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Logarithmic Sobolev
and Gagliardo-Nirenberg-Sobolev
on the sphere

A joint work with G. Brigati and N. Simonov

Logarithmic Sobolev and interpolation inequalities on the
sphere: constructive stability results

Annales de 'Institut Henri Poincaré C, Analyse non linéaire: 1-33,
2023
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(Improved) logarithmic Sobolev inequality

On the sphere SY with d > 1

F2
/|vl_—|2dﬂ2g/ F2 log — du VFEHI(Sd7dM)
y 2 Jo" "\ [P
(LSI)

dp: uniform probability measure; equality case: constant functions
Optimal constant: test functions F.(x) =1 +ex-v, v €S9, ¢ — 0
> improved inequality under an appropriate orthogonality condition

Let d > 1. For any F € HY(S?, du) such that fsd xFdu =0, we have

d F? 2
VF]2d ——/leo — dz—/ VF|2d
/§d| “dp—3 e G nZ g Sd| *dp

Improved ineq. de |VF>du > (% + 1) fsd F? log (F2/||F||i2(sd)) dp
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Logarithmic Sobolev inequality: stability (1)

What if [, x F dpu# 0 ? Take Fo(x) =1+4ex-vandlet e =0
2 d F?
IVl [, F2 o8 | e — | du= 0 =0 (IVFl o)
ellL?(s9)
Such a behaviour is in fact optimal: carré du champ method

Proposition

Letd>1,y=1/3ifd=1and~y = (4d —1)(d — 1)2/(d +2)? if
d > 2. Then, for any F € HY(SY, du) with HFHiQ(Sd) =1 we have

d 1 VF|?
/ IVFP dp — —/ F2 log F2dp > = — | 2HL2(S”
s¢ 2 Js 2 7 [IVFllzaey + d

In other words, if [[VF|[;(sq) is small

Joo [VFRdp— ¢ [, F? log F2dp > 5% ||VF||12(sd) +o (”VF”L(S"))
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Logarithmic Sobolev inequality: stability (2)

Let My F denote the orthogonal projection of a function F € L?(SY) on

the spherical harmonics corresponding to the first eigenvalue on S?

X

an(X) = d—l—]. .

|y F0rduty) vxes?

> a global (and detailed) stability result

Theorem

Let d > 1. For any F € HY(SY, du), we have

2
VF2du—5/ F? log L du
2 2
Se Sd ||F||L2(§d)

( IV F [T se
d 2 2
IVFlIesey + 5§ IFllase

+ ||V(Id - FI1) F”iz(gd))

for some explicit stability constant %y > 0
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Gagliardo-Nirenberg(-Sobolev) inequalities

[Pz S (1F e~ [Flfe) ¥ € HYS . dn)
sd P — 2

(GNS)
for any p € [1,2) U (2,2*), with du: uniform probability measure
2*:=2d/(d —2)if d > 3 and 2* = +oo otherwise
Optimal constant: test functions F.(x) =1+ex v, v €S9 ¢ =0
logarithmic Sobolev inequality: obtained by taking the limit as p — 2

Theorem

Let d > 1. For any F € HY(S?, dp) such that [, x F dp =0, we have

d
2 2 2 2
L 1VFF b= = (1F iy = 1Pl = o [ Ve

2d—p(d—2)

with (gd)p = 3 (d+p)
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Gagliardo-Nirenberg inequalities: stability (1)

With F.(x) =1+ ¢ex - v, the deficit is of order e* as ¢ — 0

Letd > 1 and p € (1,2) U (2,2*). There is a convex function ¢» on R
with 1(0) = 1’ (0) = 0 such that, for any F € HY(SY, dyu), we have

d
I GRE =t (G [

IV 2 g0
> (|FI sy ¢ (—”
1FIE o ey

This is also a consequence of the carré du champ method, with an
explicit construction of v
There is no orthogonality constraint
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Gagliardo-Nirenberg inequalities: stability (2)

As in the case of the logarithmic Sobolev inequality, the improved
inequality under orthogonality constraint and the stability inequality
arising from the carré du champ method can be combined

Theorem

Letd > 1 and p € (1,2) U (2,2*). For any F € H'(SY, du), we have

d 2
I GRE (e LIy

IV F [ fose
2 Zdp 2 2
||VF||L2(Sd) + HFHL2(Sd)

+(|V(1d — My) F||i2(sd)>

for some explicit stability constant /4, > 0
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Generalized entropy functionals

||F||ipsd N Flifass .
EplF] = — ( if p#£2

82 Fl:==
d <|F||Lz(8d> 8

> The key idea is to evolve these quantities by a diffusion flow and
prove the inequalities as a consequence of a monotonicity along the
flow
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Heat flow estimates: fixing parameters

Let us consider the constant v given by

= (421 2( —1)(2* —p) if d>2 =P g
v =\ga) P p 22, yi=—3 -

and the Bakry-Emery exponent

2
gt 20711
(d—1)
Let us define
1
S*::ﬁ if p>2 and s,:=+40c0 if p<2

For any s € [0, s, ), let

-
pls) = el A)s) P if y#2-p and p#2
p(s) =225 (1 +(2—p)s)log(1+(2—p)s) if y=2-p#0
pls) = (e~ 1) it p=2
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Heat flow: stability estimates

[JD, Esteban, Kowalczyk, Loss], [JD, Esteban 2020]

: EIF ) o
IVFllLzsey = de (pz IFlltpee ¥ F €HY(ST)
IF 1L sy
Since ¢(0) = 0, ¢’'(0) = 1, and ¢ is convex increasing, with an
asymptote at s = s, if p € (2,2%), we know that ¢ : [0,s,) — R* is
invertible and ¢ : RT — [0, s,), s = 9(s) := s — ¢~ 1(s), is convex

increasing with ¢(0) = ¢'(0) = 0, lim¢_, o0 (t — ¥(t)) = s\, and
¥(0) = ¢"(0) = {3k (2% —p) (p—1) >0 Vpe (1,2%)

First stability estimates for Gagliardo-Nirenberg inequalities

Proposition

With the above notations, d > 1 and p € (1,2%), we have

1 HVFHiz s
IVFIIEagey = d EpLF] = d [[FlIfpse) ¥ (H —®) ) vFeHY(sY)

IFllo (e

Tf n = 2 mnotice that 1/ ic exnlicit and eoiven hv
J. Dolbeault Stability in functional inequalities



A simpler reformulation

Let d > 1, v #2 — p as above

d 2
VAL > =5 (1P ~ IFILES 1FI ) vF < HE)

[JD, Esteban 2020)
which is a refinement of the standard Gagliardo-Nirenberg inequality

d
| 19F dn 2 =2 (1F e - ||F||i2(sd)) VF € HY(S7, d)

.. with the restriction p < 2% =

o ) L <2 =29 ifd >3
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So far, we considered only the case 1 < p < 2#. Our goal is to cover
also the subcritical range p € [27,2%)

Pmp(s) == /05 exp [_g ((1 - (1 (p 2)5)1_5)} Y

provided m is admissible, that is,

me o, =, ={méec [m_(d,p),m.(d,p)] : 2<m<1lifp<4
P P P

1
= 2+ —1)(2d—-(d—-2
m(d, p) (d+2)p(dp+ \/d(p ) (2d —(d )p))
The parameters § and ¢ are defined by

m—1) p?
0:=1+ (4(P—)2;;

_ (d+2)? p* m*—2 p(d+2) (d p+2) m+d*(5 p?—12 p+8)+4 d (3—2p) p+4
¢ = T—m) (3127 72
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Nonlinear diffusion flow: stability estimates

We consider the inverse function ¢, 1, : R* — [0,s,) and
Ump(s) =5 — @ (s). Exactly as in the case m = 1, we have the
improved entropy — entropy production inequality

&plF]

YV F e H(SY)
||F||ip(gd>>

2 2
HVF”L?(S") >d ||F||LP(Sd) Pm,p (

Proposition

With above notations, d > 1, p € (2,2*) and m € <7,, we have

IVFf2se)

IVF I faay—d EplF] = d |IFIIEo(se) Ymop (—
d |IFl1fpse)

) VF € HY(SY)

The function ¢, p, can be expressed in terms of the incomplete I
function while v, , is known only implicitly
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(Improved) logarithmic Sobolev inequality

Where is the flow ?

> The case of the logarithmic Sobolev inequality is a limit case
corresponding to p = 2 of the Gagliardo-Nirenberg-Sobolev
inequalities for p # 2

> We use the fast diffusion flow (m < 1), porous medium flow
(m > 1) and as a limit case the heat flow (m = 1) given by

Ip
F_ Apm
ot ~F

where A is the Laplace-Beltrami operator on R¢

... how do we relate p and F 7
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Algebraic preliminaries

1 \% \% 1 |Vv|?
Lv:=Hv—- = (Av)gy and My := vevv 1|vv| gd
d v d v
With a: b= a¥ b; and ||a||? := a: a, we have
HLVHZ _ HHVHZ_% (Av)z7 HMV||2 _ HVv®VvH 1 \VV‘Z/\A % \VV\Z/\4

A first identity

A, VP d d / , / Vv @ Vv
d M du—2 Lv:——d
Sd v H= d + 2 d—1 sd || VH H sd v 4 "

Second identity (Bochner-Lichnerowicz-Weitzenbock formula

d
[ @vdu= 22 [P dud [ 190R d
Sd - Sd Sd
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An estimate

With b=(k+8—-1)9F and c = 35 (k+ 8 —1) + K (8 —1)

Vv|? Vv|?
%[v]::éd(Av+H| ;|)<Av+(ﬁ—1)| ;')du
4
:L||Lv—bMv\|2+(c—b2)/ W—Z'dmd/ |Vv|? du
d—]. sd v Sd

Let k = B(p — 2) + 1. The condition v := ¢ — b> > 0 amounts to

1= 8-+ (1B -2) (B-1) - (4386 -1)

4
%/[v]zfy/ @du—!—d/ |Vv[>du
sd V sd

Hence J£[v] > d [, |[Vv|? dp if v > 0, which is a condition on 3
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. and finally, here is the flow

ou _ |Vul?
— y—p(1-—m) _
5c — U (Au+(mp 1) u )

Check: if m=1+ % (% — 1), then p = uPP solves % = Ap"

t

d, 2 d 2 —p(l=m) |2
el =0, el =2(0=2) [ P~ |VuP di,

d 2 _ 571 8V ﬂ _ 2
E||VU||L2(Sd)7_2éd <BV & (AV )dﬂ——zﬂ %[V]

Assume that p € (1,2*) and m € [m_(d, p), m(d, p)]. Then

1 d 2 [Vv[*
2 (1960~ d &) < = [ Bl au<o

232
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Admissible parameters

e

0s os
O m
2 T 3 v M i 1 3 3 § 5 G
) [\ | [\
) u ~ u
> 3 T T p 3

Figure: d =1, 2, 3 (first line) and d = 4, 5 and 10 (second line): the curves
p — mx(p) determine the admissible parameters (p, m) [JD, Esteban, 2019]

J. Dolbeault Stability in functional inequalities



Inequalities and improved inequalities

v 4
From 54, & (||vu||§2(sd) - dE,,[u]) < [ 19 4 < 0 and
lime s oo (HVUHiQ(Sd) — dé'p[u]) = 0, we deduce the inequality
2
||VUHL2(sd) > d&plu]
[Bakry-Emery, 1984], [Bidaut-Véron, Véron, 1991], [Beckner,1993]

... but we can do better

[Demange, 2008], [JD, Esteban, Kowalczyk, Loss]
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Improved inequalities: flow estimates

With [|ul|y,gs) = 1, consider the entropy and the Fisher information

1 2 2 . 2
0= o= (Iulisen —luliag) and =Vl

Withé::% if p>2, 6:=1 if pel[l,2

vie

i—de) < —— 1=
S oy

— IVF I —d SlF1 2 a0 (4 IVFIT ) VF € HAS?) st Flluao

With F := fsd F dp, this improves upon [Frank, 2022]

2 =112 2
(||VFHL2(sd) +|F - FHU(S"))
2 2
IVFlltagey + 522 [1Fllzae

IVFIIEa@ey — d EpF] = c.(d, p)
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Improved interpolation inequalities under orthogonality

Decomposition of L2(S?, du) into spherical harmonics

o0

L2(8%, dp) = EPHe

£=0

Let My be the orthogonal projection onto @221 He

Assume that d > 1, p € (1,2*) and k € N\ {0} be an integer. For some

ng,p,k € (0, 1) with C(aﬁd,p,k < C(aﬁd,p; = 2(:127(5—_(552)

/d \VFPdp— dE[F] > Capi /d IV(1d — M) F|? dp
S S
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Proof

Using the Funk-Hecke formula as in [Lieb, 1983] and following
[Beckner,1993], we learn that

EAFI< S G(0) [ 1FRdn ¥ e H(S,dy
j=1
hold for any p € (1,2) U (2,2*) with

() -1
=

MG+ d—x)
250 = g Tt )

G(p)

> Use convexity estimates and monotonicity properties of the
coefficients
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Proof of the stability results

It remains to combine the improved entropy — entropy production
inequality (carré du champ method) and the improved interpolation
inequalities under orthogonality constraints

Theorem

Let d > 1 and p € (1,2*). For any F € HY(SY, du), we have

IR GRTY

IV F T se
2= Jdp P 2
IV FITe(sey + [1FllLz(se

+ ||V(Id - FI1) F”iz(gd))

for some explicit stability constant /4, > 0

v

N.B. This relies on the computations of [Frank, 2022] (Bianchi-Egnell)
made quantitative
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The “far away” regime and the “neighborhood” of M

> I |VF 2oy / | FllE ooy = 9o > 0, by the convexity of ¢im

1 IVFI2,
IVFf2ay = d Ep[F1 = d [[FIITa(sey ¥m, (d TR Sd> )
d
> -
7o Ym,

¥
o (%) 19 e

> From now on, we assume that ||VF||i2(Sd) < ||F‘|in(§d), take
HFHLP(Sd) =1, learn that

d vy

——— >0
d—(p—2)vo

IVF[IFosey < 0 =

from the standard interpolation inequality and deduce from the
Poincaré inequality that

2
M<</ qu> <1
d -
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Partial decomposition on spherical harmonics

With .# = MoF and MNy1F = % where % (x) = /< x - v for some

given v € S9
F=A#1+e% +1nG)

. ()
For some explicit constants ap,q4, bp,d and ¢, 4

C( ,d < +€g||LP 4y — (14 apac®+ bpae’) < C(J:!) 26
We apply to u=1+¢% and r =1 G the estimate
2 2
[t + rllpssy < lulltoge)
+ % HUHLP (s9) (pde uP—1 rdp —+ % (,D — ]_) de uP—2 2 d,LL

+ E2<k<p C/f fsd uP~k Mk du+ Kp fgd |r|P dﬂ)

Estimate various terms like [, (1+¢ Pt Gdy,
Jou Q4P 2GR dp, [ (1+e2) |G|  du, ete.
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. conclusion

With explicit expressions for all constants we obtain
/ IVF[? du—dEp[F] > M (A€4 —Be?n+Cn? — Rp.d (ﬁp + 195/2>)
sd

under the condition that 2 +n? < ...
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Carré du champ — admissible parameters on S¢

[JD, Esteban, Kowalczyk, Loss] Monotonicity of the deficit along

ou (- [Vul?
p(1—m)
5 =Y (Au+(mp—1) —

ma(d, p) = ﬁ(dp—&-Zi\/d(p—l) (2d—(d—2)p))

e

05+

1 2 3 4

Figure: Case d = 5: admissible parameters 1 < p < 2* =10/3 and m
(horizontal axis: p, vertical axis: m). Improved inequalities inside !
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Gaussian carré du champ and nonlinear diffusion

ot
[JD, Brigati, Simonov| Ornstein-Uhlenbeck operator: L= A — x -V

2
ov — y—p-m) <£v+ (mp—1) |VV|> on R"
4

my(p) = lim my(d, p)—li . (p—=1)(2-p)

L
0.5 1.0 15 20

Figure: The admissible parameters 1 < p < 2 and m are independent of n
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Large dimensional limit

Gagliardo-Nirenberg-Sobolev inequalities on S9, p € [1,2)

2 d 2 2
e (I R 1

Let v € HY(R", dx) with compact support, d > n and

ug(w) = v(wl/rd,wz/rd,...,w,,/rd> - \/%

where w € S C RIHL. With dvy(y) := (2m) "2 e~ 2 1 dy,

2 2 d 2 2
im (1l g = 755 (1600200 sy — 0o ) )

= 912y — 25 (1V1aqgn .0 = V12 o(gn )

v
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