Stability estimates in Sobolev type inequalities

Jean Dolbeault

Ceremade, CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/~dolbeaul

Sino-French Mathematical Cooperation Conference ECNU Shanghai, Center for PDE

October 24, 2024

3

Introduction

 \blacksquare Sobolev inequality on \mathbb{R}^d with $d\geq 3,$ $2^*=\frac{2d}{d-2}$ and sharp constant S_d

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \mathsf{S}_{d} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \quad \forall f \in \mathscr{D}^{1,2}(\mathbb{R}^{d})$$
(S)

Equality holds on the manifold ${\mathcal M}$ of the Aubin–Talenti functions

$$g_{a,b,c}(x)=c\left(a+|x-b|^2
ight)^{-rac{d-2}{2}}, \hspace{1em} a\in (0,\infty)\,, \hspace{1em} b\in \mathbb{R}^d\,, \hspace{1em} c\in \mathbb{R}$$

[Bianchi, Egnell, 1991] there is some non-explicit $c_{\rm BE} > 0$ such that

$$\|\nabla f\|_2^2 - \mathsf{S}_d \, \|f\|_{2^*}^2 \ge c_{\mathrm{BE}} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2$$

• How do we estimate c_{BE} ? as $d \to +\infty$? Stability & improved entropy – entropy production inequalities Improved inequalities & faster decay rates for entropies

Outline

- $oldsymbol{1}$ Explicit stability for Sobolev and LSI on \mathbb{R}^d
 - Main results, optimal dimensional dependence; history
 - Sketch of the proof, definitions & preliminary results
 - The main steps of the proof

2 Results based on entropy methods and fast diffusion equations

- Sobolev and HLS inequalities: duality and Yamabe flow
- Stability, fast diffusion equation and entropy methods
- More stability results for LSI and related inequalities
 - Subcritical interpolation inequalities on the sphere
 - More results on LSI and Gagliardo-Nirenberg inequalities

- 4 回 5 - 4 戸 5 - 4 戸 5

Explicit stability for Sobolev and LSI on \mathbb{R}^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Sketch of the proof, definitions & preliminary results The main steps of the proof

Explicit stability results for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence

Joint papers with M.J. Esteban, A. Figalli, R. Frank, M. Loss Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence arXiv: 2209.08651

A short review on improvements and stability for some interpolation inequalities

arXiv: 2402.08527

くぼう くちょう くちょ

Explicit stability for Sobolev and LSI on R^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

An explicit stability result for the Sobolev inequality

Sobolev inequality on \mathbb{R}^d with $d \geq 3$, $2^* = \frac{2d}{d-2}$ and sharp constant S_d

$$\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \geq \mathsf{S}_d \, \left\|f\right\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \quad \forall \, f \in \dot{\mathrm{H}}^1(\mathbb{R}^d) = \mathscr{D}^{1,2}(\mathbb{R}^d)$$

with equality on the manifold ${\mathcal M}$ of the Aubin–Talenti functions

$$g_{a,b,c}(x)=c\left(a+|x-b|^2
ight)^{-rac{d-2}{2}},\quad a\in(0,\infty)\,,\quad b\in\mathbb{R}^d\,,\quad c\in\mathbb{R}$$

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant $\beta > 0$ with an explicit lower estimate which does not depend on d such that for all $d \ge 3$ and all $f \in H^1(\mathbb{R}^d) \setminus \mathcal{M}$ we have

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \geq \frac{\beta}{d} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

- No compactness argument
- **•** The (estimate of the) constant β is explicit
- The decay rate β/d is optimal as $d \to +\infty$

4 E 6 1

Explicit stability for Sobolev and LSI on R^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

A stability result for the logarithmic Sobolev inequality

 \blacksquare Use the inverse stereographic projection to rewrite the result on \mathbb{S}^d

$$\nabla F \|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - \frac{1}{4} d(d-2) \left(\|F\|_{\mathrm{L}^{2*}(\mathbb{S}^{d})}^{2} - \|F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right)$$

$$\geq \frac{\beta}{d} \inf_{G \in \mathcal{M}(\mathbb{S}^{d})} \left(\|\nabla F - \nabla G\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \frac{1}{4} d(d-2) \|F - G\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right)$$

• Rescale by \sqrt{d} , consider a function depending only on n coordinates and take the limit as $d \to +\infty$ to approximate the Gaussian measure $d\gamma = e^{-\pi |x|^2} dx$

Corollary (JD, Esteban, Figalli, Frank, Loss)

With
$$\beta > 0$$
 as in the result for the Sobolev inequality

$$\|\nabla u\|_{L^{2}(\mathbb{R}^{n},d\gamma)}^{2} - \pi \int_{\mathbb{R}^{n}} u^{2} \log \left(\frac{|u|^{2}}{\|u\|_{L^{2}(\mathbb{R}^{n},d\gamma)}^{2}}\right) d\gamma$$

$$\geq \frac{\beta \pi}{2} \inf_{a \in \mathbb{R}^{n}, c \in \mathbb{R}} \int_{\mathbb{R}^{n}} |u - c e^{a \cdot x}|^{2} d\gamma$$

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Stability for the Sobolev inequality: the history

$$S_d = \frac{1}{4} d(d-2) |S^d|^{1-2/d}$$

with equality on the manifold $\mathcal{M} = \{g_{a,b,c}\}$ of the Aubin-Talenti functions

 \triangleright [Lions] a qualitative stability result

$$if \lim_{n \to \infty} \|\nabla f_n\|_2^2 / \|f_n\|_{2^*}^2 = \mathsf{S}_d, then \lim_{n \to \infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 / \|\nabla f_n\|_2^2 = 0$$

 \triangleright [Brezis, Lieb, 1985] a quantitative stability result ?

 \triangleright [Bianchi, Egnell, 1991] there is some non-explicit $c_{\rm BE} > 0$ such that

$$\|\nabla f\|_{2}^{2} \ge S_{d} \|f\|_{2^{*}}^{2} + c_{\mathrm{BE}} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2}$$

- The strategy of Bianchi & Egnell involves two steps:
- a local (spectral) analysis: the *neighbourhood* of \mathcal{M}
- a local-to-global extension based on concentration-compactness :
- **Q**. The constant $c_{\rm BE}$ is not explicit

the far away regime

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Stability for the logarithmic Sobolev inequality

 \rhd [Gross, 1975] Gaussian logarithmic Sobolev inequality for $n \geq 1$

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2 \geq \pi \int_{\mathbb{R}^n} u^2 \log\left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2}\right) d\gamma$$

 \triangleright [Weissler, 1979] scale invariant (but dimension-dependent) version of the Euclidean form of the inequality

▷ [Stam, 1959], [Federbush, 69], [Costa, 85] *Cf.* [Villani, 08] ▷ [Bakry, Emery, 1984], [Carlen, 1991] equality iff

$$u \in \mathscr{M} := \left\{ w_{a,c} \, : \, (a,c) \in \mathbb{R}^d \times \mathbb{R} \right\} \quad \text{where} \quad w_{a,c}(x) = c \; e^{a \cdot x} \quad \forall \, x \in \mathbb{R}^n$$

 $\begin{array}{l} [\text{Carlen, 1991}] \text{ reinforcement of the inequality (Wiener transform)} \\ & \triangleright \ [\text{McKean, 1973}], \ [\text{Beckner, 92}] \ (\text{LSI}) \text{ as a large } d \ \text{limit of Sobolev} \\ & \triangleright \ [\text{Bobkov, Gozlan, Roberto, Samson, 2014}], \ [\text{Indrei et al., 2014-23}] \\ \text{stability in Wasserstein distance, in W}^{1,1}, \ etc. \end{array}$

 \rhd [JD, Toscani, 2016] Comparison with Weissler's form, a (dimension dependent) improved inequality

▷ [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a Poincaré inequality (Mehler formula) Explicit stability for Sobolev and LSI on \mathbb{R}^d

Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Explicit stability results for the Sobolev inequality Proof

< 回 > < 三 > < 三 >

Explicit stability for Sobolev and LSI on \mathbb{R}^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Sketch of the proof, definitions & preliminary results The main steps of the proof

Sketch of the proof

Goal: prove that there is an *explicit* constant $\beta > 0$ such that for all d > 3 and all $f \in H^1(\mathbb{R}^d)$

$$\|\nabla f\|_{2}^{2} \ge S_{d} \|f\|_{2^{*}}^{2} + \frac{\beta}{d} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2}$$

Part 1. We show the inequality for nonnegative functions far from \mathcal{M} ... the far away regime

Make it *constructive*

Part 2. We show the inequality for nonnegative functions close to \mathcal{M} ... the local problem

Get *explicit* estimates and remainder terms

Part 3. We show that the inequality for nonnegative functions implies the inequality for functions without a sign restriction, up to an acceptable loss in the constant

... sign-changing functions イロン 不同 とくほう イヨン

SOR

-

Explicit stability for Sobolev and LSI on \mathbb{R}^d

Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Some definitions

What we want to minimize is

$$\mathcal{E}(f) := \frac{\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \mathsf{S}_d \, \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2}{\mathsf{d}(f,\mathcal{M})^2} \quad f \in \dot{\mathrm{H}}^1(\mathbb{R}^d) \setminus \mathcal{M}$$

where

$$\mathsf{d}(f,\mathcal{M})^2 := \inf_{g\in\mathcal{M}} \|
abla f -
abla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$$

 \triangleright up to an elementary *transformation*, we assume that $d(f, \mathcal{M})^2 = \|\nabla f - \nabla g_*\|_{L^2(\mathbb{R}^d)}^2$ with

$$g_*(x) := |\mathbb{S}^d|^{-rac{d-2}{2d}} \left(rac{2}{1+|x|^2}
ight)^{rac{d-2}{2}}$$

 \triangleright use the *inverse stereographic* projection

$$F(\omega) = \frac{f(x)}{g_*(x)} \quad x \in \mathbb{R}^d \text{ with } \begin{cases} \omega_j = \frac{2x_j}{1+|x|^2} & \text{if } 1 \le j \le d \\ \omega_{d+1} = \frac{1-|x|^2}{1+|x|^2} \end{cases}$$

Explicit stability for Sobolev and LSI on R^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

The problem on the unit sphere

Stability inequality on the unit sphere \mathbb{S}^d for $F \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$

$$\begin{split} \int_{\mathbb{S}^d} \left(|\nabla F|^2 + \mathsf{A} \, |F|^2 \right) d\mu &- \mathsf{A} \left(\int_{\mathbb{S}^d} |F|^{2^*} \, d\mu \right)^{2/2^*} \\ &\geq \frac{\beta}{d} \inf_{G \in \mathscr{M}} \left\{ \|\nabla F - \nabla G\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \mathsf{A} \, \|F - G\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right\} \end{split}$$

with $A = \frac{1}{4} d(d-2)$ and a manifold \mathcal{M} of optimal functions made of

$$G(\omega) = c \left(a + b \cdot \omega
ight)^{-rac{d-2}{2}} \ \ \omega \in \mathbb{S}^d \ \ (a,b,c) \in (0,+\infty) imes \mathbb{R}^d imes \mathbb{R}^d$$

make the reduction of a *far away problem* to a local problem *constructive...* on R^d
make the analysis of the *local problem explicit...* on S^d

イロト イポト イヨト イヨト

Explicit stability for Sobolev and LSI on R^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Competing symmetries

• Rotations on the sphere combined with stereographic and inverse stereographic projections. Let $e_d = (0, \ldots, 0, 1) \in \mathbb{R}^d$

$$(Uf)(x) := \left(\frac{2}{|x - e_d|^2}\right)^{\frac{d-2}{2}} f\left(\frac{x_1}{|x - e_d|^2}, \dots, \frac{x_{d-1}}{|x - e_d|^2}, \frac{|x|^2 - 1}{|x - e_d|^2}\right)$$
$$\mathcal{E}(Uf) = \mathcal{E}(f)$$

• Symmetric decreasing rearrangement $\mathcal{R}f = f^*$ f and f^* are equimeasurable $\|\nabla f^*\|_{L^2(\mathbb{R}^d)} \le \|\nabla f\|_{L^2(\mathbb{R}^d)}$

The method of *competing symmetries*

Theorem (Carlen, Loss, 1990)

Let $f \in L^{2^*}(\mathbb{R}^d)$ be a non-negative function with $\|f\|_{L^{2^*}(\mathbb{R}^d)} = \|g_*\|_{L^{2^*}(\mathbb{R}^d)}$. The sequence $f_n = (\mathcal{R}U)^n f$ is such that $\lim_{n \to +\infty} \|f_n - g_*\|_{L^{2^*}(\mathbb{R}^d)} = 0$. If $f \in \dot{H}^1(\mathbb{R}^d)$, then $(\|\nabla f_n\|_{L^2(\mathbb{R}^d)})_{n \in \mathbb{N}}$ is a non-increasing sequence

Explicit stability for Sobolev and LSI on \mathbb{R}^d

Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Useful preliminary results

•
$$\lim_{n\to\infty} \|f_n - g_*\|_{2^*} = 0$$
 if $\|f\|_{2^*} = \|g_*\|_{2^*}$

 $\textcircled{\ }$ $(\|\nabla f_n\|_2^2)_{n\in\mathbb{N}}$ is a nonincreasing sequence

Lemma

$$\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2} = \|\nabla f\|_{2}^{2} - \mathsf{S}_{d} \sup_{g \in \mathcal{M}, \|g\|_{2^{*}} = 1} \left(f, g^{2^{*}-1}\right)^{2}$$

Corollary

(1日) (日) (日)

-

Explicit stability for Sobolev and LSI on R^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Part 1: Global to local reduction

The local problem

$$\mathscr{I}(\delta):=\inf\left\{\mathcal{E}(f)\,:\,f\geq0\,,\;\mathsf{d}(f,\mathcal{M})^2\leq\delta\,\|
abla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2
ight\}$$

 $f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$ is a nonnegative function in the *far away regime* iff

$$\mathsf{d}(f,\mathcal{M})^2 = \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 > \delta \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$$

for some $\delta \in (0, 1)$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let $f_n = (\mathcal{R}U)^n f$. There are two cases: • (Case 1) $d(f_n, \mathcal{M})^2 \ge \delta \|\nabla f_n\|_{L^2(\mathbb{R}^d)}^2$ for all $n \in \mathbb{N}$ • (Case 2) for some $n \in \mathbb{N}$, $d(f_n, \mathcal{M})^2 < \delta \|\nabla f_n\|_{L^2(\mathbb{R}^d)}^2$ Explicit stability for Sobolev and LSI on \mathbb{R}^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Global to local reduction – Case 1

 $f\in \dot{\mathrm{H}}^1(\mathbb{R}^d)$ is a nonnegative function in the far away regime

$$\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} > \delta \|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

Lemma

Let
$$f_n = (\mathcal{R}U)^n f$$
 and $\delta \in (0, 1)$
If $d(f_n, \mathcal{M})^2 \ge \delta \|\nabla f_n\|_{L^2(\mathbb{R}^d)}^2$ for all $n \in \mathbb{N}$, then $\mathcal{E}(f) \ge \delta$

$$\lim_{n \to +\infty} \|\nabla f_n\|_2^2 \leq \frac{1}{\delta} \lim_{n \to +\infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 = \frac{1}{\delta} \left(\lim_{n \to +\infty} \|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2 \right)$$
$$1 - \frac{S_d \|f\|_{2^*}^2}{\lim_{n \to +\infty} \|\nabla f_n\|_2^2} \geq \delta$$
$$\mathcal{E}(f) = \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2} \geq \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\|\nabla f\|_2^2} \geq \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\|\nabla f\|_2^2} \geq \delta$$

Explicit stability for Sobolev and LSI on \mathbb{R}^d

Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Global to local reduction – Case 2

$$\mathscr{I}(\delta) := \inf \left\{ \mathcal{E}(f) \, : \, f \geq 0 \, , \, \mathsf{d}(f, \mathcal{M})^2 \leq \delta \, \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \right\} > 0 \, (\mathrm{to \ be \ proven})$$

Lemma

 $\mathcal{E}(f) \geq \delta \mathscr{I}(\delta)$

$$\begin{split} \text{if} \quad \inf_{g \in \mathcal{M}} \| \nabla f_{n_0} - \nabla g \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 > \delta \| \nabla f_{n_0} \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \\ \text{and} \quad \inf_{g \in \mathcal{M}} \| \nabla f_{n_0+1} - \nabla g \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \leq \delta \| \nabla f_{n_0+1} \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \end{split}$$

$$\begin{split} & \triangleright \text{ Adapt a strategy due to Christ: build a (semi-) continuous} \\ & \text{ rearrangement } flow (\mathsf{f}_{\tau})_{n_0 \leq \tau < n_0+1} \text{ with } \mathsf{f}_{n_0} = U \mathsf{f}_n \text{ such that} \\ & \|f_{\tau}\|_{2^*} = \|f\|_2, \ \tau \mapsto \|\nabla f_{\tau}\|_2 \text{ is nonincreasing, and } \lim_{\tau \to n_0+1} \mathsf{f}_{\tau} = \mathsf{f}_{n_0+1} \\ & \mathcal{E}(f) \geq 1 - \mathsf{S}_d \ \frac{\|f\|_{2^*}^2}{\|\nabla f\|_2^2} \geq 1 - \mathsf{S}_d \ \frac{\|\mathsf{f}_{\tau_0}\|_{2^*}^2}{\|\nabla \mathsf{f}_{\tau_0}\|_2^2} = \delta \ \mathcal{E}(\mathsf{f}_{\tau_0}) \geq \delta \ \mathscr{I}(\delta) \end{split}$$

Altogether: If $d(f, \mathcal{M})^2 > \delta \|\nabla f\|_{L^2(\mathbb{R}^d)}^2$, then $\mathcal{E}(f) \ge \min \{\delta, \delta \mathscr{I}(\delta)\}$

Explicit stability for Sobolev and LSI on \mathbb{R}^d

Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Part 2: The (simple) Taylor expansion

Proposition

Let
$$(X, d\mu)$$
 be a measure space and $u, r \in L^q(X, d\mu)$ for some $q \ge 2$
with $u \ge 0$, $u + r \ge 0$ and $\int_X u^{q-1} r \, d\mu = 0$
 \triangleright If $q = 6$, then
 $\|u + r\|_q^2 \le \|u\|_q^2 + \|u\|_q^{2-q} (5\int_X u^{q-2} r^2 \, d\mu + \frac{20}{3}\int_X u^{q-3} r^3 \, d\mu + 5\int_X u^{q-4} r^4 \, d\mu + 2\int_X u^{q-5} r^5 \, d\mu + \frac{1}{3}\int_X r^6 \, d\mu)$

▷ If
$$3 \le q \le 4$$
, then
 $\|u + r\|_q^2 - \|u\|_q^2$
 $\le \|u\|_q^{2-q} \left((q-1) \int_X u^{q-2} r^2 d\mu + \frac{(q-1)(q-2)}{3} \int_X u^{q-3} r^3 d\mu + \frac{2}{q} \int_X |r|^q d\mu \right)$
▷ If $2 < q \le 3$ (take $q = 2^*$, $d \ge 6$), then
 $\|u + r\|_q^2 \le \|u\|_q^2 + \|u\|_q^{2-q} \left((q-1) \int_X u^{q-2} r^2 d\mu + \frac{2}{q} \int_X r_+^q d\mu \right)$

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Corollary

For all
$$\nu > 0$$
 and for all $r \in H^1(\mathbb{S}^d)$ satisfying $r \ge -1$,
 $\left(\int_{\mathbb{S}^d} |r|^q d\mu\right)^{2/q} \le \nu^2$ and $\int_{\mathbb{S}^d} r d\mu = 0 = \int_{\mathbb{S}^d} \omega_j r d\mu \quad \forall j = 1, \dots d+1$
if $d\mu$ is the uniform probability measure on \mathbb{S}^d , then
 $\int_{\mathbb{S}^d} \left(|\nabla r|^2 + A(1+r)^2\right) d\mu - A\left(\int_{\mathbb{S}^d} (1+r)^q d\mu\right)^{2/q}$
 $\ge m(\nu) \int_{\mathbb{S}^d} \left(|\nabla r|^2 + Ar^2\right) d\mu$
 $m(\nu) := \frac{4}{d+4} - \frac{2}{q} \nu^{q-2} \quad \text{if } d \ge 6$
 $m(\nu) := \frac{4}{d+4} - \frac{1}{3} (q-1) (q-2) \nu - \frac{2}{q} \nu^{q-2} \quad \text{if } d = 4, 5$
 $m(\nu) := \frac{4}{7} - \frac{20}{3} \nu - 5 \nu^2 - 2 \nu^3 - \frac{1}{3} \nu^4 \qquad \text{if } d = 3$

An explicit expression of $\mathscr{I}(\delta)$ if $\nu > 0$ is small enough so that $\mathfrak{m}(\nu) > 0$

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Part 3: Removing the positivity assumption

• Take
$$f = f_{+} - f_{-}$$
 with $||f||_{L^{2^{*}}(\mathbb{R}^{d})} = 1$
 $||\nabla f_{+}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2} + ||\nabla f_{-}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2} = ||\nabla f||_{L^{2^{*}}(\mathbb{R}^{d})}^{2}$
• Let $m := ||f_{-}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2^{*}}$ and $1 - m = ||f_{+}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2^{*}} > 1/2$
 $||f_{+}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2} + ||f_{-}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2} - ||f||_{L^{2^{*}}(\mathbb{R}^{d})}^{2}$
 $= (||f_{+}||_{L^{2^{*}}(\mathbb{R}^{d})}^{2^{*}} - ||f||_{L^{2^{*}}(\mathbb{R}^{d})}^{2^{*}} - 1 = h_{d}(m)$
where $h_{d}(m) := m^{\frac{d-2}{d}} + (1 - m)^{\frac{d-2}{d}} - 1$ is a positive concave function
 \triangleright For some $g_{+} \in \mathcal{M}$

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \, \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \geq C_{\mathrm{BE}}^{d, \mathrm{pos}} \, \|\nabla f_{+} - \nabla g_{+}\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \frac{2 \, h_{d}(1/2)}{h_{d}(1/2) + 1} \, \|\nabla f_{-}\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

$$C_{\mathrm{BE}}^{d} \geq \frac{1}{2} \min \left\{ \max_{0 < \delta < 1/2} \delta \mathscr{I}(\delta), \frac{2 h_d(1/2)}{h_d(1/2) + 1} \right\}$$

-

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

Part 2, refined: The (complicated) Taylor expansion

To get a dimensionally sharp estimate, we expand $(1+r)^{2^*} - 1 - 2^*r$ with an accurate remainder term for all $r \ge -1$

$$r_1 := \min\{r, \gamma\}, \quad r_2 := \min\{(r - \gamma)_+, M - \gamma\} \text{ and } r_3 := (r - M)_+$$

with $0 < \gamma < M$. Let $\theta = 4/(d-2)$

Lemma

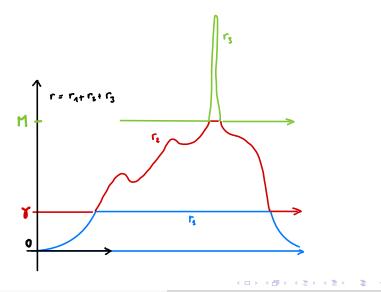
Given
$$d \ge 6$$
, $r \in [-1, \infty)$, and $\overline{M} \in [\sqrt{e}, +\infty)$, we have

$$(1+r)^{2^*} - 1 - 2^*r \leq \frac{1}{2} 2^* (2^* - 1) (r_1 + r_2)^2 + 2 (r_1 + r_2) r_3 + (1 + C_M \theta \overline{M}^{-1} \ln \overline{M}) r_3^{2^*} + (\frac{3}{2} \gamma \theta r_1^2 + C_{M,\overline{M}} \theta r_2^2) \mathbb{1}_{\{r \leq M\}} + C_{M,\overline{M}} \theta M^2 \mathbb{1}_{\{r > M\}}$$

where all the constants in the above inequality are explicit

- ∢ ⊒ →

Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof



Main results, optimal dimensional dependence; history Sketch of the proof, definitions & preliminary results The main steps of the proof

There are constants ϵ_1 , ϵ_2 , k_0 , and $\epsilon_0 \in (0, 1/\theta)$, such that

$$\begin{split} \|\nabla r\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \mathrm{A} \, \left\|r\right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - \mathrm{A} \, \left\|1 + r\right\|_{\mathrm{L}^{2*}(\mathbb{S}^{d})}^{2} \\ \geq \frac{4 \epsilon_{0}}{d - 2} \left(\left\|\nabla r\right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \mathrm{A} \, \left\|r\right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}\right) + \sum_{k=1}^{3} I_{k} \end{split}$$

$$\begin{split} I_{1} &:= (1 - \theta \epsilon_{0}) \int_{\mathbb{S}^{d}} \left(|\nabla r_{1}|^{2} + A r_{1}^{2} \right) d\mu - A \left(2^{*} - 1 + \epsilon_{1} \theta \right) \int_{\mathbb{S}^{d}} r_{1}^{2} d\mu + A k_{0} \theta \int_{\mathbb{S}^{d}} (r_{2}^{2} \dots r_{2}^{2}) d\mu \\ I_{2} &:= (1 - \theta \epsilon_{0}) \int_{\mathbb{S}^{d}} \left(|\nabla r_{2}|^{2} + A r_{2}^{2} \right) d\mu - A \left(2^{*} - 1 + (k_{0} + C_{\epsilon_{1}, \epsilon_{2}}) \theta \right) \int_{\mathbb{S}^{d}} r_{2}^{2} d\mu \\ I_{3} &:= (1 - \theta \epsilon_{0}) \int_{\mathbb{S}^{d}} \left(|\nabla r_{3}|^{2} + A r_{3}^{2} \right) d\mu - \frac{2}{2^{*}} A \left(1 + \epsilon_{2} \theta \right) \int_{\mathbb{S}^{d}} r_{3}^{2^{*}} d\mu - A k_{0} \theta \int_{\mathbb{S}^{d}} r_{3}^{2} d\mu \end{split}$$

- spectral gap estimates : $I_1 \ge 0$
- Sobolev inequality : $I_3 \ge 0$
- improved spectral gap inequality using that $\mu(\{r_2 > 0\})$ is small: $l_2 \ge 0$ [Duoandikoetxea]

イボト イラト イラト

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Results based on entropy methods and fast diffusion equations

- 4 同 6 4 日 6 4 日 6

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Sobolev and Hardy-Littlewood-Sobolev inequalities

- \rhd Stability in a weaker norm, with explicit constants
- \rhd From duality to improved estimates
- \triangleright Fast diffusion equation with Yamabe's exponent
- \triangleright Explicit stability constants

Joint paper with G. Jankowiak Sobolev and Hardy–Littlewood–Sobolev inequalities J. Differential Equations, 257, 2014

(人間) システン イラン

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev's inequality in \mathbb{R}^d , $d \geq 3$,

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} \geq \mathsf{S}_{d} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \quad \forall f \in \dot{\mathrm{H}}^{1}(\mathbb{R}^{d}) = \mathscr{D}^{1,2}(\mathbb{R}^{d}) \qquad (\mathsf{S})$$

and the Hardy-Littlewood-Sobolev inequality

$$\|g\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \ge \mathsf{S}_d \int_{\mathbb{R}^d} g\left(-\Delta\right)^{-1} g\,dx \quad \forall \, g \in \mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d) \tag{HLS}$$

are dual of each other. Here S_d is the Aubin-Talenti constant, $2^* = \frac{2d}{d-2}$, $(2^*)' = \frac{2d}{d+2}$ and by the Legendre transform

$$\sup_{f \in \mathscr{D}^{1,2}(\mathbb{R}^d)} \left(\int_{\mathbb{R}^d} f g \, dx - \frac{1}{2} \, \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \right) = \frac{1}{2} \, \|g\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2$$
$$\sup_{f \in \mathscr{D}^{1,2}(\mathbb{R}^d)} \left(\int_{\mathbb{R}^d} f g \, dx - \frac{1}{2} \, \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \right) = \frac{1}{2} \, \int_{\mathbb{R}^d} g \, (-\Delta)^{-1} g \, dx$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Improved Sobolev inequality by duality

Theorem

[JD, Jankowiak] Assume that $d \ge 3$ and let $q = \frac{d+2}{d-2}$ There exists a positive constant $\mathcal{C} \in [\frac{d}{d+4}, 1)$ such that

$$\|f^{q}\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \int_{\mathbb{R}^{d}} f^{q} (-\Delta)^{-1} f^{q} dx \\ \leq \mathcal{C} \mathsf{S}_{d}^{-1} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{\frac{8}{d-2}} \left(\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \right)$$

for any $f\in \mathcal{D}^{1,2}(\mathbb{R}^d)$

 $\mathcal{C} = 1$: "completion" of the square

$$0 \leq \int_{\mathbb{R}^d} \left| \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^{\frac{4}{d-2}} \nabla f - \mathsf{S}_d \, \nabla (-\Delta)^{-1} \, g \right|^2 dx$$

イロン 不同 とくほう イヨン

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Using a nonlinear flow to relate Sobolev and HLS

Consider the *fast diffusion* equation

$$\frac{\partial v}{\partial t} = \Delta v^m, \quad t > 0, \quad x \in \mathbb{R}^d$$
(Y)

Choice $m = \frac{d-2}{d+2}$ (Yamabe flow): $m + 1 = \frac{2d}{d+2}$

Proposition

Assume that $d \ge 3$ and $m = \frac{d-2}{d+2}$. If $u = v^m$ and v is a solution of (Y) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\frac{1}{2} \frac{d}{dt} \left(\int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d^{-1} \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right) \\ = \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left(\mathsf{S}_d^{-1} \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^2 \right) \ge 0$$

- 4 回 > - 4 回 > - 4 回 >

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

A simple observation

Proposition

Assume that $d \ge 3$ and $m = \frac{d-2}{d+2}$. If v is a solution of (Y) with nonnegative initial datum in $L^{2d/(d+2)}(\mathbb{R}^d)$, then

$$\frac{1}{2} \frac{d}{dt} \left(\int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d^{-1} \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2 \right)$$
$$= \left(\int_{\mathbb{R}^d} v^{m+1} \, dx \right)^{\frac{2}{d}} \left(\mathsf{S}_d^{-1} \, \|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \|u\|_{\mathrm{L}^{2*}(\mathbb{R}^d)}^2 \right) \ge 0$$

The HLS inequality amounts to $H \le 0$ and appears as a consequence of Sobolev, that is $H' \ge 0$ if we show that $\limsup_{t>0} H(t) = 0$

Notice that $u = v^m$ is an optimal function for (S) if v is optimal for (HLS)

・ロト ・回ト ・ヨト ・ヨト

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Solutions with separation of variables

Consider the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ vanishing at t = T:

$$\overline{v}_T(t,x) = c \, (T-t)^{\alpha} \, (F(x))^{\frac{d+2}{d-2}}$$

where ${\cal F}$ is the Aubin-Talenti solution of

$$-\Delta F = d (d - 2) F^{(d+2)/(d-2)}$$

Lemma

[del Pino, Saez] For any solution v with initial datum $v_0 \in L^{2d/(d+2)}(\mathbb{R}^d), v_0 > 0$, there exists $T > 0, \lambda > 0$ and $x_0 \in \mathbb{R}^d$ such that

$$\lim_{t \to T_{-}} (T - t)^{-\frac{1}{1 - m}} \sup_{x \in \mathbb{R}^d} (1 + |x|^2)^{d + 2} \left| \frac{v(t, x)}{\overline{v}(t, x)} - 1 \right| = 0$$

with $\overline{v}(t,x) = \lambda^{(d+2)/2} \overline{v}_T(t,(x-x_0)/\lambda)$

< ∃⇒

◆ 同 → ◆ 三 →

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

A convexity improvement

$$\mathsf{J}[v] := \int_{\mathbb{R}^d} v^{\frac{2d}{d+2}} \, dx \quad \text{and} \quad \mathsf{H}[v] := \int_{\mathbb{R}^d} v \, (-\Delta)^{-1} v \, dx - \mathsf{S}_d \, \|v\|_{\mathrm{L}^{\frac{2d}{d+2}}(\mathbb{R}^d)}^2$$

Theorem

[JD, Jankowiak] Assume that $d \ge 3$. Then we have

$$0 \le \mathsf{H}[v] + \mathsf{S}_{d} \mathsf{J}[v]^{1+\frac{2}{d}} \varphi \left(\mathsf{J}[v]^{\frac{2}{d}-1} \left(\mathsf{S}_{d}^{-1} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \|u\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \right) \right)$$

where $\varphi(x) := \sqrt{1+2x} - 1$ for any $x \ge 0$

Proof: with $\kappa_0 := H'_0/J_0$ and H = -Y(J), consider the differential inequality

$$\mathsf{Y}'\left(\mathcal{C}\,\mathsf{S}_d\,s^{1+\frac{2}{d}}+\mathsf{Y}\right) \leq \frac{d+2}{2\,d}\,\mathcal{C}\,\kappa_0\,\mathsf{S}_d^2\,s^{1+\frac{4}{d}}\,,\quad\mathsf{Y}(0)=0\,,\quad\mathsf{Y}(\mathsf{J}_0)=-\,\mathsf{H}_0$$

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Constructive stability results in Gagliardo-Nirenberg-Sobolev inequalities

Joint papers with M. Bonforte, B. Nazaret and N. Simonov Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method arXiv:2007.03674, to appear in Memoirs of the AMS

Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations

DCDS, 43 (3&4): 10701089, 2023

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Entropy – entropy production inequality

The fast diffusion equation on \mathbb{R}^d in self-similar variables

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0$$
 (FDE)

admits a stationary Barenblatt solution $\mathcal{B}(x) := (1 + |x|^2)^{\frac{1}{m-1}}$

$$rac{d}{dt}\mathcal{F}[v(t,\cdot)] = -\mathcal{I}[v(t,\cdot)]$$

Generalized entropy (free energy) and Fisher information

$$\mathcal{F}[v] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(v^m - \mathcal{B}^m - m \mathcal{B}^{m-1} \left(v - \mathcal{B} \right) \right) dx$$
$$\mathcal{I}[v] := \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} - \nabla \mathcal{B}^{m-1} \right|^2 dx$$

are such that $\mathcal{I}[v] \ge 4 \mathcal{F}[v]$ [del Pino, JD, 2002] so that

 $\mathcal{F}[v(t,\cdot)] \leq \mathcal{F}[v_0] e^{-4t}$

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

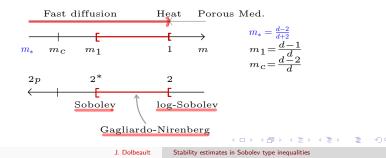
Entropy growth rate

$$\mathcal{I}[\mathbf{v}] \ge 4 \mathcal{F}[\mathbf{v}] \iff Gagliardo-Nirenberg-Sobolev inequalities$$
$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{\theta} \|f\|_{\mathrm{L}^{p+1}(\mathbb{R}^{d})}^{1-\theta} \ge \mathcal{C}_{\mathrm{GNS}}(p) \|f\|_{\mathrm{L}^{2p}(\mathbb{R}^{d})}$$
(GNS)

with optimal constant. Under appropriate mass normalization

$$v = f^{2p}$$
 so that $v^m = f^{p+1}$ and $v |\nabla v^{m-1}|^2 = (p-1)^2 |\nabla f|^2$

$$p=rac{1}{2\,m-1}$$
 \iff $m=rac{p+1}{2\,p}\in[m_1,1)$



Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Asymptotic regime as $t \to +\infty$

Take $f_{\varepsilon} := \mathcal{B}(1 + \varepsilon \mathcal{B}^{1-m} w)$ and expand $\mathcal{F}[f_{\varepsilon}]$ and $\mathcal{I}[f_{\varepsilon}]$ at order $O(\varepsilon^2)$ linearized free energy and linearized Fisher information

$$\mathsf{F}[w] := \frac{m}{2} \int_{\mathbb{R}^d} w^2 \, \mathcal{B}^{2-m} \, dx \quad \text{and} \quad \mathsf{I}[w] := m \left(1-m\right) \int_{\mathbb{R}^d} |\nabla w|^2 \, \mathcal{B} \, dx$$

Proposition (Hardy-Poincaré inequality)

[BBDGV, BDNS] Let $m \in [m_1, 1)$ if $d \ge 3$, $m \in (1/2, 1)$ if d = 2, and $m \in (1/3, 1)$ if d = 1. If $w \in L^2(\mathbb{R}^d, \mathcal{B}^{2-m} dx)$ is such that $\nabla w \in L^2(\mathbb{R}^d, \mathcal{B} dx)$, $\int_{\mathbb{R}^d} w \mathcal{B}^{2-m} dx = 0$, then

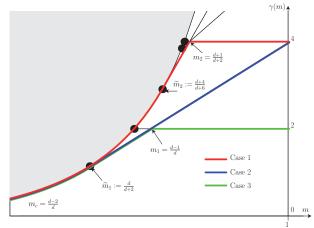
 $I[w] \ge 4 \alpha F[w]$

with $\alpha = 1$, or $\alpha = 2 - d(1 - m)$ if $\int_{\mathbb{R}^d} x w \mathcal{B}^{2-m} dx = 0$

(日) (同) (三) (三)

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Spectral gap



[Denzler, McCann, 2005] [BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015] Much more is know, *e.g.*, [Denzler, Koch, McCann, 2015]

3

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

The asymptotic time layer improvement

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\eta = 2 (d m - d + 1)$ and $\chi = m/(266 + 56 m)$. If $\int_{\mathbb{R}^d} v \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x v \, dx = 0$ and $(1 - \varepsilon) \mathcal{B} \le v \le (1 + \varepsilon) \mathcal{B}$

for some $\varepsilon \in (0, \chi \eta)$, then $\mathcal{I}[v] \geq (4 + \eta) \mathcal{F}[v]$

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Uniform convergence in relative error: threshold time

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1 and let $\varepsilon \in (0, 1/2)$, small enough, A > 0, and G > 0 be given. There exists an explicit threshold time $t_* \ge 0$ such that, if u is a solution of

$$\frac{\partial v}{\partial t} + \nabla \cdot \left[v \left(\nabla v^{m-1} - 2x \right) \right] = 0$$
 (FDE)

with nonnegative initial datum $u_0 \in \mathrm{L}^1(\mathbb{R}^d)$ satisfying

$$A[u_0] = \sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} u_0 \, dx \le A < \infty \tag{H}_A$$

 $\int_{\mathbb{R}^d} u_0 \, dx = \int_{\mathbb{R}^d} B \, dx = \mathcal{M}$, then

$$\sup_{x \in \mathbb{R}^d} \left| \frac{u(t,x)}{B(t,x)} - 1 \right| \le \varepsilon \quad \forall \ t \ge t_\star$$
J. Dolbeault Stability estimates in Sobolev type inequalities

The initial time layer improvement: backward estimate

By the *carré du champ* method, we have Away from the Barenblatt solutions, $\mathcal{Q}[v] := \frac{\mathcal{I}[v]}{\mathcal{F}[v]}$ is such that

$$\frac{d\mathcal{Q}}{dt} \leq \mathcal{Q}\left(\mathcal{Q}-4\right)$$

Lemma

Assume that $m > m_1$ and v is a solution to (FDE) with nonnegative initial datum v_0 . If for some $\eta > 0$ and $t_* > 0$, we have $\mathcal{Q}[v(t_*, \cdot)] \ge 4 + \eta$, then

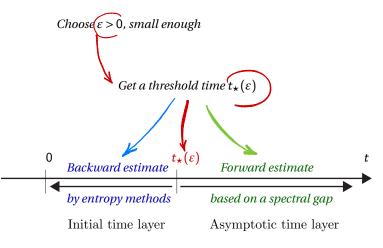
$$\mathcal{Q}[v(t,\cdot)] \ge 4 + \frac{4 \eta e^{-4 t_{\star}}}{4 + \eta - \eta e^{-4 t_{\star}}} \quad \forall t \in [0, t_{\star}]$$

イロト イポト イヨト イヨト

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Stability in Gagliardo-Nirenberg-Sobolev inequalities

Our strategy



医下口 医下

A >

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

Two consequences (subcritical case)

 \rhd Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. If v is a solution of (FDE) with nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v_0] = G$, $\int_{\mathbb{R}^d} v_0 \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v_0 \, dx = 0$ and v_0 satisfies (H_A), then

$$\mathcal{F}[v(t,.)] \leq \mathcal{F}[v_0] e^{-(4+\zeta)t} \quad \forall t \geq 0$$

 $\triangleright \text{ The stability of the entropy - entropy production inequality} \\ \mathcal{I}[v] - 4 \mathcal{F}[v] \geq \zeta \mathcal{F}[v] \text{ also holds in a stronger sense}$

$$\mathcal{I}[v] - 4\mathcal{F}[v] \geq rac{\zeta}{4+\zeta}\mathcal{I}[v]$$

・ロト ・回ト ・ヨト ・

Sobolev and HLS inequalities: duality and Yamabe flow Stability, fast diffusion equation and entropy methods

A constructive stability result (critical case)

Let
$$2 p^* = 2d/(d-2) = 2^*, d \ge 3$$
 and
 $\mathcal{W}_{p^*}(\mathbb{R}^d) = \left\{ f \in L^{p^*+1}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^{p^*} \in L^2(\mathbb{R}^d) \right\}$

Deficit of the Sobolev inequality: $\delta[f] := \|\nabla f\|_{L^2(\mathbb{R}^d)}^2 - S_d^2 \|f\|_{L^{2^*}(\mathbb{R}^d)}^2$

Theorem

Let $d \ge 3$ and A > 0. Then for any nonnegative $f \in W_{p^*}(\mathbb{R}^d)$ such that

$$\int_{\mathbb{R}^d} (1, x, |x|^2) \, f^{2^*} \, dx = \int_{\mathbb{R}^d} (1, x, |x|^2) \, \mathrm{g} \, dx \quad \text{and} \quad \sup_{r>0} r^d \int_{|x|>r} f^{2^*} \, dx \leq A$$

we have

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - \mathsf{S}_{d}^{2} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \geq \frac{\mathcal{C}_{\star}(A)}{4 + \mathcal{C}_{\star}(A)} \int_{\mathbb{R}^{d}} \left|\nabla f + \frac{d-2}{2} f^{\frac{d}{d-2}} \nabla \mathsf{g}^{-\frac{2}{d-2}}\right|^{2} d\mathsf{x}$$

 $\mathcal{C}_\star(A)=\mathcal{C}_\star(0)\left(1\!+\!A^{1/(2\,d)}\right)^{-1}$ and $\mathcal{C}_\star(0)>0$ depends only on d

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

More explicit stability results for the logarithmic Sobolev and Gagliardo-Nirenberg inequalities on \mathbb{S}^d

Joint work with G. Brigati and N. Simonov Logarithmic Sobolev and interpolation inequalities on the sphere: constructive stability results Annales IHP, Analyse non linéaire, 362, 2023 On Gaussian interpolation inequalities C. R. Math. Acad. Sci. Paris 41, 2024

Subcritical interpolation inequalities on the sphere

 $\textcircled{\ } \textbf{Gagliardo-Nirenberg-Sobolev inequality}$

$$\left\|\nabla F\right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \geq d \, \mathcal{E}_{p}[F] := \frac{d}{p-2} \left(\left\|F\right\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2} - \left\|F\right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2}\right)$$

for any $p \in [1,2) \cup (2,2^*)$ with $2^* := \frac{2d}{d-2}$ if $d \ge 3$ and $2^* = +\infty$ if d = 1 or 2

 \blacksquare Limit $p \rightarrow 2$: the logarithmic Sobolev inequality

$$\int_{\mathbb{S}^d} |
abla F|^2 \, d\mu \geq rac{d}{2} \int_{\mathbb{S}^d} F^2 \, \log\left(rac{F^2}{\|F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2}
ight) d\mu \quad orall \, F \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

[Bakry, Emery, 1984], [Bidaut-Véron, Véron, 1991], [Beckner, 1993]

・ロン ・回と ・ヨン ・

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

Gagliardo-Nirenberg inequalities: stability

An improved inequality under orthogonality constraint and the stability inequality arising from the *carré du champ* method can be combined *in the subcritical case* as follows

Theorem

Let $d \geq 1$ and $p \in (1, 2^*)$. For any $F \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$, we have

$$\begin{split} \int_{\mathbb{S}^d} |\nabla F|^2 \, d\mu - d \, \mathcal{E}_{\rho}[F] \\ \geq \mathscr{S}_{d,\rho} \left(\frac{\|\nabla \Pi_1 F\|_{\mathrm{L}^2(\mathbb{S}^d)}^4}{\|\nabla F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \|F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2} + \|\nabla (\mathrm{Id} - \Pi_1) \, F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right) \end{split}$$

for some explicit stability constant $\mathscr{S}_{d,p} > 0$

 \rhd The result holds true for the logarithmic Sobolev inequality (p=2), again with an explicit constant $\mathcal{S}_{d,2},$ for any finite dimension d

▲圖 → ▲ 臣 → ▲ 臣 → 二

1

SOG

Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Subcritical interpolation inequalities on the sphere

Large dimensional limit

Gagliardo-Nirenberg-Sobolev inequalities on \mathbb{S}^d , $p \in [1, 2)$

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{S}^d,d\mu_d)}^2 \geq \frac{d}{p-2} \left(\|u\|_{\mathrm{L}^p(\mathbb{S}^d,d\mu_d)}^2 - \|u\|_{\mathrm{L}^2(\mathbb{S}^d,d\mu_d)}^2 \right)$$

Theorem

Let $v \in H^1(\mathbb{R}^n, dx)$ with compact support, $d \ge n$ and

$$u_d(\omega) = v\left(\omega_1/r_d, \omega_2/r_d, \ldots, \omega_n/r_d\right), \quad r_d = \sqrt{\frac{d}{2\pi}}$$

where $\omega \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$. With $d\gamma(y) := (2\pi)^{-n/2} e^{-\frac{1}{2}|y|^2} dy$,

$$\lim_{d \to +\infty} d\left(\|\nabla u_d\|_{\mathrm{L}^2(\mathbb{S}^d, d\mu_d)}^2 - \frac{d}{2-p} \left(\|u_d\|_{\mathrm{L}^2(\mathbb{S}^d, d\mu_d)}^2 - \|u_d\|_{\mathrm{L}^p(\mathbb{S}^d, d\mu_d)}^2 \right) \right)$$
$$= \|\nabla v\|_{\mathrm{L}^2(\mathbb{R}^n, d\gamma)}^2 - \frac{1}{2-p} \left(\|v\|_{\mathrm{L}^2(\mathbb{R}^n, d\gamma)}^2 - \|v\|_{\mathrm{L}^p(\mathbb{R}^n, d\gamma)}^2 \right)$$

< (***) >

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

L^2 stability of LSI: comments

[JD, Esteban, Figalli, Frank, Loss]

$$\begin{split} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{n},d\gamma)}^{2} &- \pi \int_{\mathbb{R}^{n}} u^{2} \log \left(\frac{|u|^{2}}{\|u\|_{\mathrm{L}^{2}(\mathbb{R}^{n},d\gamma)}^{2}}\right) d\gamma \\ &\geq \frac{\beta \pi}{2} \inf_{a \in \mathbb{R}^{d}, \, c \in \mathbb{R}} \int_{\mathbb{R}^{n}} |u - c \, e^{a \cdot x}|^{2} \, d\gamma \end{split}$$

One dimension is lost (for the manifold of invariant functions) in the limiting process

• Euclidean forms of the stability

• The $\dot{H}^1(\mathbb{R}^n)$ does not appear, it gets lost in the limit $d \to +\infty$ • $\int_{\mathbb{R}^n} |\nabla(u - c e^{a \cdot x})|^2 d\gamma$? False, but makes sense under additional assumptions. Some results based on the Ornstein-Uhlenbeck flow and entropy methods: [Fathi, Indrei, Ledoux, 2016], [JD, Brigati, Simonov] • Taking the limit is difficult because of the lack of compactness

イロト イポト イヨト イヨト

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

More results on logarithmic Sobolev inequalities

Joint work with G. Brigati and N. Simonov Stability for the logarithmic Sobolev inequality Journal of Functional Analysis, 287, oct. 2024

 \triangleright Entropy methods, with constraints

イボト イラト イラト

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

Stability under a constraint on the second moment

$$\begin{split} u_{\varepsilon}(x) &= 1 + \varepsilon x \text{ in the limit as } \varepsilon \to 0 \\ d(u_{\varepsilon}, 1)^2 &= \|u_{\varepsilon}'\|_{L^2(\mathbb{R}, d\gamma)}^2 = \varepsilon^2 \quad \text{and} \quad \inf_{w \in \mathcal{M}} d(u_{\varepsilon}, w)^{\alpha} \leq \frac{1}{2} \varepsilon^4 + O(\varepsilon^6) \\ \mathcal{M} &:= \left\{ w_{a,c} : (a, c) \in \mathbb{R}^d \times \mathbb{R} \right\} \text{ where } w_{a,c}(x) = c \, e^{-a \cdot x} \end{split}$$

Proposition

For all $u \in H^1(\mathbb{R}^d, d\gamma)$ such that $\|u\|_{L^2(\mathbb{R}^d)} = 1$ and $\|\mathbf{x} u\|_{L^2(\mathbb{R}^d)}^2 \leq d$, we have

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 - \frac{1}{2}\int_{\mathbb{R}^d}|u|^2\,\log|u|^2\,d\gamma \geq \frac{1}{2\,d}\,\left(\int_{\mathbb{R}^d}|u|^2\,\log|u|^2\,d\gamma\right)^2$$

and, with $\psi(s) := s - \frac{d}{4} \log \left(1 + \frac{4}{d} s\right)$,

$$\left\|\nabla u\right\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\gamma)}^{2}-\frac{1}{2}\int_{\mathbb{R}^{d}}|u|^{2}\,\log|u|^{2}\,d\gamma\geq\psi\left(\left\|\nabla u\right\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\gamma)}^{2}\right)$$

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

Stability under log-concavity

Theorem

For all $u \in \mathrm{H}^1(\mathbb{R}^d, d\gamma)$ such that $u^2 \gamma$ is log-concave and such that

$$\int_{\mathbb{R}^d} (1,x) \; |u|^2 \, d\gamma = (1,0) \quad and \quad \int_{\mathbb{R}^d} |x|^2 \, |u|^2 \, d\gamma \leq \mathsf{K}$$

we have

$$\left\|\nabla u\right\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 - \frac{\mathscr{C}_{\star}}{2}\int_{\mathbb{R}^d}|u|^2\,\log|u|^2\,d\gamma\geq 0$$

$$\mathscr{C}_{\star} = 1 + rac{1}{432\,{
m K}} pprox 1 + rac{0.00231481}{{
m K}}$$

Self-improving Poincaré inequality and stability for LSI [Fathi, Indrei, Ledoux, 2016]

イロト 不得 とくほ とくほう

Explicit stability for Sobolev and LSI on \mathbb{R}^d Results based on entropy methods and fast diffusion equations More stability results for LSI and related inequalities

Subcritical interpolation inequalities on the sphere More results on LSI and Gagliardo-Nirenberg inequalities

Theorem

Let $d \ge 1$. For any $\varepsilon > 0$, there is some explicit $\mathscr{C} > 1$ depending only on ε such that, for any $u \in H^1(\mathbb{R}^d, d\gamma)$ with

$$\int_{\mathbb{R}^d} (1,x) \ |u|^2 \ d\gamma = (1,0) \,, \ \int_{\mathbb{R}^d} |x|^2 \ |u|^2 \ d\gamma \leq d \,, \ \int_{\mathbb{R}^d} |u|^2 \ e^{ \, \varepsilon \, |x|^2} \ d\gamma < \infty$$

for some $\varepsilon > 0$, then we have

$$\left\|\nabla u\right\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\gamma)}^{2} \geq \frac{\mathscr{C}}{2} \int_{\mathbb{R}^{d}} |u|^{2} \log |u|^{2} d\gamma$$

with $\mathscr{C} = 1 + \frac{\mathscr{C}_{\star}(\mathsf{K}_{\star}) - 1}{1 + R^2 \, \mathscr{C}_{\star}(\mathsf{K}_{\star})}$, $\mathsf{K}_{\star} := \max\left(d, \frac{(d+1)R^2}{1 + R^2}\right)$ if $\operatorname{supp}(u) \subset B(0, R)$

Compact support: [Lee, Vázquez, '03]; [Chen, Chewi, Niles-Weed, '21]

・ロン ・四 ・ ・ ヨ ・ ・

These slides can be found at

$\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Lectures/ $$ $$ $$ $$ $$ $$ $$ $$ Lectures $$$

More related papers can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/ $$ $$ Preprints and papers $$$

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeaul@ceremade.dauphine.fr

イロト イポト イヨト イヨト

Thank you for your attention !