Entropy methods for parabolic and elliptic equations

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul

Ceremade, Université Paris-Dauphine

February 6, 2018

Politecnico di Milano

▲ロト ▲団ト ▲ヨト ▲ヨト 三ヨー のへで

Outline

> Symmetry breaking and linearization

- The critical Caffarelli-Kohn-Nirenberg inequality
- Linearization and spectrum
- A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

\vartriangleright Without weights: Gagliardo-Nirenberg inequalities and fast diffusion flows

- The Bakry-Emery method on the sphere
- Rényi entropy powers
- Self-similar variables and relative entropies
- The role of the spectral gap

\triangleright With weights: Caffarelli-Kohn-Nirenberg inequalities and weighted nonlinear flows

- Large time asymptotics and spectral gaps
- A discussion of optimality cases

イロン 不同 とくほう イヨン

-

Collaborations

 $Collaboration \ with \dots$

M.J. Esteban and M. Loss (symmetry, critical case) M.J. Esteban, M. Loss and M. Muratori (symmetry, subcritical case) M. Bonforte, M. Muratori and B. Nazaret (linearization and large time asymptotics for the evolution problem) M. del Pino, G. Toscani (nonlinear flows and entropy methods) A. Blanchet, G. Grillo, J.L. Vázquez (large time asymptotics and linearization for the evolution equations)

...and also

S. Filippas, A. Tertikas, G. Tarantello, M. Kowalczyk ...

(日) (同) (三) (三)

Entropy methods without weights Weighted nonlinear flows and CKN inequalities

Background references (partial)

- Rigidity methods, uniqueness in nonlinear elliptic PDE's: (B. Gidas, J. Spruck, 1981), (M.-F. Bidaut-Véron, L. Véron, 1991)
- Probabilistic methods (Markov processes), semi-group theory and carré du champ methods (Γ_2 theory): (D. Bakry, M. Emery, 1984), (Bentaleb), (Bakry, Ledoux, 1996), (Demange, 2008), (JD, Esteban, Kolwalczyk, Loss, 2014 & 2015) $\rightarrow D.$ Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of Markov diffusion operators (2014)
- Entropy methods in PDEs

 \triangleright Entropy-entropy production inequalities: Arnold, Carrillo, Desvillettes, JD, Jüngel, Lederman, Markowich, Toscani, Unterreiter, Villani..., (del Pino, JD, 2001), (Blanchet, Bonforte, JD, Grillo, Vázquez) $\rightarrow A$. Jüngel, Entropy Methods for Diffusive Partial Differential Equations (2016)

 \triangleright Mass transportation: (Otto) $\rightarrow C.$ Villani, Optimal transport. Old and new (2009)

▷ Rényi entropy powers (information theory) (Savaré, Toscani, 2014), (Dolbeault, Toscani) -

Recent related papers

Q JD, M.J. Esteban, and M. Loss. Rigidity versus symmetry breaking via nonlinear flows on cylinders and Euclidean spaces. Invent. Math. 2016

Q JD, M.J. Esteban, and M. Loss. Interpolation inequalities on the sphere: linear vs. nonlinear flows. Annales de la faculté des sciences de Toulouse 2017

Q M. Bonforte, JD, M. Muratori, and B. Nazaret. Weighted fast diffusion equations

(Part I): Sharp asymptotic rates without symmetry and symmetry breaking in Caffarelli-Kohn-Nirenberg inequalities.

(Part II): Sharp asymptotic rates of convergence in relative error by entropy methods. Kinetic and Related Models 2017

Q JD, M. J. Esteban, M. Loss, and M. Muratori. Symmetry for extremal functions in subcritical CKN inequalities. Comptes Rendus Mathématique 2017

• JD, M. J. Esteban, and M. Loss. Interpolation inequalities, nonlinear flows, boundary terms, optimality and linearization. Journal of elliptic and parabolic equations 2016

(日) (同) (三) (三)

Symmetry and symmetry breaking results

- \vartriangleright The critical Caffarelli-Kohn-Nirenberg inequality
- \triangleright Linearization and spectrum
- \rhd A family of sub-critical Caffarelli-Kohn-Nirenberg inequalities

Critical Caffarelli-Kohn-Nirenberg inequality

Let
$$\mathcal{D}_{a,b} := \left\{ v \in \mathrm{L}^p\left(\mathbb{R}^d, |x|^{-b} dx\right) : |x|^{-a} |\nabla v| \in \mathrm{L}^2\left(\mathbb{R}^d, dx\right) \right\}$$

$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} dx\right)^{2/p} \leq \mathsf{C}_{\mathsf{a},b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,\mathfrak{a}}} dx \quad \forall \, v \in \mathcal{D}_{\mathsf{a},b}$$

holds under conditions on \boldsymbol{a} and \boldsymbol{b}

$$p = \frac{2d}{d - 2 + 2(b - a)}$$
 (critical case)

 \triangleright An optimal function among radial functions:

$$v_{\star}(x) = \left(1 + |x|^{(p-2)(a_{c}-a)}\right)^{-\frac{2}{p-2}} \quad and \quad \mathsf{C}_{a,b}^{\star} = \frac{\||x|^{-b} v_{\star}\|_{p}^{2}}{\||x|^{-a} \nabla v_{\star}\|_{2}^{2}}$$

Question: $C_{a,b} = C^{\star}_{a,b}$ (symmetry) or $C_{a,b} > C^{\star}_{a,b}$ (symmetry breaking) ?

Critical Caffarelli-Kohn-Nirenberg inequality Subcritical Caffarelli-Kohn-Nirenberg inequalities

Critical CKN: range of the parameters

Critical Caffarelli-Kohn-Nirenberg inequality Subcritical Caffarelli-Kohn-Nirenberg inequalities

Linear instability of radial minimizers: the Felli-Schneider curve

[Smets], [Smets, Willem], [Catrina, Wang], [Felli, Schneider] The functional

$$C_{a,b}^{\star} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2a}} \, dx - \left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{bp}} \, dx \right)^{2/p}$$

is linearly instable at $v = v_{\star}$

J. Dolbeault

Critical Caffarelli-Kohn-Nirenberg inequality Subcritical Caffarelli-Kohn-Nirenberg inequalities

Symmetry *versus* symmetry breaking: the sharp result in the critical case

Theorem

Let $d \ge 2$ and $p < 2^*$. If either $a \in [0, a_c)$ and b > 0, or a < 0 and $b \ge b_{\rm FS}(a)$, then the optimal functions for the critical Caffarelli-Kohn-Nirenberg inequalities are radially symmetric

イロト イポト イヨト イヨト

The Emden-Fowler transformation and the cylinder

▷ With an Emden-Fowler transformation, critical the Caffarelli-Kohn-Nirenberg inequality on the Euclidean space are equivalent to Gagliardo-Nirenberg inequalities on a cylinder

$$v(r,\omega) = r^{a-a_c} \varphi(s,\omega)$$
 with $r = |x|$, $s = -\log r$ and $\omega = \frac{x}{r}$

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities can be rewritten as the *subcritical* interpolation inequality

$$\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}+\|\nabla_{\omega}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}+\Lambda\|\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}\geq\mu(\Lambda)\|\varphi\|_{\mathrm{L}^{p}(\mathcal{C})}^{2}\quad\forall\varphi\in\mathrm{H}^{1}(\mathcal{C})$$

where $\Lambda := (a_c - a)^2$, $\mathcal{C} = \mathbb{R} \times \mathbb{S}^{d-1}$ and the optimal constant $\mu(\Lambda)$ is

$$\mu(\Lambda) = \frac{1}{\mathsf{C}_{a,b}} \quad \text{with} \quad a = a_c \pm \sqrt{\Lambda} \quad \text{and} \quad b = \frac{d}{p} \pm \sqrt{\Lambda}$$

(日) (同) (三) (三)

Linearization around symmetric critical points

Up to a normalization and a scaling

 $\varphi_{\star}(s,\omega) = (\cosh s)^{-\frac{1}{p-2}}$

is a critical point of

$$\mathrm{H}^{1}(\mathcal{C}) \ni \varphi \mapsto \|\partial_{\mathfrak{s}}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \|\nabla_{\omega}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}$$

under a constraint on $\|\varphi\|^2_{L^p(\mathcal{C})}$ $\varphi_* \text{ is not optimal for (CKN) if the Pöschl-Teller operator$

$$-\partial_s^2 - \Delta_\omega + \Lambda - arphi^{p-2}_\star = -\partial_s^2 - \Delta_\omega + \Lambda - rac{1}{\left(\cosh s
ight)^2}$$

has a *negative eigenvalue*, i.e., for $\Lambda > \Lambda_1$ (explicit)

The variational problem on the cylinder

$$\Lambda \mapsto \mu(\Lambda) := \min_{\varphi \in \mathrm{H}^{1}(\mathcal{C})} \frac{\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \|\nabla_{\omega}\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathcal{C})}^{2}}{\|\varphi\|_{\mathrm{L}^{p}(\mathcal{C})}^{2}}$$

is a concave increasing function

イロン 不同 とくほう イヨン

Restricted to symmetric functions, the variational problem becomes

$$\mu_{\star}(\Lambda) := \min_{\varphi \in \mathrm{H}^{1}(\mathbb{R})} \frac{\|\partial_{s}\varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} + \Lambda \|\varphi\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}}{\|\varphi\|_{\mathrm{L}^{p}(\mathbb{R}^{d})}^{2}} = \mu_{\star}(1)\Lambda^{\alpha}$$

Symmetry means $\mu(\Lambda) = \mu_{\star}(\Lambda)$ Symmetry breaking means $\mu(\Lambda) < \mu_{\star}(\Lambda)$

Critical Caffarelli-Kohn-Nirenberg inequality

Numerical results

Parametric plot of the branch of optimal functions for p = 2.8, d = 5. Non-symmetric solutions bifurcate from symmetric ones at a bifurcation point Λ_1 computed by V. Felli and M. Schneider. The branch behaves for large values of Λ as predicted by F. Catrina and Z.-Q. Wang

Critical Caffarelli-Kohn-Nirenberg inequality Subcritical Caffarelli-Kohn-Nirenberg inequalities

what we want to prove / discard...

When the local criterion (linear stability) differs from global results in a larger family of inequalities (center, right)...

The elliptic problem: rigidity

The symmetry issue can be reformulated as a uniqueness (rigidity) issue. An optimal function for the inequality

$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b_p}} dx\right)^{2/p} \leq C_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2_a}} dx$$

solves the (elliptic) Euler-Lagrange equation

$$-\nabla \cdot \left(|x|^{-2a} \, \nabla v \right) = |x|^{-bp} \, v^{p-1}$$

(up to a scaling and a multiplication by a constant). Is any nonnegative solution of such an equation equal to

$$v_{\star}(x) = (1 + |x|^{(p-2)(a_c-a)})^{-\frac{2}{p-2}}$$

(up to invariances) ? On the cylinder

$$-\partial_s^2 \varphi - \partial_\omega \varphi + \Lambda \varphi = \varphi^{p-1}$$

Up to a normalization and a scaling

$$arphi_\star(s,\omega)=(\cosh s)^{-rac{1}{p-2}}$$
 , is the set of the set of

Subcritical Caffarelli-Kohn-Nirenberg inequalities

Norms: $\|w\|_{L^{q,\gamma}(\mathbb{R}^d)} := \left(\int_{\mathbb{R}^d} |w|^q |x|^{-\gamma} dx\right)^{1/q}, \|w\|_{L^q(\mathbb{R}^d)} := \|w\|_{L^{q,0}(\mathbb{R}^d)}$ (some) Caffarelli-Kohn-Nirenberg interpolation inequalities (1984)

$$\|w\|_{\mathrm{L}^{2p,\gamma}(\mathbb{R}^d)} \leq \mathsf{C}_{\beta,\gamma,p} \, \|\nabla w\|_{\mathrm{L}^{2,\beta}(\mathbb{R}^d)}^{\vartheta} \, \|w\|_{\mathrm{L}^{p+1,\gamma}(\mathbb{R}^d)}^{1-\vartheta} \tag{CKN}$$

Here $C_{\beta,\gamma,\rho}$ denotes the optimal constant, the parameters satisfy

$$d \geq 2\,, \quad \gamma - 2 < eta < rac{d-2}{d}\,\gamma\,, \quad \gamma \in (-\infty,d)\,, \quad p \in (1,p_\star] \quad ext{with } p_\star := rac{d-\gamma}{d-eta-2}$$

and the exponent ϑ is determined by the scaling invariance, *i.e.*,

$$\vartheta = rac{\left(d-\gamma
ight)\left(p-1
ight)}{p\left(d+\beta+2-2\,\gamma-p\left(d-\beta-2
ight)
ight)}$$

 \blacksquare Is the equality case achieved by the Barenblatt / Aubin-Talenti type function

$$w_{\star}(x) = \left(1 + |x|^{2+\beta-\gamma}\right)^{-1/(p-1)} \quad \forall x \in \mathbb{R}^d$$
?

■ Do we know (symmetry) that the equality case is achieved among radial functions ?

Critical Caffarelli-Kohn-Nirenberg inequality Subcritical Caffarelli-Kohn-Nirenberg inequalities

Range of the parameters

Critical Caffarelli-Kohn-Nirenberg inequality Subcritical Caffarelli-Kohn-Nirenberg inequalities

Symmetry and symmetry breaking

(M. Bonforte, J.D., M. Muratori and B. Nazaret, 2016) Let us define $\beta_{FS}(\gamma) := d - 2 - \sqrt{(d - \gamma)^2 - 4(d - 1)}$

Theorem

Symmetry breaking holds in (CKN) if

$$\gamma < \mathsf{0} \quad ext{and} \quad eta_{ ext{FS}}(\gamma) < eta < rac{d-2}{d}\,\gamma$$

In the range $\beta_{\text{FS}}(\gamma) < \beta < \frac{d-2}{d}\gamma$, $w_{\star}(x) = (1 + |x|^{2+\beta-\gamma})^{-1/(p-1)}$ is not optimal

(JD, Esteban, Loss, Muratori, 2016)

Theorem

Symmetry holds in (CKN) if

 $\gamma \geq 0\,, \quad \text{or} \quad \gamma \leq 0 \quad \text{and} \quad \gamma - 2 \leq eta \leq eta_{\mathrm{FS}}(\gamma)$

The green area is the region of symmetry, while the red area is the region of symmetry breaking. The threshold is determined by the hyperbola

$$(d - \gamma)^2 - (\beta - d + 2)^2 - 4(d - 1) = 0$$

イロト イポト イヨト イヨト

3

イロト イポト イラト イラト

Inequalities without weights and fast diffusion equations

- \rhd The Bakry-Emery method on the sphere: a parabolic method
- \rhd Euclidean space: self-similar variables and relative entropies
- \rhd The role of the spectral gap

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

The Bakry-Emery method on the sphere

Entropy functional

$$\begin{aligned} \mathcal{E}_{p}[\rho] &:= \frac{1}{p-2} \left[\int_{\mathbb{S}^{d}} \rho^{\frac{2}{p}} d\mu - \left(\int_{\mathbb{S}^{d}} \rho \ d\mu \right)^{\frac{2}{p}} \right] & \text{if} \quad p \neq 2 \\ \mathcal{E}_{2}[\rho] &:= \int_{\mathbb{S}^{d}} \rho \ \log \left(\frac{\rho}{\|\rho\|_{L^{1}(\mathbb{S}^{d})}} \right) d\mu \end{aligned}$$

Fisher information functional

$$\mathcal{I}_p[
ho] := \int_{\mathbb{S}^d} |
abla
ho^{rac{1}{p}}|^2 \ d\mu$$

Bakry-Emery (carré du champ) method: use the heat flow

$$\frac{\partial \rho}{\partial t} = \Delta \rho$$

and compute $\frac{d}{dt}\mathcal{E}_{\rho}[\rho] = -\mathcal{I}_{\rho}[\rho]$ and $\frac{d}{dt}\mathcal{I}_{\rho}[\rho] \leq -d\mathcal{I}_{\rho}[\rho]$ to get

$$\frac{d}{dt}\left(\mathcal{I}_{\rho}[\rho] - d\,\mathcal{E}_{\rho}[\rho]\right) \leq 0 \quad \Longrightarrow \quad \mathcal{I}_{\rho}[\rho] \geq d\,\mathcal{E}_{\rho}[\rho]$$

with $\rho = |u|^p$, if $p \le 2^{\#} := \frac{2d^2+1}{(d-1)^2}$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

The evolution under the fast diffusion flow

To overcome the limitation $p \leq 2^{\#},$ one can consider a nonlinear diffusion of fast diffusion / porous medium type

$$\frac{\partial \rho}{\partial t} = \Delta \rho^{\prime\prime}$$

(Demange), (JD, Esteban, Kowalczyk, Loss): for any $p \in [1,2^*]$

$$\mathcal{K}_{p}[\rho] := rac{d}{dt} \Big(\mathcal{I}_{p}[\rho] - d \, \mathcal{E}_{p}[\rho] \Big) \leq 0$$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

イロト イポト イラト イラト

The elliptic version of the problem

The interpolation inequality $(p\neq 2)$

$$d \mathcal{E}_{\rho}[\rho] = \frac{d}{\rho - 2} \left[\int_{\mathbb{S}^d} \rho^{\frac{2}{p}} d\mu - \left(\int_{\mathbb{S}^d} \rho d\mu \right)^{\frac{2}{p}} \right] \le \mathcal{I}_{\rho}[\rho] = \int_{\mathbb{S}^d} |\nabla \rho^{\frac{1}{p}}|^2 d\mu$$

can be rewritten for $u = \rho^{\frac{1}{p}}$ as (W. Beckner, 1993)

$$\left(\int_{\mathbb{S}^d} |u|^p \ d\mu\right)^{\frac{2}{p}} \leq \frac{p-2}{d} \ \int_{\mathbb{S}^d} |\nabla u|^2 \ d\mu + \int_{\mathbb{S}^d} u^2 \ d\mu \quad \forall \ u \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

and amounts to prove that any nonnegative solution of

$$-\Delta_{\mathbb{S}^d} u + \lambda \, u = u^{p-1}$$

is a constant if $\lambda \leq \frac{d}{p-2}$: (B. Gidas, J. Spruck, 1981), (M.-F. Bidaut-Véron, L. Véron, 1991), (Bakry, Ledoux, 1996)

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

Rényi entropy powers and fast diffusion

• The Euclidean space without weights

▷ Rényi entropy powers, the entropy approach without rescaling: (Savaré, Toscani): scalings, nonlinearity and a concavity property inspired by information theory

▷ Faster rates of convergence: (Carrillo, Toscani), (JD, Toscani)

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in $\mathbb{R}^d,\,d\geq 1$

$$\frac{\partial v}{\partial t} = \Delta v^n$$

with initial datum $v(x, t = 0) = v_0(x) \ge 0$ such that $\int_{\mathbb{R}^d} v_0 dx = 1$ and $\int_{\mathbb{R}^d} |x|^2 v_0 dx < +\infty$. The large time behavior of the solutions is governed by the source-type Barenblatt solutions

$$\mathcal{U}_{\star}(t,x) := rac{1}{ig(\kappa \, t^{1/\mu}ig)^d} \, \mathcal{B}_{\star}ig(rac{x}{\kappa \, t^{1/\mu}}ig)$$

where

$$\mu := 2 + d(m-1), \quad \kappa := \left|\frac{2 \mu m}{m-1}\right|^{1/\mu}$$

and \mathcal{B}_{\star} is the Barenblatt profile

$$\mathcal{B}_{\star}(x) := \begin{cases} \left(C_{\star} - |x|^2\right)_{+}^{1/(m-1)} & \text{if } m > 1\\ \left(C_{\star} + |x|^2\right)^{1/(m-1)} & \text{if } m < 1 \end{cases}$$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

The Rényi entropy power F

The entropy is defined by

$$\exists := \int_{\mathbb{R}^d} v^m \, dx$$

and the Fisher information by

$$\mathsf{I} := \int_{\mathbb{R}^d} \mathsf{v} |\nabla \mathsf{p}|^2 dx$$
 with $\mathsf{p} = \frac{m}{m-1} \mathsf{v}^{m-1}$

If v solves the fast diffusion equation, then

$$\mathsf{E}' = (1-m)\mathsf{I}$$

To compute I', we will use the fact that

$$\frac{\partial p}{\partial t} = (m-1) p \Delta p + |\nabla p|^2$$
$$F := \mathsf{E}^{\sigma} \quad \text{with} \quad \sigma = \frac{\mu}{d(1-m)} = 1 + \frac{2}{1-m} \left(\frac{1}{d} + m - 1\right) = \frac{2}{d} \frac{1}{1-m} - 1$$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

イロン 不同 とくほう イヨン

-

The variation of the Fisher information

Lemma

If v solves
$$\frac{\partial v}{\partial t} = \Delta v^m$$
 with $1_{\frac{1}{d}} \leq m < 1$, then

$$\mathsf{I}' = \frac{d}{dt} \int_{\mathbb{R}^d} \mathsf{v} \, |\nabla \mathsf{p}|^2 \, d\mathsf{x} = -2 \int_{\mathbb{R}^d} \mathsf{v}^m \left(\|\mathrm{D}^2 \mathsf{p}\|^2 + (m-1) \, (\Delta \mathsf{p})^2 \right) \, d\mathsf{x}$$

Explicit arithmetic geometric inequality

$$\|\mathbf{D}^2 \mathbf{p}\|^2 - \frac{1}{d} \, (\Delta \mathbf{p})^2 = \left\| \mathbf{D}^2 \mathbf{p} - \frac{1}{d} \, \Delta \mathbf{p} \, \mathrm{Id} \, \right\|^2$$

.... there are no boundary terms in the integrations by parts ?

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

イロト イポト イヨト イヨト

The concavity property

Theorem

[Toscani-Savaré] Assume that $m \ge 1 - \frac{1}{d}$ if d > 1 and m > 0 if d = 1. Then F(t) is increasing, $(1 - m) F''(t) \le 0$ and

$$\lim_{t \to +\infty} \frac{1}{t} \mathsf{F}(t) = (1 - m) \sigma \lim_{t \to +\infty} \mathsf{E}^{\sigma - 1} \mathsf{I} = (1 - m) \sigma \mathsf{E}_{\star}^{\sigma - 1} \mathsf{I},$$

[Dolbeault-Toscani] The inequality

$$\mathsf{E}^{\sigma-1}\,\mathsf{I} \ge \mathsf{E}_\star^{\sigma-1}\,\mathsf{I}_\star$$

is equivalent to the Gagliardo-Nirenberg inequality

$$\|\nabla w\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{\theta} \|w\|_{\mathrm{L}^{q+1}(\mathbb{R}^{d})}^{1-\theta} \geq \mathsf{C}_{\mathrm{GN}} \|w\|_{\mathrm{L}^{2q}(\mathbb{R}^{d})}$$

if $1 - \frac{1}{d} \le m < 1$. Hint: $v^{m-1/2} = \frac{w}{\|w\|_{L^{2q}(\mathbb{R}^d)}}, \ q = \frac{1}{2m-1}$

Euclidean space: self-similar variables and relative entropies

The large time behavior of the solution of $\frac{\partial v}{\partial t} = \Delta v^m$ is governed by the source-type *Barenblatt solutions*

$$v_{\star}(t,x) := rac{1}{\kappa^d(\mu\,t)^{d/\mu}}\,\mathcal{B}_{\star}igg(rac{x}{\kappa\,(\mu\,t)^{1/\mu}}igg) \quad ext{where} \quad \mu := 2 + d\,(m-1)$$

where \mathcal{B}_{\star} is the Barenblatt profile (with appropriate mass)

$$\mathcal{B}_{\star}(x) := \left(1 + |x|^2\right)^{1/(m-1)}$$

A time-dependent rescaling: self-similar variables

$$v(t,x) = \frac{1}{\kappa^d R^d} u\left(\tau, \frac{x}{\kappa R}\right) \quad \text{where} \quad \frac{dR}{dt} = R^{1-\mu}, \quad \tau(t) := \frac{1}{2} \log\left(\frac{R(t)}{R_0}\right)$$

Then the function u solves a Fokker-Planck type equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left[u \left(\nabla u^{m-1} - 2x \right) \right] = 0$$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

イロン 不同 とくほう イヨン

-

Free energy and Fisher information

 \blacksquare The function u solves a Fokker-Planck type equation

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left[u \left(\nabla u^{m-1} - 2x \right) \right] = 0$$

$$\mathcal{E}[u] := \int_{\mathbb{R}^d} \left(-\frac{u^m}{m} + |x|^2 u \right) \ dx - \mathcal{E}_0$$

• Entropy production is measured by the *Generalized Fisher* information

$$\frac{d}{dt}\mathcal{E}[u] = -\mathcal{I}[u] , \quad \mathcal{I}[u] := \int_{\mathbb{R}^d} u \left| \nabla u^{m-1} + 2x \right|^2 dx$$

Without weights: relative entropy, entropy production

• Stationary solution: choose C such that $||u_{\infty}||_{L^1} = ||u||_{L^1} = M > 0$

$$u_{\infty}(x) := (C + |x|^2)_+^{-1/(1-m)}$$

Relative entropy: Fix \mathcal{E}_0 so that $\mathcal{E}[u_{\infty}] = 0$

• Entropy – entropy production inequality (del Pino, J.D.)

Theorem

$$d \geq 3, \ m \in [\frac{d-1}{d}, +\infty), \ m > \frac{1}{2}, \ m \neq 1$$

 $\mathcal{I}[u] > 4 \mathcal{E}[u]$

Corollary

(del Pino, J.D.) A solution u with initial data $u_0 \in L^1_+(\mathbb{R}^d)$ such that $|x|^2 u_0 \in L^1(\mathbb{R}^d), u_0^m \in L^1(\mathbb{R}^d)$ satisfies

 $\mathcal{E}[u(t,\cdot)] < \mathcal{E}[u_0] e^{-4t}$

A computation on a large ball, with boundary terms

$$\frac{\partial u}{\partial \tau} + \nabla \cdot \left[u \left(\nabla u^{m-1} - 2 x \right) \right] = 0 \quad \tau > 0 \,, \quad x \in B_R$$

where B_R is a centered ball in \mathbb{R}^d with radius R > 0, and assume that u satisfies zero-flux boundary conditions

$$\left(\nabla u^{m-1}-2x\right)\cdot\frac{x}{|x|}=0$$
 $\tau>0$, $x\in\partial B_R$.

With $z(\tau, x) := \nabla Q(\tau, x) := \nabla u^{m-1} - 2x$, the relative Fisher information is such that

$$\begin{aligned} \frac{d}{d\tau} \int_{B_R} u |z|^2 dx + 4 \int_{B_R} u |z|^2 dx \\ &+ 2 \frac{1-m}{m} \int_{B_R} u^m \left(\left\| D^2 Q \right\|^2 - (1-m) \left(\Delta Q \right)^2 \right) dx \\ &= \int_{\partial B_R} u^m \left(\omega \cdot \nabla |z|^2 \right) d\sigma \le 0 \text{ (by Grisvard's lemma)} \end{aligned}$$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

Entropy – entropy production, Gagliardo-Nirenberg ineq.

$$4\,\mathcal{E}[u] \leq \mathcal{I}[u]$$

Rewrite it with $p = \frac{1}{2m-1}$, $u = w^{2p}$, $u^m = w^{p+1}$ as

$$\frac{1}{2}\left(\frac{2m}{2m-1}\right)^2\int_{\mathbb{R}^d}|\nabla w|^2dx+\left(\frac{1}{1-m}-d\right)\int_{\mathbb{R}^d}|w|^{1+p}dx-K\geq 0$$

Theorem

[Del Pino, J.D.] With $1 (fast diffusion case) and <math>d \ge 3$

$$\begin{split} \|w\|_{L^{2p}(\mathbb{R}^{d})} &\leq \mathcal{C}_{p,d}^{\mathrm{GN}} \|\nabla w\|_{L^{2}(\mathbb{R}^{d})}^{\theta} \|w\|_{L^{p+1}(\mathbb{R}^{d})}^{1-\theta} \\ \mathcal{C}_{p,d}^{\mathrm{GN}} &= \left(\frac{y(p-1)^{2}}{2\pi d}\right)^{\frac{\theta}{2}} \left(\frac{2y-d}{2y}\right)^{\frac{1}{2p}} \left(\frac{\Gamma(y)}{\Gamma(y-\frac{d}{2})}\right)^{\frac{\theta}{d}}, \ \theta = \frac{d(p-1)}{p(d+2-(d-2)p)}, \ y = \frac{p+1}{p-1} \end{split}$$

Spectral gap: sharp asymptotic rates of convergence

Assumptions on the initial datum v_0

(H1) $V_{D_0} \le v_0 \le V_{D_1}$ for some $D_0 > D_1 > 0$ (H2) if $d \ge 3$ and $m \le m_*$, $(v_0 - V_D)$ is integrable for a suitable $D \in [D_1, D_0]$

Theorem

(Blanchet, Bonforte, J.D., Grillo, Vázquez) Under Assumptions (H1)-(H2), if m < 1 and $m \neq m_* := \frac{d-4}{d-2}$, the entropy decays according to

$$\mathcal{E}[v(t,\cdot)] \leq C e^{-2(1-m)\Lambda_{\alpha,d}t} \quad \forall t \geq 0$$

where $\Lambda_{\alpha,d} > 0$ is the best constant in the Hardy–Poincaré inequality

$$\Lambda_{\alpha,d} \int_{\mathbb{R}^d} |f|^2 \, d\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 \, d\mu_{\alpha} \quad \forall \ f \in H^1(d\mu_{\alpha})$$

with $\alpha := 1/(m-1) < 0$, $d\mu_{\alpha} := h_{\alpha} dx$, $h_{\alpha}(x) := (1+|x|^2)^{\alpha}$

The Bakry-Emery method on \mathbb{S}^d , Rényi entropy powers on \mathbb{R}^d Euclidean space: self-similar variables and relative entropies The role of the spectral gap

Spectral gap and best constants

J. Dolbeault

Entropy methods

イロト イポト イラト イラト

Weighted nonlinear flows: Caffarelli-Kohn-Nirenberg inequalities

- ▷ Entropy and Caffarelli-Kohn-Nirenberg inequalities
- \rhd Large time asymptotics and spectral gaps
- \rhd Optimality cases

CKN and entropy – entropy production inequalities

When symmetry holds, (CKN) can be written as an *entropy* – *entropy* production inequality

 $\frac{1-m}{m}\left(2+\beta-\gamma\right)^2 \mathcal{E}[v] \leq \mathcal{I}[v]$

and equality is achieved by $\mathfrak{B}_{\beta,\gamma}(x) := (1 + |x|^{2+\beta-\gamma})^{\frac{1}{m-1}}$ Here the *free energy* and the *relative Fisher information* are defined by

$$\mathcal{E}[\mathbf{v}] := rac{1}{m-1} \int_{\mathbb{R}^d} \left(\mathbf{v}^m - \mathfrak{B}^m_{eta,\gamma} - m \, \mathfrak{B}^{m-1}_{eta,\gamma} \left(\mathbf{v} - \mathfrak{B}_{eta,\gamma}
ight)
ight) \, rac{dx}{|x|^\gamma} \ \mathcal{I}[\mathbf{v}] := \int_{\mathbb{R}^d} \mathbf{v} \left|
abla \mathbf{v}^{m-1} -
abla \mathfrak{B}^{m-1}_{eta,\gamma}
ight|^2 \, rac{dx}{|x|^eta}$$

If v solves the Fokker-Planck type equation

$$v_t + |x|^{\gamma} \nabla \cdot \left[|x|^{-\beta} v \nabla \left(v^{m-1} - |x|^{2+\beta-\gamma} \right) \right] = 0 \qquad (WFDE-FP)$$

then
$$\frac{d}{dt}\mathcal{E}[v(t,\cdot)] = -\frac{m}{1-m}\mathcal{I}[v(t,\cdot)]$$

The strategy of the proof Large time asymptotics and spectral gaps Linearization and optimality

Proof of symmetry (1/3: changing the dimension)

We rephrase our problem in a space of higher, artificial dimension n > d (here n is a dimension at least from the point of view of the scaling properties), or to be precise we consider a weight $|x|^{n-d}$ which is the same in all norms. With

$$v(|x|^{\alpha-1}x) = w(x), \quad \alpha = 1 + rac{eta - \gamma}{2} \quad ext{and} \quad n = 2 \, rac{d-\gamma}{eta + 2 - \gamma},$$

we claim that Inequality (CKN) can be rewritten for a function $v(|x|^{\alpha-1}x) = w(x)$ as

 $\|v\|_{\mathrm{L}^{2p,d-n}(\mathbb{R}^d)} \leq \mathsf{K}_{\alpha,n,p} \, \|\mathsf{D}_{\alpha}v\|_{\mathrm{L}^{2,d-n}(\mathbb{R}^d)}^{\vartheta} \, \|v\|_{\mathrm{L}^{p+1,d-n}(\mathbb{R}^d)}^{1-\vartheta} \quad \forall \, v \in \mathrm{H}^p_{d-n,d-n}(\mathbb{R}^d)$

with the notations s = |x|, $\mathsf{D}_{\alpha}v = \left(\alpha \frac{\partial v}{\partial s}, \frac{1}{s} \nabla_{\omega}v\right)$ and

$$d \geq 2$$
, $\alpha > 0$, $n > d$ and $p \in (1, p_{\star}]$.

By our change of variables, w_{\star} is changed into

$$v_{\star}(x) := \left(1 + |x|^2\right)^{-1/(p-1)} \quad \forall x \in \mathbb{R}^d$$

The strategy of the proof Large time asymptotics and spectral gaps Linearization and optimality

・ロト ・同ト ・ヨト ・ヨト

The strategy of the proof (2/3: Rényi entropy)

The derivative of the generalized *Rényi entropy power* functional is

$$\mathcal{G}[u] := \left(\int_{\mathbb{R}^d} u^m \, d\mu\right)^{\sigma-1} \int_{\mathbb{R}^d} u \, |\mathsf{D}_{\alpha}\mathsf{P}|^2 \, d\mu$$

where $\sigma = \frac{2}{d} \frac{1}{1-m} - 1$. Here $d\mu = |x|^{n-d} dx$ and the pressure is

$$\mathsf{P} := \frac{m}{1-m} \, u^{m-1}$$

Looking for an optimal function in (CKN) is equivalent to minimize \mathcal{G} under a mass constraint

With $L_{\alpha} = -D_{\alpha}^* D_{\alpha} = \alpha^2 \left(u'' + \frac{n-1}{s} u' \right) + \frac{1}{s^2} \Delta_{\omega} u$, we consider the fast diffusion equation

$$\frac{\partial u}{\partial t} = \mathsf{L}_{\alpha} u^m$$

in the subcritical range 1-1/n < m < 1. The key computation is the proof that

$$\begin{aligned} &-\frac{d}{dt} \mathcal{G}[u(t,\cdot)] \left(\int_{\mathbb{R}^d} u^m \, d\mu \right)^{1-\sigma} \\ &\geq (1-m) \left(\sigma-1\right) \int_{\mathbb{R}^d} u^m \left| \mathsf{L}_{\alpha} \mathsf{P} - \frac{\int_{\mathbb{R}^d} u \left| \mathsf{D}_{\alpha} \mathsf{P} \right|^2 \, d\mu}{\int_{\mathbb{R}^d} u^m \, d\mu} \right|^2 \, d\mu \\ &+ 2 \int_{\mathbb{R}^d} \left(\alpha^4 \left(1-\frac{1}{n}\right) \left| \mathsf{P}'' - \frac{\mathsf{P}'}{s} - \frac{\Delta_{\omega} \mathsf{P}}{\alpha^2 (n-1) \, s^2} \right|^2 + \frac{2 \, \alpha^2}{s^2} \left| \nabla_{\omega} \mathsf{P}' - \frac{\nabla_{\omega} \mathsf{P}}{s} \right|^2 \right) \, u^m \, d\mu \\ &+ 2 \int_{\mathbb{R}^d} \left((n-2) \left(\alpha_{\mathrm{FS}}^2 - \alpha^2 \right) \left| \nabla_{\omega} \mathsf{P} \right|^2 + c(n,m,d) \, \frac{|\nabla_{\omega} \mathsf{P}|^4}{\mathsf{P}^2} \right) \, u^m \, d\mu =: \mathcal{H}[u] \end{aligned}$$

for some numerical constant c(n, m, d) > 0. Hence if $\alpha \leq \alpha_{\text{FS}}$, the r.h.s. $\mathcal{H}[u]$ vanishes if and only if P is an affine function of $|x|^2$, which proves the symmetry result. A quantifier elimination problem (Tarski, 1951) ?

(3/3: elliptic regularity, boundary terms)

This method has a hidden difficulty: integrations by parts ! Hints:

Q use elliptic regularity: Moser iteration scheme, Sobolev regularity, local Hölder regularity, Harnack inequality, and get global regularity using scalings

• use the Emden-Fowler transformation, work on a cylinder, truncate, evaluate boundary terms of high order derivatives using Poincaré inequalities on the sphere

Summary: if u solves the Euler-Lagrange equation, we test by $\mathsf{L}_{\alpha}u^m$

$$0 = \int_{\mathbb{R}^d} \mathrm{d}\mathcal{G}[u] \cdot \mathsf{L}_{\alpha} u^m \, d\mu \geq \mathcal{H}[u] \geq 0$$

 $\mathcal{H}[u]$ is the integral of a sum of squares (with nonnegative constants in front of each term)... or test by $|x|^{\gamma} \operatorname{div} (|x|^{-\beta} \nabla w^{1+\rho})$ the equation

$$\frac{(p-1)^2}{p(p+1)} w^{1-3p} \operatorname{div} \left(|x|^{-\beta} w^{2p} \nabla w^{1-p} \right) + |\nabla w^{1-p}|^2 + |x|^{-\gamma} \left(c_1 w^{1-p} - c_2 \right) = 0$$

Fast diffusion equations with weights: large time asymptotics

- Relative uniform convergence
- Asymptotic rates of convergence
- From asymptotic to global estimates

Here v solves the Fokker-Planck type equation

 $v_t + |x|^{\gamma} \nabla \cdot \left[|x|^{-\beta} v \nabla \left(v^{m-1} - |x|^{2+\beta-\gamma} \right) \right] = 0$ (WFDE-FP)

Joint work with M. Bonforte, M. Muratori and B. Nazaret

The strategy of the proof Large time asymptotics and spectral gaps Linearization and optimality

(日) (同) (三) (三)

Relative uniform convergence

$$\begin{split} \zeta &:= 1 - \left(1 - \frac{2-m}{(1-m)q}\right) \left(1 - \frac{2-m}{1-m}\theta\right) \\ \theta &:= \frac{(1-m)(2+\beta-\gamma)}{(1-m)(2+\beta)+2+\beta-\gamma} \text{ is in the range } 0 < \theta < \frac{1-m}{2-m} < 1 \end{split}$$

Theorem

For "good" initial data, there exist positive constants \mathcal{K} and t_0 such that, for all $q \in \left[\frac{2-m}{1-m}, \infty\right]$, the function $w = v/\mathfrak{B}$ satisfies

$$\|w(t)-1\|_{\mathrm{L}^{q,\gamma}(\mathbb{R}^d)} \leq \mathcal{K} e^{-\Lambda \zeta (t-t_0)} \quad \forall t \geq t_0$$

in the case $\gamma \in (0, d)$, and

$$\|w(t)-1\|_{\mathrm{L}^{q,\gamma}(\mathbb{R}^d)} \leq \mathcal{K} e^{-2\frac{(1-m)^2}{2-m}\Lambda(t-t_0)} \quad \forall t \geq t_0$$

in the case $\gamma \leq 0$

The spectrum of \mathcal{L} as a function of $\delta = \frac{1}{1-m}$, with n = 5. The essential spectrum corresponds to the grey area, and its bottom is determined by the parabola $\delta \mapsto \Lambda_{ess}(\delta)$. The two eigenvalues $\Lambda_{0,1}$ and $\Lambda_{1,0}$ are given by the plain, half-lines, away from the essential spectrum. The spectral gap determines the asymptotic rate of convergence to the Barenblatt functions

Global vs. asymptotic estimates

• Estimates on the global rates. When symmetry holds (CKN) can be written as an entropy – entropy production inequality

$$(2+\beta-\gamma)^2 \mathcal{E}[v] \leq \frac{m}{1-m} \mathcal{I}[v]$$

so that

$$\mathcal{E}[v(t)] \leq \mathcal{E}[v(0)] e^{-2(1-m)\Lambda_{\star} t} \quad \forall t \geq 0 \quad \text{with} \quad \Lambda_{\star} := \frac{(2+\beta-\gamma)^2}{2(1-m)}$$

• Optimal global rates. Let us consider again the entropy – entropy production inequality

$$\mathcal{K}(M)\,\mathcal{E}[v] \leq \mathcal{I}[v] \quad \forall \, v \in \mathrm{L}^{1,\gamma}(\mathbb{R}^d) \quad \text{such that} \quad \|v\|_{\mathrm{L}^{1,\gamma}(\mathbb{R}^d)} = M\,,$$

where $\mathcal{K}(M)$ is the best constant: with $\Lambda(M) := \frac{m}{2} (1 - m)^{-2} \mathcal{K}(M)$

 $\mathcal{E}[v(t)] \leq \mathcal{E}[v(0)] e^{-2(1-m)\Lambda(M)t} \quad \forall t \geq 0$

Linearization and optimality

Joint work with M.J. Esteban and M. Loss

-

The strategy of the proof Large time asymptotics and spectral gaps Linearization and optimality

Linearization and scalar products

With u_{ε} such that

$$u_{\varepsilon} = \mathcal{B}_{\star} \ \left(1 + \varepsilon f \ \mathcal{B}_{\star}^{1-m}\right) \quad ext{and} \quad \int_{\mathbb{R}^d} u_{\varepsilon} \ dx = M_{\star}$$

at first order in $\varepsilon \to 0$ we obtain that f solves

$$\frac{\partial f}{\partial t} = \mathcal{L} f \quad \text{where} \quad \mathcal{L} f := (1 - m) \mathcal{B}_{\star}^{m-2} |x|^{\gamma} \mathsf{D}_{\alpha}^{*} \left(|x|^{-\beta} \mathcal{B}_{\star} \mathsf{D}_{\alpha} f \right)$$

Using the scalar products

$$\langle f_1, f_2 \rangle = \int_{\mathbb{R}^d} f_1 f_2 \mathcal{B}_{\star}^{2-m} |x|^{-\gamma} dx \quad \text{and} \quad \langle\!\langle f_1, f_2 \rangle\!\rangle = \int_{\mathbb{R}^d} \mathsf{D}_{\alpha} f_1 \cdot \mathsf{D}_{\alpha} f_2 \mathcal{B}_{\star} |x|^{-\beta} dx$$

we compute

$$\frac{1}{2} \frac{d}{dt} \langle f, f \rangle = \langle f, \mathcal{L} f \rangle = \int_{\mathbb{R}^d} f(\mathcal{L} f) \mathcal{B}_{\star}^{2-m} |x|^{-\gamma} dx = -\int_{\mathbb{R}^d} |\mathsf{D}_{\alpha} f|^2 \mathcal{B}_{\star} |x|^{-\beta} dx$$

for any f smooth enough: with $\langle f, \mathcal{L}\, f\rangle = -\, \langle\!\langle f, f\rangle\!\rangle$

$$\frac{1}{2} \frac{d}{dt} \langle\!\langle f, f \rangle\!\rangle = \int_{\mathbb{R}^d} \mathsf{D}_{\alpha} f \cdot \mathsf{D}_{\alpha} (\mathcal{L} f) \mathcal{B}_{\star} |x|^{-\beta} dx = - \langle\!\langle f, \mathcal{L} f \rangle\!\rangle$$

(日) (同) (三) (三)

Linearization of the flow, eigenvalues and spectral gap

Now let us consider an eigenfunction associated with the smallest positive eigenvalue λ_1 of \mathcal{L}

$$-\mathcal{L} f_1 = \lambda_1 f_1$$

so that f_1 realizes the equality case in the Hardy-Poincaré inequality

$$egin{aligned} &\langle\!\langle g,g
angle\!
angle = - rangle g, \mathcal{L}\,g
angle \geq \lambda_1 \,\|g - ar{g}\|^2\,, \quad ar{g} := rangle g, 1 ig
angle \,/ ig\langle 1,1 ig
angle \ &- \langle\!\langle g,\mathcal{L}\,g
angle\!
angle \geq \lambda_1 \,\langle\!\langle g,g
angle\!
angle \end{aligned}$$

Proof: expansion of the square :

$$-\langle\!\langle (g-ar{g}),\mathcal{L}\,(g-ar{g})
angle
angle = \langle\!\mathcal{L}\,(g-ar{g}),\mathcal{L}\,(g-ar{g})
angle = \|\mathcal{L}\,(g-ar{g})\|^2$$

• Key observation:

$$\lambda_1 \ge 4 \quad \Longleftrightarrow \quad \alpha \le \alpha_{\mathrm{FS}} := \sqrt{\frac{d-1}{n-1}}$$

Why is this method optimal ?

- \blacksquare The condition $\lambda_1 < 4$ is sufficient for symmetry breaking
- With $\lambda_1 \geq 4$, we prove that

$$\mathcal{H}[v] := \frac{m}{1-m} \mathcal{I}[v] - (2+\beta-\gamma)^2 \mathcal{E}[v]$$

is monotone decaying along the flow and that equality is achieved only on the stationary solution, which attracts all solutions. This has to do with the (formal) gradient flow structure of the problem

• The condition $\lambda_1 \geq 4$ is enough to prove that \triangleright the Fisher information $\mathcal{I}[v]$ exponentially decays with rate e^{-4t} \triangleright the functional $\mathcal{H}[v]$ is decreasing

• The decay of the Fisher information $\mathcal{I}[v]$ "has to be given" by the condition $\lambda_1 \geq 4$ because the problem degenerates into a sharp spectral gap problem in the asymptotic regime

Information – production of information inequality

Let $\mathcal{K}[u]$ be such that

$$\frac{d}{d\tau}\mathcal{I}[u(\tau,\cdot)] = -\mathcal{K}[u(\tau,\cdot)] = - \text{ (sum of squares)}$$

If $\alpha < \alpha_{\rm FS}$, then $\lambda_1 \geq 4$ and

$$u\mapsto rac{\mathcal{K}[u]}{\mathcal{I}[u]}-4$$

is a nonnegative functional With $u_{\varepsilon} = \mathcal{B}_{\star}$ $(1 + \varepsilon f \mathcal{B}^{1-m}_{\star})$ and $\alpha \leq \alpha_{\text{FS}}$, we observe that

$$4 \leq \mathcal{C}_2 := \inf_{u} \frac{\mathcal{K}[u]}{\mathcal{I}[u]} \leq \lim_{\varepsilon \to 0} \inf_{f} \frac{\mathcal{K}[u_\varepsilon]}{\mathcal{I}[u_\varepsilon]} = \inf_{f} \frac{\langle\!\langle f, \mathcal{L} f \rangle\!\rangle}{\langle\!\langle f, f \rangle\!\rangle} = \frac{\langle\!\langle f_1, \mathcal{L} f_1 \rangle\!\rangle}{\langle\!\langle f_1, f_1 \rangle\!\rangle} = \lambda_1$$

• if $\lambda_1 = 4$, that is, if $\alpha = \alpha_{\text{FS}}$, then $\inf \mathcal{K}/\mathcal{I} = 4$ is achieved in the asymptotic regime as $u \to \mathcal{B}_{\star}$ and determined by the spectral gap of \mathcal{L} • if $\lambda_1 > 4$, that is, if $\alpha < \alpha_{\rm FS}$, then $\mathcal{K}/\mathcal{I} \ge 4$... in fact, $\inf \mathcal{K}/\mathcal{I} = 4$!

Symmetry in Caffarelli-Kohn-Nirenberg inequalities

If $\alpha \leq \alpha_{\rm FS}$, the fact that $\mathcal{K}/\mathcal{I} \geq 4$ has an important consequence. Indeed we know that

$$\frac{d}{d\tau}\left(\mathcal{I}[u(\tau,\cdot)]-\,4\,\mathcal{E}[u(\tau,\cdot)]\right)\leq 0$$

so that

$$\mathcal{I}[u] - 4\mathcal{E}[u] \geq \mathcal{I}[\mathcal{B}_{\star}] - 4\mathcal{E}[\mathcal{B}_{\star}] = 0$$

This inequality is equivalent to $\mathcal{J}[w] \geq \mathcal{J}[\mathcal{B}_{\star}]$, which establishes that optimality in (CKN) is achieved among symmetric functions. In other words, the linearized problem shows that for $\alpha \leq \alpha_{\rm FS}$, the function

$$\tau \mapsto \mathcal{I}[u(\tau, \cdot)] - 4\mathcal{E}[u(\tau, \cdot)]$$

is monotone decreasing

• This explains why the method based on nonlinear flows provides the *optimal range for symmetry*

The strategy of the proof Large time asymptotics and spectral gaps Linearization and optimality

Entropy – production of entropy inequality

Using $\frac{d}{d\tau} \left(\mathcal{I}[u(\tau, \cdot)] - \mathcal{C}_2 \mathcal{E}[u(\tau, \cdot)] \right) \leq 0$, we know that $\mathcal{I}[u] - \mathcal{C}_2 \mathcal{E}[u] \geq \mathcal{I}[\mathcal{B}_{\star}] - \mathcal{C}_2 \mathcal{E}[\mathcal{B}_{\star}] = 0$

As a consequence, we have that

$$\mathcal{C}_1 := \inf_{u} \frac{\mathcal{I}[u]}{\mathcal{E}[u]} \ge \mathcal{C}_2 = \inf_{u} \frac{\mathcal{K}[u]}{\mathcal{I}[u]}$$

With $u_{\varepsilon} = \mathcal{B}_{\star} \ (1 + \varepsilon f \mathcal{B}_{\star}^{1-m})$, we observe that

$$\mathcal{C}_{1} \leq \liminf_{\varepsilon \to 0} \inf_{f} \frac{\mathcal{I}[u_{\varepsilon}]}{\mathcal{E}[u_{\varepsilon}]} = \inf_{f} \frac{\langle f, \mathcal{L} f \rangle}{\langle f, f \rangle} = \frac{\langle f_{1}, \mathcal{L} f_{1} \rangle}{\langle f_{1}, f \rangle_{1}} = \lambda_{1} = \liminf_{\varepsilon \to 0} \inf_{f} \frac{\mathcal{K}[u_{\varepsilon}]}{\mathcal{I}[u_{\varepsilon}]}$$

• If
$$\lim_{\varepsilon \to 0} \inf_f \frac{\mathcal{K}[u_\varepsilon]}{\mathcal{I}[u_\varepsilon]} = \mathcal{C}_2$$
, then $\mathcal{C}_1 = \mathcal{C}_2 = \lambda_1$

This happens if $\alpha = \alpha_{\rm FS}$ and in particular in the case without weights (Gagliardo-Nirenberg inequalities)

A loss of compactness...

Work in progress with N. Simonov] Case $\lambda_1 > 4$, *i.e.*, $\alpha < \alpha_{FS}$

• free energy, or generalized relative entropy

$$\mathcal{E}[v] := \frac{1}{m-1} \int_{\mathbb{R}^d} \left(v^m - \mathfrak{B}^m - m \mathfrak{B}^{m-1} \left(v - \mathfrak{B} \right) \right) \, \frac{dx}{|x|^{\gamma}}$$

• relative Fisher information

$$\mathcal{I}[\mathbf{v}] := \int_{\mathbb{R}^d} \mathbf{v} \left| \nabla \mathbf{v}^{m-1} - \nabla \mathfrak{B}^{m-1} \right|^2 \frac{dx}{|x|^{\beta}}$$

Proposition

[JD, Simonov] In the symmetry range, for any M > 0,

$$\inf\left\{\frac{\mathcal{I}[v]}{\mathcal{E}[v]} : v \in \mathcal{D}_+(\mathbb{R}^d), \ \int_{\mathbb{R}^d} v |x|^{-\gamma} \ dx = M\right\} = \frac{1-m}{m} (2+\beta-\gamma)^2$$

Conjecture: in the symmetry breaking range, $\inf \frac{\mathcal{I}[v]}{\mathcal{E}[v]}$ is determined by the spectral gap

...research in progress

• [with N. Simonov] Entropy – entropy production inequalities in the symmetry breaking range of CKN

• [with A. Zhang] Towards proofs in the weighted parabolic case (sphere: BGL Sobolev inequality and CKN): regularization of the weight ?

• [with N. Simonov and A. Zhang] Doubly nonlinear parabolic case (euclidean space)

• [with M. García-Huidobro and R. Manásevich] Doubly nonlinear parabolic case (sphere)

• Full (analytic) parabolic proof based on the *carré du champ* method based on the analysis of the regularity in the neighborhood of degenerating points / singularities of the potentials [collaborators are welcome !]

 \blacksquare Hypo-coercive methods and (sharp) decay rates in coupled kinetic equations...

These slides can be found at

 $\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/ $$ \rhd Lectures$

The papers can be found at

$\label{eq:http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/ $$ $$ $$ $$ $$ $$ $$ $$ Preprints / papers $$$

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !