Relative equilibria in continuous stellar dynamics

Jean Dolbeault (Ceremade, Université Paris-Dauphine)
(with J. Campos and M. del Pino)
http://www.ceremade.dauphine.fr/~dolbeaul

November 4-8, 2013
Gravasco, IHP

Relative equilibria [J. Campos, M. del Pino, and J. Dolbeault. Relative equilibria in continuous stellar dynamics. Communications in Mathematical Physics, 2010]

Flat systems [J. Dolbeault and J. Fernández, Localized minimizers of flat rotating gravitational systems, Annales de I'Institut Henri Poincaré (C) Non Linear Analysis, 2008]

Numerical schemes for the computation of relative equilibria [J. Dolbeault, J. Fernández and J. Salomon, work in progress]

Symmetry breaking issues in functional inequalities, flows and rates of convergence
[J. Dolbeault, M.J. Esteban, M. Loss, G. Tarantello, and A. Tertikas] About existence, symmetry and symmetry breaking for Caffarelli-Kohn-Nirenberg inequalities
[J. Dolbeault, M.J. Esteban, A. Laptev, M. Loss] Spectral consequences
—[M. Bonforte, J. Dolbeault, G. Grillo, J.L. Vázquez] Fast diffusion equations
Q[J. Dolbeault, M.J. Esteban, M. Kowalczyk, M. Loss] Flow methods
Q[A. Blanchet, J. Dolbeault, M. Escobedo, J. Fernández] and [J. Campos, M. del Pino, and J. Dolbeault]
Keller-Segel models in chemotaxis

Introduction: N-body problems and mean-field kinetic equations

- A first statement: there are non radially symmetric critical points
- Relative equilibria: examples and (partial) classification for systems of point particles
- Kinetic equations: extending the notion of relative equilibria to continuum mechanics
- Results for kinetic / diffusion equations
- The variational approach: heuristics
- The variational approach: a sketch of the proofs
- Flat systems: results and numerical computation
- Concluding remarks: symmetry breaking

A first statement

Gravitational (non-relativistic) Vlasov-Poisson system in \mathbb{R}^{3}

$$
\left\{\begin{array}{l}
\partial_{t} F+w \cdot \nabla_{z} F-\nabla_{z} \Phi \cdot \nabla_{w} F=0 \tag{1}\\
\Delta \Phi=\int_{\mathbb{R}^{3}} F d w
\end{array}\right.
$$

Theorem
For any $N \geq 2$, any $p \in(1,5)$, any positive numbers $\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}$ and any $\omega>0$ small enough, there is a solution F^{ω} of (1) which is a relative equilibrium with angular velocity ω whose support has N disjoint connected components, each of them with mass m_{i}^{ω} such that

$$
\lim _{\omega \rightarrow 0_{+}} m_{i}^{\omega}=\lambda_{i}^{(3-p) / 2} m_{*}=: m_{i}
$$

for some positive constant m_{*}. The center of mass $z_{i}^{\omega}(t)$ of each component is such that $\lim _{\omega \rightarrow 0_{+}} \omega^{2 / 3} z_{i}^{\omega}(t)=: z_{i}(t)$ is a relative equilibrium of the N-body Newton's equations with gravitational interaction

Systems of discrete particles: the N -body problem in gravitation

Solutions of the N -body problem in gravitation

... many solutions are known

- No stationary (time independent) solutions
- Periodic solutions in Hamiltonian dynamics: [Ekeland et al.]
- Choregraphies: [Chenciner et al.], [Terracini et al.]

Figure: Choregraphies, pictures taken from S. Terracini's web page
http://www.matapp.unimib.it/~suster/files/index.html

Consider N point particles with masses m_{i} located at $z_{i}(t) \in \mathbb{R}^{3}$ subject to Newton's equations

$$
\begin{equation*}
m_{i} \frac{d^{2} z_{i}}{d t^{2}}=\sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{4 \pi} \frac{z_{j}-z_{i}}{\left|z_{j}-z_{i}\right|^{3}} \tag{2}
\end{equation*}
$$

Ansatz: the system is stationary in a reference frame rotating at constant angular velocity $\Omega=\omega \mathrm{e}_{3}$
Notation: $x^{\prime}=\left(x^{1}, x^{2}, 0\right)=x-\left(x \cdot e_{3}\right) e_{3}$, a change of coordinates

$$
x^{3}=z^{3}, \quad x^{1}+i x^{2}=e^{i \omega t}\left(z^{1}+i z^{2}\right)
$$

provides Newton's equations in a rotating frame

$$
\frac{d^{2} x_{i}}{d t^{2}}=\sum_{i \neq j=1}^{N} \frac{m_{j}}{4 \pi} \frac{x_{j}-x_{i}}{\left|x_{j}-x_{i}\right|^{3}}+\omega^{2} x_{i}^{\prime}+2 \Omega \wedge \frac{d x_{i}}{d t}
$$

We look for stationary solutions in the rotating frame: relative equilibria The configuration is central and planar: critical points of the function

$$
\mathcal{V}_{\omega}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{N}^{\prime}\right):=-\frac{1}{8 \pi} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{\left|x_{j}^{\prime}-x_{i}^{\prime}\right|}-\frac{\omega^{2}}{2} \sum_{i=1}^{N} m_{i}\left|x_{i}^{\prime}\right|^{2}
$$

Relative equilibria: example 1

- All masses m_{i} are equal to some $m>0$ and x_{i}^{\prime} are located at the summits of a regular polygon, where $r=\left|x_{i}^{\prime}\right|$ is adjusted so that

$$
\frac{d}{d r}\left[\frac{a_{N}}{4 \pi} \frac{m}{r}+\frac{1}{2} \omega^{2} r^{2}\right]=0 \quad \text { with } \quad a_{N}:=\frac{1}{\sqrt{2}} \sum_{j=1}^{N-1} \frac{1}{\sqrt{1-\cos (2 \pi j / N)}}
$$

gives a Lagrange solution with $r=r(N, \omega):=\left(\frac{a_{N} m}{4 \pi \omega^{2}}\right)^{1 / 3}$
[Perko-Walter]: all masses have to be equal if $N \geq 4$
Scale invariance:

$$
r\left(N, \varepsilon^{3 / 2} \omega\right)=\frac{1}{\varepsilon} r(N, \omega) \quad \forall \varepsilon>0
$$

If $\nabla \mathcal{V}_{\omega}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{N}^{\prime}\right)=0$
then $\nabla \mathcal{V}_{\varepsilon^{3 / 2} \omega}\left(\varepsilon^{-1} x_{1}^{\prime}, \varepsilon^{-1} x_{2}^{\prime}, \ldots \varepsilon^{-1} x_{N}^{\prime}\right)=0$:
the study of the critical points
of \mathcal{V}_{ω} can be reduced to the case $\omega=1$

- N-1 points particles of same mass are located at the summits of a regular centered polygon and one more point particle stands at the center (with not necessarily the same mass as the other ones). A solution is then found again by adjusting the size of the polygon
- The Euler-Moulton solutions are made of aligned points

Relative equilibria: classification (1/3)

Relative equilibria are critical points of the function $\mathcal{V}_{\omega}:\left(\mathbb{R}^{2}\right)^{N} \rightarrow \mathbb{R}$

$$
\mathcal{V}_{\omega}\left(x_{1}^{\prime}, x_{2}^{\prime}, \ldots x_{N}^{\prime}\right):=-\frac{1}{8 \pi} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{\left|x_{j}^{\prime}-x_{i}^{\prime}\right|}-\frac{1}{2} \omega^{2} \sum_{i=1}^{N} m_{i}\left|x_{i}^{\prime}\right|^{2}
$$

Generic case: all masses are different

- $N=2$:

$$
\left|x_{1}-x_{2}\right|=\left(\frac{M}{4 \pi \omega^{2}}\right)^{1 / 3} \quad \text { and } \quad m_{1} x_{1}+m_{2} x_{2}=0, \quad \text { with } M=m_{1}+m_{2}
$$

- $N=3$:
- Lagrange solutions: masses are located at the vertices of an equilateral triangle, and the distance between each point is $\left(M /\left(4 \pi \omega^{2}\right)\right)^{1 / 3}$ with $M=m_{1}+m_{2}+m_{3}$: two classes of solutions corresponding to the two orientations of the triangle when labeled by the masses
- Euler solutions are made of aligned points and provide three classes of critical points, one for each ordering of the masses on the line

Relative equilibria: classification (2/3)

Q $N \geq 4$: solutions made of aligned points are Moulton's solutions
Q $N \geq 4$: Lagrange solutions (all particles are located at the vertices of a regular N-polygon) exists if and only if all masses are equal

Q Standard variational setting [Smale]: for $m=\left(m_{1}, \ldots m_{N}\right) \in \mathbb{R}_{+}^{N}$, consider the manifold $\left(q_{1}, \ldots q_{N}\right) \in \mathbb{R}^{2 N}$ such that

$$
\sum_{i=1}^{N} m_{i} q_{i}=0, \frac{1}{2} \sum_{i=1}^{N} m_{i}\left|q_{i}\right|^{2}=1, q_{i} \neq q_{j} \text { if } i \neq j
$$

quotiented by the equivalence classes associated to the invariances: rotations and scalings $\operatorname{dim}\left(\mathcal{S}_{m}\right)=2 N-3$, relative equilibria are critical points on \mathcal{S}_{m} of the potential

$$
U_{m}\left(q_{1}, \ldots q_{N}\right)=-\frac{1}{8 \pi} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{\left|q_{j}-q_{i}\right|}
$$

Relative equilibria: classification (3/3)

For $N \geq 4$, various classification results have been achieved by [Palmore]

- For $N \geq 3$, the index of a relative equilibrium is always greater or equal than $N-2$. This bound is achieved by Moulton's solutions
- For $N \geq 3$, there are at least $\mu_{i}(N):=\binom{N}{i}(N-1-i)(N-2)$! distinct relative equilibria in \mathcal{S}_{m} of index $2 N-4-i$ if U_{m} is a Morse function. As a consequence, there are at least

$$
\sum_{i=0}^{N-2} \mu_{i}(N)=\left[2^{N-1}(N-2)+1\right](N-2)!
$$

distinct relative equilibria in \mathcal{S}_{m} if U_{m} is a Morse function

- For every $N \geq 3$ and for almost all masses $m \in \mathbb{R}_{+}^{N}, U_{m}$ is a Morse function
- There are only finitely many classes of relative equilibria for every $N \geq 3$ and for almost all masses $m \in \mathbb{R}_{+}^{N}$
- If $N \geq 4$, the set of masses for which there exist degenerate classes of relative equilibria has positive k-dimensional Hausdorff measure if $0 \leq k \leq N-1$

The kinetic problem

Gravitational Vlasov-Poisson system (with centrifugal and Coriolis forces):

$$
\begin{gathered}
\frac{\partial f}{\partial t}+v \cdot \nabla_{x} f-\nabla_{x} \phi \cdot \nabla_{v} f-\omega^{2} x^{\prime} \cdot \nabla_{v} f+2 \Omega \wedge v \cdot \nabla_{v} f=0 \\
\Delta \phi=\rho:=\int_{\mathbb{R}^{3}} f d v
\end{gathered}
$$

Boundary conditions: $\phi=-\frac{1}{4 \pi \cdot \cdot \cdot} * \rho$
Change of coordinates: $f(t, x, v)=F(t, z, w), \phi(t, x)=\Phi(t, z)$
$x=\exp (\omega t A) z, \quad v=\Omega \wedge x+\exp (\omega t A) w \quad$ with $\quad A:=\left(\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right)$
For some arbitrary convex function β, critical points of the free energy
$\mathcal{F}[f]:=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \beta(f) d x d v+\frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}\left(|v|^{2}-\omega^{2}\left|x^{\prime}\right|^{2}\right) f d x d v-\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x$
give stationary solutions under the constraint $\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} f d x d v=M$
For $\omega \neq 0$: no minimizers

Polytropic gases

[Binney-Tremaine] A typical example of such a function is

$$
\beta(f)=\kappa f^{q}
$$

A critical point of \mathcal{F} such that $\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} f d x d v=M$ is given by

$$
f(x, v)=\gamma\left(\lambda+\frac{1}{2}|v|^{2}+\phi(x)-\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)
$$

where $\gamma(s)=\left(\beta^{\prime}\right)^{-1}(-s): \gamma(s)=(-s)_{+}^{1 /(q-1)}$
The problem is reduced to solve a non-linear Poisson equation

$$
\begin{gathered}
\Delta \phi=g\left(\lambda+\phi(x)-\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right) \chi_{\operatorname{supp}(\rho)} \\
g(\mu):=\int_{\mathbb{R}^{3}} \gamma\left(\mu+\frac{1}{2}|v|^{2}\right) d v
\end{gathered}
$$

Variational approach:

$$
\mathcal{J}[\phi]:=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x+\int_{\mathbb{R}^{3}} G\left(\lambda+\phi(x)-\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right) d x-\int_{\mathbb{R}^{3}} \lambda \rho d x
$$

where $\lambda=\lambda[x, \phi]$ is now a functional which is constant on each connected component K_{i} of the support of $\rho(x)$

The total mass is $M=\sum_{i=1}^{N} m_{i}$

$$
\begin{gathered}
\int_{K_{i}} g\left(\lambda_{i}+\phi(x)-\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right) d x=m_{i} \\
\mathcal{J}[\phi]=\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x+\sum_{i=1}^{N}\left[\int_{K_{i}} G\left(\lambda_{i}+\phi(x)-\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right) d x-m_{i} \lambda_{i}\right]
\end{gathered}
$$

Heuristics. The various components K_{i} are far away from each other so that the dynamics of their center of mass is described by the N-body point particles system, at first order. On each component K_{i}, the solution is a perturbation of an isolated minimizer of \mathcal{F} (without angular rotation) under the constraint that the mass is equal to m_{i}. Alternatively, we consider a critical point of \mathcal{J} obtained as the perturbation of a superposition of single components critical points of \mathcal{J} of mass m_{i}, provided the centers of mass x_{i} of each of the components are close enough of a critical point of \mathcal{V}_{ω}, with $\omega>0$, small
$\omega=0$: [Guo et al.], [Lemou-Méhats-Raphaël], [Rein et al.], [Sánchez et al.], [Soler et al.], [Schaeffer], [Wolansky], [JD-Fernández] $\pm[$ Kurth $]$

The first result

The spatial density $\rho^{\omega}:=\int_{\mathbb{R}^{3}} f^{\omega} d v$ has exactly N disjoint connected components K_{i}^{ω} and

$$
\begin{aligned}
m_{i}^{\omega}= & \int_{K_{i}^{\omega}} \rho^{\omega} d x, \quad z_{i}^{\omega}(t)=\exp (-\omega t A) x_{i}^{\omega} \quad \text { where } \quad x_{i}^{\omega}:=\frac{1}{m_{i}^{\omega}} \int_{K_{i}^{\omega}} x \rho^{\omega} d x \\
& \rho_{i}(x):=\frac{1}{\lambda_{i}^{p}} \rho^{\omega}\left(\lambda_{i}^{(1-p) / 2}\left(x+x_{i}^{\omega}\right)\right) \chi_{K_{i}^{\omega}}\left(\lambda_{i}^{(1-p) / 2}\left(x+x_{i}^{\omega}\right)\right)
\end{aligned}
$$

converges to a density function $\rho_{*}=(w-1)_{+}^{p}$ given by

$$
-\Delta w=(w-1)_{+}^{p} \quad \text { in } \mathbb{R}^{3}, \quad \lim _{|x| \rightarrow \infty} w(x)=0
$$

Theorem
For any $N \geq 2$, any $p \in(1,5)$, any positive numbers $\lambda_{1}, \lambda_{2}, \ldots \lambda_{N}$ and any $\omega>0$ small enough, there is a relative equilibrium solution F^{ω} s.t.

$$
\lim _{\omega \rightarrow 0_{+}} m_{i}^{\omega}=\lambda_{i}^{(3-p) / 2} m_{*}=: m_{i}
$$

for $m_{*}=\int_{\mathbb{R}^{3}} \rho_{*} d x$. The center of mass $z_{i}^{\omega}(t)$ of each component is such that $\lim _{\omega \rightarrow 0_{+}} \omega^{2 / 3} z_{i}^{\omega}(t)=: z_{i}(t)$ is a relative equilibrium of the N-body problem (Newton's equations)

Let $x=\left(x^{\prime}, x_{3}\right) \in \mathbb{R}^{2} \times \mathbb{R}$, fix $\lambda_{1}, \ldots \lambda_{N}$ and $\omega>0$, small: the problem is

$$
\begin{equation*}
-\Delta u=\sum_{i=1}^{N} \rho_{i} \quad \text { in } \mathbb{R}^{3}, \quad \rho_{i}:=\left(u-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p} \chi_{i} \tag{3}
\end{equation*}
$$

where χ_{i} denotes the characteristic function of K_{i}
Boundary condition $\lim _{|x| \rightarrow \infty} u(x)=0$
Mass and center of mass associated to each component by

$$
m_{i}:=\int_{\mathbb{R}^{3}} \rho_{i} d x \quad \text { and } \quad x_{i}:=\frac{1}{m_{i}} \int_{\mathbb{R}^{3}} x \rho_{i} d x
$$

We shall say that two solutions u_{1} and u_{2} are equivalent if there is a rotation $R \in \mathrm{SO}(2) \times\{\operatorname{Id}\}$, i.e. a rotation in the plane orthogonal to the direction of rotation, such that $u_{2}(x)=u_{1}(R x)$ for any $x \in \mathbb{R}^{3}$. We shall say that u_{1} and u_{2} are distinct if they are not equivalent

A second result: Multiplicity of polytropic relative equilibria

Theorem

Q. For ω small enough, and for almost every positive $\left(\lambda_{1}, \ldots \lambda_{N}\right) \in(0, \infty)^{N}$, (3) has at least $\left[2^{N-1}(N-2)+1\right](N-2)$! distinct solutions which continuoulsy depend on ω
Q. If u^{ω} is such a solution, there are points $\xi_{1}^{\omega}, \ldots \xi_{N}^{\omega} \in \mathbb{R}^{3}$ such that as $\omega \rightarrow 0,\left|\xi_{j}^{\omega}-\xi_{i}^{\omega}\right| \rightarrow \infty$ for any $j \neq i$ and $u^{\omega}\left(\cdot+\xi_{i}^{\omega}\right)$ locally converges to the unique radial nonnegative solution of

$$
-\Delta w=\left(w-\lambda_{i}\right)_{+}^{p} \quad \text { in } \mathbb{R}^{3}
$$

Q. For $\omega>0$ small enough, the support of ρ^{ω} has N connected components

$$
\lim _{\omega \rightarrow 0} m_{i}^{\omega}=\lambda_{i}^{(3-p) / 2} m_{*}=: m_{i} \quad \text { and } \quad \lim _{\omega \rightarrow 0} \omega^{2 / 3} \xi_{i}^{\omega}:=\xi_{i}
$$

and $\left(\xi_{1}, \ldots \xi_{N}\right)$ is a relative equilibrium with masses $\left(m_{i}\right)_{1 \leq i \leq N}$
The scaling invariance is recovered only in the limit $\omega \rightarrow 0_{+}$

$$
\begin{equation*}
-\Delta w=(w-1)_{+}^{p} \quad \text { in } \mathbb{R}^{3} \tag{4}
\end{equation*}
$$

Lemma

Under the condition $\lim _{|x| \rightarrow \infty} w(x)=0$, Equation (4) has a unique solution, up to translations, which is positive and radially symmetric. It is a non-degenerate critical point of $\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla w|^{2} d x+\frac{1}{p+1} \int_{\mathbb{R}^{3}}(w-1)_{+}^{p+1} d x$

$$
w_{i}(x):=w^{\lambda_{i}}\left(x-\xi_{i}\right), \quad w_{\xi}:=\sum_{i=1}^{N} w_{i}
$$

Compatibility condition: for a large, fixed $\mu>0$, and all small $\omega>0$,

$$
\begin{equation*}
\left|\xi_{i}\right|<\mu \omega^{-\frac{2}{3}}, \quad\left|\xi_{i}-\xi_{j}\right|>\mu^{-1} \omega^{-\frac{2}{3}} \tag{5}
\end{equation*}
$$

Ansatz: we look for a solution of (3) of the form

$$
u=W_{\xi}+\phi
$$

with $\operatorname{supp}\left(w^{\lambda_{i}}-\lambda_{i}\right)_{+} \subset B(0, R) \quad$ for all $i=1, \ldots N$ for $R>0$ large

$$
\Delta \phi+\sum_{i=1}^{N} p\left(W_{\xi}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p-1} \chi_{i} \phi=-\mathrm{E}-\mathrm{N}[\phi]
$$

We want to solve

$$
\mathrm{L}[\phi]:=\Delta \phi+\sum_{i=1}^{N} p\left(W_{\xi}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p-1} \chi_{i} \phi=-\mathrm{E}-\mathrm{N}[\phi]
$$

where

$$
\begin{aligned}
& \mathrm{E}:=\Delta W_{\xi}+\sum_{i=1}^{N}\left(W_{\xi}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p} \chi_{i} \\
& \mathrm{~N}[\phi]:=\sum_{i=1}^{N}\left[\left(W_{\xi}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}+\phi\right)_{+}^{p}-\left(W_{\xi}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p}\right. \\
& \left.\quad-p\left(W_{\xi}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p-1} \phi\right] \chi_{i}
\end{aligned}
$$

The variational scheme

- A linear theory
- The projected nonlinear problem (Lagrange multipliers)
- The variational reduction
- A variational approach in finite dimension
[Floer-Weinstein 1986] + many others...

A linear theory

$$
\|\phi\|_{*}=\sup _{x \in \mathbb{R}^{3}}\left(\sum_{i=1}^{N}\left|x-\xi_{i}\right|+1\right)|\phi(x)|, \quad\|h\|_{* *}=\sup _{x \in \mathbb{R}^{3}}\left(\sum_{i=1}^{N}\left|x-\xi_{i}\right|^{4}+1\right)|h(x)|
$$

Consider the projected problem

$$
\mathrm{L}[\phi]=h+\sum_{i=1}^{N} \sum_{j=1}^{3} c_{i j} Z_{i j} \chi_{i}
$$

where $Z_{i j}:=\partial_{x_{j}} w_{i}$, subject to orthogonality conditions

$$
\int_{\mathbb{R}^{3}} \phi Z_{i j} \chi_{i} d x=0 \quad \forall i, j=1,2 \ldots N
$$

Lemma

Assume that (5) holds. Given h with $\|h\|_{* *}<+\infty$, there is a unique solution $\phi=: \mathrm{T}[h]$ and there exists a positive constant C, which is independent of ξ such that, for $\omega>0$ small enough,

$$
\|\phi\|_{*} \leq C\|h\|_{* *}
$$

The projected nonlinear problem

Find ϕ with $\|\phi\|_{*}<+\infty$, solution of

$$
\mathrm{L}[\phi]=-\mathrm{E}-\mathrm{N}[\phi]+\sum_{i=1}^{N} \sum_{j=1}^{3} c_{i j} Z_{i j} \chi_{i}
$$

such that $\phi(x) \rightarrow 0$ as $|x| \rightarrow+\infty$ and

$$
\int_{\mathbb{R}^{3}} \phi Z_{i j} \chi_{i} d x=0 \quad \text { for all } i, j
$$

To do this analysis we have to measure the size of the error E . We recall that

$$
\begin{aligned}
\mathrm{E} & =\sum_{i=1}^{N}\left[\left(w_{i}+\sum_{j \neq i} w_{j}-\lambda_{i}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)_{+}^{p}-\left(w_{i}-\lambda_{i}\right)_{+}^{p}\right] \chi_{i} \\
& =\sum_{i=1}^{N} p\left(w_{i}-\lambda_{i}+t\left(\sum_{j \neq i} w_{j}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right)\right)_{+}^{p-1}\left(\sum_{j \neq i} w_{j}+\frac{1}{2} \omega^{2}\left|x^{\prime}\right|^{2}\right) \chi_{i}
\end{aligned}
$$

for some $t \in(0,1)$

$$
|\mathrm{E}| \leq C \sum_{i=1}^{N}\left[\sum_{j \neq i} \frac{1}{\left|\xi_{i}-\xi_{j}\right|}+\frac{1}{2} \omega^{2}\left|\xi_{i}\right|^{2}\right] \chi_{i} \leq C \omega^{\frac{2}{3}} \sum_{i=1}^{N} \chi_{i}
$$

Thus $\|\mathrm{E}\|_{* *} \leq C \omega^{\frac{2}{3}}$. Moreover, for $\|\phi\|_{*} \leq 1$,

$$
|\mathrm{N}[\phi]| \leq C \sum_{i=1}^{N}|\phi|^{\gamma} \chi_{i}, \quad \gamma=\min \{p, 2\}
$$

$\|\mathrm{N}[\phi]\|_{* *} \leq C\|\phi\|_{*}^{\gamma}$ and $\left\|N\left(\phi_{1}\right)-N\left(\phi_{2}\right)\right\|_{* *} \leq o(1)\left\|\phi_{1}-\phi_{2}\right\|_{*}^{\gamma}$
We look for a fixed point $\phi=\mathcal{A}[\phi]:=-\mathrm{T}[\mathrm{E}+\mathrm{N}[\phi]]$ on the region

$$
\mathcal{B}=\left\{\phi:\|\phi\|_{*} \leq K \omega^{\frac{2}{3}}\right\}
$$

Lemma

$\exists!\phi_{\xi}=\phi\left(\xi_{1}, \ldots \xi_{k}\right)$ which depends continuously on its parameters for the $\left\|\|_{*}\right.$-norm and $\| \phi_{\xi} \|_{*} \leq C \omega^{\frac{2}{3}}$,

$$
\phi_{e^{\theta A}{ }_{\xi}}=\phi_{\xi}\left(e^{-\theta A} \cdot\right) \quad \text { and } \quad c_{i} .\left(e^{\theta A} \xi\right)=e^{-\theta A} c_{i} .
$$

Lemma

We have that $c_{i j}=0$ for all i, j if and only if the k-tuple $\left(\xi_{1}, \ldots \xi_{N}\right)$ is a critical point of the functional

$$
\left(\xi_{1}, \ldots \xi_{N}\right) \mapsto \Lambda\left(\xi_{1}, \ldots \xi_{N}\right):=J\left(W_{\xi}+\phi_{\xi}\right)
$$

A Taylor expansion

$$
\begin{gathered}
J\left(W_{\xi}\right)=J\left(W_{\xi}+\phi_{\xi}\right)-D J\left(W_{\xi}+\phi_{\xi}\right)\left[\phi_{\xi}\right]+\frac{1}{2} \int_{0}^{1} D^{2} J\left(W_{\xi}+(1-t) \phi_{\xi}\right)\left[\phi_{\xi}\right]^{2} d t \\
D^{2} J\left(W_{\xi}+(1-t) \phi_{\xi}\right)\left[\phi_{\xi}\right]^{2}=O\left(\omega^{\frac{4}{3}}\right) \\
\Lambda(\xi)=\sum_{i=1}^{N} \lambda_{i}^{5-p} e_{*}-\left[\frac{1}{2} \sum_{i \neq j} \frac{m_{i} m_{j}}{\left|\xi_{i}-\xi_{j}\right|}+\frac{1}{2} \omega^{2} \sum_{i=1}^{N} m_{i}\left|\xi_{i}\right|^{2}\right]+O\left(\omega^{\frac{4}{3}}\right)
\end{gathered}
$$

In the region

$$
\mathfrak{B}=\left\{\left(\xi_{1}, \ldots \xi_{k}\right):\left|\xi_{i}-\xi_{j}\right|>\rho \omega^{-\frac{2}{3}}, \quad\left|\xi_{i}\right|<\rho^{-1} \omega^{-\frac{2}{3}} \text { for all } i, j\right\}
$$

where $\rho>0$ is chosen small enough and fixed, we have that

$$
\sup _{\mathfrak{B}} \Lambda>\sup _{\partial \mathfrak{B}} \Lambda
$$

so that this functional has a local maximum somewhere in \mathfrak{B}. Hence a critical point of this functional does exist in \mathfrak{B}
Lemma
For any $\lambda_{i}>0, \xi_{i}$, we have found a critical point of \wedge, i.e. a solution of

$$
\mathrm{L}[\phi]=-\mathrm{E}-\mathrm{N}[\phi]
$$

A variational approach in finite dimension

$$
U_{m}\left(q_{1}, \ldots q_{N}\right)=-\frac{1}{8 \pi} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{\left|q_{j}-q_{i}\right|}
$$

is a Morse function on \mathcal{S}_{m}. Take a local system of coordinates ($\eta_{1}, \ldots, \eta_{2 N-4}$) on a neighborhood of a critical point \bar{q} and for $\alpha>0$, let

$$
\begin{gathered}
\xi(\alpha, p, \eta)=\left(\alpha\left(q_{1}(\eta)+p\right), \ldots \alpha\left(q_{N}(\eta)+p\right)\right) \\
\Phi(\alpha, p, \eta)=\omega^{-\frac{2}{3}} \Lambda\left(\xi\left(\omega^{-\frac{2}{3}} \alpha, p, q(\eta)\right)\right)
\end{gathered}
$$

$$
\nabla \Phi(\alpha, p, \eta)=\nabla\left(-\frac{1}{2} \sum_{i \neq j=1}^{N} \frac{m_{i} m_{j}}{\alpha\left|q_{j}(\eta)-q_{i}(\eta)\right|}-\frac{1}{2} \alpha^{2} \sum_{i=1}^{N} m_{i}\left|q_{i}(\eta)\right|^{2}\right.
$$

$$
\left.+\frac{1}{2} \alpha^{2}|p|^{2} \sum_{i=1}^{N} m_{i}\right)+O\left(\omega^{\frac{2}{3}}\right)
$$

$\left(\bar{\lambda}^{\frac{1}{3}}, 0, \bar{\eta}\right)$ is nondegenerate, so the local degree $\operatorname{deg}(\nabla \tilde{\Phi}, \mathcal{U}, 0)$ is well defined and nonzero: there exists a critical point $\left(\alpha^{*}, p^{*}, \eta^{*}\right)$ as $\omega \rightarrow 0$

A flat model: theory and numerical results

[JD-Fernández] Written in cartesian coordinates, the equation is

$$
\begin{aligned}
& \partial_{t} f+v \cdot \nabla_{x} f+\omega^{2} x \cdot \nabla_{v} f+2 \omega v \wedge \nabla_{v} f-\nabla_{x} \phi \cdot \nabla_{v} f=0 \\
& \phi=-\frac{1}{4 \pi|x|} * \int_{\mathbb{R}^{2}} f d v
\end{aligned}
$$

where $a \wedge b:=a^{\perp} \cdot b=a_{1} b_{2}-a_{2} b_{1}$ and $x, v \in \mathbb{R}^{2}$

Definition

A localized minimizer is a critical point ρ of \mathcal{G}_{ω} which is compactly supported in a ball $B(0, R-\varepsilon)$ for some $R>0$ and $\varepsilon \in(0, R)$, and which is a minimizer of \mathcal{G}_{ω} restricted to the set

$$
\left\{\rho \in L_{+}^{1}\left(\mathbb{R}^{2}\right): \operatorname{supp}(\rho) \subset B(0, R) \text { and } \int_{\mathbb{R}^{2}} \rho d x=M\right\}
$$

Results

Theorem
For any $M>0$, there exists $\omega_{*}(M)=\omega_{*}>0$ and $\omega^{*}(M)=\omega^{*}>0$ with $\omega_{*} \leq \omega^{*}$ such that
(i) If $\omega \in\left[-\omega_{*}, \omega_{*}\right]$, the reduced free energy functional

$$
\mathcal{G}_{\omega}[\rho]:=\frac{\kappa}{m-1} \int_{\mathbb{R}^{2}} \rho^{m} d x-\frac{\omega^{2}}{2} \int_{\mathbb{R}^{2}}|x|^{2} \rho d x-\frac{1}{8 \pi} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} \frac{\rho(x) \rho(y)}{|x-y|} d x d y
$$

admits a localized minimizer
(ii) If $|\omega|>\omega^{*}, \mathcal{G}_{\omega}[\rho]$ admits no localized minimizer

More detailed results in the radial case. How does symmetry breaking occur ?

Goal: investigate the energy landscape [JD-Fernández-Salomon]

- Local minimizers (under appropriate constraints) have a very small basin of attraction
- Compact support has to be enforced at each step
- Iteration method inspired by mean-field models in quantum mechanics work, with similar difficulties: the Cancès-LeBris method of relaxation has to be introduced to achieve convergence

Trying to understand the symmetry breaking

Polytropic case: $\beta(f)=\kappa f^{q}$, without angular velocity: minimizing the free energy

$$
\mathcal{F}[f]:=\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \beta(f) d x d v+\frac{1}{2} \iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{2} f d x d v-\frac{1}{2} \int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x
$$

amounts to control the potential energy and find the optimal function in
$\int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x \leq C\|f\|_{1}^{\alpha}\left(\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \beta(f) d x d v\right)^{\beta(2-\alpha)}\left(\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{2} f d x d v\right)^{\beta(2-\alpha)}$
e Explanation: With $\rho(x)=\int_{\mathbb{R}^{3}} f(x, v) d v$, HLS inequality

$$
\int_{\mathbb{R}^{3}}|\nabla \phi|^{2} d x=\int_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \frac{\rho(x) \rho(y)}{4 \pi|x-y|} d x d y \leq C_{H L S}\|\rho\|_{1}^{\alpha}\|\rho\|_{q}^{2-\alpha}
$$

+ interpolation $\|\rho\|_{q} \leq C_{p, q}\left(\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}} \beta(f) d x d v\right)^{\beta}\left(\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}|v|^{2} f d x d v\right)^{\beta}$
Q Relative equilibria: The constraint $\iint_{\mathbb{R}^{3} \times \mathbb{R}^{3}}\left|x^{\prime}\right|^{2} f d x d v=$ Const
(+ localization in x-space) may break the symmetry
- In nonlinear PDEs, symmetry breaking usually occurs because of a competition between the nonlinearity and an external potential
- A classical example is the (PDE) Hénon problem
- The case covered by the theorem of [Gidas-Ni-Nirenberg] is the trivial one: the nonlinearity and an external potential cooperate
- Symmetry breaking is usually achieved by eigenvalue considerations, but here we have an example based on multiscale analysis
- A ground state is either a "minimizer" of a free energy / Casimir functional or a positive solutions with ad hoc properties at infinity...
- ... and it is (radially) symmetric
- if Schwarz symmetrization can be applied
- if uniqueness (rigidity) holds
- or if the Gidas, Ni and Nirenberg (GNN) theorem applies (regularity, monotonicity, positivity properties are required)
- GNN, Maximum Principle and positivity of the lowest eigenvalue are intimately related
- Semi-linear elliptic form of the equation (for the potential) is mandatory

```
Related issues and open problems (1/2)
```

- Main issue (especially in gravitation) is dynamical / orbital stability Constrained (localized) minimization and mass transport methods [McCann] but new ideas are required. Dynamical (in)stability of (rotating) solutions: how to measure it ? how to characterize the threshold cases ?
- Building other examples of time-periodic solutions (choregraphies ?) would be an intermediate step. How can we give a variational characterization ? in which space? equipped with which kind of distance? (mass transportation / Wasserstein is a possible framework)
- Violent relaxation and Landau damping: which class of solutions ? Relative equilibria are a (probably rather non-generic) obstruction

```
Related issues and open problems (2/2)
```

- The semi-linear elliptic point of view: is there a cascade of symmetry breakings? How to characterize the threshold for symmetry breaking ?
- Rigidity results: in which regimes do we get (local / global) uniqueness results ?
- In case of stationary solutions, the potential is related with the free energy by a duality relation (cf. chemotaxis). Can we extract some information of the potential for the evolution equation ?
- Kinetic models with relaxation terms: diffusion limits ? [Chavanis, Laurençot], [J.D., D. Oelz, P. Markowich, C. Schmeiser] hypocoercivity results ? [J.D., C. Mouhot, C. Schmeiser], [Villani] hypoellipticity? rates of convergence ?

Thank you for your attention!

