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Introduction

@ Sobolev inequality on RY with d > 3, 2* = % and sharp
constant Sy

IVFlE ey > Sa Il oy ¥ F € P(RY) (S)

Equality holds on the manifold M of the Aubin—Talenti functions

d—2

gab,c(Xx) = c(a+|xfb|2)_ >, a€(0,00), beRY, ceR
[Bianchi, Egnell, 1991] there is some non-explicit cgg > 0 such that

V713 = Sa 13- > cor_inf [[VF — Vel

Q@ How do we estimate cgg ? as d — +oo ?
Stability & improved entropy — entropy production inequalities
Improved inequalities & faster decay rates for entropies
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Explicit stability results for Sobolev
and log-Sobolev inequalities,

with optimal dimensional

dependence

Joint papers with M.J. Esteban, A. Figalli, R. Frank, M. Loss
Sharp stability for Sobolev and log-Sobolev inequalities, with
optimal dimensional dependence

arXiv: 2209.08651, Cambridge J. Math. 2025

A short review on improvements and stability for some
interpolation inequalities
arXiv: 2402.08527, Proc. ICTAM 2023
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An explicit stability result for the Sobolev inequality

Sobolev inequality on RY with d > 3, 2* = j—fz and sharp constant Sy
2 2 :
IVFlLaey > Sa e ey V€ HY(RY) = 2V2(RY)
with equality on the manifold M of the Aubin—Talenti functions

_d2
gapec(x)=c(a+|x—b%)" 7, ac(0,00), beR?!, ceR

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant 3 > 0 with an explicit lower estimate which does not
depend on d such that for all d > 3 and all f € H}(R?) \ M we have

2 2 B . 2
IVl ey = Sa IFller mey = g'enjf/[ IVF = Veliz(re

@ No compactness argument
@ The (estimate of the) constant g is explicit
@ The decay rate 8/d is optimal as d — +00
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A stability result for the logarithmic Sobolev inequality

@ Use the inverse stereographic projection to rewrite the result on S¢
2 2
IVF ey — 3 8 (d —2) (IF oy~ [ F )

O 2 1 )
2 G et <|VF = VGllage + 7 d(d =2) [IF - G||L2(Sd))

@ Rescale by v/d, consider a function depending only on n
coordinates and take the limit as d — 400 to approximate the
Gaussian measure dy = e~ " X" dx

Corollary (JD, Esteban, Figalli, Frank, Loss)

With B > 0 as in the result for the Sobolev inequality

Jul?
Il = [, 8 o )
L2(R",d) RP HUHL2 R",d7)

> Br inf lu—ce®|2dy
2 a€R" ceR Jpn

™7 i = =
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Stability for the Sobolev inequality: the history

> [Rodemich, 1969], [Aubin, 1976], [Talenti, 1976]
In the inequality HVinz(Rd) > Sy ||f||i2*(Rd), the optimal constant is

Sy =1d(d—2)[s!~2/
with equality on the manifold M = {g, 5 ¢} of the Aubin-Talenti
functions

> [Lions| a qualitative stability result
. . 2 2 . . . 2 2 _
if Jim [VEIB/IIB- = Sa. then lim_inf [V, — Vel3/| VA3 =0

> [Brezis, Lieb, 1985] a quantitative stability result ?
> [Bianchi, Egnell, 1991] there is some non-explicit cgr > 0 such that

IVFII3 > Sq [If

2 , 2
. f |[VF-V
2 +CBEg'€”M I gll2

Q@ The strategy of Bianchi & Egnell involves two steps:

— a local (spectral) analysis: the neighbourhood of M
— a local-to-global extension based on concentration-compactness :
@ The constant cpg is not explicit the far away regime
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Stablhty for the logarlthmlc Sobolev inequality

> [Gross, 1975] Gaussian logarithmic Sobolev inequality for n > 1

|uf?
IV ul|Z2 g 27?/ v?log | —5——— | dy
L2(R",d) R ||“||L2(1Rn i)

> [Weissler, 1979] scale invariant (but dimension-dependent) version
of the Euclidean form of the inequality

> [Stam, 1959], [Federbush, 69], [Costa, 85] Cf. [Villani, 08]

> [Bakry, Emery, 1984], [Carlen, 1991] equality iff

ue M = {wc: (a,c) € RxR} where w,c(x)=ce®™ VxeR"

[Carlen, 1991] reinforcement of the inequality (Wiener transform)

> [McKean, 1973], [Beckner, 92| (LSI) as a large d limit of Sobolev
> [Bobkov, Gozlan, Roberto, Samson, 2014, [Indrei et al., 2014-23]
stability in Wasserstein distance, in W1, etc.

> [JD, Toscani, 2016] Comparison with Weissler’s form, a (dimension
dependent) improved inequality

> [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a
Poincaré inequality (Mehler formula)
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Explicit stability results
for the Sobolev inequality

Proof

o (w1 =
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Sketch of the proof

Goal: prove that there is an explicit constant § > 0 such that for all
d>3andall f e H! (Rd)

B .
V713 > Sa I3 + - _inf [VF — Vel

Part 1. We show the inequality for nonnegative functions far from M
... the far away regime
Make it constructive

Part 2. We show the inequality for nonnegative functions close to M
. the local problem
Get explicit estimates and remainder terms

Part 3. We show that the inequality for nonnegative functions implies
the inequality for functions without a sign restriction, up to an

acceptable loss in the constant ) ) )
. sign-changing functions
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Some definitions

What we want to minimize is
_ ||Vf||i2(Rd) — Sy Hf”iz* (R9)
B d(f, M)?

f e HY(RY) \ M

where

d(f, M)? = Jnf, IV = Veliaey

> up to an elementary transformation, we assume that
d(f, M)? = |VF = Vg |2 e with

8.0 = 8| (H2X|)

> use the inverse stereographic projection

2 xj . .
f Wj = s if1<;<d
Flw) = —(X) x € RY with / 1+|><\2|X|2 J
g*(X) Wd+1 = 1752
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The problem on the unit sphere

Stability inequality on the unit sphere S¢ for F € HY(SY, dp)

[ awer e aieeyana( [ e o)

5B
> n inf {||VF—VG||iZ(Sd) + AJlF - G||i2(§d)}

2/2*

with A = 7 d (d — 2) and a manifold .# of optimal functions made of

1
4
d—2

Gw)=c(at+b-w) 7 weS? (ab,c)e(0,+0) xR xR

@ make the reduction of a far away problem to a local problem
constructive... on RY
@ make the analysis of the local problem explicit... on S¢
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Competing symmetries

@ Rotations on the sphere combined with stereographic and
inverse stereographic projections. Let e; = (0,...,0,1) € R9

d—2
(2 N\ Xy Xd—1 Ix|> -1
(UR)() = <|X— ed2) f (|X— ed?’ 7 |x —ed|?’ |x — eq]?
E(UF) =&(f)

@ Symmetric decreasing rearrangement Rf = f*
f and f* are equimeasurable
IV llLaey < [IVFl|Le(re)

The method of competing symmetries

Theorem (Carlen, Loss, 1990)

Let f € 12" (R?) be a non-negative function with
[ llr2r ey = lIg«llL2* (me). The sequence f, = (RU)"f is such that

limpto0 1fo — 8 llLe mey = 0. If £ € HY(R?), then (||V£,||12(re))nen is a
non-increasing sequence

™7 = = =
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Useful preliminary results

Q iMoo [|fo — Gxll2e = 0 if [[f][2 = ||gl|2-

@ (||V£I3)nen is a nonincreasing sequence

. * 132
infgem [V — Vel3 = IVFl3 -S4 SUPge M, ||g|lp+=1 (fagz 1)

(d(f,,, /\/l))nEN is strictly decreasing, n — supzc 4, (f,,, gz**l) is strictly
increasing, and

A

2
2%

im_d(f,, M)? = lim_[[V5,[ — Sy g

n— oo

20 2
2*—n|'j;o||an||2 Sallf

.

UVl 2 e, —Sa Il

but no monotonicity for n — £(f,) = AL 2%
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Part 1: Global to local reduction

The local problem
F(6) = inf {5(f) cF>0,d(f,M)? <4 IIVf||i2(Rd)}
fe Hl(Rd) is a nonnegative function in the far away regime iff
d(f, M)? = nf, IVF = Vglamey > S IVFIIEame)

for some ¢ € (0,1)

Let f, = (RU)"f. There are two cases:
@ (Case 1) d(f,, M)? > 0||V1,|2, (rey for all n € N
@ (Case 2) for some n € N, d(f,, M)? < §||Vf, ||Lz RY)

J. Dolbeault Stability estimates in Sobolev type inequalities
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Global to local reduction — Case 1

fe Hl(Rd) is a nonnegative function in the far away regime

gig/f/t IVF = Vgliamey > 0 VT2 (ae)

Let f, = (RU)"f and 6 € (0,1)
I£d(fo, M)? 2 6 |V ,l32(gey for all n € N, then £(F) > 5

1. ) 1 .
Jim (VA< 3 i inf [96-Veld =5 (i IVAI3 - Sal713. )

Sq lIf|3. .
_ S 1113 >
lim, 400 ||anH2

2 2 2 2 2 2
() = - IVF]3 — Sallf > IV£3 Sd2||f||2* > IVl5 5«12||f|\2f«2 5
infgem |Vf—-Vg |2 ||Vf||2 Han||2 n—+o00
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Global to local reduction — Case 2

Explicit stability for Sobolev and LSI on RY

F(8) :=inf {S(f) : f>0,d(f,M)>2<§ ||Vf||i2(Rd)}> 0 (to be proven)

E(f) > 6.7(9)

if - inf [V — Vgliage) > 6 IIanollizmdz) .
and glenjf\/l ||ano+1 — VgIILz(Rd) <4 ||ano+1||L2(Rd)

> Adapt a strategy due to Christ: build a (semi-)continuous
rearrangement flow (f;)n,<r<ny+1 With f,y = Uf, such that
l£-ll2+ = Ifll2, T — ||V £]]2 is nonincreasing, and lim;_ 11 fr = fr41

I713- [
E(f)>1-S >1—Sy 22 =5E(f,) > 6.7()
i VLI

Altogether: |if d(f, M)? > 4§ ||Vf||i2(Rd), then £(f) > min {0, .#(0)}

J. Dolbeault Stability estimates in Sobolev type inequalities
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Part 2: The (simple) Taylor expansion

Proposition

Let (X, du) be a measure space and u, r € L9(X, du) for some g > 2
withu >0, u+r>0and [, U rdp=0
> If g =6, then

b rI2 < 2+ 29 (50 922 dpa + 2 [y 9=
+5 [ ut rtdp 2w P du+ 3 [y r® du)

> If3 < q <4, then
lu+rlZ =1
< ull2~9 ((q—l)fx q-2 2du+wf W3 B dut 2 [ |r |qdu)

> If2 < q<3 (take g =2%,d > 6), then
=+l < Nlld + ul39 (@0 fx w2 P du+ 2 [y ri dp
X x T

J. Dolbeault Stability estimates in Sobolev type inequalities
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For all v > 0 and for all r € H'(S?) satisfying r > —1,
(Juo IF9du)9 <02 and [ rdp=0= [wjrdy Yj=1,...d+1

if dyu is the uniform probability measure on S9, then

Joo (V2 +AQ+r)2) dpp— A (fuo (1+ 1) dpr) >
> m(v) oo (IVrP+Ar?) du

m(v) =4 — 2,972 jf d>6

d+4 q
m(z/):IC,L_H*%(‘7*1)(q72)l/f%1ﬁ’72 if d=4,5
m(z/)::%—%ou—51/2—21/3—%y4 if d=3

v

An explicit expression of #(§) if v > 0 is small enough so that m(v) > 0

J. Dolbeault Stability estimates in Sobolev type inequalities



Explicit stability for Sobolev and LSI on RY Main results, optimal dimensional dependence; history
Results based on entropy methods and fast diffusion equations Sketch of the proof, definitions & preliminary results
Sphere, Gaussian measure, interpolation and log-Sobolev lities The main steps of the proof

Part 3: Removing the positivity assumption

Q@ Take f = f, — f_ with ||f||L2*(Rd) =1
2 2 2
||vf+||L2*(Rd) + ||Vf_||L2*(Rd) = ||Vf||L2* (Rd)
@ Let m = || |70 oy and 1 — m = [|£i[|7 o (go) > 1/2
2 2 2
1l oy + 11T oy — 112 ey

= hg(m):=ma +(17m)% -1

where hy is a positive concave function
> For some g, € M

IV FIIF 20y —=Sa 1FllF 2 ey > CREIIVE: = VarlLama + ot 1Vl ee)

ha(1/2)+1

p . 2 hy(1/2)
Cop > 3 min {O<n§12>1</2 §.7(9), hd({//2)+1}

J. Dolbeault Stability estimates in Sobolev type inequalities
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Part 2, refined: The (complicated) Taylor expansion

To get a dimensionally sharp estimate, we expand (14 r)?" —1 —2*r
with an accurate remainder term for all r > — 1

r:=min{r,7v}, r=min{(r—7);, M-~} and r;:=(r— M),
with 0 <y < M. Let = 4/(d — 2)

Givend > 6, r € [-1,00), and M € [\/e, +), we have
(1+r)?¥ —1-2*r
<i2(2* -1 (n+n)P+2(n+n)n+ (1 +Cy oM Inﬂ) rZ

= (%79!‘12 ar CM’m9r22> ]l{rSM} I CM,WQ M? ]l{,>M}

where all the constants in the above inequality are explicit

J. Dolbeault Stability estimates in Sobolev type inequalities
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Main results, optimal dimensional dependence;

istory
Sketch of the proof, definitions & preliminary results
The main steps of the proof

s
N\
rs Myt f‘:
Mt >
L
Y =
n

0 -

Cd C

o (w1 =
J. Dolbeault Stability estimates in Sobolev type inequalities
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There are constants €1, €, ko, and €y € (0,1/8), such that

||Vr||iz(sd) +A ”rHiz(gd) —A ”1 + r”iZ*(Sd)

3

460

O (IR ey + A IrllEageny) + D e
k=1

>

hi=0=0c)fo (VAP +AR)du—A@" =1+ 0) [qoridu+Akel [, (r3...
b = (1 — 960) de (|Vr2|2 +Ar22) du — A (2* -1+ (ko + Cel,ez)o) de r22 dﬂ
li=(1-0€) fou (VP +ArZ)du— 2 A1+ e0) four? du—AkeO [ r3dp

Q@ spectral gap estimates : ; > 0

Q@ Sobolev inequality : 5 >0

@ improved spectral gap inequality using that p({r, > 0}) is small: / >0
[Duoandikoetxeal

J. Dolbeault Stability estimates in Sobolev type inequalities
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Sobolev and HLS inequalities: duality and Yamabe flow
Stability, fast diffusion equation and entropy methods

Sobolev and Hardy-Littlewood-Sobolev
inequalities

> Stability in a weaker norm, with explicit constants
> From duality to improved estimates
> Fast diffusion equation with Yamabe’s exponent

> Explicit stability constants

Joint paper with G. Jankowiak
Sobolev and Hardy—Littlewood—Sobolev inequalities
J. Differential Equations, 257, 2014

J. Dolbeault Stability estimates in Sobolev type inequalities



Sobolev and HLS inequalities: duality and Yamabe flow

Resul h fast diffusi i >
Ll (o) o ey (=t ) 55 G Gt Stability, fast diffusion equation and entropy methods

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in R?, d > 3,
IVFIToe) = Sa IflTe gy ¥FEH(R) =R (S)

and the Hardy-Littlewood-Sobolev inequality

2 -1 24 nd
lel 25, sd/ g(-A)lgdx VgeLitRY  (HLS)
are dual of each other Here Sy is the Aubin-Talenti constant,
2* =25, (2%) = T+2 and by the Legendre transform
f f112,- 2
e P85 2 W) = 815

1 1 _
sup (/ fgdx— 5 ||Vf||i2(]Rd)> = E/ g(—A)tgdx
fe12(RY) \JR RY

J. Dolbeault Stability estimates in Sobolev type inequalities



Sobolev and HLS inequalities: duality and Yamabe flow

Resul h fast diffusi i >
Ll (o) o ey (=t ) 55 G Gt Stability, fast diffusion equation and entropy methods

Improved Sobolev inequality by duality

[JD, Jankowiak| Assume that d > 3 and let g = %
There exists a positive constant C € [d%r47 1) such that

1£12 g, oy = S0 / F(-n) 7 dx

Ld+2

<CSy le||Lz* @) IV FIEamey = Sa Il fex (ga
(R%) (R)

for any f € 212(R)

C = 1. “completion” of the square

2
/ 1152y V7 — S0V (~0) g o

J. Dolbeault Stability estimates in Sobolev type inequalities



e . Sobolev and HLS inequalities: duality and Yamabe flow
Resul h fe ffi q
i (27eer] oo CIuiEeryy TG e s Tue) (R CHiET G Stability, fast diffusion equation and entropy methods

Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation
— =Av", t>0, xcR? (Y)

Choice m = % (Yamabe flow): m+1= %

Proposition

Assume that d > 3 and m = d— If u=v™ and v is a solution of (77?)
with nonnegative initial datum L2d/ (d+2)(R?), then

AT

2 dt Ld“(Rd) R
—1

=_ </Rd ymHL dx) (Sd HVU”iz(Rd) = HuHiQ*(Rd)> <0

J. Dolbeault Stability estimates in Sobolev type inequalities
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Sobolev and HLS inequalities: duality and Yamabe flow

Resul h fast diffusi i >
Ll (o) o ey (=t ) 55 G Gt Stability, fast diffusion equation and entropy methods

Solutions with separation of variables

Consider the solution of % = Av"™ vanishing at t = T:

d+2

vr(t,x) =c(T —t)* (F(x))>
where F is the Aubin-Talenti solution of

—AF = d(d —2) Fld+2)/(d=2)

[del Pino, Saez] For any solution v with initial datum
vo € L2/(d+2(RY), vy > 0, there exists T > 0, A > 0 and xy € R? such
that

lim (T — t‘)fﬁ sup (1 + |x]?)9*?
t—T_ xERd

with V(t, x) = NIH22v (¢, (x — x0)/\)

J. Dolbeault Stability estimates in Sobolev type inequalities



e . Sobolev and HLS inequalities: duality and Yamabe flow
Results based on entropy methods and fast diffusion equations S T g e e ———e

A convexity improvement

d+2 (R9)

[JD, Jankowiak| Assume that d > 3. Then we have

Jv] ::/ veiz dx  and H[v] :=Sq||v]]? 2o —/ v(=A)"tvdx
RY Ldt2( R

0 < HIV] + Sq V™8 o (I (S5 IV ulegany — 10l o))

where ¢(x) :=+14+2x—1 for any x >0 )
Proof: with kg := —Hp/Jo and H = Y(J), consider the differential
inequality

2 2 4
Y’ (c Sysiti +Y> < dzidcmo S2sM+4 . Y(0)=0, Y(Jo)=Ho

J. Dolbeault Stability estimates in Sobolev type inequalities



Results based on entropy methods and fast diffusion equations Sellly erd) (178 (el Glreitsy e VEmeLD ey
24 a Stability, fast diffusion equation and entropy methods

Constructive stability results
in Gagliardo-Nirenberg-Sobolev
inequalities

Joint papers with M. Bonforte, B. Nazaret and N. Simonov
Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows,
regularity and the entropy method

arXiv:2007.03674, to appear in Memoirs of the AMS

Constructive stability results in interpolation inequalities

and explicit tmprovements of decay rates of fast diffusion
equations
DCDS, 43 (3&4): 1070-1089, 2023

J. Dolbeault Stability estimates in Sobolev type inequalities
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Explicit stability for Sobc
Results based on entropy methods and fast usion equatlons
Sphere, Gaussian measure, interpolation and log-Sobolev inequalitie

Sobolev and HLS inequalities: duality and Yamabe flow
Stability, fast diffusion equation and entropy methods

Entropy = entropy productlon inequality

The fast diffusion equation on RY in self-similar variables

%+V v (vt - 2x)| =0 (FDE)

_1
admits a stationary Barenblatt solution B(x) := (1 + |x|?) ™

& (e = ~Tlu(t, )
Generalized entropy (free energy) and Fisher information
1
Flv] = f—/ (v —B™ —mB™ ! (v—B)) dx
m Jrd
Ilv] == / v |Vv”"'*1 - VB'"*1|2 dx
Rd
are such that Z[v] > 4 F[v] [del Pino, JD, 2002] so that
Flv(t,)] < Flw]e *t

J. Dolbeault Stability estimates in Sobolev type inequalities



Explicit stability for Sobolev and LSI on
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Sobolev and HLS inequalities: duality and Yamabe flow
Stability, fast diffusion equation and entropy methods

Entropy growth rate

Z|v] > 4 Flv] <= Gagliardo-Nirenberg-Sobolev inequalities
||Vf||L2 R9) ||fHLp+1(]Rd) > CGNS(P) ||f||L2p(Rd) (GNS)

with optimal constant. Under appropriate mass normalization
v = f2P so that v™ = fP™1 and v|Vv™ 1> = (p — 1)? |Vf|?

p:m s m:%é[ml,l)

Fast diffusion Hfiat Porous Med.
7
_ d=2
% £ : ™=
My me m1 1 m miy= d%
d—2
me="g"
2p 2% 2
! Il L
T L T
Sobolev log-Sobolev
sasl sl FRETRODOIEY

Gagliardo-Nirenberg

J. Dolbeault Stability estimates in Sobolev type inequalities



Results based on entropy methods and fast diffusion equations Sabbrltey e [RILS fnesueliii=: dielliy ol Vomela s
24 a Stability, fast diffusion equation and entropy methods

Asymptotic regime as t — +o0

Take f. := B(1 + e B w) and expand F[f.] and Z[£] at order O(e?)

linearized free energy and linearized Fisher information
Flw] := E/ w?B* ™dx and I[w]:=m(1— m)/ |Vw|? B dx
2 R4 Rd

Proposition (Hardy-Poincaré inequality)

[BBDGV ,BDNS] Let m € [my,1) ifd >3, me (1/2,1) ifd = 2, and
me (1/3,1) ifd = 1. If w € L2(R9, B>~™ dx) is such that

Vw € LA(RY, Bdx), [pawB?> ™ dx =0, then

I[w] > 4 aF[w]

witha =1, ora=2—d(1—m)if [puxwB> Mdx=0
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Spectral gap

Sobolev and HLS inequalities: duality and Yamabe flow
Stability, fast diffusion equation and entropy methods

y(m)

_dl
m2 = g

d+4
d+6

e Caase 1
— Case 2

e Caase 3

m

[Denzler, McCann, 2005]

[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]

Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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The asymptotic time layer improvement

Proposition

Let me (m,1)ifd>2, me (1/3,1)ifd=1,n=2(dm—d+1) and
X = m/(266 +56 m). If [,,vdx =M, [o,xvdx =0 and

(I-¢e)B<v<(1+¢)B

for some € € (0, xn), then
I[v] > (4 +n) Flv]
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Uniform convergence in relative error: threshold time

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that m € (my,1) if
d>2 me(1/3,1) ifd=1 and let € € (0,1/2), small enough, A > 0,
and G > 0 be given. There exists an explicit threshold time t, > 0 such
that, if u is a solution of

% +V. {v (Vv t — 2X>:| =0 (FDE)

with nonnegative initial datum uy € L(RY) satisfying

d(m—mc)

A[UO] =supr @-m / updx < A< oo (HA)
r>0 [x|>r

Jga o dx = [pq Bdx = M, then

u(t,x)
B(t, x)
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The initial time layer improvement: backward estimate

By the carré du champ method, we have

Away from the Barenblatt solutions, O[v] := ]Ir[[‘;]] is such that

do
s Q(Q—-4)

Assume that m > my and v is a solution to (??) with nonnegative initial
datum vq. If for somen > 0 and t, > 0, we have Q[v(t,,-)] > 4+n, then

4776_4t*
t, ) >4+ ———— t t
Q{2 4+ vie e
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Sobolev and HLS inequalities: duality and Yamabe flow
Stability, fast diffusion equation and entropy methods

Stability in Gagliardo-Nirenberg-Sobolev inequalities

Our strategy

Choosee > 0, small enough

Get a threshold time't«(g) )

£ t
‘ Backward estimate ‘* Forward estimate >
< | >
by entropy methods based on a spectral gap
Initial time layer Asymptotic time layer
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Two consequences (subcritical case)

> Improved decay rate for the fast diffusion equation in rescaled

variables

Let me (my,1) ifd>2 me (1/2,1) ifd=1, A>0and G >0. Ifv is
a solution of (??) with nonnegative initial datum vo € L}(R?) such that
Flv] =G, [govodx =M, [.oxvdx =0 and vy satisfies (Hp), then

Flv(t, )] < Flwle”*9t vi>0

> The stability of the entropy - entropy production inequality
ZI[v] — 4 F[v] > ¢ F[v] also holds in a stronger sense

Ilv] — 4 Flv] > g 3 CI[v]
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A constructive stability result (critical case)

Let 2p* =2d/(d —2) =2*,d > 3 and
W, (RY) = {f e LP'TY(RY) : VF e LA(RY), |x|FP" € LQ(R")}

Deficit of the Sobolev inequality: §[f] := ||vf||i2(Rd) -S2 Hf”iz (R9)

Let d >3 and A > 0. Then for any nonnegative f € Wy« (R?) such that

/ (1,x, |x[?) £2 dx = / (1,x,|x|*)gdx and sup rd/ 2 dx < A
RY RY |x|>r

r>0
we have
2 2 C.(A) 5 aa o [
HVfHI}(Rd)*Sg ||f||L2*(Rd) = 4+ C.(A) ./]Rd Vf+ % fi2 Vg a=2| dx
C.(A) = C.(0) (1+AY@ND) ™ and C,(0) > 0 depends only on d
- ——
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Sphere, Gaussian measure, interpolation and log-Sobolev inequalities More results on LS| and Gagliardo-Nirenberg inequalities

From interpolation inequalities on
the sphere to Gaussian interpolation
inequalities

Joint work with G. Brigati and N. Simonov
Gausstan interpolation inequalities
arXiv:2302.03926

C. R. Math. Acad. Sci. Paris 41, 2024

Logarithmic Sobolev and interpolation inequalities on the
sphere: constructive stability results

Annales THP, Analyse non linéaire, 362, 2023

arXiv: 2211.13180
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Explicit stability for Sobolev and Subcritical interpolation inequalities on the sphere
quations Gaussian interpolation inequalities on R

Sphere, Gaussian measure, interpolation and log-Sobolev inequalities More results on LS| and Gagliardo-Nirenberg inequalities

Subcritical interpolation inequalities on the sphere

Results based on entropy methods and fast diffusio

Q@ Gagliardo-Nirenberg-Sobolev inequality

2 d 2 2
IVF 120y 2 dEolF] = =5 (IF ey = Il

for any p € [1,2) U (2,2*)
with 2* := 2% if d >3 and 2* = 400 if d = 1 or 2

Q@ Limit p — 2: the logarithmic Sobolev inequality

F2
/\VFquzfsz[F] ::g/ F?log | oz | dn VF e HI(S', dp)
» 2 2 Jsa [F T2 (sey

[Bakry, Emery, 1984], [Bidaut-Véron, Véron, 1991], [Beckner, 1993]
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Gagliardo-Nirenberg inequalities: stability

An improved inequality under orthogonality constraint and the
stability inequality arising from the carré du champ method can be
combined in the subcritical case as follows

Let d > 1 and p € (1,2*). For any F € HY(S?, du), we have

/Sd |VF|?du — d E,[F]

e ( ||V|—|1FH4LZ(sd)
Z <dp 2 2
||VF||L2(Sd) + HFHL2(Sd)

+ ||V(Id - ﬂ1) FHiZ(Sd))

for some explicit stability constant /4 , > 0

v

> The result holds true for the logarithmic Sobolev inequality (p = 2),
again with an explicit constant .%y 5, for any finite dimension d
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Carré du champ — admissible parameters on S?

[JD, Esteban, Kowalczyk, Loss| Monotonicity of the deficit along

ou o IV |2
22 p-m) 1y
. u (Au+ (mp—1)

m(d. p) = (zisr5 (dp+2:|:\/d(p71) (2df(df2)p))

RN

......

1 2 3 4

Figure: Case d = 5: admissible parameters 1 < p <2* =10/3 and m
(horizontal axis: p, vertical axis: m). Improved inequalities inside !
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The “far away” regime and the “neighborhood” of M

> I |V F [ fagey / | Fllfpgeey = Yo > 0, by the convexity of v

IVFI
IVFI2 e - dswrnuwmmqw(”m““)

LP(sd

w( >Wme

> From now on, we assume that ||VF||i2(Sd) <Y ||FHip(Sd)7 take
HFHLp(Sd) =1, learn that

d vy
d—(p—2)do

from the standard interpolation inequality and deduce from the
Poincaré inequality that

2
M<</ Fd,u) <1
d ¢
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Partial decomposition on spherical harmonics

M =ToF and Ny F = e % where #(x) = /T x - v, v € §7
F=l(1+e% +nG)

Apply ¢ - o d ) 6 < 11+ EZ?/HL,, (s9) (1+apge?+bpaet) < c,(;;) o
(with expllclt constants) to u =1+ ¢ % and r = 7 G the estimate

2 2
lu+ rllTesey = lulltesa
< 2 ||ulfod (p Ja PP rdp+5(p—1) JouuP 2 r? dp
+ Z2<k<p v fsd uP= |k dp + K, fsd |r|P d#)

Estimate [, (1+ )P Gdy, Jeo (L + e )P |Gk dy, ete. to
obtain (under the condition that &2 + n? ~ ¥)

Joo IVFI2du—d E,[F] > ? (Ae* — B2+ Cn? — Ry g (9P +9°/2))

> & L‘f’ 2
S R
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Large dimensional limit

Gagliardo-Nirenberg-Sobolev inequalities on S9, p € [1,2)
IVl iy > 525 (10000 ) = 190 ()

Let v € HY(R", dx) with compact support, d > n and
ug(w) = v(wl/\/g,wz/\fd, . ,w,,/\/g)

where w € SY € RI*tL. With dy(y) := (27)~"/? eIyl dy,

2
im o (Va2 = 5% (10120, — N6l Eriet. ) )

= 91 aqg ) — 725 (112 = V1o
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Gaussian interpolation inequalities on R”

Q@ Beckner interpolation inequalities

1
1V Vo) > 5= (M) = ¥

> 1 < p < 2 [Beckner, 1989], [Bakry, Emery, 1984]
> Poincaré inequality corresponding: p =1
> Gaussian logarithmic Sobolev inequality p — 2

Q@ Gaussian logarithmic Sobolev inequality p — 2

v

1
R &
RI‘I

[

dy(y) = (2m) "2 ez I dy
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Gaussian carré du champ and nonlinear diffusion

v Vv
vy _ p(1—m) 1)y R"
9 =" (Ev +(mp—1) . on

Ornstein- Uhlenbeck operator: L=A —x -V

ma(p)i= lim_ma(dp) =1% 2 (o= 1) (2~ p)

Figure: The admissible parameters 1 < p < 2 and m are independent of n
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A stability result for Gaussian interpolation inequalities

For all n> 1, and all p € (1,2), there is an explicit constant c, , > 0
such that, for all v € H(d"),

1
IV ¥Ieqmnany ~ =5 (VB = V1)

”van”i?(R",dw) )

IV VA2 r )+ 1V E2 (o,

2 Cnp (”V(Id — M)v|[f2(rn gq) +
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L2 stability of LSI: comments

[JD, Esteban, Figalli, Frank, Loss|

2
Velfen iy~ 7 [ 108 | A ) on
’ R" H“HLZ(Rn,de)

T ‘
ZB— inf lu—ce®™|? dy
2 a€R9, ceR Rn

@ One dimension is lost (for the manifold of invariant functions) in
the limiting process

@ Euclidean forms of the stability

@ The H!(R") does not appear, it gets lost in the limit d — 400

@ [, [V(u— ce®™)[>dy ? False, but makes sense under additional
assumptions. Some results based on the Ornstein-Uhlenbeck flow and
entropy methods: [Fathi, Indrei, Ledoux, 2016], [JD, Brigati, Simonov]
@ Taking the limit is difficult because of the lack of compactness
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Explicit stability for Sobolev and LSI on
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Sphere, Gaussian measure, interpolation and log-Sobolev inequalities

More results on
logarithmic Sobolev inequalities

Joint work with G. Brigati and N. Simonov
Stability for the logarithmic Sobolev inequality
Journal of Functional Analysis, 287, oct. 2024

arXiv: 2411.13271

> Entropy methods, with constraints
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Stability under a constraint on the second moment

us(x) = 1+ ex in the limit as e — 0

d(uEa 1)2 = Hu;H%Z(R,dW) =¢® and Wigf”d(uav ) <

M = {Wac 1 (a,c) € RY x R} where w, (x) = ce @

'+ 0(e°)

|\>M—l

Proposition

|

For all u € HY(RY, dv) such that lullpogey = 1 and ||x u||i2(Rd) <d, we
have

2 1 5 5 ) )
IV ullzags,ay = 2 /Rd |u| log |ul* dy > ﬁ |u| log |u d'y
and, with 1(s) :=s— 9 log (1 + % s),

2 1 2
IVl gy = 5 [ 1017 V0B dy 2 0 (Vo )
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Stability under log-concavity

For all u € HY(RY, dv) such that u®~ is log-concave and such that
[ axluPar=wo) and [ |x?luPdy <K
Rd Rd

we have @
2
Vel = - [l ogluf? d > 0

1 0.00231481
1+ — =14+ ——
Co=1+ 432K + K

Self-improving Poincaré inequality and stability for LSI
[Fathi, Indrei, Ledoux, 2016]
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Sphere, Gaussian measure, interpolation and log-Sobolev inequalities

Let d > 1. For any € > 0, there is some explicit € > 1 depending only
on ¢ such that, for any u € HY(RY, dv) with

/(1,x)|u\2d~y=(1,0),/ w2 e dy < oo
R4 R4

for some € > 0, then we have

V

€
—/ 02 log |uf? dy
2 Jgo

2
with € =1+ % Ky := max <d, %) if supp(u) C B(0, R)

2
IVulltas,ayy =

4

Compact support: [Lee, Vazquez, '03]; [Chen, Chewi, Niles-Weed, "21]
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Sphere, Gaussian measure, interpolation and log-Sobolev inequalities

Subcritical interpolation inequalities on the sphere
Gaussian interpolation inequalities on R
More results on LS| and Gagliardo-Nirenberg inequalities

Stability results for Sobolev, logarithmic Sobolev, and related
inequalities
Proceedings of the Summer School “Direct and Inverse Problems with

Applications, and Related Topics” August 19-23, 2024
arXiv: 2411.13271

These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/list/
> Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeaul@ceremade.dauphine.fr

Thank you for your attention !

J. Dolbeault Stability estimates in Sobolev type inequalities


https://arxiv.org/abs/2411.13271.pdf
https://www.ceremade.dauphine.fr/~dolbeaul/Lectures/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/
mailto:dolbeaul@ceremade.dauphine.fr

