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Fast diffusion equation
and entropy methods

∂u

∂t
= ∆um (FDE)

The Rényi entropy powers and the Gagliardo-Nirenberg
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Self-similar solutions and the entropy – entropy production method
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inequality)
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Rényi entropy powers
and

Gagliardo-Nirenberg-Sobolev
inequalities

[Toscani, Savaré, 2014]
[JD, Toscani, 2016]
[JD, Esteban, Loss, 2016]
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Mass, moment, entropy and Fisher information

(i) Mass conservation. With m ≥ mc := (d − 2)/d and u0 ∈ L1
+(Rd)

d

dt

∫

Rd

u(t, x) dx = 0

(ii) Second moment. With m > d/(d + 2) and
u0 ∈ L1

+

(
Rd , (1 + |x |2) dx

)

d

dt

∫

Rd

|x |2 u(t, x) dx = 2 d

∫

Rd

um(t, x) dx

(iii) Entropy estimate. With m ≥ m1 := (d − 1)/d , um0 ∈ L1(Rd) and
u0 ∈ L1

+

(
Rd , (1 + |x |2) dx

)

d

dt

∫

Rd

um(t, x) dx =
m2

1−m

∫

Rd

u |∇um−1|2 dx

Entropy functional and Fisher information functional

E[u] :=

∫

Rd

um dx and I[u] :=
m2

(1−m)2

∫

Rd

u |∇um−1|2 dx
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Entropy growth rate

Gagliardo-Nirenberg-Sobolev inequalities

‖∇f ‖θL2(Rd ) ‖f ‖
1−θ
Lp+1(Rd ) ≥ CGNS(p) ‖f ‖L2p(Rd ) (GNS)

p = 1
2 m−1 ⇐⇒ m = p+1

2 p ∈ [m1, 1)

u = f 2 p so that um = f p+1 and u |∇um−1|2 = (p − 1)2 |∇f |2

M = ‖f ‖2 p
L2 p(Rd ) , E[u] = ‖f ‖p+1

Lp+1(Rd ) , I[u] = (p + 1)2 ‖∇f ‖2
L2(Rd )

If u solves (FDE) ∂u
∂t = ∆um

E′ ≥ p − 1

2 p
(p + 1)2

(
CGNS(p)

) 2
θ ‖f ‖

2
θ

L2 p(Rd )
‖f ‖−

2 (1−θ)
θ

Lp+1(Rd )
= C0 E1− m−mc

1−m

∫

Rd

um(t, x) dx ≥
(∫

Rd

um0 dx + (1−m) C0

m−mc
t

) 1−m
m−mc

∀ t ≥ 0

Equality case: u(t, x) = c1

R(t)d
B
(

c2 x
R(t)

)
, B(x) :=

(
1 + |x |2

) 1
m−1
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Pressure variable and decay of the Fisher information

The t-derivative of the Rényi entropy power E
2
d

1
1−m−1 is proportional

to
Iθ E2 1−θ

p+1

The nonlinear carré du champ method can be used to prove (GNS) :

B Pressure variable
P :=

m

1−m
um−1

B Fisher information

I[u] =

∫

Rd

u |∇P|2 dx

If u solves (FDE), then

I′ =

∫

Rd

∆(um) |∇P|2 dx + 2

∫

Rd

u∇P · ∇
(

(m − 1) P ∆P + |∇P|2
)
dx

= − 2

∫

Rd

um
(
‖D2P‖2 − (1−m) (∆P)2

)
dx
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Rényi entropy powers and interpolation inequalities

B Integrations by parts and completion of squares: with m1 = d−1
d

− I

2 θ

d

dt
log
(

Iθ E2 1−θ
p+1

)

=

∫

Rd

um
∥∥∥∥D2P− 1

d
∆P Id

∥∥∥∥
2

dx + (m −m1)

∫

Rd

um
∣∣∣∣∆P +

I

E

∣∣∣∣
2

dx

B Analysis of the asymptotic regime as t → +∞

lim
t→+∞

I[u(t, ·)]θ E[u(t, ·)]2 1−θ
p+1

M 2 θ
p

=
I[B]θ E[B]2 1−θ

p+1

‖B‖
2 θ
p

L1(Rd )

= (p+1)2 θ (CGNS(p))2 θ

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

I[u]θ E[u]2 1−θ
p+1 ≥ (p + 1)2 θ

(
CGNS(p)

)2 θM 2 θ
p
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The fast diffusion equation
in self-similar variables

B Rescaling and self-similar variables

B Relative entropy and the entropy – entropy production inequality

B Large time asymptotics and spectral gaps
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Entropy – entropy production inequality

With a time-dependent rescaling based on self-similar variables

u(t, x) =
1

κd Rd
v
(
τ,

x

κR

)
where

dR

dt
= R1−µ , τ(t) := 1

2 logR(t)

∂u
∂t = ∆um is changed into a Fokker-Planck type equation

∂v

∂τ
+∇ ·

[
v
(
∇vm−1 − 2 x

) ]
= 0 (r FDE)

Generalized entropy (free energy) and Fisher information

F [v ] := − 1

m

∫

Rd

(
vm − Bm −mBm−1 (v − B)

)
dx

I[v ] :=

∫

Rd

v
∣∣∇vm−1 + 2 x

∣∣2 dx

are such that I[v ] ≥ 4F [v ] by (GNS) [del Pino, JD, 2002] so that

F [v(t, ·)] ≤ F [v0] e− 4 t
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Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

(
C0 + |x |2

)− 1
1−m ≤ v0 ≤

(
C1 + |x |2

)− 1
1−m (H)

Let Λα,d > 0 be the best constant in the Hardy–Poincaré inequality

Λα,d

∫

Rd

f 2 dµα−1 ≤
∫

Rd

|∇f |2 dµα ∀ f ∈ H1(dµα) ,

∫

Rd

f dµα−1 = 0

with dµα := (1 + |x |2)α dx , for α < 0

Lemma

Under assumption (H),

F [v(t, ·)] ≤ C e−2 γ(m) t ∀ t ≥ 0 , γ(m) := (1−m) Λ1/(m−1),d

Moreover γ(m) := 2 if d−1
d = m1 ≤ m < 1

J. Dolbeault Stability in functional inequalities
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Spectral gap

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

[Denzler, McCann, 2005]
[BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015]
Much more is know, e.g., [Denzler, Koch, McCann, 2015]
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Initial and asymptotic time layers
B Asymptotic time layer: constraint, spectral gap and improved
entropy – entropy production inequality

B Initial time layer: the carré du champ inequality and a backward
estimate
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The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

F[g ] :=
m

2

∫

Rd

g2 B2−m dx and I[g ] := m (1−m)

∫

Rd

|∇g |2 B dx

Hardy-Poincaré inequality. Let d ≥ 1, m ∈ (m1, 1) and
g ∈ L2(Rd ,B2−m dx) such that ∇g ∈ L2(Rd ,B dx),

∫
Rd g B2−m dx = 0

and
∫
Rd x g B2−m dx = 0

I[g ] ≥ 4αF[g ] where α = 2− d (1−m)

Proposition

Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/3, 1) if d = 1, η = 2 (d m − d + 1) and
χ = m/(266 + 56m). If

∫
Rd v dx =M,

∫
Rd x v dx = 0 and

(1− ε)B ≤ v ≤ (1 + ε)B

for some ε ∈ (0, χ η), then
I[v ] ≥ (4 + η)F [v ]

J. Dolbeault Stability in functional inequalities
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The initial time layer improvement: backward estimate

Hint: for some strictly convex function ψ with ψ(0) = 0, ψ′(0) = 1, we
have

I − 4F ≥ 4 (ψ(F)−F) ≥ 0

Far from the equality case (i.e., close to an initial datum away from
the Barenblatt solutions) for (FDE), we expect some improvement

Rephrasing the carré du champ method, Q[v ] := I[v ]
F [v ] is such that

dQ
dt
≤ Q (Q− 4)

Lemma

Assume that m > m1 and v is a solution to (r FDE) with nonnegative
initial datum v0. If for some η > 0 and t? > 0, we have
Q[v(t?, ·)] ≥ 4 + η, then

Q[v(t, ·)] ≥ 4 +
4 η e−4 t?

4 + η − η e−4 t?
∀ t ∈ [0, t?]

J. Dolbeault Stability in functional inequalities



Stability, fast diffusion equation and entropy methods
Stability in Caffarelli-Kohn-Nirenberg inequalities ?
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Stability in
Gagliardo-Nirenberg-Sobolev

inequalities
Our strategy

Regularity and stability

Our strategy

Choose "> 0, small enough

Get a threshold time t?(")

0 t?(") t
Backward estimate

by entropy methods

Forward estimate

based on a spectral gap

J. Dolbeault Stability in Gagliardo-Nirenberg inequalities

E
s

⇐
#↳

Initial time layer Asymptotic time layer
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The threshold time
and the uniform convergence

in relative error
B The regularity results allow us to glue the initial time layer
estimates with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any
time along the evolution along (r FDE)

(and in particular for the initial datum)

J. Dolbeault Stability in functional inequalities
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If v is a solves (r FDE) for some nonnegative initial datum
v0 ∈ L1(Rd) satisfying

sup
r>0

r
d (m−mc )

(1−m)

∫

|x|>r

v0 dx ≤ A <∞ (HA)

then
(1− ε)B ≤ v(t, ·) ≤ (1 + ε)B ∀ t ≥ t?

for some explicit t? depending only on ε and A

J. Dolbeault Stability in functional inequalities
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Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities
The threshold time and the improved entropy – entropy production inequality (subcritical case)
Stability results (subcritical and critical case)

Global Harnack Principle

The Global Harnack Principle holds if for some t > 0 large enough

BM1 (t − τ1, x) ≤ u(t, x) ≤ BM2 (t + τ2, x) (GHP)

[Vázquez, 2003], [Bonforte, Vázquez, 2006]: (GHP) holds if u0 . |x |− 2
1−m

[Vázquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

A[u0] := sup
R>0

R
2

1−m−d
∫

Rd\BR (0)

|u0| dx <∞

Theorem

[Bonforte, Simonov, 2020] If M + A[u0] <∞, then

lim
t→∞

∥∥∥∥
u(t)− B(t)

B(t)

∥∥∥∥
∞

= 0

J. Dolbeault Stability in functional inequalities
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Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that m ∈ (m1, 1) if
d ≥ 2, m ∈ (1/3, 1) if d = 1 and let ε ∈ (0, 1/2), small enough, A > 0,
and G > 0 be given. There exists an explicit threshold time T ≥ 0 such
that, if u is a solution of

∂u

∂t
= ∆um (FDE)

with nonnegative initial datum u0 ∈ L1(Rd) satisfying

A[u0] = sup
r>0

r
d (m−mc )

(1−m)

∫

|x|>r

u0 dx ≤ A <∞ (HA)

∫
Rd u0 dx =

∫
Rd B dx =M and F [u0] ≤ G, then

sup
x∈Rd

∣∣∣∣
u(t, x)

B(t, x)
− 1

∣∣∣∣ ≤ ε ∀ t ≥ T

J. Dolbeault Stability in functional inequalities
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The threshold time

Proposition

Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/3, 1) if d = 1, ε ∈ (0, εm,d), A > 0 and
G > 0

T = c?
1 + A1−m + G

α
2

εa

where a = α
ϑ

2−m
1−m , α = d (m −mc) and ϑ = ν/(d + ν)

c? = c?(m, d) = sup
ε∈(0,εm,d )

max
{
ε κ1(ε,m), εaκ2(ε,m), ε κ3(ε,m)

}

κ1(ε,m) := max

{
8 c

(1 + ε)1−m − 1
,

23−m κ?
1− (1− ε)1−m

}

κ2(ε,m) :=
(4α)α−1 K

α
ϑ

ε
2−m
1−m

α
ϑ

and κ3(ε,m) :=
8α−1

1− (1− ε)1−m

J. Dolbeault Stability in functional inequalities
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Improved entropy – entropy
production inequality

(subcritical case)
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Theorem

Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, A > 0 and G > 0. Then
there is a positive number ζ such that

I[v ] ≥ (4 + ζ)F [v ]

for any nonnegative function v ∈ L1(Rd) such that F [v ] = G,∫
Rd v dx =M,

∫
Rd x v dx = 0 and v satisfies (HA)

We have the asymptotic time layer estimate

ε ∈ (0, 2 ε?) , ε? :=
1

2
min

{
εm,d , χ η

}
with t? = t?(ε) =

1

2
logR(T )

(1− ε)B ≤ v(t, ·) ≤ (1 + ε)B ∀ t ≥ t?

and, as a consequence, the initial time layer estimate

I[v(t, .)] ≥ (4 + ζ)F [v(t, .)] ∀ t ∈ [0, t?] where ζ =
4 η e−4 t?

4 + η − η e−4 t?

J. Dolbeault Stability in functional inequalities
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Two consequences

ζ = Z
(
A,F [u0]

)
, Z(A,G ) :=

ζ?

1 + A (1−m) 2
α + G

, ζ? :=
4 η cα
4 + η

(
εa
?

2α c?

) 2
α

B Improved decay rate for the fast diffusion equation in rescaled
variables

Corollary

Let m ∈ (m1, 1) if d ≥ 2, m ∈ (1/2, 1) if d = 1, A > 0 and G > 0. If v is
a solution of (r FDE) with nonnegative initial datum v0 ∈ L1(Rd) such
that F [v0] = G,

∫
Rd v0 dx =M,

∫
Rd x v0 dx = 0 and v0 satisfies (HA),

then
F [v(t, .)] ≤ F [v0] e− (4+ζ) t ∀ t ≥ 0

B The stability in the entropy - entropy production estimate
I[v ]− 4F [v ] ≥ ζ F [v ] also holds in a stronger sense

I[v ]− 4F [v ] ≥ ζ

4 + ζ
I[v ]

J. Dolbeault Stability in functional inequalities
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Stability results
(subcritical case)

B We rephrase the results obtained by entropy methods in the
language of stability à la Bianchi-Egnell

Subcritical range

p∗ = +∞ if d = 1 or 2, p∗ = d
d−2 if d ≥ 3

J. Dolbeault Stability in functional inequalities
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λ[f ] :=

(
2 d κ[f ]p−1

p2−1

‖f ‖p+1

Lp+1(Rd )

‖∇f ‖2
L2(Rd )

) 2 p
d−p (d−4)

, κ[f ] := M
1

2 p

‖f ‖
L2 p (Rd )

A[f ] := M

λ[f ]
d−p (d−4)

p−1 ‖f ‖2 p

L2 p (Rd )

supr>0 r
d−p (d−4)

p−1
∫
|x|>r

|f (x + xf )|2 p dx

E[f ] := 2 p
1−p

∫
Rd

(
κ[f ]p+1

λ[f ]
d

p−1
2 p

f p+1 − gp+1 − 1+p
2 p g1−p

(
κ[f ]2 p

λ[f ]2 f 2 p − g2 p
))

dx

S[f ] := M
p−1
2 p

p2−1
1

C(p,d) Z (A[f ], E[f ])

Theorem

Let d ≥ 1, p ∈ (1, p∗)

If f ∈ Wp(Rd) :=
{
f ∈ L2p(Rd) : ∇f ∈ L2(Rd) , |x | f p ∈ L2(Rd)

}
,

(
‖∇f ‖θL2(Rd ) ‖f ‖

1−θ
Lp+1(Rd )

)2 p γ

−
(
CGN ‖f ‖L2 p(Rd )

)2 p γ

≥ S[f ] ‖f ‖2 p γ
L2 p(Rd ) E[f ]

J. Dolbeault Stability in functional inequalities
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With KGNS = C (p, d) C2 p γ
GNS, γ = d+2−p (d−2)

d−p (d−4) , consider the deficit

functional

δ[f ] := (p − 1)2 ‖∇f ‖2
L2(Rd ) + 4

d − p (d − 2)

p + 1
‖f ‖p+1

Lp+1(Rd ) −KGNS ‖f ‖2 p γ
L2 p(Rd )

Theorem

Let d ≥ 1 and p ∈ (1, p∗). There is an explicit C = C[f ] such that, for
any f ∈ L2p

(
Rd , (1 + |x |2) dx

)
such that ∇f ∈ L2(Rd) and A

[
f 2p
]
<∞,

δ[f ] ≥ C[f ] inf
ϕ∈M

∫

Rd

∣∣(p − 1)∇f + f p∇ϕ1−p∣∣2 dx

B The dependence of C[f ] on A
[
f 2p
]

and F
[
f 2p
]

is explicit and does
not degenerate if f ∈M

B Can we remove the condition A
[
f 2p
]
<∞ ?

J. Dolbeault Stability in functional inequalities
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Stability in Sobolev’s inequality
(critical case)

B A constructive stability result

B The main ingredient of the proof
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A constructive stability result

Let 2 p? = 2d/(d − 2) = 2∗, d ≥ 3 and

Wp?(Rd) =
{
f ∈ Lp?+1(Rd) : ∇f ∈ L2(Rd) , |x | f p? ∈ L2(Rd)

}

Deficit of the Sobolev inequality: δ[f ] := ‖∇f ‖2
L2(Rd ) − S2

d ‖f ‖
2
L2∗ (Rd )

Theorem

Let d ≥ 3 and A > 0. Then for any nonnegative f ∈ Wp?(Rd) such that

∫

Rd

(1, x , |x |2) f 2∗
dx =

∫

Rd

(1, x , |x |2) g dx and sup
r>0

rd
∫

|x|>r

f 2∗
dx ≤ A

we have

δ[f ] ≥ C?(A)

4 + C?(A)

∫

Rd

∣∣∣∇f + d−2
2 f

d
d−2 ∇g−

2
d−2

∣∣∣
2

dx

C?(A) = C?
(
1+A1/(2 d)

)−1
and C? > 0 depends only on d

J. Dolbeault Stability in functional inequalities
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Peculiarities of the critical case

B We can remove the normalization of f , use the r.h.s. to measure the
distance to the Aubin-Talenti manifold of optimal functions (in
relative Fisher information) and obtain for

A[f ] := sup
r>0

rd
∫

r>0

|f |2∗
(x + xf ) and Z [f ] :=

(
1 +µ[f ]−d λ[f ]d A[f ]

)

the Bianchi-Egnell type result

δ[f ] ≥ C? Z [f ]

4 + Z [f ]
inf
g∈M
J [f |g ]

with xf , λ[f ] and µ[f ] as in the subcritical case

B Notion of time delay [JD, Toscani, 2014, 2015]
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Extending the subcritical result in the critical case

To improve the spectral gap
for m = m1, we need to
adjust the Barenblatt function

Bλ(x) = λ−d/2 B
(
x/
√
λ
)

in or-

der to match
∫
Rd |x |2 v dx where

the function v solves (r FDE) or
to further rescale v according to

v(t, x) = 1
R(t)d

w
(
t + τ(t), x

R(t)

)
,

0
mc = d−2

d

m1 = d−1
d

m2 = d+1
d+2

m̃2 := d+4
d+6

m

1

2

4

Case 1

Case 2

Case 3

γ(m)

(d = 5)

m̃1 := d
d+2

dτ
dt =

(
1
K?

∫
Rd |x |2 v dx

)− d
2 (m−mc )

− 1 , τ(0) = 0 and R(t) = e2 τ(t)

Lemma

t 7→ λ(t) and t 7→ τ(t) are bounded on R+

J. Dolbeault Stability in functional inequalities



Stability, fast diffusion equation and entropy methods
Stability in Caffarelli-Kohn-Nirenberg inequalities ?

Stability in
Caffarelli-Kohn-Nirenberg
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Caffarelli-Kohn-Nirenberg inequalities

Let Da,b :=
{
v ∈ Lp

(
Rd , |x |−b dx

)
: |x |−a |∇v | ∈ L2

(
Rd , dx

)}

(∫

Rd

|v |p
|x |b p

dx

)2/p

≤ Ca,b

∫

Rd

|∇v |2
|x |2 a

dx ∀ v ∈ Da,b

holds under the conditions that a ≤ b ≤ a + 1 if d ≥ 3, a < b ≤ a + 1
if d = 2, a + 1/2 < b ≤ a + 1 if d = 1, and a < ac := (d − 2)/2

p =
2 d

d − 2 + 2 (b − a)

B An optimal function among radial functions:

v?(x) =
(

1 + |x |(p−2) (ac−a)
)− 2

p−2

and C?a,b =
‖ |x |−b v? ‖2

p

‖ |x |−a∇v? ‖2
2

Theorem

Let d ≥ 2 and p < 2∗. Ca,b = C?a,b (symmetry) if and only if
either a ∈ [0, ac) and b > 0, or a < 0 and b ≥ bFS(a)

[JD, Esteban, Loss, 2016]

J. Dolbeault Stability in functional inequalities
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Symmetry versus symmetry breaking

a

b

0

Symmetry and symmetry breaking regions
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More Caffarelli-Kohn-Nirenberg inequalities

On Rd with d ≥ 1, let us consider the Caffarelli-Kohn-Nirenberg
interpolation inequalities

‖f ‖L2p,γ(Rd ) ≤ Cβ,γ,p ‖∇f ‖
θ
L2,β(Rd ) ‖f ‖

1−θ
Lp+1,γ(Rd )

γ−2 < β <
d − 2

d
γ , γ ∈ (−∞, d) , p ∈ (1, p?] with p? :=

d − γ
d − β − 2

,

with θ = (d−γ) (p−1)

p
(
d+β+2−2 γ−p (d−β−2)

) and

‖f ‖Lq,γ(Rd ) :=
(∫

Rd |f |q |x |−γ dx
)1/q

Symmetry means that equality is
achieved by the Aubin-Talenti type functions

g(x) =
(
1 + |x |2+β−γ)− 1

p−1

Theorem

[JD, Esteban, Loss, Muratori, 2017] Symmetry holds if and only if

γ < d , and γ − 2 < β <
d − 2

d
γ and β ≤ βFS(γ)

J. Dolbeault Stability in functional inequalities
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d = 4, p = 2 d = 4, p = 6/5

��

��

d � 2

0

d
--

66

Figure 1. In dimension d = 4, the critical exponent p = p? =
d/(d � 2) = 2 corresponds to the left figure, while p = 6/5 is subcritical
and corresponds to the right figure. The half cone of admissible regions
of the parameters (�, �) appear in grey, with symmetry breaking in dark
grey and symmetry in light grey (the symmetry region is bounded if and
only if p < p?).

1

(γ, β) admissible region
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An improved decay rate along the flow

In self-similar variables, with m = (p + 1)/(2 p)

|x |−γ ∂v
∂t

+∇ ·
(
|x |−β v ∇vm−1

)
= σ∇ ·

(
x |x |−γ v

)

F [v ] =
2 p

1− p

∫

Rd

(
v

p+1
2 p − gp+1 − p + 1

2 p
g1−p (v − g2p

))
|x |−γ dx

Theorem

In the symmetry region, if v ≥ 0 is a solution with a initial datum v0 s.t.

A[v0] := sup
R>0

R
2+β−γ

1−m −(d−γ)

∫

|x|>R

v0(x) |x |−γ dx <∞

then there are some ζ > 0 and some T > 0 such that, with α = 1 + β−γ
2

F [v(t, .)] ≤ F [v0] e− (4α2+ζ) t ∀ t ≥ 2T

[Bonforte, JD, Nazaret, Simonov, 2022]
J. Dolbeault Stability in functional inequalities
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