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Some notations

Free Dirac operator:

Ho=—ia-V+ 3, withay, az, as, 56M4><4((C)

I 0 0 agj
=(o 5) a=(a 7)
Pauli matrices:

(01 (0 —i (1 0
1=\ 1 0 ) 2= o) 70 -1

Decomposition into upper / lower component: ¥ = < i )

How:<PX+‘/’>, with P = i -V
Py —x
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Minmax characterizations of the eigenvalues of the Dirac operator

Two of the main properties of Hy are:

HZ =-A+1
and
a(Ho) = (—o00, —1]J U1, 4+00)

Denote by Y+ the spaces A*(HY/2(R3,C*)), where A* are the positive
and negative spectral projectors on L2(IR3,C*) corresponding to the free
Dirac operator: AT and A~ = I,- AT have both infinite rank and satisfy

HoAT = AtHy = V1-A AT = AT V1-A
HoAN™ = NHy = —vV1I-A Am = -A~ V1I-A

R=—ic-V, R?=—-A
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Minmax characterizations of the eigenvalues of the Dirac operator

Min-max characterization of the discrete spectrum

Kato’s inequality and related inequalities have no evident relation

with the spectrum of Hy: v = % or v = Tifrﬂ are not critical for

the (point) spectrum of Hy — %. The operator

X

HV::HO—ﬁ, O<v<l
X

has a self-adjoint extension with domain included in H'/?(R3, C*) and
its spectrum is given by

o(Hy) = (=00, ~1JU{A, 0, ..} UL 0) ,  lim A =0

H, is self-adjoint only for ¥ < 1. The notion of “first eigenvalue” in
(=1,1) or “ground state” does not make sense for v > 1.

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

Assume that V € M3(R3) + L>°(R3) and 3§ > 0 such that
(H) £ A (Ho+ V)AT>0ATVT —AAT  in HY2(R3,CH)

With Y+ = ATHY/2(R3,C*), define

Ho+V
ck(V) = inf sup —(( 0 )w’w)
et YEFPY— (¢a¢)
vgicmtorFizace P#0

Theorem

[J.D., Esteban, Séré] Under assumption (H), if V € L°(R3 \ Bg,) for
some Ry > 0 is such that

limer— o0 [| V]l o0 (xyor) = 0s lIMR— 400 SUPESS ||~ R V(x)|x|> = oo, then
{ck(V)}k>1 is the non-decreasing sequence of eigenvalues of Hy + V in
the interval [0, 1), counted with multiplicity, and

0<d< Cl(V) = /\1(\/) < Ck(\/) = )\k(\/) <..<1, lim Ck(\/) =1

k— 400

4
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Minmax characterizations of the eigenvalues of the Dirac operator
ardy inequalities

Strong magnetic fields

More on numerical schemes

Griesemer and Siedentop proved an abstract result which implies the
above min-max characterization for the eigenvalues of Hy + V for a
certain class of potentials V' (which does not include singularities close to
the Coulombic ones).

Remark. Any potential V such that |V| < a|x|™” + C belongs to
M3(R3) + L>°(R3) for all a, C >0, 3 € (0,1). If |V| < a|x|7}, then (H)
is satisfied if a < 2/(7/2 + 2/7) ~ 0.9. Moreover, any V € L°°(R3)
satisfies (H) if ||V|/s < 1.

Remark. Assumption (H) implies that for all constants k > 1, close to 1,
there is a positive constant 6(k) > 0 such that :

+AE(Ho + £ VAT > §(k)AE  in HY2(R3,C*)
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Minmax characterizations of the eigenvalues of the Dirac operator

Further min-max results: Talman's decomposition

HT = 12(R%,C?) ® {(8)}, HT = {(g)} © L2(R3,C?)

so that, for any 1 = (i) € L2(R3,C*),

wro=(5). ate=(?)

Assume also that the potential V satisfies

lim V(x) =0, -2 - <V<a=sup(V),

|x|—+o0 |X|

with v € (0,1) and ¢, ¢z € R. Finally, define the 2-spinor space
W := C§°(R3,C?), and the 4-spinor subspaces of L?(R3, C*)

e we{ Q). (@) o
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Minmax characterizations of the eigenvalues of the Dirac operator

Theorem

[J.D., Esteban, Séré] Under the previous assumptions, all eigenvalues of
Ho + V in the interval (—1,1) are given by the following (eventually
finite) sequence of real numbers

H Vv
» (ot VIVY)
Few] peFewT (¢a¢)
F vsicrtnorFiiace ’l,[);éo

assuming that the lowest of these min-max values is larger than —1

(Talman) L
M) = e G

where both ¢ and x are in W and ¢ = (i) as soon a the above inf-sup

takes its values in (—1,1) and W] & WT is a core

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

Abstract min-max approach

Let H be a Hilbert space and A: D(A) C H — H a self-adjoint

operator. F(A) is the form-domain of A. Let Hy, H_ be two

orthogonal Hilbert subspaces of H such that H = H @&H_. Ay are

the projectors on H.. We assume the existence of a core F such that :
(i) Fr = ALF and F_ = A_F are two subspaces of F(A).
i) 2= (=, Ax)

(i) @ = sup,_cr_\{o} T, < +o0.

A

Let ¢, = inf sup (x, ;) , k> 1.
v subspace of i e(var \(oy IIXI5,

(iii) ¢ > a, b=inf (0ess(A) N (a, +0)) € [a, +9].

Definition: for k > 1, A is the k' eigenvalue of A in (a, b), counted
with multiplicity, if this eigenvalue exists. If not, Ay = b.

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

[J.D., Esteban, Séré] Assume (i)-(ii)-(iii).

ck = X, Vk>1

As a consequence, b = |lim ¢, =supck > a
k—o0 k

References on the min-max approach: Talman and Datta & Deviah for
the computation of the first positive eigenvalue of Dirac operators with a
potential. Other min-max approaches were proposed by Drake &
Goldman and Kutzelnigg

Griesemer & Siedentop: first abstract theorem on the variational
principle, under conditions (i), (ii), and two additional hypotheses
instead of (iii): (Ax,x) > a||x||> Vx € Fy \ {0}, the operator

(|A| +1)2P_A, is bounded. Here A\, is the orthogonal projection of H
on Hy and P_ is the spectral projection of A for the interval (—oo, a],

i.e. P_ = X(foo,a](A)
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Minmax characterizations of the eigenvalues of the Dirac operator

[Griesemer, Lewis & Siedentop]: an alternative approach which extends
the results of Griesemer & Siedentop and applies to Dirac operators with
potentials having Coulomb singularities.

Additional comment: a difficult part to apply the previous theorem is
condition (iii): the first level of min-max has to be above the lower
bound of the gap. A possible method consists in deriving an abstract
continuation method when the family of operators depends continuously
on a parameter, for instance v in case of H, := Hy — &

I«

Thuis motivates the search for an adapted Hardy inequality

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

The case of Talman’s min-max

As a subproduct of our method, we obtain Hardy type inequalities. In
the case of the decomposition based on the projectors of the free
Dirac operator, one gets a Hardy type inequality. A simpler form is
obtained in case of Talman’s decomposition.

For every ¢ € C§°(R3, C?) consider

- S o)

This number is achieved by the function

_ _—ile- Ve
x(p) == m

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

Moreover, A = A(y) is the unique solution to the equation

2 _ (0 - V)l 2
)\/R3|<p| dx = /ﬂ@(il_v_’_/\—i—(l—i—V)kﬂ dx

(uniqueness is an easy consequence of the monotonicity of both sides of
the equation in terms of \). Thus A\;(V/) is the solution of the following
minimization problem

M (V):=inf{\(p) : € GO (R3,C?)}

This is by far simpler than working with Rayleigh quotients.
A1(V) is the best constant in the inequality

o- 2
[ s [ vt ax = o
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Hardy inequalities

Strong magnetic fields

More on numerical schemes

For any v € (0,1), the first eigenvalue of H, := Hy — \7U| is explicit:

()
X
(o - V)ol? / > / |ol?
d —/1-12 d > —d
/]R3 VI=2 4+ X (1-vis) R3 el dx = v rs || x

Moreover this inequality is achieved. In the limit v — 1, we get the
optimal (but not achieved) inequality:

(o - V)p]? / 2 / o]
-~ dx + dx > I dx
[ o 171 s ]

I«

This inequality is not invariant under scaling
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Minmax characterizations of the eigenvalues of the Dirac operator

A numerical algorithm for computing the eigenvalues of
the Dirac operator

In principle one has to look for the minima of the Rayleigh quotient

((Ho + V)9, ¢)
(v, %)

on “well chosen” subspaces of 4-spinors on which the above quotient
is bounded from below. Direct approaches may face serious numerical
difficulties. Our method is based on finding the best constant A\ in the
generalized Hardy inequality

IR ¢l? / 2 / 2
——d % d 1—A dx >0V
/R3)\+1—V x + . |p]° dx + ( )R3|(/5| x> 0VYo

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

To do this, we minimize A = A(¢), given by

(0 - V)l 2> / 2
1+V dx — A dx =0
/Rs<1—\/+/\+(+ )¢l X R3|ga| X

w.r.t. ¢. The discretized version of this equation on a finite dimensional
space E, of dimension n of 2-spinor functions is

A'(A) Xn - X0 =0,

where x, € E, and A"()) is a A-dependent n x n matrix. If E, is
generated by a basis set {¢;,...¢n}, the entries of the matrix A"()\) are
the numbers

/]RB <((J . V]-)_QO,\,/(Z_)\V) SDJ) +(1=XA+V) (99[7<Pj)> dx

The matrix is monotone decreasing in \. The ground state energy will
then be approached from above by the unique A for which the first
eigenvalue of A"(\) is zero.

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

The matrix A"(\) is selfadjoint and has therefore n real eigenvalues:
A1,n(A) < A2n(A) < oo ALa(A)

which are all monotone decreasing functions of .
The equation

A"(N) Xp - xp =0,
means that x, is an eigenvector associated to the eigenvalue Mg ,(A\) =0,
for some k.

Minimizing X is therefore equivalent to compute \; , as the solution of
the equation

A1,n(A) =0

The uniqueness of such a A comes from the monotonicity.

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

Moreover, if the approximating finite spaces (E,)nen is an increasing
family which generates H*(R3; C2), since for a fixed A

/\17,7(/\) \ )\1(/\) as n — +o0o

we also have
)\1,n N\ A1 as  n— +o0

This method has been tested on diatomic configurations (corresponding
to a cylindrical symmetry) with B-splines basis sets. Approximations from
above of the other eigenvalues of the Dirac operator, or excited levels,
can also be computed by requiring successively that the second, third,...
eigenvalues of A"()\) are equal to zero

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

Y

Figure: Each eigenvalue pi(A) of A(M), considered as a function of A, is
monotone decreasing. By looking for the zeros of the non-continuous function
A= G(A) = infi|ui(X\)|, we obtain an efficient algorithm to compute all
eigenvalues of the Dirac operator in the gap (—1,1) and the corresponding
eigenfunctions. The ground state of course corresponds to the smallest zero of
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Minmax characterizations of the eigenvalues of the Dirac operator

Figure: Ground state of Th®" corresponding to Z = 90, one atom, computed
with smax = 10, zZmax = 10, h=0.4
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Minmax characterizations of the eigenvalues of the Dirac operator
Hardy inequalities

s=020

Figure: Ground state of H;™ corresponding to Z = 1, two atoms, computed
with Smax = 700, Zmax = 820, h =20
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Minmax characterizations of the eigenvalues of the Dirac operator

Hardy inequalities
Strong fields
More on nume chemes

s—04

Figure: Ground state of Thy°" corresponding to Z = 90, two atoms,
computed with Spax = 10, Zmax = 12, h=0.4
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Minmax characterizations of the eigenvalues of the Dirac operator
ardy inequalities
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More on numerical schemes

Two important issues

@ The issue of spurious eigenvalues: [Lewin-Séré (2009)] Spectral
pollution and how to avoid it

@ The issue of the self-adjointness of the Dirac-Coulomb operator
up to v = 1: [Esteban-Loss (2007)] Self-adjointness for Dirac
operators via Hardy-Dirac inequalities

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

General min-max results, sign-changing potentials

Let H be a Hilbert space with scalar product (-, -), and

A: D(A) C H — H be a self-adjoint operator. We denote by F(A) the
form-domain of A. Let H, H_ be two orthogonal Hilbert subspaces
of H such that H ="H,.dH_

We denote by AT, A~ the projectors on H,, H_. We assume the
existence of a core F (i.e. a subspace of D(A) which is dense for the
norm ||-||p(a)), such that :

(i) Fx =ATF and F_ = A~ F are two subspaces of F(A).
e _ X_ ,Ax_
(ll ) a = supxie,_-i\{o} W < 400.

(x4 ,Axy) > —00
[ 113, )

(II+) a* = infx+€F+\{0}

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

We consider the two sequences of min-max and max-min levels (Af )k>1
and (A, )k>1 defined by

A
A= inf sup (x, Ax)
k V subspace of Fy xe(V@F_)\{0} ||X||2
dim V=k - &

A
Ap = sup inf (x, 2X)
V subspace of F_ xe€(VoF:)\{0} ||X||H

dim V=k

Let b~ := inf {gess(A) N (a7, 00)}, bt :=sup {oess(A) N (—00,a™)}
(iii™) ky :=min{k>1, \f >a~}
(iii™) kg :==min{k>1, A\, <a'}

If (i)-(ii~)-(iii~) hold, for any k > ki, either A is the (k — ko + 1)-th
eigenvalue of A in the interval (a—,b™) or it is equal to b~. If
(i)-(ii")-(iii*) hold, for any k > ky , either X, is the (k — ko + 1)-th
eigenvalue of A (in reverse order) in the interval (b™,a") or it is equal to
bt

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

Consider a 1-parameter family of self-adjoint operators A, := Ag + 7V,
7 €[0,7] =Z, V is a bounded scalar potential, Ay : D(Ag) CH — H a
self-adjoint operator. Let Hy, H_, AT and A~ be above Assume further
that there is a space F C H such that, for all 7 € 7, F is a core for A,
and the following hypotheses hold:
(J)) F+ =A"F and F_ = A~ F are two subspaces of F(A;)
(li7) Thereis a~ € R such that sup.cz , cr \[0} W <a"

(1j*) Thereis at € R such that inf ¢z , cr,\fo} M >at

lIx: 112,

A
A= inf sup (x, 27)
v glgﬁm\iﬁf Fi xe(veF_)\{o} HXHH

_ ) A
A= sup inf (x, 27)
V subspace of F_ xe(VeF)\{0} HXHH

dim V=k

a; =infrez [inf (O’(AT) N (a’,—l—oo))}

ai = sup,e [sup (9(A;) N (o0, ") )

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

A continuation principle...

Theorem

Under the above assumptions,
Q@ if for some ki > 1, )\0’+ ~and ifa; > a—, forall k > ki, the

numbers \;" are either elgenvalues of Ao + 7 V in the interval (a—,b™)
or \p " =b"
Q_If for some ky > 1, )\2’,_ < a' and af < a*, for all k > kg, the

0

numbers \;’~ are either eigenvalues of Ay + 7 V in the interval (b*,a™)
or A\ =b"

J. Dolbeault Dirac equation: variational approach and applications
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Hardy inequalities

Joint work with:

Maria J. Esteban and Eric Séré
Maria J. Esteban and Roberta Bosi
Maria J. Esteban, J. Duoandikoetxea and L. Vega
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Hardy inequalities

Standard Hardy inequality

Let u € HY(RV) and consider
N—2
Vu+ —=

/]R’V 2 |x?

Develop this square and integrate by parts using the identity
V- (L) — N-2
Ix? ) IxP?

2
dx >0

1 |uf®
Vul? d >—N—22/—d
/RN| of bz (V-2 [ o

It is optimal (take appropriate truncations of x — |x|~(N=2)/2): the
operator —A — % is nonnegative if and only if A < 2(N —2)2.

Optimality has to be taken with care: improvements with Lo.t. in L2
by Brezis-Vazquez, in W9 with q < 2 by Vazquez-Zuazua, and
logarithmic terms by Adimurthi & al. and many other

N = 3 from now on
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Hardy inequalities

Hardy inequality for the operator P

With the above notations, for any ¢ € HY/?(R3,C?),

J,

. 2
R3

1+ o IXI

This is a consequence of the following inequality, which is slightly
more general: for all p € HY/2(R3,C?) and all v € (0, 1],

‘)

s Il

2 v 2
lel® \/—1/2/ o2 < /R (- V)el

3 H—|—1+\/1—1/2

+ [ 1o

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator
Har y inequalities

ror
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Replace ¢(x) by ¢ (X) and let © — 0.

/ lol® dx</ X[ (o - V)p|?dx  forall e HY(R3 C?)
R3 |X| R3

Actually, taking ¢ = |x|*/2 ¢, this inequality has to be directly related to
the standard Hardy inequality

0P [ |6P )
L= Lo s ver=a ],
2
/ [l g < [ 1w ox
R3 |X| R3

2
X

1/2

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Connection with the spectrum of the Dirac operator

Let A\1(V) be the lowest eigenvalue of Hy + V in the gap (—1,1) of the
continuous spectrum of Hy + V (under appropriate assumptions on V)

Let W = ( (’; ) be the corresponding eigenfunction
(Ho + V)V = X\ (V)W
means, for P= —jc(o-V)
Px = (M(V)—c2=V)p
Po = (M(V)+c2=V)x
which can be solved by
x=MV)+-V) Py

P (xre=y) = (V) == V)p

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Multiplying by ¢ and integrating with respect to x € R3, we get :

|P ol
ey et [ Vel d @ v [ el =

Note that for any fixed ¢

P ¢l? / 2 2 / 2
N LI o S % —
A Sy dx + , lp|* dx + (c A) , |p|° dx

is monotone decreasing. We shall see that A;(V) and ¢ can be
characterized as follows

A1(V) is the smallest A for which

|P¢|2 / 2 2 / 2
———— dx+ %4 dx + - A dx >0V
| sy o+ [ VIol e +(@ =) [ 8 dx=0v

and ¢ is the corresponding optimal function.

The generalized Hardy inequality is recovered with A = /1 — 12,

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Other standard Hardy type inequalities

Define the spectral projectors:
AT = X(0,+00)(Ho) and  A™ = x(_oc,0)(Ho)
Using the Fourier transform u(x) — 0(&), we get
Ao=ia-¢+p. H=6f+1,
H =-A+1

1) Using —A > 1 ﬁ (Hardy inequality), |Ho| = ATHoAT — A~ HoA™
satisfies

_ 1
|H0|>% KJ—E

Z a < Kk with o= = 137.037... means Z < 68.

J. Dolbeault Dirac equation: variational approach and applications
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2) Kato's inequality.

[Ho| > £ k=2 =0.63662...

Z a < k means Z < 87. Optimal [Herbst]
3) An inequality for the Brown & Ravenhall operator
[Burenkov, Evans, Perry, Siedentop, Tix]:

+ — K + _ 2 .
A (HO \x|) AT 20 k=2 =0.906037..

The above operator (l.h.s.) was introduced by Bethe and Salpeter.

K is sharp. Za < k means Z < 124

Dirac equation: variational approach and applications

J. Dolbeault



Hardy inequalities

Dirac operator: corresponding Hardy type inequality

Consider the splitting H = Hi @ H', with Hf = A*H, where
AT = X(0,400)(H0), A~ = X(=00,0)(Ho), i.e.

1 Ho
A= [T+ ——
2( m)

Theorem (J.D., Esteban, Séré)

If lim V(x)=0 and —‘7”| —a <V<gwthve(0,1),

|x|—+o00

c1,0>0, ¢+ —1<+1—12 then

(V)= (V) Vk>1

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

QEL (W)= N0+ e — (4, (E = V)iby)
+ </\‘|V|w+, (N(VI-B+E+ |V|)/\‘)71 /\—|V|¢+) >0

Vo e AT (GR(R?,CY) if E>cf(V)

Proposition
For all v € [0,1], ¥ € AT (Cg’o(R3,(C4)),

2
|¢+| dX+ /1_V2/RS |’¢+|2dX

rs ||

Tt | (- () o (3)+

il B i (\/1 —A+ G+ V- y2) A-

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Taking functions with support near the origin, we find, after rescaling and
passing to the limit, a new homogeneous Hardy-type inequality. If

1
A = (I[i(J" |”> pi=—iV

are the projectors associated with the zero-mass free Dirac operator, then
for any vy € A9 (C5°(R3,C*))

Jo 5o Joewaace [ (0 () @ () o

with B? := A® (|p| + \XI) A0

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Generalized Hardy inequality: an analytical proof

[J.D.-Esteban-Loss-Vega] Related works based on commutators of M.J.
Esteban, L. Vega, Adimurthi containing improvements like logarithmic
terms.

Proposition

Let g be a bounded radial C* function such that lim,_q |x| g(x) is finite.
Then for any ¢ € HY2(R3,C?),

1 2
/ —I(U-V)so|2dx+/ glpl? dx > 2/ P
R3 8 R3 R |X]

J. Dolbeault Dirac equation: variational approach and applications
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Let ¢ € H/?(R3,C?) and € = 1. In the case of the generalized Hardy
inequality, take g(x) =1+ ;. From

e w0 (o)

|5t vof o [ glor dx26<¢, {%(U-V),\/E (aﬁ)]aﬁ)p

Let L = ix A V. A straightforward computation shows that

9o )] eseo

2
dx >0, we get

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Lemma

The spectrum of (1 + o - L) is Z\ {0} and L2(R3,C?) = H_ @ H. with
Hy = PLL?(R3,C?), P =1 (1 -t &ig h) As a consequence, for any
nonnegative radial function h,

if ¢ € Hy, :l:(gb,h(1+a-L)qz5)L22/ h|¢[? dx
R3

4

Let o € HY/2(R3,C?), o1 = P+p. Apply Lemma ?? to ¢, with ¢ = +1
(resp. to o withe = —1), h= ﬁ V. =(V- liai

1 2
/ Zo-Vips| dx+/ g |o+]? dxz/ = s |? dx
R3 & R3 Rs |X]
For any radial function h,
fR3 h |90|2 dx = fR3 h |907|2 dx + fRa h |SD+|2 dx
f]RS [Vel? dx > fRB Vi |? dx + fRs [V [? dx

J. Dolbeault Dirac equation: variational approach and applications



Hardy inequalities

Hardy inequality and Dirac: logarithmic improvements

[J.D.-Esteban-Loss-Vega] For some continuous functions W > 1 a.e.
and constants R > 0 and C(R) < 0, the improved inequality

o V|? X
/ J———{ég el x> [ LD iopaer ) [ 1o dus
R3 1 + I R3 | |

holds for all ¢ € H1(R3,C?). Here ug is the surface measure induced
by Lebesgue’s measure on the sphere Sg := {x € R® : |x| = R}

W) = 1+ 2 57 Xl Xel )7
k=1

where Xi(s) := (a — log(s)) ™! for some a > 1, Xk(s) := X1 0 Xxk—_1).
The functions Xy and W are well defined for |x| = s < e?1
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Theorem

Assume that for some R > 0 the improved inequality holds for every

spinor p € C§°(R3, C?), where W is a radially symmetric continuous
function from Rt to R™. Assume moreover that W(0) > 0 and W is
nondecreasing in a neighbourhood of 0%. Then W(0) < 1,

limsup W(s)/s <1

s—+00

and for all k > 1,

s—0+

k
lim inf (W(s) 1 %fo(s) . -)92(5)))(;2(5) A ) =

As soon as W # 1, C(R) must be negative
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Hardy inequalities for the Schrodinger operator and the
IMS method

Our goal is to obtain estimates fothhe lowest eigenvalue of

—A — 1 Vi(x), where Vy(x) =>",_; m, M>2and y;,... ym are
M points of RM. Notice that the Hamiltonian is essentially self-adjoint
if 4 < (N —2)?/4 — 1, otherwise one has to use the corresponding
Friedrichs extension. Define d by

d:= i —vyil/2
L min k= yil/

Consider yu € (0, (N — 2)2/4]. For any M > 2, there is a nonnegative
constant Ky < w2 such that, for any u € HY(RV),

K M+1
/|Vu|2 dx—i—w /|u|2 dxzu/VM(x)|u|2 dx
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Multipolar Hardy inequality for the Dirac operator

We consider an arbitrary configuration of poles yx € R3, and define
the following quantities :
vM

= b:=
a R

[1-5)]?

2

1-5()

c:=2
b 1/2

)

1
d*(v) = 5Myc+7rx/z,

1
A(d,v, M) := - [1+\/c (321/*2—7r2d*2—a)+1—321/*2} —l—g ,
with S(v) = V1 — 12 and d = minj yi — yj|/2

Theorem

With the above notations, for all v € (0,1), M > 2, if d > d*(v), then
for all € HY(R3,C?) we have

|7V ¢l / 2 / 2
———d 1-— X" dx > W, d
‘/R3]-+/\*+VWM X+( )]R3|¢| XﬁV]R3 M|¢| X
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Strong magnetic fields

Joint work with:

Maria J. Esteban and Michael Loss
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Minmax characterizations of the eigenvalues of the Dirac operator

Hardy inequalities
Strong magnetic fields
More on numerical schemes
Outline
@ Relativistic hydrogenic atoms in strong magnetic fields: min-max

and critical magnetic fields

Characterization of the critical magnetic field
Proof of the main result

A Landau level ansatz

¢ & ¢ ¢

Numerical results
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Relativistic hydrogenic atoms in strong magnetic fields

The Dirac operator for a hydrogenic atom in the presence of a
constant magnetic field B in the x3-direction is given by

1 1
Hg — ﬁ with Hp =« 7V—|— 5 B(—x2,x1,0)| + 0
v =Za < 1, Z is the nuclear charge number

The Sommerfeld fine-structure conbtant is & = 1/137.037
The magnetic field strength unit is T ‘Ch ~ 4.4 x 10° Tesla

1 Gauss = 10~* Tesla
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Minmax characterizations of the e

0

envalues of the Dirac operator

ardy inequalities

Strong magnetic fields

More on nu

merical schemes

To put this in perspective, here is a table of magnetic field strengths

The Earths magnetic field, which ¢

deflects compass necdles measured at the N magnetic pole 0.6 Gauss

‘A common, hand-held magnet like those used to stick papers on a refrigerator IGOSJSS

[Themikenztic felilm gironyy (within dark, magnetized areas on the solar surface) 200

sunspots (Gauss

The strongest, sustained (i.c., 5% 10°

steady) magnetic fields achieved so ||generated by hulking huge clecromagnets G

far in the laboratory s

The strongest man-made fields ever \made using focussed explosive charges; lasted only 4 - § 107

achieved, if only briefly microseconds. IGauss

The strongest fields ever detected found on a handful of smngly-magncﬂmd,.mmpam white 109

on non-neutron stars dwarf stars. (Such stars are rare. Only 3% of white dwarfs have Gauss
Mega-gauss or stronger fields.)

Typical surface, polar magnetic the most familiar kind of neutron star; more than a thousand |[10'2-10'3

fields of radio pulsars are known to astronomers \Gauss
soft gamma repeaters and anomalous X-ray pulsars

Mignerts (These are surface, polar fields. Magnetar interior fields may range up  [|1074-10"%
to 10'® Gauss, with field lines probably wrapped in a toroidal, or donut ||Gauss
|geometry inside the star.)

[R.C. Duncan, Magnetars,
magnetic fields]

soft gamma repeaters and very strong
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The ground state energy A1(v, B) is the smallest eigenvalue in the gap

As B /, A1(v, B) — —1: we define the critical magnetic field as the field
strength B(v) such that “\;(v, B(v)) = —1"

[J.D., Esteban, Loss, Annales Henri Poincaré 2007]

@ Non perturbative estimates based on min-max formulations

For all v € (0,1), there exists a constant C > 0 such that

4 1 2
— < B(v) < min <£ , eC/V2>

B -2

@ Relativistic lowest Landau level

lim vlog(B(v)) =7

v—0
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Magnetic Dirac Hamiltonian

Hg v — {51 = A9 is an equation for complex spinors ¢ = (i) where
#,x € L2(R3; C?) are the upper and lower components

v

Pex+¢—1=¢=A¢
x|
P — X — o X = Ax
x|
with Pg .= —io- (V — fAB(X))
B —X2 0
Ap(x) ::5 X1 , B(x):= 0
0 B
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Min—max characterization of the ground state energy

If ¢ = (i) is an eigenfunction with eigenvalue A, eliminate the lower
component x and observe

_ L |PB€Z5|2 2 v 2 3
0= J[¢p,\ v, B -—/]RB <W+(1—)\)|¢| —m|¢| ) d°x

The function A — J[¢, A\, v, B] is decreasing: define A = A\[¢, v, B] to be
the unique solution to

either J[p,\,v,B] =0 or —1

Let B € R* and v € (0,1). If —1 < infyecom(me,c2) Mo, v, B] < 1,

Mi(v, B) = ing[¢, v, B]

is the lowest eigenvalue of Hg — \7V| in the gap of its continuous

spectrum, (—1,1)
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More on numerical schemes

Characterization of the critical magnetic field

Using the scaling properties, we find an eigenvalue problem which
characterizes the critical magnetic field
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Notations

Magnetic Dirac operator with Coulomb potential v/|x|

_ I-v/lx| — —io (V—iA

where A is a magnetic potential corresponding to B, and I and oy are
respectively the identity and the Pauli matrices

(38 (53) (0 ) e (3 )
2

Let B = (0,0, B), A = Ag. For any x = (x1, x2,x3) € R3, define

Pg:=—io- (V — fAB(X)) , AB(X) =

N[
|
9
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Consider the functional

. |Pgo|? 2 Vo 2) 3
J[p, A\, v, B] = /R3 (m‘“l—)\)w - m|¢| ) d>x  (4)

on the set of admissible functions
A(w,B) ={¢p € G§° : [|P|liz =1, A — J[$, A\, v, B] changes sign in (—1,400)}
A = Ao, v, B] is either the unique solution to J[¢, A, v, B] = 0 if

¢ € A(v,B)

M(v, B) = ¢e,ic{](,f/ 8 Ao, v, B] (5)

The critical magnetic field is defined by

B(v) :=inf {B >0 : Iign/igf/\l(u7 b) = —1} (6)
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Auxiliary functional

N | 2.3, [ Y243
Eouldl = [ liPsofaix— [ Liskax ()

— (c"B-,V[¢] + 2 H¢||%2(R3) = J[¢a _15 v, B]
Scaling invariance

Ea.l08] = VBELIG] 5= BY* 6 (B x) (8)
We define £1l0]
MW:&g%WWﬁﬁg ©)
Formally : —1 = A1 (v, B(v)), 0£¢EI2£° 2 Jo,—1,v,B]=0

= /B@)ur)+2=0
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Main result

Theorem

For all v € (0,1),

gl,u[d)]

V) = —
u) 026€ (5 (®) || Foqsy

is negative, finite,

and B(v) is a continuous, monotone decreasing function of v on (0,1)

(10)

4
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Preliminary results

(1.6) s v Ev 6] = /|x||P1¢|2d3x—/ YRk (1)

is a concave, bounded function of v € (0, 1), for any ¢ € C§°(R3?)

P(x) = A Ry o) Vx = (x1,%,x3) €ER® (12)
2w 0
f e C§°(R,R) such that f =1 for |x| < 4§, d >0, and ||f||L2]R+ =1
5B,u[¢] < % + C2 vV — C3I/|0gB (]_3)

d1/8(x) = B3/* ¢ (B7Y2x), & u[d1/8] = B Y2 Epu[4] <0

On the interval (0,1), the function v — u(v) is continuous, monotone
decreasing and takes only negative real values
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More on numerical schemes

Proofs

o~ . 4
B(v) = sup {B >0 : n(;f (537,,[¢] +2 ||¢||fz(R3)) > 0} = MO (14)
E8.u[0] + 2 [|6lI72() > J[¢, M (v, B), v, B] > J[¢, A[@, v, B], v, B] = 0
(15)
= B(v) < B(V)
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Proofs

Let B = B(v) and consider (vp)nen such that v, € (0,v),

lim, oo Vn =1,

A" = A (Vn, B) > =1 and limp_, oo A" = —1

Let ¢, be the optimal function associated to A": J[¢p, A", vs, B] =0

Let x > 0 on R* such that x =10n[0,1,0< xy <1and x =0on
[2’ OO)’ and Xn(X) = X(|X|/Rn)’ limp—co Rn = 00, ¢n = @nXn

Pg ¢n = ('DB an)Xn‘f' [_ (PO X") ¢"} (16)
—_——— —o
=a =b
Using |a|? > % — @, we get

[(Ps Q;n) Xa|? _ |(Po xn) én|?

Pg ¢,|? >
P nl” = 1+¢, €n
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1) The function ¢, is supported in the ball B(0,2 R,): with
fn = (L4 en)[2(1 + ARy + ],

1 Pg ¢n|? 1 .
/ Podnl” x> L [ 1q1PsdPPx  (18)
TtenJe T+ A+ 2 Ln Jgs

2) Supp(Po Xn) C B(0,2Ra) \ B(0, Ry), |Po xal? < 1 R:2

2
L[ Bt 5
En Jus L+ AT+ 22 en Ra[(L+ A7) Ry + 1]

Ix|

190 &x (19)
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With 1, = £/(en Ry (1 + A") Ry + vp)) + vn/ R, we can write

|6nl?

s X

13 =) [ 15

1 ~
0= J[¢n, \",vn, B] > —/ |x||PB¢,,|2d3x—z// d®x
Hn Jr3 R

Let D, = \/ltn Vn
16

w X

< |- ﬁ(l—x"—nn)]/ B2 dx — 0
R3

1 ~ -
~—/ x| 1P Gal2 dx — 7, Pxt2 [ |3.P d
Vn JRr3 R3

B(WY<B=B() Vv >v (20)
By continuity, B(v) < B(v) O
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A Landau level ansatz

@ Definition

o Characterization of the critical field (Landau level ansatz)
@ Asymptotic behaviour as v — 0,

9 Comparison of the critical magnetic fields

J. Dolbeault Dirac equation: variational approach and applications



Strong magnetic fields

Landau Levels

First Landau level for a constant magnetic field of strength B: the
space of all functions ¢ which are linear combinations of the functions

Go = {eN, 52:x12—|—x22 (21)

B : ¢ ,—Bs?/4
V27120 0] batin) e 0/)’

where the coefficients depend only on x3, i.e.

= Z fg(X3)(bg(X1,X2) (22)
Y4

I is the projection of ¢ onto the first Landau level. Critical field in
the Landau level ansatz

Be(v) :=inf {B >0 : liminfy g A (v, b) = —1}
A (v, B) := infyeca(,8), ntg—o0 Al@, v, Bl
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Characterization of the critical field (Landau level ansatz)

The counterpart of our main result holds in the Landau level ansatz.
For any v € (0,1), if

= inf £, 23
e (v) s i, 8 [4] (23)

then
Be(v) = (24)

Goal: compare pz(v) with p(v)
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Cylindrical coordinates: s = \/xZ + x% and z = x3
If ¢ is in the first Landau level, then

1 [ o0
E1u[0) = Z » /0 be ff dz — 1//0 a2 dz (25)
¢

1 Foo 2041 e—52/2

1
a(z) == ¢e,—¢e) = ds
(2) ( r) ey 20 )y Vi

1 +oo
bg(Z) = ((bﬁa r¢€)L2(R2,C2) = 2€—€| A s2tle \/ s2 4+ 22 ds (27)

1 o0 o0
= &1.,[8] > ;/ b0|f’|2dz—u/ ao f? dz (28)
0 0

Consider ¢(x) = f(z) %/i: ((1))
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1 1 o0 oo
=& = —/ bo f'° dz—u/ ao f2 dz == L,[f] (29)
2 vV Jo 0

oo o] —s2/2
se
bo(z :/ Vs2+z22se/2ds and ao(z :/ ——ds
0( ) 0 0( ) 0 S2+Z2
(30)
The minimization problem in the Landau level ansatz is now reduced to

.. L[f
pe(v) =inf # (31)
f ||fH1_2(R+)
By definition of u(v) and pe(v), we have
w(v) < pe(v) (32)

It is a non trivial problem to estimate how close these two numbers are
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Asymptotic behaviour (Landau level ansatz)

Observe that b(z) > a(lz) and let

1 [>*1 o
L, [f] ::—/ f’2dz—z// af’dz (33)
vV Jo a
and )
LlIf] ::—/ bf?dz— / e, (34)
VJo

with corresponding infima u, (v) and p/:(v)

Lemma

For any v € (0,1),
pe (V) < pe(v) < pi(v) (35)

v
Lemma

With the above notations, Ilrg v log|uc(v)| = 3
v—04
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Comparison of the critical magnetic fields

lim 7|0g8( v) =
v=0; log Bc(v)

With the above notations,

Known: u(v) < pe(v)
B(v) > 1 for any v € (0,7) for some 7 > 0: v € (0,7), then
A1(v,1) > —1 and therefore, for all ¢,

_ o V1¢|? 3. [ V2.3
el 2 200 = [ 5o e o et @)

o.(9) = (7). (%)) b memerin

9, (%)

||¢||/_2 R3) + ||X||/_2 (R3)

(37)

1+ Flé] = sup
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Gy G (¢
su ( ) > sup (X) .. (398)
ol 2y + IxI2@e) — nty—o @l + lIxll2@s

(estimate of the interaction term and Cauchy-Schwartz)

Gy (Hi) + gV+\/_ (n0¢)

. > sup 39
ol + N oo + Mo
(being perpendicular to the lowest Landau level raises the energy)
gl/ v3/2 no ||I—IJ_¢||
> sup + ( ) ( ) L[2(R3) (40)

NPl 2re) + ||”l¢||L2(Rs) sl UDYIVES)

- v/ (0n) -
with d(0) = v2 > sup, HI'I¢HL2+R3 Tliam — Helv+v72) < pv)

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

ardy inequalities
Strong magnetic fields
More on numerical schemes

Numerical results
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Strong magnetic fields

Computations in the Landau level ansatz

We minimize £, [f]/||f||72+) on the set of the solutions fy of

za(z) ,, v
b2) | ()

We notice that b'(z) = za(z), and, for any z > 0,

a(z) = eF \/gerfc <\%) and  b(z) = e% \/gerfc (%) tz (42)

Shooting method: minimize g(\, Zmax) := |A\(Zmax)|* + | (Zmax)|*
AS Zpax — 00, the first minimum iz (v, Zmax) of A — g(X, Zmax)
converges to 0 and thus determines A = pz(v)

F 4 (A\+va2)f=0, f0)=1, f(0)=0 (41)
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Landau level ansatz (2)

JLog[l+g(A, Zmnax)]

15
12.5

10

A

-0.4 -0.2 0.2 0.4

Plot of A — log[l + g(A, Zmax)] With Zmax = 100, for v = 0.9
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Landau level ansatz (3)

b= ”(’:;2 ~ 4.414-10° is the numerical factor to get the critical field in

Tesla

L v [ 2 | we [ Be(v) [ logi(bBe(v) |
0.409 56. -0.0461591 | 1877.35 12.9184
0.5 68.52 -0.0887408 | 507.941 12.3506
0.598 82. -0.14525 189.596 11.9227
0.671 92. -0.192837 107.567 11.6765
0.9 123.33 -0.363773 30.2274 11.1252
1 137.037 | -0.445997 20.1093 10.9482
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Landau level ansatz (4)

log,(b B) A B

18

17

16

15

° 14

13

\\\ -
v
N
»

Left: values of the critical magnetic field in Tesla (log;, scale)
Right: values in dimensionless units

Ground state levels in the Landau level ansatz: upper curve

Levels obtained by a direct computation: lower curve

Dots correspond to the values computed by [Schliiter, Wietschorke,
Greiner]| in the Landau level ansatz
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Computations without the Landau level ansatz

We numerically compute B(v) in the general case, without ansatz
Discretization: B-spline functions of degree 1 on a logarithmic,
variable step-size grid, in cylindrical symmetry give large but sparse
matrices

Lv [ Z | A1 | B(v) [ logi(bB(v)) ]
0.50 | 68.5185 | -0.0874214 | 523.389 12.3637
0.60 | 82.2222 -0.153882 168.922 11.8725
0.70 | 95.9259 | -0.231198 74.833 11.5189
0.80 109.63 -0.321875 38.6087 11.2315
0.90 | 123.333 | -0.430854 21.5476 10.9782
1.00 | 137.037 | -0.573221 12.1735 10.7302
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General case (2)

A\

Ratio of the ground state levels computed in the Landau level ansatz
vs. ground state levels obtained by a direct computation
@ Orders of magnitude of the critical magnetic field, shape of the
curve: ok in the Landau level ansatz
@ Except maybe in the limit ¥ — 0, no justification of the Landau
level ansatz: computed critical fields, shapes of the corresponding
ground state differ

J. Dolbeault Dirac equation: variational approach and applications



Minmax characterizations of the eigenvalues of the Dirac operator

ardy inequalities
Strong magnetic fields
More on numerical schemes

General case (3)

Landau ansatz

zZ A z
25 .
=0.5 M
2 i =09
Landau 19 Landay
15 ansatz
8
10 6|
4
5
\ 2
s N
Y rzresoTT > ST rrrser>

J. Dolbeault
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Strong magnetic fields

Conclusion

The Landau level ansatz, which is commonly accepted in non
relativistic quantum mechanics as a good approximation for large
magnetic fields, is a quite crude approximation for the computation of
the critical magnetic field (that is the strength of the field at which
the lowest eigenvalue in the gap reaches its lower end) in the
Dirac-Coulomb model

Even for small values of v, which were out of reach in our numerical
study, it is not clear that the Landau level ansatz gives the correct
approximation at first order in terms of v

Accurate numerical computations involving the Dirac equation cannot
simply rely on the Landau level ansatz.
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More on numerical schemes

Joint work with:

[Maria J. Esteban and Michael Loss]
Lyonell Boulton (work in progress)
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More on numerical schemes
A variational formulation for computing the critical
threshold

Let
He — I+Vv, —io - (V —iAg)
B= \—io- (V- iAg) I+ V,
be the magnetic Dirac operator with Coulomb potential
Vy(x,y,z):—; 0<1/<\/§/2
VX2 + y? + 22

and magnetic potential

B (Y

Ag(x) = 3 X
0

associated with a constant magnetic field (0,0, B). Here
o = (ox,0y,0;,) are the Pauli matrices

/01 (0 —i 1 /1 0
“=\1 0) YT \i o an 92= 1o -1
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The critical threshold is achieved at the value of B > 0, such that the
smallest eigenvalue of Hg hits —1, the upper end of the negative
essential spectrum of Hg

Let Pg : Dom(Pg) — L?(R3)? be a self-adjoint realisation of

Ps=—io-(V—iAg)

E[p, Y] = /R3 %\fﬂbdxdydz—i—/ﬂm V,¢ -1 dxdydz

and &,[¢] = &,[¢, ¢]. According to [D.-Esteban-Loss (2008)], the critical
threshold is found to be

where ¢
H(V) _ v [¢]

= In Tarz.
0£6€C5 (@) ||| T2 gaya

J. Dolbeault Dirac equation: variational approach and applications



More on numerical schemes

Cylindrical coordinates

To a point (x, y, z) € R3, we associate coordinates
(s,0,z) € RT x [0,27) x R such that

X = s cosf y =ssinf s:\/>?y2
and state the following useful formulae
8X:c05085—%sin089 0s = cosf 0 +sinf 0,
dy =sinf9s + L cosf dy Op = —ssinf 0y + s cosb O,
In these coordinates, Pg takes the form

0. e (9 — L0y — B2)
Pg=—i
e (95 + L0y + B2) ~ 0,
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Spectral decomposition

Decompose

L2(R3)2 — @ Lom
me{k+35:keZ}
] C(S, Z) ei(m—1/2)0) . 2ot
L= {¢(scos€,ssm 0,z) = (d(s,z) eilmi1/2)0) ) ° c,d € L°(R™ x R, du)
where dy = sdsdz. For ¢ € L, N Dom Pg,

(0.0 + 0.d + T2 g — B3 ] oiln=1/20
Pgp = —i

{(Ic —d,d -T2y Bs c} i(m+1/2)0

s
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Hence L, is an invariant subspace of Pg and

. 0, Os+2)+2—Bs
Pmp = —i (( 1 B ( 25)825 2)

s

Proposition

For any v € (0,1), the lowest eigenvalue of Hg is achieved by spinnors
with m = 1/2
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Upper bounds

,ng(l/) _ il/2,u[¢]
0£VEV) [Vl T2ms <, dpuy2
v upper bound B, ph, (V)
0.5 476.0356 -0.091666
0.55 267.9217 -0.12219
0.6 164.9883 -0.15571
0.65 108.1061 -0.19236
0.7 74.1462 -0.23227
0.75 52.6372 -0.27567
0.8 38.339 -0.32301
0.85 28.4239 -0.37514
0.9 21.2612 -0.43375
0.95 15.8311 -0.50266
1 11.3584 -0.59343

Table: Upper bounds for a triangulation of (0,30) x (—70,70). Here the

NDOF= 87186
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Temple-Lehmann bounds

Consider an operator H acting on L?(R3) and let
¢ € Cg°(H) N Cg°(H?) such that ||¢||2rsy = 1. Then there exists a
point A; of the spectrum of H in the interval

((¢, Hp) — 04, (¢, Hp) + 65)  where 6 = \/(6, H2)) — (¢, Hp)?

Proof. Consider

F[/\v ¢] . (¢7 H2¢) - 2/\(¢a H¢) + )‘2 = (¢7 (H - )‘)2¢)
> dist(\, spectrum(H))?

The function A — F[\, ¢] reaches its minimum for A = (¢, H¢), which
proves the result. |
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Lower bounds

v B, fi1o(v)
05 | 246.0537 | -0.12727
0.55 | 193.0395 | -0.14395
0.6 | 128.6754 | -0.17631
0.65 | 85.4486 | -0.21636
0.7 | 57.1526 | -0.26455
0.75 | 381625 | -0.32375
0.8 | 25.1624 | -0.30871
0.85 | 16.39 | -0.49401
0.9 | 10.8415 | -0.60742
0.95 | 7.669 | -0.7222

1 | 7.7013 | -0.72069

Table: Lower bounds for a triangulation of (0, 30) x (—70,70). NDOF= 212744
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242272
22.9847 14 0.1007
21.7423 0.0301
204933 12 0.0735
19.2575 0.0683
18.0151 0.0983
16.7727 1 00477
155302 00371
14.2678 0.0265
13.0454 8 00153
i
;U;S?E 6 -0.0159
i
6.6333 4 00477
5.5909 00563
Hry o e
1.6636 00301
06212 B

1 12 14 % z 4 [ 8 10 12 14 oot

Figure: Upper and lower spinors
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14 . 6.2665
5.9452
5.6238
5.3024
: : 49811 14
0 i H : H 4 6597
433684
4017
8 : H p . H 3.6956
3.3743
3.0529
[ : < : : 27318 1o
24102
2.0888
1.7675 8
14451

2 : : : 11248
0.8034
\ : : 0462 B
0 L

0.1607

Figure: Logarithm of the density 4+ 1 and mesh for this example. Here and
above v = .9 and we use Lagrange elements of order 3 on a large thin rectangle.
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Hardy inequalities

Strong magnetic fields
More on numerical schemes

Thank you for your attention !

J. Dolbeault



	Minmax characterizations of the eigenvalues of the Dirac operator

