, there exists $T > 0$, $\lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$
\lim_{t\to T_-} (T-t)^{-\frac{1}{1-m}}\,\|v(t,\cdot)/\overline{v}(t,\cdot)-1\|_*=0
$$

with $\overline{\nu}(t, x) = \lambda^{(d+2)/2} \overline{\nu}_{\mathcal{T}}(t, (x - x_0)/\lambda)$

 Ω Ω

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

A convexity improvement

$$
\mathsf{J}_d[v] := \int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} dx \quad \text{and} \quad \mathsf{H}_d[v] := \int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, ||v||_{\mathsf{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2
$$

Theorem

[JD, Jankowiak] Assume that $d > 3$. Then we have

$$
0\leq H_d[v]+S_d\,J_d[v]^{1+\frac{2}{d}}\,\varphi\left(J_d[v]^{\frac{2}{d}-1}\left(S_d^{-1}\,\|\nabla u\|^2_{L^2(\mathbb{R}^d)}-\|u\|^2_{L^{2^*}(\mathbb{R}^d)}\right)\right)
$$

where $\varphi(x) := \sqrt{1+2x} - 1$ for any $x \ge 0$

Proof: with $\kappa_0 := H'_0/J_0$ and $H(t) = -Y(J(t))$, consider the differential inequality

$$
Y'\left(C S_d s^{1+\frac{2}{d}} + Y\right) \le \frac{d+2}{2d} C \kappa_0 S_d^2 s^{1+\frac{4}{d}}, \quad Y(0) = 0, \quad Y(J_0) = -H_0
$$

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Constructive stability results in Gagliardo-Nirenberg-Sobolev inequalities

Joint papers with M. Bonforte, B. Nazaret and N. Simonov Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method [arXiv:2007.03674,](https://arxiv.org/pdf/2007.03674.pdf) to appear in Memoirs of the AMS

Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations

DCDS, 4[3 \(](#page-11-0)3[&](#page-13-0)[4](#page-11-0)[\):](#page-12-0) [1](#page-13-0)[0](#page-11-0)[7](#page-12-0)[0](#page-22-0)[10](#page-23-0)[8](#page-2-0)[9](#page-3-0)[,](#page-22-0) [2](#page-23-0)[02](#page-0-0)[3](#page-55-0)

 000

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Entropy – entropy production inequality

The fast diffusion equation on \mathbb{R}^d in self-similar variables

$$
\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0 \tag{FDE}
$$

admits a stationary Barenblatt solution $\mathcal{B}(x) := (1 + |x|^2)^{\frac{1}{m-1}}$

$$
\frac{d}{dt}\mathcal{F}[v(t,\cdot)]=- \mathcal{I}[v(t,\cdot)
$$

Generalized entropy (free energy) and Fisher information

$$
\mathcal{F}[v] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(v^m - \mathcal{B}^m - m \mathcal{B}^{m-1} (v - \mathcal{B}) \right) dx
$$

$$
\mathcal{I}[v] := \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} - \nabla \mathcal{B}^{m-1} \right|^2 dx
$$

are such that $\mathcal{I}[v] \geq 4 \mathcal{F}[v]$ [del Pino, JD, 2002] so that

 $\mathcal{F}[v(t, \cdot)] \leq \mathcal{F}[v_0] e^{-4 t}$

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Entropy growth rate

$$
\mathcal{I}[v] \ge 4 \mathcal{F}[v] \iff \text{Gagliardo-Nirenberg-Sobolev inequalities}
$$
\n
$$
\|\nabla f\|_{\mathcal{L}^2(\mathbb{R}^d)}^{\theta} \|f\|_{\mathcal{L}^{p+1}(\mathbb{R}^d)}^{1-\theta} \ge C_{\text{GNS}}(p) \|f\|_{\mathcal{L}^{2p}(\mathbb{R}^d)} \tag{GNS}
$$

with optimal constant. Under appropriate mass normalization

$$
v = f^{2p}
$$
 so that $v^m = f^{p+1}$ and $v |\nabla v^{m-1}|^2 = (p-1)^2 |\nabla f|^2$

$$
p=\tfrac{1}{2m-1}\quad\iff\quad m=\tfrac{p+1}{2p}\in[m_1,1)
$$

 QQ

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Asymptotic regime as $t \to +\infty$

Take $f_{\varepsilon} := \mathcal{B}(1 + \varepsilon \mathcal{B}^{1-m} w)$ and expand $\mathcal{F}[f_{\varepsilon}]$ and $\mathcal{I}[f_{\varepsilon}]$ at order $\mathcal{O}(\varepsilon^2)$ linearized free energy and linearized Fisher information

$$
\mathsf{F}[w] := \frac{m}{2} \int_{\mathbb{R}^d} w^2 \, \mathcal{B}^{2-m} \, dx \quad \text{and} \quad \mathsf{I}[w] := m(1-m) \int_{\mathbb{R}^d} |\nabla w|^2 \, \mathcal{B} \, dx
$$

Proposition (Hardy-Poincaré inequality)

[BBDGV, BDNS] Let $m \in [m_1, 1)$ if $d \geq 3$, $m \in (1/2, 1)$ if $d = 2$, and $m \in (1/3, 1)$ if $d = 1$. If $w \in L^2(\mathbb{R}^d, \mathcal{B}^{2-m} dx)$ is such that $\nabla w \in \mathrm{L}^2(\mathbb{R}^d, \mathcal{B} \, dx)$, $\int_{\mathbb{R}^d} w \, \mathcal{B}^{2-m} \, dx = 0$, then

 $I[w] > 4 \alpha F[w]$

with $\alpha = 1$, or $\alpha = 2 - d(1 - m)$. if $\int_{\mathbb{R}^d} x w B^{2-m} dx = 0$

イロメ イ何メ イヨメ イヨメー

 \equiv

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Spectral gap

[Denzler, McCann, 2005] [BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015] Much more is know, e.g., [Denzler, Koch, McCann, 2015]

メロメ メ部メ メミメ メミメ

E

 QQ

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

$$
\mathsf{F}[g] := \frac{m}{2} \int_{\mathbb{R}^d} g^2 \, \mathcal{B}^{2-m} \, dx \quad \text{and} \quad \mathsf{I}[g] := m \, (1-m) \int_{\mathbb{R}^d} |\nabla g|^2 \, \mathcal{B} \, dx
$$

Hardy-Poincaré inequality. Let $d > 1$, $m \in (m_1, 1)$ and $g \in L^2(\mathbb{R}^d, \mathcal{B}^{2-m} d\mathsf{x})$ such that $\nabla g \in L^2(\mathbb{R}^d, \mathcal{B} d\mathsf{x})$, $\int_{\mathbb{R}^d} g \mathcal{B}^{2-m} d\mathsf{x} = 0$ and $\int_{\mathbb{R}^d} x g \, \mathcal{B}^{2-m} \, dx = 0$

 $I[g] > 4 \alpha F[g]$ where $\alpha = 2 - d(1 - m)$

Proposition

Let $m \in (m_1, 1)$ if $d > 2$, $m \in (1/3, 1)$ if $d = 1$, $\eta = 2(d m - d + 1)$ and $\chi = m/(266+56\,m)$. If $\int_{\mathbb{R}^d} v\,dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x\,v\,dx = 0$ and $(1 - \varepsilon) \mathcal{B} \leq v \leq (1 + \varepsilon) \mathcal{B}$

for some $\varepsilon \in (0, \chi \eta)$, then $\mathcal{I}[v] > (4 + \eta) \mathcal{F}[v]$

 Ω Ω

The initial time layer improvement: backward estimate

By the *carré* du *champ* method, we have Away from the Barenblatt solutions, $\mathcal{Q}[v] := \frac{\mathcal{I}[v]}{\mathcal{F}[v]}$ is such that

$$
\frac{d\mathcal{Q}}{dt} \leq \mathcal{Q}\left(\mathcal{Q}-4\right)
$$

Lemma

Assume that $m > m_1$ and v is a solution to [\(FDE\)](#page-13-1) with nonnegative initial datum v_0 . If for some $\eta > 0$ and $t_{\star} > 0$, we have $\mathcal{Q}[v(t_\star, \cdot)] \geq 4 + \eta$, then

$$
\mathcal{Q}[v(t,\cdot)] \geq 4 + \frac{4\,\eta\,e^{-4\,t_\star}}{4+\eta-\eta\,e^{-4\,t_\star}} \quad \forall\,t\in[0,t_\star]
$$

イロト イ押ト イヨト イヨト

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Uniform convergence in relative error: threshold time

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that $m \in (m_1, 1)$ if $d \geq 2$, $m \in (1/3, 1)$ if $d = 1$ and let $\varepsilon \in (0, 1/2)$, small enough, $A > 0$, and $G > 0$ be given. There exists an explicit threshold time $t_r > 0$ such that, if u is a solution of

$$
\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0
$$
 (FDE)

with nonnegative initial datum $u_0\in \mathrm{L}^1(\mathbb{R}^d)$ satisfying

$$
A[u_0] = \sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} u_0 dx \leq A < \infty
$$
 (H_A)

 $\int_{\mathbb{R}^d} u_0 dx = \int_{\mathbb{R}^d} B dx = \mathcal{M}$, then

$$
\sup_{x \in \mathbb{R}^d} \left| \frac{u(t, x)}{B(t, x)} - 1 \right| \leq \varepsilon \quad \forall \ t \geq t_x
$$

inégalités de Sobolev

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Stability in Gagliardo-Nirenberg-Sobolev inequalities

Our strategy *Our strategy*

イタン イチン イチン

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

Two consequences (subcritical case)

 \triangleright Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let $m \in (m_1, 1)$ if $d \geq 2$, $m \in (1/2, 1)$ if $d = 1$, $A > 0$ and $G > 0$. If v is a solution of [\(FDE\)](#page-13-1) with nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v_0] = G$, $\int_{\mathbb{R}^d} v_0 dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x v_0 dx = 0$ and v_0 satisfies (H_A) , then

$$
\mathcal{F}[v(t,.)] \leq \mathcal{F}[v_0] e^{-(4+\zeta)t} \quad \forall t \geq 0
$$

 \triangleright The stability of the entropy - entropy production inequality $\mathcal{I}[v] - 4 \mathcal{F}[v] > \zeta \mathcal{F}[v]$ also holds in a stronger sense

$$
\mathcal{I}[v] - 4\mathcal{F}[v] \geq \frac{\zeta}{4+\zeta}\mathcal{I}[v]
$$

メロメ メ都 メメ きょうくぼ メー

 \equiv

[Sobolev and HLS inequalities: duality and Yamabe flow](#page-4-0) [Stability, fast diffusion equation and entropy methods](#page-12-0)

A constructive stability result (critical case)

Let
$$
2 p^* = 2d/(d-2) = 2^*
$$
, $d \ge 3$ and
\n
$$
\mathcal{W}_{p^*}(\mathbb{R}^d) = \left\{ f \in L^{p^*+1}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^{p^*} \in L^2(\mathbb{R}^d) \right\}
$$

Deficit of the Sobolev inequality: $\delta[f] := ||\nabla f||_{\mathbf{L}^2(\mathbb{R}^d)}^2 - \mathsf{S}_d^2 ||f||_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2$

Theorem

Let $d\geq 3$ and $A>0$. Then for any nonnegative $f\in \mathcal{W}_{p^{\star}}(\mathbb{R}^d)$ such that

$$
\int_{\mathbb{R}^d} (1,x,|x|^2) f^{2^*} dx = \int_{\mathbb{R}^d} (1,x,|x|^2) g dx \quad \text{and} \quad \sup_{r>0} r^d \int_{|x|>r} f^{2^*} dx \leq A
$$

we have

$$
\delta[f] \geq \frac{\mathcal{C}_{\star}(A)}{4+\mathcal{C}_{\star}(A)} \int_{\mathbb{R}^d} \left| \nabla f + \frac{d-2}{2} f^{\frac{d}{d-2}} \nabla g^{-\frac{2}{d-2}} \right|^2 dx
$$

 $\mathcal{C}_{\star}(\mathcal{A})=\mathfrak{C}_{\star}\left(1\!+\!\mathcal{A}^{1/(2\,d)}\right)^{-1}$ and $\mathfrak{C}_{\star}>0$ depends only on d

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Explicit stability results for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence

Joint papers with M.J. Esteban, A. Figalli, R. Frank, M. Loss Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence [arXiv: 2209.08651](https://arxiv.org/abs/2209.08651) A short review on improvements and stability for some interpolation inequalities [arXiv: 2402.08527](https://arxiv.org/abs/2402.08527)

 \leftarrow \Box

 \rightarrow \oplus \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

An explicit stability result for the Sobolev inequality

Sobolev inequality on \mathbb{R}^d with $d \geq 3$, $2^* = \frac{2d}{d-2}$ and sharp constant S_d

$$
\|\nabla f\|^2_{\mathrm{L}^2(\mathbb{R}^d)} \geq \mathsf{S}_d \, \|f\|^2_{\mathrm{L}^{2^*}(\mathbb{R}^d)} \quad \forall \, f \in \dot{\mathrm{H}}^1(\mathbb{R}^d) = \mathscr{D}^{1,2}(\mathbb{R}^d)
$$

with equality on the manifold M of the Aubin–Talenti functions

$$
g_{a,b,c}(x)=c\left(a+|x-b|^2\right)^{-\frac{d-2}{2}},\quad a\in(0,\infty),\quad b\in\mathbb{R}^d\,,\quad c\in\mathbb{R}
$$

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant $\beta > 0$ with an explicit lower estimate which does not depend on d such that for all d \geq 3 and all $f\in \mathrm{H}^1(\mathbb{R}^d)\setminus \mathcal{M}$ we have

$$
\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \mathsf{S}_d \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \geq \frac{\beta}{d} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2
$$

- Ω No compactness argument
- Ω The (estimate of the) constant β is explicit
- **Q** The decay rate β/d is optimal as $d \rightarrow +\infty$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

A stability result for the logarithmic Sobolev inequality

Use the inverse stereographic projection to rewrite the result on \mathbb{S}^d

$$
\|\nabla F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - \frac{1}{4} d(d-2) \left(\|F\|_{\mathrm{L}^{2^{*}}(\mathbb{S}^{d})}^{2} - \|F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right)
$$

\n
$$
\geq \frac{\beta}{d} \inf_{G \in \mathcal{M}(\mathbb{S}^{d})} \left(\|\nabla F - \nabla G\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \frac{1}{4} d(d-2) \|F - G\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right)
$$

Rescale by \sqrt{d} , consider a function depending only on n coordinates and take the limit as $d \rightarrow +\infty$ to approximate the Gaussian measure $d\gamma = e^{-\pi |x|^2} dx$

Corollary (JD, Esteban, Figalli, Frank, Loss)

With
$$
\beta > 0
$$
 as in the result for the Sobolev inequality
\n
$$
\|\nabla u\|_{\mathbf{L}^2(\mathbb{R}^n, d\gamma)}^2 - \pi \int_{\mathbb{R}^n} u^2 \log \left(\frac{|u|^2}{\|u\|_{\mathbf{L}^2(\mathbb{R}^n, d\gamma)}^2} \right) d\gamma
$$
\n
$$
\geq \frac{\beta \pi}{2} \inf_{a \in \mathbb{R}^d, c \in \mathbb{R}} \int_{\mathbb{R}^n} |u - c e^{a \cdot x}|^2 d\gamma
$$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Stability for the Sobolev inequality: the history

 \triangleright [Rodemich, 1969], [Aubin, 1976], [Talenti, 1976] In the inequality $\|\nabla f\|_{\mathbf{L}^2(\mathbb{R}^d)}^2 \geq \mathsf{S}_d \|f\|_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2$, the optimal constant is

$$
S_d = \frac{1}{4} d (d-2) |{\mathbb S}^d|^{1-2/d}
$$

with equality on the manifold $\mathcal{M} = \{g_{a,b,c}\}\$ of the Aubin-Talenti functions

 \triangleright [Lions] a qualitative stability result

$$
\text{if }\lim_{n\to\infty}\|\nabla f_n\|_2^2/\|f_n\|_{2^*}^2=\mathsf{S}_d\,,\text{ then }\lim_{n\to\infty}\inf_{g\in\mathcal{M}}\|\nabla f_n-\nabla g\|_2^2/\|\nabla f_n\|_2^2=0
$$

 \triangleright [Brezis, Lieb], 1985 a quantitative stability result ?

 \triangleright [Bianchi, Egnell, 1991] there is some non-explicit $c_{\text{BE}} > 0$ such that

$$
\|\nabla f\|_{2}^{2} \geq S_{d} \|f\|_{2^{*}}^{2} + c_{\text{BE}} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2}
$$

 \triangle The strategy of Bianchi & Egnell involves two steps:

- $-$ a local (spectral) analysis: the neighbourhood of $\mathcal M$
- a local-to-global extension based on concentration-compactness :
- **The cons[t](#page-27-0)[a](#page-29-0)nt** c_{BE} **is not [e](#page-55-0)xplicit** t[h](#page-25-0)e [f](#page-26-0)a[r](#page-41-0) [a](#page-24-0)[w](#page-28-0)a[y](#page-22-0) r[eg](#page-42-0)[im](#page-0-0)e θ

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Stability for the logarithmic Sobolev inequality

 \triangleright [Gross, 1975] Gaussian logarithmic Sobolev inequality for $n \geq 1$

$$
\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2 \geq \pi \int_{\mathbb{R}^n} u^2 \log \left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2}\right) d\gamma
$$

 \triangleright [Weissler, 1979] scale invariant (but dimension-dependent) version of the Euclidean form of the inequality

 \triangleright [Stam, 1959], [Federbush, 69], [Costa, 85] Cf. [Villani, 08] \triangleright [Bakry, Emery, 1984], [Carlen, 1991] equality iff

$$
u\in\mathscr{M}:=\left\{w_{a,c}\,:\,(a,c)\in\mathbb{R}^d\times\mathbb{R}\right\}\quad\text{where}\quad w_{a,c}(x)=c\,e^{a\cdot x}\quad\forall\,x\in\mathbb{R}^n
$$

 \triangleright [McKean, 1973], [Beckner, 92] (LSI) as a large d limit of Sobolev \triangleright [Carlen, 1991] reinforcement of the inequality (Wiener transform) \triangleright [Bobkov, Gozlan, Roberto, Samson, 2014], [Indrei et al., 2014-23] stability in Wasserstein distance, in $W^{1,1}$, etc.

 \triangleright [JD, Toscani, 2016] Comparison with Weissler's form, a (dimension dependent) improved inequality

 \triangleright [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a Poincaré inequality (Mehler formula) $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Explicit stability results for the Sobolev inequality Proof

 \leftarrow \Box

 $\langle \neg \Box \rangle$ \rightarrow $\langle \Box \rangle$ \rightarrow $\langle \Box \rangle$ \rightarrow

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Sketch of the proof

Goal: prove that there is an *explicit* constant $\beta > 0$ such that for all $d \geq 3$ and all $f \in \dot{H}^1(\mathbb{R}^d)$

$$
\|\nabla f\|_2^2 \ge S_d \|f\|_{2^*}^2 + \frac{\beta}{d} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2
$$

Part 1. We show the inequality for nonnegative functions far from $\mathcal M$... the far away regime

Make it constructive

Part 2. We show the inequality for nonnegative functions close to $\mathcal M$... the local problem

Get *explicit* estimates and remainder terms

Part 3. We show that the inequality for nonnegative functions implies the inequality for functions without a sign restriction, up to an acceptable loss in the constant

... dealing with sign-changing functions

KID KAR KERKER E KARA

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Some definitions

What we want to minimize is

$$
\mathcal{E}(f):=\frac{\|\nabla f\|^2_{\mathrm{L}^2(\mathbb{R}^d)}-S_d\,\|f\|^2_{\mathrm{L}^{2^*}(\mathbb{R}^d)}}{d(f,\mathcal{M})^2}\quad f\in \dot{\mathrm{H}}^1(\mathbb{R}^d)\setminus \mathcal{M}
$$

where

$$
\mathsf{d}(f,\mathcal{M})^2 := \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|^2_{\mathrm{L}^2(\mathbb{R}^d)}
$$

 \triangleright up to a *conformal transformation*, we assume that $\mathsf{d}(f,\mathcal{M})^2 = \|\nabla f - \nabla \mathsf{g}_*\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$ with

$$
g_*(x):=|\mathbb{S}^d|^{-\frac{d-2}{2d}}\left(\frac{2}{1+|x|^2}\right)^{\frac{d-2}{2}}
$$

 \triangleright use the *inverse stereographic* projection

$$
F(\omega) = \frac{f(x)}{g_*(x)} \quad x \in \mathbb{R}^d \text{ with } \begin{cases} \omega_j = \frac{2x_j}{1+|x|^2} & \text{if } 1 \leq j \leq d \\ \omega_{d+1} = \frac{1-|x|^2}{1+|x|^2} & \text{if } 1 \leq j \leq d \end{cases}
$$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

The problem on the unit sphere

Stability inequality on the unit sphere \mathbb{S}^d for $F \in H^1(\mathbb{S}^d, d\mu)$

$$
\int_{\mathbb{S}^d} \left(|\nabla F|^2 + A |F|^2 \right) d\mu - A \left(\int_{\mathbb{S}^d} |F|^{2^*} d\mu \right)^{2/2^*} \geq \frac{\beta}{d} \inf_{G \in \mathscr{M}} \left\{ \|\nabla F - \nabla G\|_{\mathbf{L}^2(\mathbb{S}^d)}^2 + A \|F - G\|_{\mathbf{L}^2(\mathbb{S}^d)}^2 \right\}
$$

with $A = \frac{1}{4} d(d-2)$ and a manifold $\mathcal M$ of optimal functions made of

$$
G(\omega) = c (a + b \cdot \omega)^{-\frac{d-2}{2}} \quad \omega \in \mathbb{S}^d \quad (a, b, c) \in (0, +\infty) \times \mathbb{R}^d \times \mathbb{R}
$$

 \bullet make the reduction of a *far away problem* to a local problem $constructive...$ on \mathbb{R}^d make the analysis of the *local problem explicit*... on \mathbb{S}^d

イロト イ押 トイヨ トイヨ トー

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Competing symmetries

• Rotations on the sphere combined with stereographic and inverse stereographic projections. Let $e_d = (0, \ldots, 0, 1) \in \mathbb{R}^d$

$$
(Uf)(x) := \left(\frac{2}{|x-e_d|^2}\right)^{\frac{d-2}{2}} f\left(\frac{x_1}{|x-e_d|^2}, \ldots, \frac{x_{d-1}}{|x-e_d|^2}, \frac{|x|^2-1}{|x-e_d|^2}\right)
$$

$$
\mathcal{E}(Uf) = \mathcal{E}(f)
$$

 $Symmetric$ decreasing rearrangement $\mathcal{R}f = f^*$ f and f^\ast are equimeasurable $\|\nabla f^*\|_{\mathrm{L}^2(\mathbb{R}^d)} \leq \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}$

The method of *competing symmetries*

Theorem (Carlen, Loss, 1990)

Let $f \in L^{2^*}(\mathbb{R}^d)$ be a non-negative function with $\|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)} = \|g_*\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}.$ The sequence $f_n = (\mathcal{R}U)^n f$ is such that $\lim_{n\to+\infty}\|f_n-g_*\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}=0.$ If $f\in \dot{\mathrm{H}}^1(\mathbb{R}^d)$, then $(\|\nabla f_n\|_{\mathrm{L}^2(\mathbb{R}^d)})_{n\in\mathbb{N}}$ is a non-increasing sequence

 Ω Ω

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Useful preliminary results

$$
\mathbf{Q} \lim_{n \to \infty} ||f_n - h_f||_{2^*} = 0 \text{ where } h_f = ||f||_{2^*} g_* / ||g_*||_{2^*} \in \mathcal{M}
$$

 $(||\nabla f_n||_2^2)_{n \in \mathbb{N}}$ is a nonincreasing sequence

Lemma

$$
\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2 = \|\nabla f\|_2^2 - S_d \sup_{g \in \mathcal{M}, \|g\|_{2^*} = 1} (f, g^{2^* - 1})^2
$$

Corollary

$$
\left(\mathsf{d}(f_n, \mathcal{M})\right)_{n \in \mathbb{N}} \text{ is strictly decreasing, } n \mapsto \sup_{g \in \mathcal{M}_1} \left(f_n, g^{2^*-1}\right) \text{ is strictly increasing, and}
$$
\n
$$
\lim_{n \to \infty} \mathsf{d}(f_n, \mathcal{M})^2 = \lim_{n \to \infty} \|\nabla f_n\|_2^2 - \mathsf{S}_d \, \|h_f\|_{2^*}^2 = \lim_{n \to \infty} \|\nabla f_n\|_2^2 - \mathsf{S}_d \, \|f\|_{2^*}^2
$$
\nbut no monotonicity for $n \mapsto \mathcal{E}(f_n) = \frac{\|\nabla f_n\|_{\mathsf{L}^2(\mathbb{R}^d)}^2 - \mathsf{S}_d \, \|f_n\|_{\mathsf{L}^{2^*}(\mathbb{R}^d)}^2}{\mathsf{d}(f_n, \mathcal{M})^2}$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Part 1: Global to local reduction

The local problem

$$
\mathscr{I}(\delta):=\inf\left\{\mathcal{E}(f)\,:\,f\geq0\,,\;\mathsf{d}(f,\mathcal{M})^2\leq\delta\,\|\nabla f\|^2_{\mathrm{L}^2(\mathbb{R}^d)}\right\}
$$

Assume that $f \in \dot{H}^1(\mathbb{R}^d)$ is a nonnegative function in the **far away** regime

$$
d(f,\mathcal{M})^2 = \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{L^2(\mathbb{R}^d)}^2 > \delta \|\nabla f\|_{L^2(\mathbb{R}^d)}^2
$$

for some $\delta \in (0,1)$ Let $f_n = (\mathcal{R}U)^n f$. There are two cases: (Case 1) $d(f_n, \mathcal{M})^2 \ge \delta \|\nabla f_n\|_{\textnormal{L}^2(\mathbb{R}^d)}^2$ for all $n \in \mathbb{N}$ (Case 2) for some $n \in \mathbb{N}$, $d(f_n, \mathcal{M})^2 < \delta \|\nabla f_n\|_{\mathbb{L}^2(\mathbb{R}^d)}^2$

4 m k

→ 何 ▶ → ヨ ▶ → ヨ ▶

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Global to local reduction – Case 1

Assume that $f \in \dot{H}^1(\mathbb{R}^d)$ is a nonnegative function in the far away regime

$$
\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|^2_{\mathrm{L}^2(\mathbb{R}^d)} > \delta \, \|\nabla f\|^2_{\mathrm{L}^2(\mathbb{R}^d)}
$$

Lemma

Let $f_n = (\mathcal{R}U)^n f$ and $\delta \in (0,1)$. If $\mathsf{d}(f_n, \mathcal{M})^2 \geq \delta\, \|\nabla f_n\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$ for all $n \in \mathbb{N}$, then $\mathcal{E}(f) > \delta$

$$
\lim_{n \to +\infty} \|\nabla f_n\|_2^2 \le \frac{1}{\delta} \lim_{n \to +\infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 = \frac{1}{\delta} \left(\lim_{n \to +\infty} \|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2 \right)
$$

$$
\mathcal{E}(f) = \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2} \ge \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\|\nabla f\|_2^2} \ge \frac{\|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2}{\|\nabla f_n\|_2^2} \ge \delta
$$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Global to local reduction – Case 2

$$
\mathscr{I}(\delta):=\inf\left\{\mathcal{E}(f)\,:\,f\geq0\,,\;\mathsf{d}(f,\mathcal{M})^2\leq\delta\,\|\nabla f\|^2_{\mathrm{L}^2(\mathbb{R}^d)}\right\}
$$

Lemma

 $\mathcal{E}(f) > \delta \mathcal{I}(\delta)$

$$
\begin{array}{ll}\n\text{if} & \inf_{g \in \mathcal{M}} \|\nabla f_{n_0} - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 > \delta \|\nabla f_{n_0}\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \\
& \text{and} & \inf_{g \in \mathcal{M}} \|\nabla f_{n_0+1} - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 < \delta \|\nabla f_{n_0+1}\|_{\mathrm{L}^2(\mathbb{R}^d)}^2\n\end{array}
$$

Adapt a strategy due to Christ: build a (semi-)*continuous* rearrangement $flow(f_\tau)_{n_0 \leq \tau \leq n_0+1}$ with $f_{n_0} = Uf_n$ such that $||f_\tau||_{2^*} = ||f||_2, \tau \mapsto ||\nabla f_\tau||_2$ is nonincreasing, and $\lim_{\tau \to n_0+1} f_\tau = f_{n_0+1}$ $\mathcal{E}(f) \geq 1-S_d\ \frac{\|f\|_{2^*}^2}{\|\nabla f\|_2^2} \geq 1-S_d\ \frac{\| \mathsf{f}_{\tau_0}\|_{2^*}^2}{\|\nabla \mathsf{f}_{\tau_0}\|_2^2} = \delta\,\mathcal{E}(f_{\tau_0}) \geq \delta\,\mathscr{I}(\delta)$

Altogether: $\left\vert \text{ if }{\mathsf{d}}(f,{\mathcal M})^2>\delta \,\|\nabla f\|^2_{\mathrm{L}^2(\mathbb{R}^d)}, \text{ then }{\mathcal E}(f)\geq \min\left\{\delta,\delta\,\mathscr{I}(\delta)\right\}$ $\left\{ \begin{array}{ccc} 1 & 1 & 1 & 1 & 1 \\ 1 & 1 & 1 & 1 & 1 \end{array} \right.$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Part 2: The (simple) Taylor expansion

Proposition

Let $(X, d\mu)$ be a measure space and u, $r \in L^q(X, d\mu)$ for some $q \geq 2$ with $u \ge 0$, $u + r \ge 0$ and $\int_X u^{q-1} r d\mu = 0$ \triangleright If $q = 6$, then $||u + r||_q^2 \le ||u||_q^2 + ||u||_q^{2-q} \left(5\int_X u^{q-2} r^2 d\mu + \frac{20}{3} \int_X u^{q-3} r^3 d\mu \right)$ $+5\int_X u^{q-4} r^4 d\mu + 2\int_X u^{q-5} r^5 d\mu + \frac{1}{3}\int_X r^6 d\mu$ \triangleright If 3 \leq q \leq 4, then $||u + r||_q^2 - ||u||_q^2$ $\leq ||u||_q^{2-q} \left((q-1)\int_X u^{q-2} t^2 d\mu + \frac{(q-1)(q-2)}{3} \right)$ $\int_{3}^{1}(q-2) \int_{X} u^{q-3} r^{3} d\mu + \frac{2}{q} \int_{X} |r|^{q} d\mu$ \triangleright If 2 \leq q \leq 3, then $||u+r||_q^2 \le ||u||_q^2 + ||u||_q^{2-q} \left((q-1) \int_X u^{q-2} r^2 d\mu + \frac{2}{q} \int_X r_+^q d\mu \right)$

 QQ

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Corollary

For all
$$
\nu > 0
$$
 and for all $r \in H^1(\mathbb{S}^d)$ satisfying $r \ge -1$,
\n
$$
\left(\int_{\mathbb{S}^d} |r|^q d\mu\right)^{2/q} \le \nu^2 \text{ and } \int_{\mathbb{S}^d} r d\mu = 0 = \int_{\mathbb{S}^d} \omega_j r d\mu \quad \forall j = 1, \dots d+1
$$
\nif $d\mu$ is the uniform probability measure on \mathbb{S}^d , then
\n
$$
\int_{\mathbb{S}^d} \left(|\nabla r|^2 + A(1+r)^2\right) d\mu - A \left(\int_{\mathbb{S}^d} (1+r)^q d\mu\right)^{2/q} \ge m(\nu) \int_{\mathbb{S}^d} \left(|\nabla r|^2 + A r^2\right) d\mu
$$
\n
$$
m(\nu) := \frac{4}{d+4} - \frac{2}{q} \nu^{q-2} \qquad \text{if } d \ge 6
$$
\n
$$
m(\nu) := \frac{4}{d+4} - \frac{1}{3} (q-1) (q-2) \nu - \frac{2}{q} \nu^{q-2} \qquad \text{if } d = 4, 5
$$
\n
$$
m(\nu) := \frac{4}{7} - \frac{20}{3} \nu - 5 \nu^2 - 2 \nu^3 - \frac{1}{3} \nu^4 \qquad \text{if } d = 3
$$

Anexplici[t](#page-34-0) expression of $\mathcal{I}(\delta)$ $\mathcal{I}(\delta)$ $\mathcal{I}(\delta)$ $\mathcal{I}(\delta)$ $\mathcal{I}(\delta)$ if $\nu > 0$ $\nu > 0$ $\nu > 0$ is small [en](#page-37-0)[ou](#page-39-0)[g](#page-37-0)[h](#page-38-0) [so](#page-39-0) th[at](#page-42-0) $m(\nu) > 0$ $m(\nu) > 0$

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Part 3: Removing the positivity assumption

Take $f = f_+ - f_-$ with $||f||_{L^{2^*}(\mathbb{R}^d)} = 1$ and define $m := ||f_-||_{L^{2^*}(\mathbb{R}^d)}^{2^*}$ and $1 - m = ||f_{+}||_{\mathbb{L}^{2^{*}}(\mathbb{R}^{d})}^{2^{*}} > 1/2$. The positive concave function

$$
h_d(m) := m^{\frac{d-2}{d}} + (1-m)^{\frac{d-2}{d}} - 1
$$

satisfies

$$
2 h_d(1/2) m \le h_d(m), \quad h_d(1/2) = 2^{2/d} - 1
$$

With $\delta(f) = \|\nabla f\|_{\mathbf{L}^2(\mathbb{R}^d)}^2 - \mathsf{S}_d \|f\|_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2$, one finds $g_+ \in \mathcal{M}$ such that

$$
\delta(f) \geq \mathcal{C}_{\mathrm{BE}}^{d, \mathrm{pos}} \left\| \nabla f_+ - \nabla g_+ \right\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 + \frac{2 \, h_d(1/2)}{h_d(1/2) + 1} \left\| \nabla f_- \right\|_{\mathrm{L}^2(\mathbb{R}^d)}^2
$$

and therefore

$$
C_{\mathrm{BE}}^d \geq \tfrac{1}{2}\,\min\left\{\max_{0<\delta<1/2} \, \delta\, \mathscr{I}(\delta), \frac{2\,h_d(1/2)}{h_d(1/2)+1}\right\}
$$

 \sqrt{m}) \sqrt{m}) \sqrt{m}) \sqrt{m}

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

Part 2, refined: The (complicated) Taylor expansion

To get a dimensionally sharp estimate, we expand $(1 + r)^{2^*} - 1 - 2^*r$ with an accurate remainder term for all $r > -1$

$$
r_1 := \min\{r, \gamma\}, \quad r_2 := \min\left\{(r - \gamma)_+, M - \gamma\right\} \quad \text{and} \quad r_3 := (r - M)_+
$$

with $0 < \gamma < M$. Let $\theta = 4/(d-2)$

Lemma

Given
$$
d \ge 6
$$
, $r \in [-1, \infty)$, and $\overline{M} \in [\sqrt{e}, +\infty)$, we have

$$
(1 + r)^{2^*} - 1 - 2^*r
$$

\n
$$
\leq \frac{1}{2} 2^* (2^* - 1) (r_1 + r_2)^2 + 2 (r_1 + r_2) r_3 + (1 + C_M \theta \overline{M}^{-1} \ln \overline{M}) r_3^{2^*}
$$

\n
$$
+ (\frac{3}{2} \gamma \theta r_1^2 + C_{M, \overline{M}} \theta r_2^2) 1\!\!1_{\{r \leq M\}} + C_{M, \overline{M}} \theta M^2 1\!\!1_{\{r > M\}}
$$

where all the constants in the above inequality are explicit

 \leftarrow \Box

→ 御き → 君き → 君き

E

[Main results, optimal dimensional dependence; history](#page-24-0) [Sketch of the proof, definitions & preliminary results](#page-29-0) [The main steps of the proof](#page-34-0)

There are constants ϵ_1 , ϵ_2 , k_0 , and $\epsilon_0 \in (0, 1/\theta)$, such that

$$
\|\nabla r\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + A \, \|r\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - A \, \|1+r\|_{\mathrm{L}^{2^{*}}(\mathbb{S}^{d})}^{2}
$$
\n
$$
\geq \frac{4 \, \epsilon_{0}}{d-2} \left(\|\nabla r\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + A \, \|r\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right) + \sum_{k=1}^{3} I_{k}
$$

 $I_1 := \left(1-\theta\,\epsilon_0\right)\int_{\mathbb{S}^d} \left(|\nabla \mathsf{r}_1|^2+\mathrm{A}\,\mathsf{r}_1^2\right)d\mu - \mathrm{A}\left(2^*-1+\epsilon_1\,\theta\right)\int_{\mathbb{S}^d} \mathsf{r}_1^2\,d\mu + \mathrm{A}\,k_0\,\theta\int_{\mathbb{S}^d} \left(\mathsf{r}_2^2\ldots\right)$ $I_2 := (1 - \theta \epsilon_0) \int_{\mathbb{S}^d} (|\nabla r_2|^2 + A r_2^2) d\mu - A (2^* - 1 + (k_0 + C_{\epsilon_1, \epsilon_2}) \theta) \int_{\mathbb{S}^d} r_2^2 d\mu$ $I_3 := (1 - \theta \epsilon_0) \int_{\mathbb{S}^d} (|\nabla r_3|^2 + \Lambda r_3^2) d\mu - \frac{2}{2^*} \Lambda (1 + \epsilon_2 \theta) \int_{\mathbb{S}^d} r_3^{2^*} d\mu - \Lambda k_0 \theta \int_{\mathbb{S}^d} r_3^2 d\mu$ Ω spectral gap estimates : $I_1 > 0$ Ω Sobolev inequality : $I_3 > 0$

improved spectral gap inequality using that $\mu({r_2 > 0})$ is small: $I_2 \ge 0$

イター・ステート イラート

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

More explicit stability results for the logarithmic Sobolev and Gagliardo-Nirenberg inequalities on S d

Joint work with G. Brigati and N. Simonov Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results Annales IHP, Analyse non linéaire, 362, 2023

 \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow \rightarrow \oplus \rightarrow

 2990

 \equiv

Subcritical interpolation inequalities on the sphere

Gagliardo-Nirenberg-Sobolev inequality

$$
\|\nabla F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \geq d \,\mathcal{E}_p[F] := \frac{d}{p-2}\left(\|F\|_{\mathrm{L}^p(\mathbb{S}^d)}^2 - \|F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2\right)
$$

for any $p \in [1, 2) \cup (2, 2^*)$ with $2^* := \frac{2d}{d-2}$ if $d \ge 3$ and $2^* = +\infty$ if $d = 1$ or 2

 Ω Limit $p \to 2$: the *logarithmic Sobolev inequality*

$$
\int_{\mathbb{S}^d} |\nabla F|^2\,d\mu \geq \frac{d}{2}\int_{\mathbb{S}^d} F^2\,\log\left(\frac{F^2}{\|F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}\right)d\mu\quad\forall\,F\in\mathrm{H}^1(\mathbb{S}^d,d\mu)
$$

[Bakry, Emery, 1984], [Bidaut-Véron, Véron, 1991], [Beckner, 1993]

 $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, $\mathcal{A} \oplus \mathcal{B}$, \mathcal{B}

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

Gagliardo-Nirenberg inequalities: stability

An improved inequality under orthogonality constraint and the stability inequality arising from the *carré du champ* method can be combined in the subcritical case as follows

Theorem

Let $d \geq 1$ and $p \in (1,2) \cup (2,2^*)$. For any $F \in H^1(\mathbb{S}^d, d\mu)$, we have

$$
\int_{\mathbb{S}^{d}} |\nabla F|^{2} d\mu - d \mathcal{E}_{p}[F] \geq \mathscr{S}_{d,p} \left(\frac{\|\nabla \Pi_{1} F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{4}}{\|\nabla F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \|F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}} + \|\nabla (\mathrm{Id} - \Pi_{1}) F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right)
$$

for some explicit stability constant $\mathscr{S}_{d,p} > 0$

 \triangleright The same result holds true for the logarithmic Sobolev inequality, again with an explicit constant $\mathscr{S}_{d,2}$, for any finite dimension d

メタトメ ミトメ ミト

后

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

From \mathbb{S}^d to \mathbb{R}^d : the large dimensional limit

Joint work with G. Brigati and N. Simonov On Gaussian interpolation inequalities C. R. Math. Acad. Sci. Paris 41, 2024

 -111

 $\langle \neg \Box \rangle$ \rightarrow $\langle \Box \rangle$ \rightarrow $\langle \Box \rangle$ \rightarrow

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

Carré du champ – admissible parameters on \mathbb{S}^d

[JD, Esteban, Kowalczyk, Loss] Monotonicity of the deficit along

Figure: Case $d = 5$: admissible parameters $1 \le p \le 2^* = 10/3$ and m (horizontal axi[s](#page-45-0): p , v[e](#page-44-0)rtical axis: m). Improved ineq[ual](#page-45-0)i[tie](#page-47-0)s [ins](#page-46-0)[id](#page-47-0)e [!](#page-45-0)

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

Gaussian carré du champ and nonlinear diffusion

$$
\frac{\partial v}{\partial t} = v^{-p(1-m)} \left(\mathcal{L}v + (m p - 1) \frac{|\nabla v|^2}{v} \right) \quad \text{on} \quad \mathbb{R}^n
$$

[JD, Brigati, Simonov] Ornstein-Uhlenbeck operator: $\mathcal{L} = \Delta - \mathbf{x} \cdot \nabla$

$$
m_{\pm}(p):=\lim_{d\to+\infty}m_{\pm}(d,p)=1\pm\frac{1}{p}\sqrt{(p-1)(2-p)}
$$

Figure: The ad[m](#page-46-0)issible p[ar](#page-48-0)am[e](#page-45-0)[t](#page-42-0)ers $1 \leq p \leq 2$ $1 \leq p \leq 2$ $1 \leq p \leq 2$ a[n](#page-0-0)[d](#page-51-0) m are [in](#page-47-0)[de](#page-48-0)p[en](#page-41-0)dent [of](#page-55-0) n^{\pm} QQ J. Dolbeault Estimations de stabilité dans des inégalités de Sobolev

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

Large dimensional limit

Gagliardo-Nirenberg-Sobolev inequalities on \mathbb{S}^d , $p \in [1, 2)$

$$
\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d,d\mu_d)}^2 \geq \frac{d}{p-2} \left(\|u\|_{\mathrm{L}^p(\mathbb{S}^d,d\mu_d)}^2 - \|u\|_{\mathrm{L}^2(\mathbb{S}^d,d\mu_d)}^2 \right)
$$

Theorem

Let $v \in H^1(\mathbb{R}^n, dx)$ with compact support, $d \geq n$ and

$$
u_d(\omega) = v\left(\omega_1/r_d, \omega_2/r_d, \ldots, \omega_n/r_d\right), \quad r_d = \sqrt{\frac{d}{2\pi}}
$$

where $\omega \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$. With $d\gamma(y) := (2\pi)^{-n/2} e^{-\frac{1}{2}|y|^2} dy$,

$$
\lim_{d \to +\infty} d \left(\|\nabla u_d\|_{\mathrm{L}^2(\mathbb{S}^d, d\mu_d)}^2 - \frac{d}{2-\rho} \left(\|u_d\|_{\mathrm{L}^2(\mathbb{S}^d, d\mu_d)}^2 - \|u_d\|_{\mathrm{L}^{\rho}(\mathbb{S}^d, d\mu_d)}^2 \right) \right)
$$
\n
$$
= \|\nabla v\|_{\mathrm{L}^2(\mathbb{R}^n, d\gamma)}^2 - \frac{1}{2-\rho} \left(\|v\|_{\mathrm{L}^2(\mathbb{R}^n, d\gamma)}^2 - \|v\|_{\mathrm{L}^{\rho}(\mathbb{R}^n, d\gamma)}^2 \right)
$$

KIND KED KED

 \blacksquare

 QQ

Ξ

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

L 2 stability of LSI: comments

[JD, Esteban, Figalli, Frank, Loss]

$$
\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2 - \pi \int_{\mathbb{R}^n} u^2 \log \left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2} \right) d\gamma
$$

$$
\geq \frac{\beta \pi}{2} \inf_{a \in \mathbb{R}^d, c \in \mathbb{R}} \int_{\mathbb{R}^n} |u - c e^{a \cdot x}|^2 d\gamma
$$

One dimension is lost (for the manifold of invariant functions) in the limiting process

Euclidean forms of the stability

The $\dot{H}^1(\mathbb{R}^n)$ does not appear, it gets lost in the limit $d \to +\infty$ $\int_{\mathbb{R}^n} |\nabla(u - c e^{a \cdot x})|^2 d\gamma$? False, but makes sense under additional assumptions. Some results based on the Ornstein-Uhlenbeck flow and entropy methods: [Fathi, Indrei, Ledoux, 2016], [JD, Brigati, Simonov, 2023-24]

Taking the limit is difficult because of the lack of compactness. Two proofs イロト イ押ト イヨト イヨト

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

Stability in the large dimensional limit

Let
$$
u = f/g_{\star}
$$
, $g_{\star} := |\mathbb{S}^d|^{-\frac{d-2}{2d}} \left(\frac{2}{1+|x|^2}\right)^{(d-2)/2}$
\n
$$
\int_{\mathbb{R}^d} |\nabla u|^2 g_{\star}^2 dx + d(d-2) \int_{\mathbb{R}^d} |u|^2 g_{\star}^{2^*} dx
$$
\n
$$
- d(d-2) \|g_{\star}\|_{\mathbb{L}^{2^*}(\mathbb{R}^d)}^{2^*-2} \left(\int_{\mathbb{R}^d} |u|^{2^*} g_{\star}^{2^*} dx\right)^{2/2^*}
$$
\n
$$
\geq \frac{\beta}{d} \left(\int_{\mathbb{R}^d} |\nabla u|^2 g_{\star}^2 dx + d(d-2) \int_{\mathbb{R}^d} |u - g_d/g_{\star}|^2 g_{\star}^{2^*} dx\right),
$$

where $g_d(x) = c_d (a_d + |x - b_d|^2)^{1 - d/2}$ realizes the distance to M

$$
u(x) = v(r_d x), \quad w_v^d(r_d x) = \frac{g_d(x)}{g_x(x)}, \quad r_d = \sqrt{\frac{d}{2\pi}}
$$

We consider a function $v(x)$ depending only on $y \in \mathbb{R}^N$ with $x = (y, z) \in \mathbb{R}^N \times \mathbb{R}^{d-N} \approx \mathbb{R}^d$, for some fixed integer N $\lim_{d\to+\infty} \left(1+\frac{1}{r_d^2}|y|^2\right)^{-\frac{N+d}{2}}e^{-\pi |y|^2}, \quad \lim_{d\to+\infty} \int_{\mathbb{R}^d}|v(y)|^2\,d\mu = \int_{\mathbb{R}^N}|v|^2\,d\gamma$ $\lim_{d\to +\infty} \int_{\mathbb{R}^d} |\nabla \nu|^2 \big(1+ \frac{1}{r_d^2} \, |x|^2 \big)^2 \, d\mu = 4 \, \int_{\mathbb{R}^N} |\nabla \nu|^2 \, d\gamma$ Estimates on the parameters a_d , b_d and c_d ! Ω

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

More results on logarithmic Sobolev inequalities

Joint work with G. Brigati and N. Simonov Stability for the logarithmic Sobolev inequality Journal of Functional Analysis, 287, oct. 2024

 \triangleright Entropy methods, with constraints

 $\langle \neg \Box \rangle$ \rightarrow $\langle \Box \rangle$ \rightarrow $\langle \Box \rangle$ \rightarrow

Stability under a constraint on the second moment

$$
u_{\varepsilon}(x) = 1 + \varepsilon x \text{ in the limit as } \varepsilon \to 0
$$

$$
d(u_{\varepsilon}, 1)^2 = ||u_{\varepsilon}'||^2_{\mathbb{L}^2(\mathbb{R}, d\gamma)} = \varepsilon^2 \text{ and } \inf_{w \in \mathcal{M}} d(u_{\varepsilon}, w)^{\alpha} \le \frac{1}{2} \varepsilon^4 + O(\varepsilon^6)
$$

$$
\mathcal{M} := \{w_{a,c} : (a, c) \in \mathbb{R}^d \times \mathbb{R}\} \text{ where } w_{a,c}(x) = c e^{-a \cdot x}
$$

Proposition

For all $u\in \mathrm{H}^{1}(\mathbb{R}^{d},d\gamma)$ such that $\left\|u\right\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}=1$ and $\left\|x\,u\right\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}\leq d$, we have

$$
\left\|\nabla u\right\|_{\mathrm L^2(\mathbb R^d,d\gamma)}^2-\frac{1}{2}\int_{\mathbb R^d}|u|^2\,\log|u|^2\,d\gamma\geq \frac{1}{2\,d}\,\left(\int_{\mathbb R^d}|u|^2\,\log|u|^2\,d\gamma\right)^2
$$

and, with $\psi(s) := s - \frac{d}{4} \log \left(1 + \frac{4}{d} s\right)$,

$$
\left\| \nabla u \right\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 - \frac{1}{2} \int_{\mathbb{R}^d} |u|^2 \, \log |u|^2 \, d\gamma \geq \psi\left(\left\| \nabla u \right\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 \right)
$$

[Subcritical interpolation inequalities on the sphere](#page-43-0) [The large dimensional limit](#page-45-0) [More results on LSI and Gagliardo-Nirenberg inequalities](#page-51-0)

Stability under log-concavity

Theorem

For all $u \in \mathrm{H}^1(\mathbb{R}^d, d\gamma)$ such that $u^2\,\gamma$ is log-concave and such that

$$
\int_{\mathbb{R}^d} \left(1, x \right) \, |u|^2 \, d\gamma = (1,0) \quad \text{and} \quad \int_{\mathbb{R}^d} |x|^2 \, |u|^2 \, d\gamma \leq \mathsf{K}
$$

we have

$$
\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 - \frac{\mathscr{C}_\star}{2}\int_{\mathbb{R}^d}|u|^2\,\log|u|^2\,d\gamma\geq 0
$$

$$
\mathscr{C}_\star = 1 + \frac{1}{432\,\text{K}} \approx 1 + \frac{0.00231481}{\text{K}}
$$

Self-improving Poincaré inequality and stability for LSI: [Fathi, Indrei, Ledoux, '16]

4 m k

メタト メミト メミト

Theorem

Let $d \ge 1$. For any $\varepsilon > 0$, there is some explicit $\mathscr{C} > 1$ depending only on ε such that, for any $u \in \mathrm{H}^1(\mathbb{R}^d, d\gamma)$ with

$$
\int_{\mathbb{R}^d} \left(1, x \right) \, | u |^2 \, d\gamma = \left(1, 0 \right), \,\, \int_{\mathbb{R}^d} |x|^2 \, | u |^2 \, d\gamma \leq d \,, \,\, \int_{\mathbb{R}^d} |u|^2 \, e^{\, \varepsilon \, |x|^2} \, d\gamma < \infty
$$

for some $\varepsilon > 0$, then we have

$$
\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 \geq \frac{\mathscr{C}}{2}\int_{\mathbb{R}^d}|u|^2\,\log|u|^2\,d\gamma
$$

with $\mathscr{C}=1+\frac{\mathscr{C}_*(K_*)-1}{1+R^2\mathscr{C}_*(K_*)}$, $K_{\star}:=$ max $\left(d,\frac{(d+1)R^2}{1+R^2}\right)$ $1 + R^2$ $\Big)$ if supp $(u) \subset B(0,R)$

Compact support: [Lee, V´azquez, '03]; [Chen, Chewi, Niles-Weed, '21]

イロメ イ団メ イモメ イモメー

These slides can be found at

[http://www.ceremade.dauphine.fr/](https://www.ceremade.dauphine.fr/~dolbeaul/Lectures/)∼dolbeaul/Lectures/ \triangleright Lectures

More related papers can be found at

[http://www.ceremade.dauphine.fr/](https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/)∼dolbeaul/Preprints/list/ \triangleright Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeaul@ceremade.dauphine.fr

イロメ イ何メ イヨメ イヨメー

 Ω

Thank you for your attention !