Stability in functional inequalities

Jean Dolbeault

Ceremade, CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/~dolbeaul

Summer School Direct and Inverse Problems with Applications, and Related Topics Ghent Analysis & PDE Center (19-24 August, 2024)

August 21, 2024

2. Euclidean space

イロト イヨト イヨト イヨト

크

Outline

Stability results for Gagliardo-Nirenberg inequalities on the Euclidean space Stability results for Gagliardo-Nirenberg inequalities on the Euclidean space and extension (weights)

Stability, fast diffusion equation and entropy methods

- Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalities
- The threshold time and the improved entropy entropy production inequality (subcritical case)
- Stability results (subcritical and critical case)

Stability in Caffarelli-Kohn-Nirenberg inequalities ?

< ロ > < 同 > < 三 > < 三 >

J. Dolbeault

Stability in functional inequalities

3 x 3

Stability, fast diffusion equation and entropy methods

The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Constructive stability results in Gagliardo-Nirenberg-Sobolev inequalities

A joint project with M. Bonforte, B. Nazaret and N. Simonov Stability in Gagliardo-Nirenberg-Sobolev inequalities: Flows, regularity and the entropy method arXiv:2007.03674, to appear in Memoirs of the AMS

Constructive stability results in interpolation inequalities and explicit improvements of decay rates of fast diffusion equations

DCDS, 43 (3&4): 10701089, 2023

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequaliti The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Fast diffusion equation and entropy methods

$$\frac{\partial u}{\partial t} = \Delta u^m \tag{FDE}$$

 \blacksquare The Rényi entropy powers and the Gagliardo-Nirenberg inequalities

• Self-similar solutions and the entropy – entropy production method

• Large time asymptotics, spectral analysis (Hardy-Poincaré inequality)

■ Initial time layer: improved entropy – entropy production estimates

Renyi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

< 回 > < 三 > < 三 >

Rényi entropy powers and Gagliardo-Nirenberg-Sobolev inequalities

[Toscani, Savaré, 2014] [JD, Toscani, 2016] [JD, Esteban, Loss, 2016]

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Mass, moment, entropy and Fisher information

(i) Mass conservation. With $m \geq m_c := (d-2)/d$ and $u_0 \in L^1_+(\mathbb{R}^d)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^d}u(t,x)\,dx=0$$

(ii) Second moment. With m > d/(d+2) and $u_0 \in L^1_+(\mathbb{R}^d, (1+|x|^2) dx)$ $\frac{\mathrm{d}}{\mathrm{d}t} \int_{\mathbb{R}^d} |x|^2 u(t,x) dx = 2 d \int_{\mathbb{R}^d} u^m(t,x) dx$

(iii) Entropy estimate. With $m \ge m_1 := (d-1)/d$, $u_0^m \in L^1(\mathbb{R}^d)$ and $u_0 \in L^1_+(\mathbb{R}^d, (1+|x|^2) dx)$

$$\frac{\mathrm{d}}{\mathrm{d}t}\int_{\mathbb{R}^d} u^m(t,x)\,dx = \frac{m^2}{1-m}\int_{\mathbb{R}^d} u\,|\nabla u^{m-1}|^2\,dx$$

Entropy functional and Fisher information functional

$$\mathsf{E}[u] := \int_{\mathbb{R}^d} u^m \, dx \quad \text{and} \quad \mathsf{I}[u] := \frac{m^2}{(1-m)^2} \int_{\mathbb{R}^d} u \, |\nabla u^{m-1}|^2 \, dx$$

Entropy growth rate

$$\begin{aligned} Gagliardo-Nirenberg-Sobolev inequalities \\ \|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{\theta} \|f\|_{L^{p+1}(\mathbb{R}^{d})}^{1-\theta} \geq \mathcal{C}_{GNS}(p) \|f\|_{L^{2p}(\mathbb{R}^{d})} \quad (GNS) \\ p &= \frac{1}{2m-1} \iff m = \frac{p+1}{2p} \in [m_{1}, 1) \\ u &= f^{2p} \text{ so that } u^{m} = f^{p+1} \text{ and } u |\nabla u^{m-1}|^{2} = (p-1)^{2} |\nabla f|^{2} \\ \mathcal{M} &= \|f\|_{L^{2p}(\mathbb{R}^{d})}^{2p} , \quad \mathbb{E}[u] = \|f\|_{L^{p+1}(\mathbb{R}^{d})}^{p+1} , \quad I[u] = (p+1)^{2} \|\nabla f\|_{L^{2}(\mathbb{R}^{d})}^{2} \\ \text{If } u \text{ solves } (FDE) \frac{\partial u}{\partial t} &= \Delta u^{m} \\ \mathbb{E}' \geq \frac{p-1}{2p} (p+1)^{2} \left(\mathcal{C}_{GNS(p)}\right)^{\frac{2}{\theta}} \|f\|_{L^{2p}(\mathbb{R}^{d})}^{\frac{2}{\theta}} \|f\|_{L^{p+1}(\mathbb{R}^{d})}^{2} &= C_{0} \mathbb{E}^{1-\frac{m-m_{c}}{1-m}} \\ \int_{\mathbb{R}^{d}} u^{m}(t,x) \, dx \geq \left(\int_{\mathbb{R}^{d}} u_{0}^{m} \, dx + \frac{(1-m)C_{0}}{m-m_{c}} t\right)^{\frac{1-m}{m-m_{c}}} \quad \forall t \geq 0 \\ \text{Equality case: } u(t,x) &= \frac{c_{1}}{R(t)^{d}} \mathcal{B}\left(\frac{c_{2}x}{R(t)}\right), \quad \mathcal{B}(x) := (1+|x|^{2})^{\frac{1}{m-1}} \end{aligned}$$

Renyi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Pressure variable and decay of the Fisher information

The *t*-derivative of the *Rényi entropy power* $\mathsf{E}^{\frac{2}{d}} \frac{1}{1-m} - 1$ is proportional to $\mathsf{I}^{\theta} \mathsf{F}^{2} \frac{1-\theta}{p+1}$

The nonlinear
$$carré du champ method$$
 can be used to prove (GNS) :

 \triangleright Pressure variable

$$\mathsf{P} := \frac{m}{1-m} u^{m-1}$$

 \triangleright Fisher information

$$\mathsf{I}[u] = \int_{\mathbb{R}^d} u \, |\nabla\mathsf{P}|^2 \, dx$$

If u solves (FDE), then

$$I' = \int_{\mathbb{R}^d} \Delta(u^m) |\nabla \mathsf{P}|^2 \, d\mathbf{x} + 2 \int_{\mathbb{R}^d} u \, \nabla \mathsf{P} \cdot \nabla \left((m-1) \, \mathsf{P} \, \Delta \mathsf{P} + |\nabla \mathsf{P}|^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$
$$= -2 \int_{\mathbb{R}^d} u^m \left(\|\mathsf{D}^2\mathsf{P}\|^2 - (1-m) \left(\Delta \mathsf{P}\right)^2 \right) \, d\mathbf{x}$$

・ロト ・同ト ・ヨト ・ヨト

Rényi entropy powers and interpolation inequalities

 \triangleright Integrations by parts and completion of squares: with $m_1 = \frac{d-1}{d}$

$$- \frac{\mathsf{I}}{2\theta} \frac{\mathrm{d}}{\mathrm{d}t} \log \left(\mathsf{I}^{\theta} \mathsf{E}^{2} \frac{1-\theta}{p+1} \right)$$

$$= \int_{\mathbb{R}^{d}} u^{m} \left\| \mathsf{D}^{2}\mathsf{P} - \frac{1}{d} \Delta\mathsf{P} \operatorname{Id} \right\|^{2} dx + (m-m_{1}) \int_{\mathbb{R}^{d}} u^{m} \left| \Delta\mathsf{P} + \frac{\mathsf{I}}{\mathsf{E}} \right|^{2} dx$$

 $\,\vartriangleright\,$ Analysis of the asymptotic regime as $t\to+\infty$

$$\lim_{t \to +\infty} \frac{\mathsf{I}[u(t,\cdot)]^{\theta} \,\mathsf{E}[u(t,\cdot)]^{2\frac{1-\theta}{p+1}}}{\mathcal{M}^{\frac{2\theta}{\rho}}} = \frac{\mathsf{I}[\mathcal{B}]^{\theta} \,\mathsf{E}[\mathcal{B}]^{2\frac{1-\theta}{p+1}}}{\|\mathcal{B}\|_{\mathrm{L}^{1}(\mathbb{R}^{d})}^{\frac{2\theta}{p}}} = (p+1)^{2\theta} \,\left(\mathcal{C}_{\mathrm{GNS}}(p)\right)^{2\theta}$$

We recover the (GNS) Gagliardo-Nirenberg-Sobolev inequalities

$$\mathsf{I}[u]^{\theta} \, \mathsf{E}[u]^{2\frac{1-\theta}{p+1}} \geq (p+1)^{2\,\theta} \left(\mathcal{C}_{\mathrm{GNS}}(p)\right)^{2\,\theta} \mathcal{M}^{\frac{2\,\theta}{p}}$$

The fast diffusion equation in self-similar variables

- \triangleright Rescaling and self-similar variables
- \triangleright Relative entropy and the entropy entropy production inequality
- \triangleright Large time asymptotics and spectral gaps

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitit The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・

Entropy – entropy production inequality

With a time-dependent rescaling based on *self-similar variables*

$$u(t,x) = \frac{1}{\kappa^d R^d} v\left(\tau, \frac{x}{\kappa R}\right) \quad \text{where} \quad \frac{dR}{dt} = R^{1-\mu}, \quad \tau(t) := \frac{1}{2} \log R(t)$$

 $\frac{\partial u}{\partial t} = \Delta u^m$ is changed into a Fokker-Planck type equation

$$\frac{\partial \mathbf{v}}{\partial \tau} + \nabla \cdot \left[\mathbf{v} \left(\nabla \mathbf{v}^{m-1} - 2 \mathbf{x} \right) \right] = \mathbf{0} \qquad (r \, \mathsf{FDE})$$

Generalized entropy (free energy) and Fisher information

$$\mathcal{F}[v] := -\frac{1}{m} \int_{\mathbb{R}^d} \left(v^m - \mathcal{B}^m - m \mathcal{B}^{m-1} \left(v - \mathcal{B} \right) \right) \, dx$$
$$\mathcal{I}[v] := \int_{\mathbb{R}^d} v \left| \nabla v^{m-1} + 2x \right|^2 \, dx$$

are such that $\mathcal{I}[\nu] \geq 4\,\mathcal{F}[\nu]$ by (GNS) [del Pino, JD, 2002] so that

 $\mathcal{F}[v(t,\cdot)] \leq \mathcal{F}[v_0] e^{-4t}$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

イロト イポト イヨト イヨト

Spectral gap: sharp asymptotic rates of convergence

[Blanchet, Bonforte, JD, Grillo, Vázquez, 2009]

$$(C_0 + |x|^2)^{-\frac{1}{1-m}} \le v_0 \le (C_1 + |x|^2)^{-\frac{1}{1-m}}$$
 (H)

Let $\Lambda_{\alpha,d} > 0$ be the best constant in the Hardy–Poincaré inequality

$$\begin{split} & \Lambda_{\alpha,d} \int_{\mathbb{R}^d} f^2 \, \mathrm{d}\mu_{\alpha-1} \leq \int_{\mathbb{R}^d} |\nabla f|^2 \, \mathrm{d}\mu_{\alpha} \quad \forall \ f \in \mathrm{H}^1(\mathrm{d}\mu_{\alpha}) \,, \quad \int_{\mathbb{R}^d} f \, \mathrm{d}\mu_{\alpha-1} = 0 \\ & \text{with } \mathrm{d}\mu_{\alpha} := (1+|x|^2)^{\alpha} \, dx, \, \text{for } \alpha < 0 \end{split}$$

Lemma

Under assumption (H),

$$\mathcal{F}[v(t,\cdot)] \leq C e^{-2\gamma(m)t} \quad \forall t \geq 0, \quad \gamma(m) := (1-m) \Lambda_{1/(m-1),d}$$

Moreover $\gamma(m) := 2$ if $\frac{d-1}{d} = m_1 \le m < 1$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitit The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

イロト イポト イヨト イヨト

-

Spectral gap

[Denzler, McCann, 2005] [BBDGV, 2009] [BDGV, 2010] [JD, Toscani, 2010-2015] Much more is know, *e.g.*, [Denzler, Koch, McCann, 2015]

Initial and asymptotic time layers

 \triangleright Asymptotic time layer: constraint, spectral gap and improved entropy – entropy production inequality

 \rhd Initial time layer: the carré du champ inequality and a backward estimate

The asymptotic time layer improvement

Linearized free energy and linearized Fisher information

$$\mathsf{F}[g] := \frac{m}{2} \int_{\mathbb{R}^d} g^2 \mathcal{B}^{2-m} \, dx \quad \text{and} \quad \mathsf{I}[g] := m (1-m) \int_{\mathbb{R}^d} |\nabla g|^2 \mathcal{B} \, dx$$

Hardy-Poincaré inequality. Let $d \ge 1$, $m \in (m_1, 1)$ and $g \in L^2(\mathbb{R}^d, \mathcal{B}^{2-m} dx)$ such that $\nabla g \in L^2(\mathbb{R}^d, \mathcal{B} dx)$, $\int_{\mathbb{R}^d} g \mathcal{B}^{2-m} dx = 0$ and $\int_{\mathbb{R}^d} x g \mathcal{B}^{2-m} dx = 0$

$$\mathsf{I}[g] \ge 4 \, \alpha \, \mathsf{F}[g] \quad \text{where} \quad \alpha = 2 - d \left(1 - m\right)$$

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\eta = 2 (d m - d + 1)$ and $\chi = m/(266 + 56 m)$. If $\int_{\mathbb{R}^d} v \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v \, dx = 0$ and

 $(1 - \varepsilon) \mathcal{B} \leq \mathsf{v} \leq (1 + \varepsilon) \mathcal{B}$

for some $\varepsilon \in (0, \chi \eta)$, then

 $\mathcal{I}[\mathbf{v}] \geq (\mathbf{4} + \eta) \mathcal{F}[\mathbf{v}]$

The initial time layer improvement: backward estimate

Hint: for some strictly convex function ψ with $\psi(0) = 0$, $\psi'(0) = 1$, we have

$$\mathcal{I} - 4 \, \mathcal{F} \geq \, 4 \, (\psi(\mathcal{F}) - \mathcal{F}) \geq 0$$

Far from the equality case (*i.e.*, close to an initial datum away from the Barenblatt solutions) for (FDE), we expect some improvement Rephrasing the *carré du champ* method, $\mathcal{Q}[\mathbf{v}] := \frac{\mathcal{I}[\mathbf{v}]}{\mathcal{F}[\mathbf{v}]}$ is such that

$$\frac{d\mathcal{Q}}{dt} \leq \mathcal{Q}\left(\mathcal{Q}-4\right)$$

Lemma

Assume that $m > m_1$ and v is a solution to (r FDE) with nonnegative initial datum v_0 . If for some $\eta > 0$ and $t_* > 0$, we have $\mathcal{Q}[v(t_*, \cdot)] \ge 4 + \eta$, then

$$\mathcal{Q}[v(t,\cdot)] \geq 4 + \frac{4\eta e^{-4t_\star}}{4+\eta-\eta e^{-4t_\star}} \quad \forall t \in [0,t_\star]$$

Renyi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Stability in Gagliardo-Nirenberg-Sobolev inequalities

Our strategy

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

The threshold time and the uniform convergence in relative error

 \triangleright The regularity results allow us to glue the initial time layer estimates with the asymptotic time layer estimates

The improved entropy – entropy production inequality holds for any time along the evolution along (rFDE)

(and in particular for the initial datum)

-

If v is a solves (r FDE) for some nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ satisfying

$$\sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} v_0 \, dx \le A < \infty \tag{H}_A$$

then

$$(1-arepsilon)\,\mathcal{B}\leq oldsymbol{v}(t,\cdot)\leq (1+arepsilon)\,\mathcal{B}\quad orall\,t\geq t_\star$$

for some *explicit* t_{\star} depending only on ε and A

イロト イポト イヨト イヨト

Global Harnack Principle

The *Global Harnack Principle* holds if for some t > 0 large enough

$$\mathcal{B}_{M_1}(t- au_1,x) \leq u(t,x) \leq \mathcal{B}_{M_2}(t+ au_2,x)$$
 (GHP)

[Vázquez, 2003], [Bonforte, Vázquez, 2006]: (GHP) holds if $u_0 \leq |x|^{-\frac{2}{1-m}}$ [Vázquez, 2003], [Bonforte, Simonov, 2020]: (GHP) holds if

$$\mathsf{A}[u_0] := \sup_{R>0} R^{\frac{2}{1-m}-d} \int_{\mathbb{R}^d \setminus B_R(0)} |u_0| \, dx < \infty$$

Theorem

[Bonforte, Simonov, 2020] If $M + A[u_0] < \infty$, then

$$\lim_{t\to\infty}\left\|\frac{u(t)-B(t)}{B(t)}\right\|_{\infty}=0$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Uniform convergence in relative error

Theorem

[Bonforte, JD, Nazaret, Simonov, 2021] Assume that $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1 and let $\varepsilon \in (0, 1/2)$, small enough, A > 0, and G > 0 be given. There exists an explicit threshold time $T \ge 0$ such that, if u is a solution of

$$\frac{\partial u}{\partial t} = \Delta u^m$$
 (FDE)

with nonnegative initial datum $u_0 \in L^1(\mathbb{R}^d)$ satisfying

$$A[u_0] = \sup_{r>0} r^{\frac{d(m-m_c)}{(1-m)}} \int_{|x|>r} u_0 \, dx \le A < \infty \tag{H}_A$$

 $\int_{\mathbb{R}^d} u_0 \, dx = \int_{\mathbb{R}^d} B \, dx = \mathcal{M}$ and $\mathcal{F}[u_0] \leq G,$ then

$$\sup_{x\in\mathbb{R}^d} \left|\frac{u(t,x)}{B(t,x)} - 1\right| \leq \varepsilon \quad \forall \, t \geq T$$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

The threshold time

Proposition

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/3, 1)$ if d = 1, $\varepsilon \in (0, \varepsilon_{m,d})$, A > 0 and G > 0 $T = c_* \frac{1 + A^{1-m} + G^{\frac{\alpha}{2}}}{\varepsilon^a}$ where $a = \frac{\alpha}{\vartheta} \frac{2-m}{1-m}$, $\alpha = d(m - m_c)$ and $\vartheta = \nu/(d + \nu)$

$$\mathbf{c}_{\star} = \mathbf{c}_{\star}(m, d) = \sup_{\varepsilon \in (0, \varepsilon_{m, d})} \max \left\{ \varepsilon \, \kappa_1(\varepsilon, m), \, \varepsilon^{\mathsf{a}} \kappa_2(\varepsilon, m), \, \varepsilon \, \kappa_3(\varepsilon, m) \right\}$$

$$\kappa_{1}(\varepsilon, m) := \max\left\{\frac{8c}{(1+\varepsilon)^{1-m}-1}, \frac{2^{3-m}\kappa_{\star}}{1-(1-\varepsilon)^{1-m}}\right\}$$

$$\kappa_{2}(\varepsilon, m) := \frac{(4\alpha)^{\alpha-1} \mathsf{K}^{\frac{\alpha}{\vartheta}}}{\varepsilon^{\frac{2-m}{1-m}\frac{\alpha}{\vartheta}}} \quad \text{and} \quad \kappa_{3}(\varepsilon, m) := \frac{8\alpha^{-1}}{1-(1-\varepsilon)^{1-m}}$$

J. Dolbeault

Stability in functional inequalities

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

イロト イポト イヨト イヨト

Improved entropy – entropy production inequality (subcritical case)

Theorem

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. Then there is a positive number ζ such that

 $\mathcal{I}[v] \ge (4 + \zeta) \mathcal{F}[v]$

for any nonnegative function $v \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v] = G$, $\int_{\mathbb{R}^d} v \, dx = \mathcal{M}, \int_{\mathbb{R}^d} x \, v \, dx = 0$ and v satisfies (H_A)

We have the asymptotic time layer estimate

$$\varepsilon \in (0, 2\varepsilon_{\star}), \quad \varepsilon_{\star} := \frac{1}{2} \min \left\{ \varepsilon_{m,d}, \chi \eta \right\} \quad \text{with} \quad t_{\star} = t_{\star}(\varepsilon) = \frac{1}{2} \log R(T)$$
$$(1 - \varepsilon) \mathcal{B} \le v(t, \cdot) \le (1 + \varepsilon) \mathcal{B} \quad \forall t \ge t_{\star}$$

and, as a consequence, the *initial time layer estimate*

 $\mathcal{I}[v(t,.)] \ge (4+\zeta) \,\mathcal{F}[v(t,.)] \quad \forall \, t \in [0, t_{\star}] \quad \text{where} \quad \frac{\zeta}{4+\eta - \eta \, e^{-4 \, t_{\star}}}$

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

2

Two consequences

$$\zeta = \mathsf{Z}(\mathsf{A}, \mathcal{F}[u_0]), \quad \mathsf{Z}(\mathsf{A}, \mathsf{G}) := \frac{\zeta_{\star}}{1 + \mathsf{A}^{(1-m)\frac{2}{\alpha}} + \mathsf{G}}, \quad \zeta_{\star} := \frac{4\eta \, c_{\alpha}}{4+\eta} \left(\frac{\varepsilon_{\star}^{a}}{2 \, \alpha \, \mathsf{c}_{\star}}\right)^{\frac{1}{\alpha}}$$

 \rhd Improved decay rate for the fast diffusion equation in rescaled variables

Corollary

Let $m \in (m_1, 1)$ if $d \ge 2$, $m \in (1/2, 1)$ if d = 1, A > 0 and G > 0. If v is a solution of (rFDE) with nonnegative initial datum $v_0 \in L^1(\mathbb{R}^d)$ such that $\mathcal{F}[v_0] = G$, $\int_{\mathbb{R}^d} v_0 \, dx = \mathcal{M}$, $\int_{\mathbb{R}^d} x \, v_0 \, dx = 0$ and v_0 satisfies (H_A), then

$$\mathcal{F}[v(t,.)] \leq \mathcal{F}[v_0] e^{-(4+\zeta)t} \quad \forall t \geq 0$$

 $\triangleright \text{ The stability in the entropy - entropy production estimate} \\ \mathcal{I}[v] - 4 \mathcal{F}[v] \ge \zeta \mathcal{F}[v] \text{ also holds in a stronger sense}$

$$\mathcal{I}[v] - 4\mathcal{F}[v] \geq \frac{\zeta}{4+\zeta} \mathcal{I}[v]$$

イロト イポト イヨト イヨト

Stability results (subcritical case)

 \triangleright We rephrase the results obtained by entropy methods in the language of stability $\grave{a}~la$ Bianchi-Egnell

Subcritical range

$$p^* = +\infty$$
 if $d = 1$ or 2, $p^* = \frac{d}{d-2}$ if $d \ge 3$

$$\begin{split} \lambda[f] &:= \left(\frac{2 d \kappa[f]^{p-1}}{p^2 - 1} \frac{\|f\|_{L^{p+1}(\mathbb{R}^d)}^{p+1}}{\|\nabla f\|_{L^2(\mathbb{R}^d)}^2}\right)^{\frac{2p}{d-p(d-4)}}, \quad \kappa[f] := \frac{\mathcal{M}^{\frac{1}{2p}}}{\|f\|_{L^{2p}(\mathbb{R}^d)}}\\ \mathsf{A}[f] &:= \frac{\mathcal{M}}{\lambda[f]^{\frac{d-p(d-4)}{p-1}} \|f\|_{L^{2p}(\mathbb{R}^d)}^2} \sup_{r>0} r^{\frac{d-p(d-4)}{p-1}} \int_{|x|>r} |f(x+x_f)|^{2p} dx\\ \mathsf{E}[f] &:= \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(\frac{\kappa[f]^{p+1}}{\lambda[f]^{\frac{d-p}{2p}}} f^{p+1} - \mathsf{g}^{p+1} - \frac{1+p}{2p} \mathsf{g}^{1-p} \left(\frac{\kappa[f]^{2p}}{\lambda[f]^2} f^{2p} - \mathsf{g}^{2p}\right)\right) dx\\ \mathfrak{S}[f] &:= \frac{\mathcal{M}^{\frac{p-1}{2p}}}{p^2-1} \frac{1}{C(p,d)} \mathsf{Z}(\mathsf{A}[f],\mathsf{E}[f]) \end{split}$$

Theorem

Let
$$d \ge 1$$
, $p \in (1, p^*)$
If $f \in \mathcal{W}_p(\mathbb{R}^d) := \left\{ f \in \mathrm{L}^{2p}(\mathbb{R}^d) : \nabla f \in \mathrm{L}^2(\mathbb{R}^d), |x| f^p \in \mathrm{L}^2(\mathbb{R}^d) \right\}$,

$$\left(\left\|\nabla f\right\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{\theta}\left\|f\right\|_{\mathrm{L}^{p+1}(\mathbb{R}^{d})}^{1-\theta}\right)^{2p\gamma}-\left(\mathcal{C}_{\mathrm{GN}}\left\|f\right\|_{\mathrm{L}^{2p}(\mathbb{R}^{d})}\right)^{2p\gamma}\geq\mathfrak{S}[f]\left\|f\right\|_{\mathrm{L}^{2p}(\mathbb{R}^{d})}^{2p\gamma}\mathsf{E}[f]$$

With $\mathcal{K}_{\text{GNS}} = C(p, d) C_{\text{GNS}}^{2 p \gamma}$, $\gamma = \frac{d+2-p(d-2)}{d-p(d-4)}$, consider the *deficit* functional

$$\delta[f] := (p-1)^2 \, \left\| \nabla f \right\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 + 4 \, \frac{d - p \, (d-2)}{p+1} \, \left\| f \right\|_{\mathrm{L}^{p+1}(\mathbb{R}^d)}^{p+1} - \mathcal{K}_{\mathrm{GNS}} \, \left\| f \right\|_{\mathrm{L}^{2p}(\mathbb{R}^d)}^{2p \, \gamma}$$

Theorem

Let $d \ge 1$ and $p \in (1, p^*)$. There is an explicit C = C[f] such that, for any $f \in L^{2p}(\mathbb{R}^d, (1 + |x|^2) dx)$ such that $\nabla f \in L^2(\mathbb{R}^d)$ and $A[f^{2p}] < \infty$,

$$\delta[f] \geq \mathcal{C}[f] \inf_{\varphi \in \mathfrak{M}} \int_{\mathbb{R}^d} \left| (p-1) \nabla f + f^p \nabla \varphi^{1-p} \right|^2 dx$$

 \triangleright The dependence of $\mathcal{C}[f]$ on $\mathsf{A}[f^{2p}]$ and $\mathcal{F}[f^{2p}]$ is explicit and does not degenerate if $f \in \mathfrak{M}$

 \triangleright Can we remove the condition $\mathsf{A}\left[f^{2p}\right]<\infty$?

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Stability in Sobolev's inequality (critical case)

- \triangleright A constructive stability result
- \triangleright The main ingredient of the proof

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequaliti The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

A constructive stability result

Let
$$2 p^* = 2d/(d-2) = 2^*, d \ge 3$$
 and
 $\mathcal{W}_{p^*}(\mathbb{R}^d) = \left\{ f \in L^{p^*+1}(\mathbb{R}^d) : \nabla f \in L^2(\mathbb{R}^d), |x| f^{p^*} \in L^2(\mathbb{R}^d) \right\}$

Deficit of the Sobolev inequality: $\delta[f] := \|\nabla f\|_{L^2(\mathbb{R}^d)}^2 - S_d^2 \|f\|_{L^{2^*}(\mathbb{R}^d)}^2$

Theorem

Let $d \ge 3$ and A > 0. Then for any nonnegative $f \in W_{p^*}(\mathbb{R}^d)$ such that

$$\int_{\mathbb{R}^d} (1, x, |x|^2) \, f^{2^*} \, dx = \int_{\mathbb{R}^d} (1, x, |x|^2) \, \mathrm{g} \, dx \quad \text{and} \quad \sup_{r>0} r^d \int_{|x|>r} f^{2^*} \, dx \leq A$$

we have

$$\delta[f] \geq \frac{\mathcal{C}_{\star}(A)}{4 + \mathcal{C}_{\star}(A)} \int_{\mathbb{R}^d} \left| \nabla f + \frac{d-2}{2} f^{\frac{d}{d-2}} \nabla g^{-\frac{2}{d-2}} \right|^2 dx$$

 $\mathcal{C}_\star(A)=\mathfrak{C}_\star\left(1\!+\!A^{1/(2\,d)}\right)^{-1}$ and $\mathfrak{C}_\star>0$ depends only on d

Peculiarities of the critical case

 \triangleright We can remove the normalization of f, use the r.h.s. to measure the distance to the Aubin-Talenti manifold of optimal functions (in relative Fisher information) and obtain for

$$A[f] := \sup_{r>0} \, r^d \, \int_{r>0} |f|^{2^*}(x+x_f) \quad \text{and} \quad Z[f] := \left(1 + \mu[f]^{-d} \, \lambda[f]^d \, A[f]\right)$$

the Bianchi-Egnell type result

$$\delta[f] \geq \frac{\mathfrak{C}_{\star} Z[f]}{4 + Z[f]} \inf_{g \in \mathfrak{M}} \mathcal{J}[f|g]$$

with x_f , $\lambda[f]$ and $\mu[f]$ as in the subcritical case \triangleright Notion of time delay [JD, Toscani, 2014, 2015]

Rényi entropy powers, fast diffusion and Gagliardo-Nirenberg-Sobolev inequalitie. The threshold time and the improved entropy – entropy production inequality (su Stability results (subcritical and critical case)

Extending the subcritical result in the critical case

To improve the spectral gap for $m = m_1$, we need to adjust the Barenblatt function $\mathcal{B}_{\lambda}(x) = \lambda^{-d/2} \mathcal{B}\left(x/\sqrt{\lambda}\right)$ in order to match $\int_{\mathbb{R}^d} |x|^2 v \, dx$ where the function v solves (r FDE) or to further rescale v according to

$$v(t,x) = rac{1}{\mathfrak{R}(t)^d} w\left(t+ au(t),rac{x}{\mathfrak{R}(t)}
ight),$$

$$\frac{\mathrm{d}\tau}{\mathrm{d}t} = \left(\frac{1}{\mathcal{K}_{\star}} \int_{\mathbb{R}^d} |x|^2 \, v \, dx\right)^{-\frac{d}{2} \left(m - m_c\right)} - 1 \,, \quad \tau(0) = 0 \quad \text{and} \quad \mathfrak{R}(t) = e^{2 \, \tau(t)}$$

Lemma

$$t\mapsto\lambda(t)$$
 and $t\mapsto au(t)$ are bounded on \mathbb{R}^+

Stability in Caffarelli-Kohn-Nirenberg inequalities ?

- 4 同 ト 4 ヨ ト 4 ヨ ト

Caffarelli-Kohn-Nirenberg inequalities

Let
$$\mathcal{D}_{a,b} := \left\{ v \in \mathrm{L}^p\left(\mathbb{R}^d, |x|^{-b} \, dx\right) \, : \, |x|^{-a} \, |\nabla v| \in \mathrm{L}^2\left(\mathbb{R}^d, dx\right) \right\}$$
$$\left(\int_{\mathbb{R}^d} \frac{|v|^p}{|x|^{b\,p}} \, dx \right)^{2/p} \leq \mathsf{C}_{a,b} \int_{\mathbb{R}^d} \frac{|\nabla v|^2}{|x|^{2\,a}} \, dx \quad \forall \, v \in \mathcal{D}_{a,b}$$

holds under the conditions that $a \le b \le a+1$ if $d \ge 3$, $a < b \le a+1$ if d = 2, $a + 1/2 < b \le a+1$ if d = 1, and $a < a_c := (d-2)/2$ $p = \frac{2d}{d-2+2(b-a)}$

 $\succ An optimal function among radial functions: \\ v_{\star}(x) = \left(1 + |x|^{(p-2)(a_c-a)}\right)^{-\frac{2}{p-2}} \quad \text{and} \quad C_{a,b}^{\star} = \frac{\||x|^{-b} v_{\star}\|_{p}^{2}}{\||x|^{-a} \nabla v_{\star}\|_{2}^{2}}$

Theorem

Let
$$d \ge 2$$
 and $p < 2^*$. $C_{a,b} = C_{a,b}^{\star}$ (symmetry) if and only if
either $a \in [0, a_c)$ and $b > 0$, or $a < 0$ and $b \ge b_{FS}(a)$
[JD, Esteban, Loss, 2016]

Symmetry *versus* symmetry breaking

Symmetry and symmetry breaking regions

-

More Caffarelli-Kohn-Nirenberg inequalities

On \mathbb{R}^d with $d \geq 1$, let us consider the Caffarelli-Kohn-Nirenberg interpolation inequalities

$$\begin{split} \|f\|_{\mathrm{L}^{2p,\gamma}(\mathbb{R}^d)} &\leq \mathcal{C}_{\beta,\gamma,p} \, \|\nabla f\|_{\mathrm{L}^{2,\beta}(\mathbb{R}^d)}^{\theta} \, \|f\|_{\mathrm{L}^{p+1,\gamma}(\mathbb{R}^d)}^{1-\theta} \\ \gamma-2 &< \beta < \frac{d-2}{d} \, \gamma \,, \quad \gamma \in (-\infty,d) \,, \quad p \in (1,p_\star] \quad \text{with} \quad p_\star := \frac{d-\gamma}{d-\beta-2} \,, \\ \text{with} \, \theta &= \frac{(d-\gamma)(p-1)}{p \left(d+\beta+2-2\gamma-p(d-\beta-2)\right)} \text{ and} \\ \|f\|_{\mathrm{L}^{q,\gamma}(\mathbb{R}^d)} &:= \left(\int_{\mathbb{R}^d} |f|^q \, |x|^{-\gamma} \, dx\right)^{1/q} \text{ Symmetry means that equality is} \\ \text{achieved by the Aubin-Talenti type functions} \end{split}$$

$$g(x) = (1 + |x|^{2+\beta-\gamma})^{-\frac{1}{p-1}}$$

Theorem

[JD, Esteban, Loss, Muratori, 2017] Symmetry holds if and only if

$$\gamma < d\,, \hspace{1em}$$
 and $\hspace{1em} \gamma - 2 < eta < rac{d-2}{d}\,\gamma \hspace{1em}$ and $\hspace{1em} eta \leq eta_{
m FS}(\gamma)$

J. Dolbeault

Stability in functional inequalities

 (γ, β) admissible region

(日) (國) (문) (문) (문)

0

An improved decay rate along the flow

In self-similar variables, with $m=(p+1)/(2\,p)$

$$|x|^{-\gamma} \frac{\partial v}{\partial t} + \nabla \cdot \left(|x|^{-\beta} v \nabla v^{m-1}\right) = \sigma \nabla \cdot \left(x |x|^{-\gamma} v\right)$$
$$\mathcal{F}[v] = \frac{2p}{1-p} \int_{\mathbb{R}^d} \left(v^{\frac{p+1}{2p}} - g^{p+1} - \frac{p+1}{2p} g^{1-p} \left(v - g^{2p}\right)\right) |x|^{-\gamma} dx$$

Theorem

In the symmetry region, if $v \geq 0$ is a solution with a initial datum v_0 s.t.

$$A[v_0] := \sup_{R>0} R^{\frac{2+\beta-\gamma}{1-m} - (d-\gamma)} \int_{|x|>R} v_0(x) |x|^{-\gamma} dx < \infty$$

then there are some $\zeta > 0$ and some T > 0 such that, with $\alpha = 1 + \frac{\beta - \gamma}{2}$

$$\mathcal{F}[v(t,.)] \leq \mathcal{F}[v_0] e^{-(4\alpha^2 + \zeta)t} \quad \forall t \geq 2 T$$

[Bonforte, JD, Nazaret, Simonov, 2022]

・ロン ・四 ・ ・ ヨ ・ ・ ヨ ・