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An explicit stability result for the Sobolev inequality

Sobolev inequality on Rd with d ≥ 3, 2∗ = 2 d
d−2 and sharp constant Sd

‖∇f ‖2
L2(Rd ) ≥ Sd ‖f ‖2

L2∗ (Rd ) ∀ f ∈ Ḣ1(Rd) = D1,2(Rd)

with equality on the manifold M of the Aubin–Talenti functions

ga,b,c(x) = c
(
a + |x − b|2

)− d−2
2 , a ∈ (0,∞) , b ∈ Rd , c ∈ R

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant β > 0 with an explicit lower estimate which does not
depend on d such that for all d ≥ 3 and all f ∈ H1(Rd) \M we have

‖∇f ‖2
L2(Rd ) − Sd ‖f ‖2

L2∗ (Rd ) ≥
β

d
inf

g∈M
‖∇f −∇g‖2

L2(Rd )

No compactness argument
The (estimate of the) constant β is explicit
The decay rate β/d is optimal as d → +∞
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A stability result for the logarithmic Sobolev inequality

Use the inverse stereographic projection to rewrite the result on Sd

‖∇F‖2
L2(Sd ) −

1

4
d (d − 2)

(
‖F‖2

L2∗ (Sd ) − ‖F‖
2
L2(Sd )

)
≥ β

d
inf

G∈M(Sd )

(
‖∇F −∇G‖2

L2(Sd ) +
1

4
d (d − 2) ‖F − G‖2

L2(Sd )

)
Rescale by

√
d , consider a function depending only on n

coordinates and take the limit as d → +∞ to approximate the
Gaussian measure dγ = e−π |x|

2

dx

Corollary (JD, Esteban, Figalli, Frank, Loss)

With β > 0 as in the result for the Sobolev inequality

‖∇u‖2
L2(Rn,dγ) − π

∫
Rn

u2 log

(
|u|2

‖u‖2
L2(Rn,dγ)

)
dγ

≥ β π

2
inf

a∈Rd, c∈R

∫
Rn

|u − c ea·x |2 dγ
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Stability for the logarithmic Sobolev inequality

B [Gross, 1975] Gaussian logarithmic Sobolev inequality for n ≥ 1

‖∇u‖2
L2(Rn,dγ) ≥ π

∫
Rn

u2 log

(
|u|2

‖u‖2
L2(Rn,dγ)

)
dγ

B [Weissler, 1979] scale invariant (but dimension-dependent) version
of the Euclidean form of the inequality
B [Stam, 1959], [Federbush, 69], [Costa, 85] Cf. [Villani, 08]
B [Bakry, Emery, 1984], [Carlen, 1991] equality iff

u ∈M :=
{
wa,c : (a, c) ∈ Rd×R

}
where wa,c(x) = c ea·x ∀ x ∈ Rn

B [McKean, 1973], [Beckner, 92] (LSI) as a large d limit of Sobolev
B [Carlen, 1991] reinforcement of the inequality (Wiener transform)
B [JD, Toscani, 2016] Comparison with Weissler’s form, a (dimension
dependent) improved inequality
B [Bobkov, Gozlan, Roberto, Samson, 2014], [Indrei et al., 2014-23]
stability in Wasserstein distance, in W1,1, etc.
B [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a
Poincaré inequality (Mehler formula)
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Sketch of the proof

Goal: prove that there is an explicit constant β > 0 such that for all
d ≥ 3 and all f ∈ Ḣ1

(
Rd
)

‖∇f ‖2
2 ≥ Sd ‖f ‖2

2∗ +
β

d
inf

g∈M
‖∇f −∇g‖2

2

Part 1. We show the inequality for nonnegative functions far from M
... the far away regime

Make it constructive

Part 2. We show the inequality for nonnegative functions close to M
... the local problem

Get explicit estimates and remainder terms

Part 3. We show that the inequality for nonnegative functions implies
the inequality for functions without a sign restriction, up to an
acceptable loss in the constant

... dealing with sign-changing functions

J. Dolbeault Stability in functional inequalities
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Some definitions

What we want to minimize is

E(f ) :=
‖∇f ‖2

L2(Rd ) − Sd ‖f ‖2
L2∗ (Rd )

d(f ,M)2
f ∈ Ḣ1(Rd) \M

where
d(f ,M)2 := inf

g∈M
‖∇f −∇g‖2

L2(Rd )

B up to a conformal transformation, we assume that
d(f ,M)2 = ‖∇f −∇g∗‖2

L2(Rd ) with

g∗(x) := |Sd |−
d−2
2 d

(
2

1 + |x |2

) d−2
2

B use the inverse stereographic projection

F (ω) =
f (x)

g∗(x)
x ∈ Rd with

{
ωj =

2 xj
1+|x|2 if 1 ≤ j ≤ d

ωd+1 = 1−|x|2
1+|x|2

J. Dolbeault Stability in functional inequalities
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The problem on the unit sphere

Stability inequality on the unit sphere Sd for F ∈ H1(Sd , dµ)

∫
Sd

(
|∇F |2 + A |F |2

)
dµ− A

(∫
Sd
|F |2

∗
dµ

)2/2∗

≥ β

d
inf

G∈M

{
‖∇F −∇G‖2

L2(Sd ) + A ‖F − G‖2
L2(Sd )

}
with A = 1

4 d (d − 2) and a manifold M of optimal functions made of

G (ω) = c
(
a + b · ω

)− d−2
2 ω ∈ Sd (a, b, c) ∈ (0,+∞)× Rd × R

make the reduction of a far away problem to a local problem
constructive... on Rd

make the analysis of the local problem explicit... on Sd

J. Dolbeault Stability in functional inequalities
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Competing symmetries

Rotations on the sphere combined with stereographic and
inverse stereographic projections. Let ed = (0, . . . , 0, 1) ∈ Rd

(Uf )(x) :=

(
2

|x − ed |2

) d−2
2

f

(
x1

|x − ed |2
, . . . ,

xd−1

|x − ed |2
,
|x |2 − 1

|x − ed |2

)
E(Uf ) = E(f )

Symmetric decreasing rearrangement Rf = f ∗

f and f ∗ are equimeasurable
‖∇f ∗‖L2(Rd ) ≤ ‖∇f ‖L2(Rd )

The method of competing symmetries

Theorem (Carlen, Loss, 1990)

Let f ∈ L2∗
(Rd) be a non-negative function with

‖f ‖L2∗ (Rd ) = ‖g∗‖L2∗ (Rd ). The sequence fn = (RU)nf is such that

limn→+∞ ‖fn − g∗‖L2∗ (Rd ) = 0. If f ∈ Ḣ1(Rd), then (‖∇fn‖L2(Rd ))n∈N is a
non-increasing sequence

J. Dolbeault Stability in functional inequalities
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Useful preliminary results

limn→∞ ‖fn − hf ‖2∗ = 0 where hf = ‖f ‖2∗ g∗/‖g∗‖2∗ ∈M

(‖∇fn‖2
2)n∈N is a nonincreasing sequence

Lemma

infg∈M ‖∇f −∇g‖2
2 = ‖∇f ‖2

2 − Sd supg∈M, ‖g‖2∗=1

(
f , g2∗−1

)2

Corollary(
d(fn,M)

)
n∈N is strictly decreasing, n 7→ supg∈M1

(
fn, g

2∗−1
)
is strictly

increasing, and

lim
n→∞

d(fn,M)2 = lim
n→∞

‖∇fn‖2
2 − Sd ‖hf ‖2

2∗ = lim
n→∞

‖∇fn‖2
2 − Sd ‖f ‖2

2∗

but no monotonicity for n 7→ E(fn) =
‖∇fn‖2

L2(Rd )
−Sd ‖fn‖2

L2∗ (Rd )

d(fn,M)2

J. Dolbeault Stability in functional inequalities
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Part 1: Global to local reduction

The local problem

I (δ) := inf
{
E(f ) : f ≥ 0 , d(f ,M)2 ≤ δ ‖∇f ‖2

L2(Rd )

}
Assume that f ∈ Ḣ1(Rd) is a nonnegative function in the far away
regime

d(f ,M)2 = inf
g∈M

‖∇f −∇g‖2
L2(Rd ) > δ ‖∇f ‖2

L2(Rd )

for some δ ∈ (0, 1)

Let fn = (RU)nf . There are two cases:

(Case 1) d(fn,M)2 ≥ δ ‖∇fn‖2
L2(Rd ) for all n ∈ N

(Case 2) for some n ∈ N, d(fn,M)2 < δ ‖∇fn‖2
L2(Rd )
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Global to local reduction – Case 1

Assume that f ∈ Ḣ1(Rd) is a nonnegative function in the far away
regime

inf
g∈M

‖∇f −∇g‖2
L2(Rd ) > δ ‖∇f ‖2

L2(Rd )

Lemma

Let fn = (RU)nf and δ ∈ (0, 1). If d(fn,M)2 ≥ δ ‖∇fn‖2
L2(Rd ) for all

n ∈ N, then
E(f ) ≥ δ

lim
n→+∞

‖∇fn‖2
2 ≤

1

δ
lim

n→+∞
inf

g∈M
‖∇fn−∇g‖2

2 =
1

δ

(
lim

n→+∞
‖∇fn‖2

2 − Sd ‖f ‖2
2∗

)

E(f ) =
‖∇f ‖2

2 − Sd ‖f ‖2
2∗

infg∈M ‖∇f −∇g‖2
2

≥ ‖∇f ‖
2
2 − Sd ‖f ‖2

2∗

‖∇f ‖2
2

≥ ‖∇fn‖
2
2 − Sd ‖f ‖2

2∗

‖∇fn‖2
2

≥ δ
n→+∞
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Global to local reduction – Case 2

I (δ) := inf
{
E(f ) : f ≥ 0 , d(f ,M)2 ≤ δ ‖∇f ‖2

L2(Rd )

}
Lemma

E(f ) ≥ δI (δ)

if inf
g∈M

‖∇fn0 −∇g‖2
L2(Rd ) > δ ‖∇fn0‖2

L2(Rd )

and inf
g∈M

‖∇fn0+1 −∇g‖2
L2(Rd ) < δ ‖∇fn0+1‖2

L2(Rd )

Adapt a strategy due to Christ: build a (semi-)continuous
rearrangement flow (fτ )n0≤τ<n0+1 with fn0 = Ufn such that
‖fτ‖2∗ = ‖f ‖2, τ 7→ ‖∇fτ‖2 is nonincreasing, and limτ→n0+1 fτ = fn0+1

E(f ) ≥ 1− Sd
‖f ‖2

2∗

‖∇f ‖2
2

≥ 1− Sd
‖fτ0‖2

2∗

‖∇fτ0‖2
2

= δ E(fτ0 ) ≥ δI (δ)

Altogether: if d(f ,M)2 > δ ‖∇f ‖2
L2(Rd ), then E(f ) ≥ min {δ, δI (δ)}

J. Dolbeault Stability in functional inequalities
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Part 2: The (simple) Taylor expansion

Proposition

Let (X , dµ) be a measure space and u, r ∈ Lq(X , dµ) for some q ≥ 2
with u ≥ 0, u + r ≥ 0 and

∫
X
uq−1 r dµ = 0

B If q = 6, then

‖u + r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
5
∫
X
uq−2 r2 dµ+ 20

3

∫
X
uq−3 r3 dµ

+ 5
∫
X
uq−4 r4 dµ+ 2

∫
X
uq−5 r5 dµ+ 1

3

∫
X
r6 dµ

)
B If 3 ≤ q ≤ 4, then

‖u + r‖2
q − ‖u‖2

q

≤ ‖u‖2−q
q

(
(q−1)

∫
X
uq−2 r2 dµ+ (q−1) (q−2)

3

∫
X
uq−3 r3 dµ+ 2

q

∫
X
|r |q dµ

)
B If 2 ≤ q ≤ 3, then

‖u + r‖2
q ≤ ‖u‖2

q + ‖u‖2−q
q

(
(q−1)

∫
X
uq−2 r2 dµ+ 2

q

∫
X
rq+ dµ

)
J. Dolbeault Stability in functional inequalities
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Corollary

For all ν > 0 and for all r ∈ H1(Sd) satisfying r ≥ −1,(∫
Sd |r |

q dµ
)2/q ≤ ν2 and

∫
Sd r dµ = 0 =

∫
Sd ωj r dµ ∀ j = 1, . . . d+1

if dµ is the uniform probability measure on Sd , then

∫
Sd
(
|∇r |2 + A (1 + r)2

)
dµ− A

(∫
Sd (1 + r)q dµ

)2/q

≥ m(ν)
∫
Sd
(
|∇r |2 + A r2

)
dµ

m(ν) := 4
d+4 −

2
q ν

q−2 if d ≥ 6

m(ν) := 4
d+4 −

1
3 (q − 1) (q − 2) ν − 2

q ν
q−2 if d = 4, 5

m(ν) := 4
7 −

20
3 ν − 5 ν2 − 2 ν3 − 1

3 ν
4 if d = 3

An explicit expression of I (δ) if ν > 0 is small enough so that m(ν) > 0

J. Dolbeault Stability in functional inequalities
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Part 3: Removing the positivity assumption

Take f = f+ − f− with ‖f ‖L2∗ (Rd ) = 1 and define m := ‖f−‖2∗

L2∗ (Rd ) and

1−m = ‖f+‖2∗

L2∗ (Rd ) > 1/2. The positive concave function

hd(m) := m
d−2
d + (1−m)

d−2
d − 1

satisfies
2 hd(1/2)m ≤ hd(m) , hd(1/2) = 22/d − 1

With δ(f ) = ‖∇f ‖2
L2(Rd ) − Sd ‖f ‖2

L2∗ (Rd ), one finds g+ ∈M such that

δ(f ) ≥ C d,pos
BE ‖∇f+ −∇g+‖2

L2(Rd ) +
2 hd(1/2)

hd(1/2) + 1
‖∇f−‖2

L2(Rd )

and therefore

C d
BE ≥ 1

2 min

{
max

0<δ<1/2
δI (δ),

2 hd(1/2)

hd(1/2) + 1

}

J. Dolbeault Stability in functional inequalities
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Part 2, refined: The (complicated) Taylor expansion

To get a dimensionally sharp estimate, we expand (1 + r)2∗ − 1− 2∗r
with an accurate remainder term for all r ≥ − 1

r1 := min{r , γ} , r2 := min
{

(r − γ)+,M − γ
}

and r3 := (r −M)+

with 0 < γ < M. Let θ = 4/(d − 2)

Lemma

Given d ≥ 6, r ∈ [−1,∞), and M ∈ [
√
e,+∞), we have

(1 + r)2∗
− 1− 2∗r

≤ 1
2 2∗ (2∗ − 1) (r1 + r2)2 + 2 (r1 + r2) r3 +

(
1 + CM θM

−1
lnM

)
r2∗

3

+
(

3
2 γ θ r

2
1 + CM,M θ r2

2

)
1{r≤M} + CM,M θM2

1{r>M}

where all the constants in the above inequality are explicit

J. Dolbeault Stability in functional inequalities
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There are constants ε1, ε2, k0, and ε0 ∈ (0, 1/θ), such that

‖∇r‖2
L2(Sd ) + A ‖r‖2

L2(Sd ) −A ‖1 + r‖2
L2∗ (Sd )

≥ 4 ε0

d − 2

(
‖∇r‖2

L2(Sd ) + A ‖r‖2
L2(Sd )

)
+

3∑
k=1

Ik

I1 := (1− θ ε0)
∫
Sd
(
|∇r1|2 + A r2

1

)
dµ−A (2∗ − 1 + ε1 θ)

∫
Sd r

2
1 dµ+ A k0 θ

∫
Sd (r2

2 . . .+ r2
3 ) dµ

I2 := (1− θ ε0)
∫
Sd
(
|∇r2|2 + A r2

2

)
dµ−A

(
2∗ − 1 + (k0 + Cε1,ε2 ) θ

) ∫
Sd r

2
2 dµ

I3 := (1− θ ε0)
∫
Sd
(
|∇r3|2 + A r2

3

)
dµ− 2

2∗ A (1 + ε2 θ)
∫
Sd r

2∗

3 dµ−A k0 θ
∫
Sd r

2
3 dµ

spectral gap estimates : I1 ≥ 0
Sobolev inequality : I3 ≥ 0
improved spectral gap inequality using that µ

(
{r2 > 0}

)
is small: I2 ≥ 0

J. Dolbeault Stability in functional inequalities
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L2 stability of LSI: comments

[JD, Esteban, Figalli, Frank, Loss]

‖∇u‖2
L2(Rn,dγ) − π

∫
Rn

u2 log

(
|u|2

‖u‖2
L2(Rn,dγ)

)
dγ

≥ β π

2
inf

a∈Rd, c∈R

∫
Rn

|u − c ea·x |2 dγ

The Ḣ1(Rn) does not appear, it gets lost in the limit d → +∞
Two proofs. Taking the limit is difficult because of the lack of

compactness
One dimension is lost (for the manifold of invariant functions) in

the limiting process
Euclidean forms of the stability∫
Rn |∇(u − c ea·x)|2 dγ ? False, but makes sense under additioal

assumptions. Some results based on the Ornstein-Uhlenbeck flow and
entropy methods: [Fathi, Indrei, Ledoux, 2016], [JD, Brigati,
Simonov, 2023-24]

J. Dolbeault Stability in functional inequalities
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More results on
logarithmic Sobolev inequalities

Joint work with G. Brigati and N. Simonov
Stability for the logarithmic Sobolev inequality

Journal of Functional Analysis, 287 (8): 110562, Oct. 2024

B Entropy methods, with constraints

J. Dolbeault Stability in functional inequalities
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Stability under a constraint on the second moment

uε(x) = 1 + ε x in the limit as ε→ 0

d(uε, 1)2 = ‖u′ε‖2
L2(R,dγ) = ε2 and inf

w∈M
d(uε,w)α ≤ 1

2
ε4 + O

(
ε6
)

M :=
{
wa,c : (a, c) ∈ Rd × R

}
where wa,c(x) = c e−a·x

Proposition

For all u ∈ H1(Rd , dγ) such that ‖u‖L2(Rd ) = 1 and ‖x u‖2
L2(Rd ) ≤ d , we

have

‖∇u‖2
L2(Rd ,dγ) −

1

2

∫
Rd

|u|2 log |u|2 dγ ≥ 1

2 d

(∫
Rd

|u|2 log |u|2 dγ
)2

and, with ψ(s) := s − d
4 log

(
1 + 4

d s
)
,

‖∇u‖2
L2(Rd ,dγ) −

1

2

∫
Rd

|u|2 log |u|2 dγ ≥ ψ
(
‖∇u‖2

L2(Rd ,dγ)

)
J. Dolbeault Stability in functional inequalities
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Stability under log-concavity

Cheeger’s inequality (for log-concave measures) and [Fathi, Indrei,
Ledoux, 2016]

Theorem

For all u ∈ H1(Rd , dγ) such that u2 γ is log-concave and such that∫
Rd

(1, x) |u|2 dγ = (1, 0) and

∫
Rd

|x |2 |u|2 dγ ≤ K

we have

‖∇u‖2
L2(Rd ,dγ) −

C?
2

∫
Rd

|u|2 log |u|2 dγ ≥ 0

C? = 1 +
1

432 K
≈ 1 +

0.00231481

K

J. Dolbeault Stability in functional inequalities
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Theorem

Let d ≥ 1. For any ε > 0, there is some explicit C > 1 depending only
on ε such that, for any u ∈ H1(Rd , dγ) with∫

Rd

(1, x) |u|2 dγ = (1, 0) ,

∫
Rd

|x |2 |u|2 dγ ≤ d ,

∫
Rd

|u|2 e ε |x|
2

dγ <∞

for some ε > 0, then we have

‖∇u‖2
L2(Rd ,dγ) ≥

C

2

∫
Rd

|u|2 log |u|2 dγ

with C = 1 + C?(K?)−1
1+R2 C?(K?) , K? := max

(
d , (d+1) R2

1+R2

)
if supp(u) ⊂ B(0,R)

Compact support: [Lee, Vázquez, 2003]; [Chen, Chewi,
Niles-Weed,2021]
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More results on logarithmic Sobolev inequalities

These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeaul@ceremade.dauphine.fr

Thank you for your attention !

J. Dolbeault Stability in functional inequalities
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