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Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

Critical Caffarelli-Kohn-Nirenberg inequality

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}

(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under conditions on a and b

p =
2 d

d − 2 + 2 (b − a)
(critical case)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Question: Ca,b = C?a,b (symmetry) or Ca,b > C?a,b (symmetry breaking) ?
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Critical CKN: range of the parameters

Figure: d = 3(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx

a

b

0

1

−1

b = a

b= a+ 1

a = d−2
2

p

a ≤ b ≤ a + 1 if d ≥ 3
a < b ≤ a + 1 if d = 2, a + 1/2 < b ≤ a + 1 if d = 1
and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

(Glaser, Martin, Grosse, Thirring (1976))
(Caffarelli, Kohn, Nirenberg (1984))

[F. Catrina, Z.-Q. Wang (2001)]
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Linear instability of radial minimizers:
the Felli-Schneider curve

The Felli & Schneider curve

bFS(a) :=
d (ac − a)

2
√

(ac − a)2 + d − 1
+ a− ac

a

b

0

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider]
The functional

C?a,b

∫

Rd

|∇v |2
|x |2 a

dx −
(∫

Rd

|v |p
|x |b p

dx

)2/p

is linearly instable at v = v?
J. Dolbeault Entropy methods
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Symmetry versus symmetry breaking:
the sharp result in the critical case

[JD, Esteban, Loss (Inventiones 2016)]

a

b

0

Theorem

Let d ≥ 2 and p < 2∗. If either a ∈ [0, ac) and b > 0, or a < 0 and
b ≥ bFS(a), then the optimal functions for the critical
Caffarelli-Kohn-Nirenberg inequalities are radially symmetric
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The Emden-Fowler transformation and the cylinder

B With an Emden-Fowler transformation, critical the
Caffarelli-Kohn-Nirenberg inequality on the Euclidean space are
equivalent to Gagliardo-Nirenberg inequalities on a cylinder

v(r , ω) = r a−ac ϕ(s, ω) with r = |x | , s = − log r and ω =
x

r

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as the subcritical interpolation inequality

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C) ≥ µ(Λ) ‖ϕ‖2

Lp(C) ∀ϕ ∈ H1(C)

where Λ := (ac − a)2, C = R× Sd−1 and the optimal constant µ(Λ) is

µ(Λ) =
1

Ca,b
with a = ac ±

√
Λ and b =

d

p
±
√

Λ
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Linearization around symmetric critical points

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1

p−2

is a critical point of

H1(C) 3 ϕ 7→ ‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

under a constraint on ‖ϕ‖2
Lp(C)

ϕ? is not optimal for (CKN) if the Pöschl-Teller operator

−∂2
s −∆ω + Λ− ϕp−2

? = −∂2
s −∆ω + Λ− 1

(cosh s)2

has a negative eigenvalue, i.e., for Λ > Λ1 (explicit)
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The variational problem on the cylinder

Λ 7→ µ(Λ) := min
ϕ∈H1(C)

‖∂sϕ‖2
L2(C) + ‖∇ωϕ‖2

L2(C) + Λ ‖ϕ‖2
L2(C)

‖ϕ‖2
Lp(C)

is a concave increasing function

Restricted to symmetric functions, the variational problem becomes

µ?(Λ) := min
ϕ∈H1(R)

‖∂sϕ‖2
L2(Rd ) + Λ ‖ϕ‖2

L2(Rd )

‖ϕ‖2
Lp(Rd )

= µ?(1) Λα

Symmetry means µ(Λ) = µ?(Λ)
Symmetry breaking means µ(Λ) < µ?(Λ)
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Numerical results
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symmetric

non-symmetric

asymptotic

bifurcation

µ

Λα

µ(Λ)

�(Λ) = µ

�

(1) Λα

Parametric plot of the branch of optimal functions for p = 2.8, d = 5.

Non-symmetric solutions bifurcate from symmetric ones at a bifurcation

point Λ1 computed by V. Felli and M. Schneider. The branch behaves for

large values of Λ as predicted by F. Catrina and Z.-Q. Wang
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Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

what we want to prove / discard...

non-symmetric

symmetric

bifurcation
Jθ(µ)

Λθ(µ)

���� ���� ���� ���� ���� ����

����

����

����

����

Λθ(µ)

Jθ(µ)

symmetric

non-symmetric

bifurcation

Jθ(µ)

bifurcation

symmetric

non-symmetric

symmetric

Λθ(µ)

KGN

KCKN(ϑ(p,d), ΛFS(p,θ),p)1/

1/

∗

When the local criterion (linear stability) differs from global results in a

larger family of inequalities (center, right)...
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The elliptic problem: rigidity

The symmetry issue can be reformulated as a uniqueness (rigidity)
issue. An optimal function for the inequality

(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx

solves the (elliptic) Euler-Lagrange equation

−∇ ·
(
|x |−2a∇v

)
= |x |−bp vp−1

(up to a scaling and a multiplication by a constant). Is any
nonnegative solution of such an equation equal to

v?(x) =
(
1 + |x |(p−2) (ac−a)

)− 2
p−2

(up to invariances) ? On the cylinder

− ∂2
s ϕ− ∂ωϕ+ Λϕ = ϕp−1

Up to a normalization and a scaling

ϕ?(s, ω) = (cosh s)−
1

p−2
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Subcritical Caffarelli-Kohn-Nirenberg inequalities

Norms: ‖w‖Lq,γ(Rd ) :=
(∫

Rd |w |q |x |−γ dx
)1/q

, ‖w‖Lq(Rd ) := ‖w‖Lq,0(Rd )

(some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

‖w‖L2p,γ(Rd ) ≤ Cβ,γ,p ‖∇w‖ϑL2,β(Rd ) ‖w‖1−ϑ
Lp+1,γ(Rd )

(CKN)

Here Cβ,γ,p denotes the optimal constant, the parameters satisfy

d ≥ 2 , γ−2 < β < d−2
d γ , γ ∈ (−∞, d) , p ∈ (1, p?] with p? := d−γ

d−β−2

and the exponent ϑ is determined by the scaling invariance, i.e.,

ϑ = (d−γ) (p−1)

p
(
d+β+2−2 γ−p (d−β−2)

)

Is the equality case achieved by the Barenblatt / Aubin-Talenti
type function

w?(x) =
(
1 + |x |2+β−γ)−1/(p−1) ∀ x ∈ Rd ?

Do we know (symmetry) that the equality case is achieved among
radial functions ?

J. Dolbeault Entropy methods
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Range of the parameters

Here p is given
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Symmetry and symmetry breaking

(M. Bonforte, J.D., M. Muratori and B. Nazaret, 2016) Let us define

βFS(γ) := d − 2−
√

(d − γ)2 − 4 (d − 1)

Theorem

Symmetry breaking holds in (CKN) if

γ < 0 and βFS(γ) < β <
d − 2

d
γ

In the range βFS(γ) < β < d−2
d γ, w?(x) =

(
1 + |x |2+β−γ)−1/(p−1)

is
not optimal

(JD, Esteban, Loss, Muratori, 2016)

Theorem

Symmetry holds in (CKN) if

γ ≥ 0 , or γ ≤ 0 and γ − 2 ≤ β ≤ βFS(γ)

J. Dolbeault Entropy methods
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Critical Caffarelli-Kohn-Nirenberg inequality
Subcritical Caffarelli-Kohn-Nirenberg inequalities

The green area is the region of symmetry, while the red area is the
region of symmetry breaking. The threshold is determined by the
hyperbola

(d − γ)2 − (β − d + 2)2 − 4 (d − 1) = 0

J. Dolbeault Entropy methods
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The Bakry-Emery method on Sd , Rényi entropy powers on Rd
Euclidean space: self-similar variables and relative entropies
The role of the spectral gap

Inequalities without weights and fast
diffusion equations

B The Bakry-Emery method on the sphere: a parabolic method

B Euclidean space: self-similar variables and relative entropies

B The role of the spectral gap
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The Bakry-Emery method on Sd , Rényi entropy powers on Rd
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The Bakry-Emery method on the sphere

Entropy functional

Ep[ρ] := 1
p−2

[∫
Sd ρ

2
p dµ−

(∫
Sd ρ dµ

) 2
p

]
if p 6= 2

E2[ρ] :=
∫
Sd ρ log

(
ρ

‖ρ‖
L1(Sd )

)
dµ

Fisher information functional

Ip[ρ] :=
∫
Sd |∇ρ

1
p |2 dµ

Bakry-Emery (carré du champ) method: use the heat flow

∂ρ

∂t
= ∆ρ

and compute d
dt Ep[ρ] = −Ip[ρ] and d

dt Ip[ρ] ≤ − d Ip[ρ] to get

d

dt
(Ip[ρ]− d Ep[ρ]) ≤ 0 =⇒ Ip[ρ] ≥ d Ep[ρ]

with ρ = |u|p, if p ≤ 2# := 2 d2+1
(d−1)2

J. Dolbeault Entropy methods
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The Bakry-Emery method on Sd , Rényi entropy powers on Rd
Euclidean space: self-similar variables and relative entropies
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The evolution under the fast diffusion flow

To overcome the limitation p ≤ 2#, one can consider a nonlinear
diffusion of fast diffusion / porous medium type

∂ρ

∂t
= ∆ρm

(Demange), (JD, Esteban, Kowalczyk, Loss): for any p ∈ [1, 2∗]

Kp[ρ] :=
d

dt

(
Ip[ρ]− d Ep[ρ]

)
≤ 0

1.0 1.5 2.5 3.0

0.0

0.5

1.5

2.0

(p,m) admissible region, d = 5
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The elliptic version of the problem

The interpolation inequality (p 6= 2)

d Ep[ρ] =
d

p − 2

[∫

Sd
ρ

2
p dµ−

(∫

Sd
ρ dµ

) 2
p

]
≤ Ip[ρ] =

∫

Sd
|∇ρ 1

p |2 dµ

can be rewritten for u = ρ
1
p as (W. Beckner, 1993)

(∫

Sd
|u|p dµ

) 2
p

≤ p − 2

d

∫

Sd
|∇u|2 dµ+

∫

Sd
u2 dµ ∀ u ∈ H1(Sd , dµ)

and amounts to prove that any nonnegative solution of

−∆Sdu + λ u = up−1

is a constant if λ ≤ d
p−2 : (B. Gidas, J. Spruck, 1981),

(M.-F. Bidaut-Véron, L. Véron, 1991), (Bakry, Ledoux, 1996)

J. Dolbeault Entropy methods
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Rényi entropy powers and fast diffusion

The Euclidean space without weights

B Rényi entropy powers, the entropy approach without rescaling:
(Savaré, Toscani): scalings, nonlinearity and a concavity property
inspired by information theory

B Faster rates of convergence: (Carrillo, Toscani), (JD, Toscani)
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The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in Rd , d ≥ 1

∂v

∂t
= ∆vm

with initial datum v(x , t = 0) = v0(x) ≥ 0 such that
∫
Rd v0 dx = 1 and∫

Rd |x |2 v0 dx < +∞. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

U?(t, x) :=
1

(
κ t1/µ

)d B?
( x

κ t1/µ

)

where

µ := 2 + d (m − 1) , κ :=
∣∣∣ 2µm

m − 1

∣∣∣
1/µ

and B? is the Barenblatt profile

B?(x) :=





(
C? − |x |2

)1/(m−1)

+
if m > 1

(
C? + |x |2

)1/(m−1)
if m < 1

J. Dolbeault Entropy methods
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The Rényi entropy power F

The entropy is defined by

E :=

∫

Rd

vm dx

and the Fisher information by

I :=

∫

Rd

v |∇p|2 dx with p =
m

m − 1
vm−1

If v solves the fast diffusion equation, then

E′ = (1−m) I

To compute I′, we will use the fact that

∂p

∂t
= (m − 1) p ∆p + |∇p|2

F := Eσ with σ =
µ

d (1−m)
= 1+

2

1−m

(
1

d
+ m − 1

)
=

2

d

1

1−m
−1

has a linear growth asymptotically as t → +∞
J. Dolbeault Entropy methods
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The variation of the Fisher information

Lemma

If v solves ∂v
∂t = ∆vm with 1 1

d
≤ m < 1, then

I′ =
d

dt

∫

Rd

v |∇p|2 dx = − 2

∫

Rd

vm
(
‖D2p‖2 + (m − 1) (∆p)2

)
dx

Explicit arithmetic geometric inequality

‖D2p‖2 − 1

d
(∆p)2 =

∥∥∥∥D2p− 1

d
∆p Id

∥∥∥∥
2

.... there are no boundary terms in the integrations by parts ?
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The concavity property

Theorem

[Toscani-Savaré] Assume that m ≥ 1− 1
d if d > 1 and m > 0 if d = 1.

Then F (t) is increasing, (1−m) F′′(t) ≤ 0 and

lim
t→+∞

1

t
F(t) = (1−m)σ lim

t→+∞
Eσ−1 I = (1−m)σ Eσ−1

? I?

[Dolbeault-Toscani] The inequality

Eσ−1 I ≥ Eσ−1
? I?

is equivalent to the Gagliardo-Nirenberg inequality

‖∇w‖θL2(Rd ) ‖w‖1−θ
Lq+1(Rd )

≥ CGN ‖w‖L2q(Rd )

if 1− 1
d ≤ m < 1. Hint: vm−1/2 = w

‖w‖
L2q (Rd )

, q = 1
2 m−1

J. Dolbeault Entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities

The Bakry-Emery method on Sd , Rényi entropy powers on Rd
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Euclidean space: self-similar variables and relative entropies

The large time behavior of the solution of ∂v
∂t = ∆vm is governed by

the source-type Barenblatt solutions

v?(t, x) :=
1

κd(µ t)d/µ
B?
(

x

κ (µ t)1/µ

)
where µ := 2 + d (m − 1)

where B? is the Barenblatt profile (with appropriate mass)

B?(x) :=
(
1 + |x |2

)1/(m−1)

A time-dependent rescaling: self-similar variables

v(t, x) =
1

κd Rd
u
(
τ,

x

κR

)
where

dR

dt
= R1−µ , τ(t) := 1

2 log

(
R(t)

R0

)

Then the function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

J. Dolbeault Entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities
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Free energy and Fisher information

The function u solves a Fokker-Planck type equation

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0

(Ralston, Newman, 1984) Lyapunov functional:
Generalized entropy or Free energy

E [u] :=

∫

Rd

(
−um

m
+ |x |2u

)
dx − E0

Entropy production is measured by the Generalized Fisher
information

d

dt
E [u] = −I[u] , I[u] :=

∫

Rd

u
∣∣∇um−1 + 2 x

∣∣2 dx
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Without weights: relative entropy, entropy production

Stationary solution: choose C such that ‖u∞‖L1 = ‖u‖L1 = M > 0

u∞(x) :=
(
C + |x |2

)−1/(1−m)

+

Relative entropy: Fix E0 so that E [u∞] = 0
Entropy – entropy production inequality (del Pino, J.D.)

Theorem

d ≥ 3, m ∈ [ d−1
d ,+∞), m > 1

2 , m 6= 1

I[u] ≥ 4 E [u]

Corollary

(del Pino, J.D.) A solution u with initial data u0 ∈ L1
+(Rd) such that

|x |2 u0 ∈ L1(Rd), um0 ∈ L1(Rd) satisfies

E [u(t, ·)] ≤ E [u0] e− 4 t

J. Dolbeault Entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities

The Bakry-Emery method on Sd , Rényi entropy powers on Rd
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A computation on a large ball, with boundary terms

∂u

∂τ
+∇ ·

[
u
(
∇um−1 − 2 x

) ]
= 0 τ > 0 , x ∈ BR

where BR is a centered ball in Rd with radius R > 0, and assume that
u satisfies zero-flux boundary conditions

(
∇um−1 − 2 x

)
· x

|x | = 0 τ > 0 , x ∈ ∂BR .

With z(τ, x) := ∇Q(τ, x) := ∇um−1 − 2 x , the relative Fisher
information is such that

d

dτ

∫

BR

u |z |2 dx + 4

∫

BR

u |z |2 dx

+ 2 1−m
m

∫

BR

um
(∥∥D2Q

∥∥2 − (1−m) (∆Q)2
)
dx

=

∫

∂BR

um
(
ω · ∇|z |2

)
dσ ≤ 0 (by Grisvard’s lemma)
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Entropy – entropy production, Gagliardo-Nirenberg ineq.

4 E [u] ≤ I[u]

Rewrite it with p = 1
2m−1 , u = w2p, um = wp+1 as

1

2

(
2m

2m − 1

)2 ∫

Rd

|∇w |2dx +

(
1

1−m
− d

)∫

Rd

|w |1+pdx − K ≥ 0

for some γ, K = K0

(∫
Rd u dx =

∫
Rd w

2p dx
)γ

w = w∞ = v
1/2p
∞ is optimal

Theorem

[Del Pino, J.D.] With 1 < p ≤ d
d−2 (fast diffusion case) and d ≥ 3

‖w‖L2p(Rd ) ≤ CGN
p,d ‖∇w‖θL2(Rd ) ‖w‖1−θ

Lp+1(Rd )

CGN
p,d =

(
y(p−1)2

2πd

) θ
2
(

2y−d
2y

) 1
2p
(

Γ(y)

Γ(y− d
2 )

) θ
d

, θ = d(p−1)
p(d+2−(d−2)p) , y = p+1

p−1
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Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v0

(H1) VD0 ≤ v0 ≤ VD1 for some D0 > D1 > 0

(H2) if d ≥ 3 and m ≤ m∗, (v0 − VD) is integrable for a suitable
D ∈ [D1,D0]

Theorem

(Blanchet, Bonforte, J.D., Grillo, Vázquez) Under Assumptions
(H1)-(H2), if m < 1 and m 6= m∗ := d−4

d−2 , the entropy decays according
to

E [v(t, ·)] ≤ C e−2 (1−m) Λα,d t ∀ t ≥ 0

where Λα,d > 0 is the best constant in the Hardy–Poincaré inequality

Λα,d

∫

Rd

|f |2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα)

with α := 1/(m − 1) < 0, dµα := hα dx , hα(x) := (1 + |x |2)α
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Spectral gap and best constants

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

J. Dolbeault Entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities

The strategy of the proof
Large time asymptotics and spectral gaps
Linearization and optimality

Weighted nonlinear flows:
Caffarelli-Kohn-Nirenberg

inequalities
B Entropy and Caffarelli-Kohn-Nirenberg inequalities

B Large time asymptotics and spectral gaps

B Optimality cases
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CKN and entropy – entropy production inequalities

When symmetry holds, (CKN) can be written as an entropy – entropy
production inequality

1−m
m (2 + β − γ)2 E [v ] ≤ I[v ]

and equality is achieved by Bβ,γ(x) :=
(
1 + |x |2+β−γ) 1

m−1

Here the free energy and the relative Fisher information are defined by

E [v ] :=
1

m − 1

∫

Rd

(
vm −Bm

β,γ −mBm−1
β,γ (v −Bβ,γ)

) dx

|x |γ

I[v ] :=

∫

Rd

v
∣∣∣∇vm−1 −∇Bm−1

β,γ

∣∣∣
2 dx

|x |β
If v solves the Fokker-Planck type equation

vt + |x |γ ∇ ·
[
|x |−β v ∇

(
vm−1 − |x |2+β−γ)] = 0 (WFDE-FP)

then
d

dt
E [v(t, ·)] = − m

1−m
I[v(t, ·)]
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Proof of symmetry (1/3: changing the dimension)

We rephrase our problem in a space of higher, artificial dimension
n > d (here n is a dimension at least from the point of view of the
scaling properties), or to be precise we consider a weight |x |n−d which
is the same in all norms. With

v(|x |α−1 x) = w(x) , α = 1 +
β − γ

2
and n = 2

d − γ
β + 2− γ ,

we claim that Inequality (CKN) can be rewritten for a function
v(|x |α−1 x) = w(x) as

‖v‖L2p,d−n(Rd ) ≤ Kα,n,p ‖Dαv‖ϑL2,d−n(Rd ) ‖v‖1−ϑ
Lp+1,d−n(Rd )

∀ v ∈ Hp
d−n,d−n(Rd)

with the notations s = |x |, Dαv =
(
α ∂v
∂s ,

1
s ∇ωv

)
and

d ≥ 2 , α > 0 , n > d and p ∈ (1, p?] .

By our change of variables, w? is changed into

v?(x) :=
(
1 + |x |2

)−1/(p−1) ∀ x ∈ Rd
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The strategy of the proof (2/3: Rényi entropy)

The derivative of the generalized Rényi entropy power functional is

G[u] :=

(∫

Rd

um dµ

)σ−1 ∫

Rd

u |DαP|2 dµ

where σ = 2
d

1
1−m − 1. Here dµ = |x |n−d dx and the pressure is

P :=
m

1−m
um−1

Looking for an optimal function in (CKN) is equivalent to minimize G
under a mass constraint
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With Lα = −D∗α Dα = α2
(
u′′ + n−1

s u′
)

+ 1
s2 ∆ω u, we consider the fast

diffusion equation
∂u

∂t
= Lαu

m

in the subcritical range 1− 1/n < m < 1. The key computation is the
proof that

− d
dt G[u(t, ·)]

(∫
Rd u

m dµ
)1−σ

≥ (1−m) (σ − 1)
∫
Rd u

m
∣∣∣LαP−

∫
Rd u |DαP|2 dµ∫

Rd um dµ

∣∣∣
2

dµ

+ 2
∫
Rd

(
α4
(
1− 1

n

) ∣∣∣P′′ − P′

s − ∆ω P
α2 (n−1) s2

∣∣∣
2

+ 2α2

s2

∣∣∇ωP′ − ∇ωP
s

∣∣2
)

um dµ

+ 2
∫
Rd

(
(n − 2)

(
α2
FS − α2

)
|∇ωP|2 + c(n,m, d) |∇ωP|4

P2

)
um dµ =: H[u]

for some numerical constant c(n,m, d) > 0. Hence if α ≤ αFS, the
r.h.s. H[u] vanishes if and only if P is an affine function of |x |2, which
proves the symmetry result. A quantifier elimination problem (Tarski,
1951) ?
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(3/3: elliptic regularity, boundary terms)

This method has a hidden difficulty: integrations by parts ! Hints:

use elliptic regularity: Moser iteration scheme, Sobolev regularity,
local Hölder regularity, Harnack inequality, and get global regularity
using scalings

use the Emden-Fowler transformation, work on a cylinder,
truncate, evaluate boundary terms of high order derivatives using
Poincaré inequalities on the sphere

Summary: if u solves the Euler-Lagrange equation, we test by Lαu
m

0 =

∫

Rd

dG[u] · Lαum dµ ≥ H[u] ≥ 0

H[u] is the integral of a sum of squares (with nonnegative constants in
front of each term)... or test by |x |γ div

(
|x |−β ∇w1+p

)
the equation

(p − 1)2

p (p + 1)
w1−3p div

(
|x |−β w2p∇w1−p)+ |∇w1−p|2 + |x |−γ

(
c1 w

1−p − c2

)
= 0
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Fast diffusion equations with
weights: large time asymptotics

Relative uniform convergence

Asymptotic rates of convergence

From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

vt + |x |γ ∇ ·
[
|x |−β v ∇

(
vm−1 − |x |2+β−γ)] = 0 (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret
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Relative uniform convergence

ζ := 1−
(
1− 2−m

(1−m) q

) (
1− 2−m

1−m θ
)

θ := (1−m) (2+β−γ)
(1−m) (2+β)+2+β−γ is in the range 0 < θ < 1−m

2−m < 1

Theorem

For “good” initial data, there exist positive constants K and t0 such that,
for all q ∈

[
2−m
1−m ,∞

]
, the function w = v/B satisfies

‖w(t)− 1‖Lq,γ(Rd ) ≤ K e− Λ ζ (t−t0) ∀ t ≥ t0

in the case γ ∈ (0, d), and

‖w(t)− 1‖Lq,γ(Rd ) ≤ K e− 2 (1−m)2

2−m Λ (t−t0) ∀ t ≥ t0

in the case γ ≤ 0

J. Dolbeault Entropy methods



Symmetry breaking and linearization
Entropy methods without weights

Weighted nonlinear flows and CKN inequalities

The strategy of the proof
Large time asymptotics and spectral gaps
Linearization and optimality

0

Λ0,1

Λ1,0

Λess

Essential spectrum

δδ4δ1 δ5δ2

Λ0,1

Λ1,0

Λess

Essential spectrum

δ4 δ5:=
n

2−η

The spectrum of L as a function of δ = 1
1−m , with n = 5. The

essential spectrum corresponds to the grey area, and its bottom is
determined by the parabola δ 7→ Λess(δ). The two eigenvalues Λ0,1 and
Λ1,0 are given by the plain, half-lines, away from the essential
spectrum. The spectral gap determines the asymptotic rate of
convergence to the Barenblatt functions
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Global vs. asymptotic estimates

Estimates on the global rates. When symmetry holds (CKN) can
be written as an entropy – entropy production inequality

(2 + β − γ)2 E [v ] ≤ m

1−m
I[v ]

so that

E [v(t)] ≤ E [v(0)] e− 2 (1−m) Λ? t ∀ t ≥ 0 with Λ? :=
(2 + β − γ)2

2 (1−m)

Optimal global rates. Let us consider again the entropy – entropy
production inequality

K(M) E [v ] ≤ I[v ] ∀ v ∈ L1,γ(Rd) such that ‖v‖L1,γ(Rd ) = M ,

where K(M) is the best constant: with Λ(M) := m
2 (1−m)−2K(M)

E [v(t)] ≤ E [v(0)] e− 2 (1−m) Λ(M) t ∀ t ≥ 0
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Linearization and optimality

Joint work with M.J. Esteban and M. Loss
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Linearization and scalar products

With uε such that

uε = B?
(
1 + ε f B1−m

?

)
and

∫

Rd

uε dx = M?

at first order in ε→ 0 we obtain that f solves

∂f

∂t
= L f where L f := (1−m)Bm−2

? |x |γ D∗α
(
|x |−β B? Dα f

)

Using the scalar products

〈f1, f2〉 =

∫

Rd

f1 f2 B2−m
? |x |−γ dx and 〈〈f1, f2〉〉 =

∫

Rd

Dα f1 · Dα f2 B? |x |−β dx

we compute

1

2

d

dt
〈f , f 〉 = 〈f ,L f 〉 =

∫

Rd

f (L f )B2−m
? |x |−γ dx = −

∫

Rd

|Dα f |2 B? |x |−β dx

for any f smooth enough: with 〈f ,L f 〉 = −〈〈f , f 〉〉
1

2

d

dt
〈〈f , f 〉〉 =

∫

Rd

Dα f · Dα (L f )B? |x |−β dx = −〈〈f ,L f 〉〉
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Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest
positive eigenvalue λ1 of L

−L f1 = λ1 f1

so that f1 realizes the equality case in the Hardy-Poincaré inequality

〈〈g , g〉〉 = − 〈g ,L g〉 ≥ λ1 ‖g − ḡ‖2 , ḡ := 〈g , 1〉 / 〈1, 1〉

− 〈〈g ,L g〉〉 ≥ λ1 〈〈g , g〉〉
Proof: expansion of the square :
−〈〈(g − ḡ),L (g − ḡ)〉〉 = 〈L (g − ḡ),L (g − ḡ)〉 = ‖L (g − ḡ)‖2

Key observation:

λ1 ≥ 4 ⇐⇒ α ≤ αFS :=

√
d − 1

n − 1
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Why is this method optimal ?

The condition λ1 < 4 is sufficient for symmetry breaking

With λ1 ≥ 4, we prove that

H[v ] :=
m

1−m
I[v ]− (2 + β − γ)2 E [v ]

is monotone decaying along the flow and that equality is achieved
only on the stationary solution, which attracts all solutions. This has
to do with the (formal) gradient flow structure of the problem

The condition λ1 ≥ 4 is enough to prove that
B the Fisher information I[v ] exponentially decays with rate e−4t

B the functional H[v ] is decreasing

The decay of the Fisher information I[v ] “has to be given” by the
condition λ1 ≥ 4 because the problem degenerates into a sharp
spectral gap problem in the asymptotic regime
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Information – production of information inequality

Let K[u] be such that

d

dτ
I[u(τ, ·)] = −K[u(τ, ·)] = − (sum of squares)

If α ≤ αFS, then λ1 ≥ 4 and

u 7→ K[u]

I[u]
− 4

is a nonnegative functional
With uε = B?

(
1 + ε f B1−m

?

)
and α ≤ αFS, we observe that

4 ≤ C2 := inf
u

K[u]

I[u]
≤ lim
ε→0

inf
f

K[uε]

I[uε]
= inf

f

〈〈f ,L f 〉〉
〈〈f , f 〉〉 =

〈〈f1,L f1〉〉
〈〈f1, f1〉〉

= λ1

if λ1 = 4, that is, if α = αFS, then inf K/I = 4 is achieved in the
asymptotic regime as u → B? and determined by the spectral gap of L

if λ1 > 4, that is, if α < αFS, then K/I ≥ 4... in fact, inf K/I = 4 !
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Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If α ≤ αFS, the fact that K/I ≥ 4 has an important consequence.
Indeed we know that

d

dτ
(I[u(τ, ·)]− 4 E [u(τ, ·)]) ≤ 0

so that
I[u]− 4 E [u] ≥ I[B?]− 4 E [B?] = 0

This inequality is equivalent to J [w ] ≥ J [B?], which establishes that
optimality in (CKN) is achieved among symmetric functions. In other
words, the linearized problem shows that for α ≤ αFS, the function

τ 7→ I[u(τ, ·)]− 4 E [u(τ, ·)]

is monotone decreasing
This explains why the method based on nonlinear flows provides

the optimal range for symmetry
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Entropy – production of entropy inequality

Using d
dτ (I[u(τ, ·)]− C2 E [u(τ, ·)]) ≤ 0, we know that

I[u]− C2 E [u] ≥ I[B?]− C2 E [B?] = 0

As a consequence, we have that

C1 := inf
u

I[u]

E [u]
≥ C2 = inf

u

K[u]

I[u]

With uε = B?
(
1 + ε f B1−m

?

)
, we observe that

C1 ≤ lim
ε→0

inf
f

I[uε]

E [uε]
= inf

f

〈f ,L f 〉
〈f , f 〉 =

〈f1,L f1〉
〈f1, f 〉1

= λ1 = lim
ε→0

inf
f

K[uε]

I[uε]

If limε→0 inf f
K[uε]
I[uε] = C2, then C1 = C2 = λ1

This happens if α = αFS and in particular in the case without weights
(Gagliardo-Nirenberg inequalities)
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A loss of compactness...

Work in progress with N. Simonov] Case λ1 > 4, i.e., α < αFS

free energy, or generalized relative entropy

E [v ] :=
1

m − 1

∫

Rd

(
vm −Bm −mBm−1 (v −B)

) dx

|x |γ

relative Fisher information

I[v ] :=

∫

Rd

v
∣∣∇vm−1 −∇Bm−1

∣∣2 dx

|x |β

Proposition

[JD, Simonov] In the symmetry range, for any M > 0,

inf

{I[v ]

E [v ]
: v ∈ D+(Rd) ,

∫

Rd

v |x |−γ dx = M

}
=

1−m

m
(2 + β − γ)2

Conjecture: in the symmetry breaking range, inf I[v ]
E[v ] is determined by

the spectral gap
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...research in progress

[with N. Simonov] Entropy – entropy production inequalities in
the symmetry breaking range of CKN

[with A. Zhang] Towards proofs in the weighted parabolic case
(sphere: BGL Sobolev inequality and CKN): regularization of the
weight ?

[with N. Simonov and A. Zhang] Doubly nonlinear parabolic case
(euclidean space)

[with M. Garćıa-Huidobro and R. Manásevich] Doubly nonlinear
parabolic case (sphere)

Full (analytic) parabolic proof based on the carré du champ
method based on the analysis of the regularity in the neighborhood of
degenerating points / singularities of the potentials [collaborators are
welcome !]

Hypo-coercive methods and (sharp) decay rates in coupled kinetic
equations...
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Conferences/
B Lectures

The papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !
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