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The history of the problem
Sobolev and HLS inequalities

An introduction to entropy methods

Outline

1. Introduction
• The Sobolev inequality and the non-constructive stability result of
Bianchi–Egnell using concentration-compactness methods
• Duality and stability in Hardy-Littlewood-Sobolev inequalities
• An example of entropy methods on the Euclidean space

• 2. Euclidean space. Stability results for Gagliardo-Nirenberg
inequalities on the Euclidean space and extension (weights)

• 3. Sphere. Stability results on the sphere and on the Gaussian
space seen as an infinite dimensional limit of spheres

• 4. Sobolev and LSI. Constructive stability results for the Sobolev
and the logarithmic Sobolev inequalities
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Stability for the Sobolev inequality: the history

B In the Sobolev inequality ([Rodemich, 1969], [Aubin, 1976],
[Talenti, 1976])

‖∇f ‖2
L2(Rd ) ≥ Sd ‖f ‖2

L2∗ (Rd )

the optimal constant is Sd = 1
4 d (d − 2) |Sd |1−2/d with equality on the

manifold M = {ga,b,c} of the Aubin-Talenti functions
B [Lions] a qualitative stability result

if lim
n→∞

‖∇fn‖2
2/‖fn‖2

2∗ = Sd , then lim
n→∞

inf
g∈M

‖∇fn −∇g‖2
2/‖∇fn‖2

2 = 0

B [Brezis, Lieb], 1985 a quantitative stability result ?
B [Bianchi, Egnell, 1991] there is some non-explicit cBE > 0 such that

‖∇f ‖2
2 ≥ Sd ‖f ‖2

2∗ + cBE inf
g∈M

‖∇f −∇g‖2
2

The strategy of Bianchi & Egnell involves two steps:
– a local (spectral) analysis: the neighbourhood of M
– a local-to-global extension based on concentration-compactness :

the far away regimeThe constant cBE is not explicit
J. Dolbeault Stability in functional inequalities
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Duality and Yamabe flow
Entropy methods, improvements
(log)-HLS: Carlen’s duality

Sobolev and Hardy-Littlewood-Sobolev
inequalities

B Stability in a weaker norm, with explicit constants

B From duality to improved estimates based on Yamabe’s flow
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Duality and Yamabe flow
Entropy methods, improvements
(log)-HLS: Carlen’s duality

Sobolev and HLS

As it has been noticed by E. Lieb, Sobolev’s inequality in Rd , d ≥ 3,

‖u‖2
L2∗ (Rd ) ≤ Sd ‖∇u‖2

L2(Rd ) ∀ u ∈ Ḣ1(Rd) (S)

and the Hardy-Littlewood-Sobolev inequality

Sd ‖v‖2

L
2 d
d+2 (Rd )

≥
∫
Rd

v (−∆)−1v dx ∀ v ∈ L
2 d
d+2 (Rd) (HLS)

are dual of each other. Here Sd is the Aubin-Talenti constant,
2∗ = 2 d

d−2 , (2∗)′ = 2 d
d+2 and by the Legendre transform

supu

(∫
Rd u v dx − 1

2‖u‖
2
L2∗ (Rd )

)
= 1

2‖v‖
2

L
2 d
d+2 (Rd )

supu

(∫
Rd u v dx − 1

2‖∇u‖
2
L2(Rd )

)
= 1

2

∫
Rd v (−∆)−1v dx

J. Dolbeault Stability in functional inequalities
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Improved Sobolev inequality by duality

Theorem

[JD, Jankowiak] Assume that d ≥ 3 and let q = d+2
d−2 . There exists a

positive constant C < 1 such that

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫
Rd

wq (−∆)−1wq dx

≤ C Sd ‖w‖
8

d−2

L2∗ (Rd )

(
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

)
for any w ∈ Ḣ1(Rd)
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Proof: the completion of a square

Integrations by parts show that∫
Rd

|∇(−∆)−1 v |2 dx =

∫
Rd

v (−∆)−1 v dx

and, if v = uq with q = d+2
d−2 ,∫

Rd

∇u · ∇(−∆)−1 v dx =

∫
Rd

u v dx =

∫
Rd

u2∗ dx

Hence the expansion of the square

0 ≤
∫
Rd

∣∣∣∣Sd ‖u‖
4

d−2

L2∗ (Rd )
∇u −∇(−∆)−1 v

∣∣∣∣2 dx
shows that (with C = 1)

0 ≤ Sd ‖u‖
8

d−2

L2∗ (Rd )

(
Sd ‖∇u‖2

L2(Rd ) − ‖u‖
2
L2∗ (Rd )

)
−
(

Sd ‖uq‖2

L
2 d
d+2 (Rd )

−
∫
Rd

uq (−∆)−1 uq dx

)
J. Dolbeault Stability in functional inequalities
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Using a nonlinear flow to relate Sobolev and HLS

Consider the fast diffusion equation

∂v

∂t
= ∆vm t > 0 , x ∈ Rd (FDE)

If we define H(t) := Hd [v(t, ·)], with

Hd [v ] :=

∫
Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

≤

then we observe that

1

2
H′ = −

∫
Rd

vm+1 dx + Sd

(∫
Rd

v
2 d
d+2 dx

) 2
d
∫
Rd

∇vm · ∇v
d−2
d+2 dx

where v = v(t, ·) is a solution of (FDE). With the choice m = d−2
d+2 , we

find that m + 1 = 2 d
d+2

J. Dolbeault Stability in functional inequalities
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A simple observation

Proposition

[JD] Assume that d ≥ 3 and m = d−2
d+2 . If v is a solution of (FDE)

with nonnegative initial datum in L2d/(d+2)(Rd), then

1

2

d

dt

(∫
Rd

v (−∆)−1v dx − Sd ‖v‖2

L
2 d
d+2 (Rd )

)
=

(∫
Rd

vm+1 dx

) 2
d (

Sd ‖∇u‖2
L2(Rd ) − ‖u‖

2
L2∗ (Rd )

)
≥ 0

The HLS inequality amounts to H ≤ 0 and appears as a consequence
of Sobolev, that is H′ ≥ 0 if we show that lim supt>0 H(t) = 0
Notice that u = vm is an optimal function for (S) if v is optimal
for (HLS)

J. Dolbeault Stability in functional inequalities
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Improved Sobolev inequality

By integrating along the flow defined by (FDE), we can actually
obtain optimal integral remainder terms which improve on the usual
Sobolev inequality (S), with d ≥ 5 for integrability reasons

Theorem

[JD] Assume that d ≥ 5 and let q = d+2
d−2 . There exists a positive

constant C ≤
(
1 + 2

d

) (
1− e−d/2

)
Sd such that

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫
Rd

wq (−∆)−1wq dx

≤ C ‖w‖
8

d−2

L2∗ (Rd )

(
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

)
for any w ∈ Ḣ1(Rd)

Proof: use the convexity properties of t 7→ J(t) :=
∫
Rd v(t, x)m+1 dx to

get an estimate of the extinction time and combine with a differential
inequality for t 7→ H(t)

J. Dolbeault Stability in functional inequalities
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Solutions with separation of variables

Consider the solution of ∂v
∂t = ∆vm vanishing at t = T :

vT (t, x) = c (T − t)α (F (x))
d+2
d−2

where F is the Aubin-Talenti solution of

−∆F = d (d − 2)F (d+2)/(d−2)

Let ‖v‖∗ := supx∈Rd (1 + |x |2)d+2 |v(x)|

Lemma

[del Pino, Saez], [Vázquez, Esteban, Rodriguez] For any solution v
with initial datum v0 ∈ L2d/(d+2)(Rd), v0 > 0, there exists T > 0,
λ > 0 and x0 ∈ Rd such that

lim
t→T−

(T − t)−
1

1−m ‖v(t, ·)/v(t, ·)− 1‖∗ = 0

with v(t, x) = λ(d+2)/2 vT (t, (x − x0)/λ)

J. Dolbeault Stability in functional inequalities
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Another improvement

Jd [v ] :=

∫
Rd

v
2 d
d+2 dx and Hd [v ] :=

∫
Rd

v (−∆)−1v dx−Sd ‖v‖2

L
2 d
d+2 (Rd )

Theorem

[JD, Jankowiak] Assume that d ≥ 3. Then we have

0 ≤ Hd [v ] + Sd Jd [v ]1+ 2
d ϕ
(

Jd [v ]
2
d−1

(
Sd ‖∇u‖2

L2(Rd ) − ‖u‖
2
L2∗ (Rd )

))
∀ u ∈ Dα , v = u

d+2
d−2

where ϕ(x) :=
√
C2 + 2 C x − C for any x ≥ 0

Proof: H(t) = −Y(J(t)) ∀ t ∈ [0,T ), κ0 :=
H′0
J0

and consider the
differential inequality

Y′
(
C Sd s

1+ 2
d + Y

)
≤ d + 2

2 d
C κ0 S2

d s
1+ 4

d , Y(0) = 0 , Y(J0) = −H0

J. Dolbeault Stability in functional inequalities
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C = 1 is not optimal

C = 1 is the constant in the expansion of the square method

Theorem

[JD, Jankowiak] In the inequality

Sd ‖wq‖2

L
2 d
d+2 (Rd )

−
∫
Rd

wq (−∆)−1wq dx

≤ Cd Sd ‖w‖
8

d−2

L2∗ (Rd )

(
‖∇w‖2

L2(Rd ) − Sd ‖w‖2
L2∗ (Rd )

)
we have

d

d + 4
≤ Cd < 1

based on a (painful) linearization

Extensions:
Moser-Trudinger-Onofri inequality
fractional Laplacian operator [Jankowiak, Nguyen]

J. Dolbeault Stability in functional inequalities
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Stability for (log)-HLS inequality: Carlen’s duality

Logarithmic Hardy-Littlewood-Sobolev inequality

H[f ] :=

∫
R2

f log f dx+2

∫∫
R2×R2

f (x) f (y) log |x−y | dx dy+1+log π ≥ 0

with manifold of optimal functions M generated from

f?(x) := π−1
(
1 + |x |2

)−2
by translations and scalings

Theorem

[Carlen 2024] If f ≥ 0 is such that ‖f ‖L1(R2) = 1

H[f ] ≥ 1

32
inf

g∈M
‖f − g‖2

L1(R2)

Based on [Gui, Moradifam, 2018] (Onofri inequality) and [Carlen,
Figalli 2014] on Keller-Segel, [Blanchet, JD, Perthame, 2006]

Hardy-Littlewood-Sobolev inequality:
[Carlen 2017], [Chen, Lu, Tang 2023]

J. Dolbeault Stability in functional inequalities
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An introduction
to entropy methods

Entropies and diffusions on Rd (linear case)
B ϕ-entropies and entropy-entropy production inequalities
B The Bakry-Emery or carré du champ method
B Improvements and stability
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The Fokker-Planck equation (domain in Rd)

The linear Fokker-Planck (FP) equation

∂u

∂t
= ∆u +∇ · (u∇ψ)

on a domain Ω ⊂ Rd , with no-flux boundary conditions

(∇u + u∇ψ) · ν = 0 on ∂Ω

is equivalent to the Ornstein-Uhlenbeck (OU) equation

∂v

∂t
= ∆v −∇ψ · ∇v =: Lv

[Bakry, Emery, 1985], [Arnold, Markowich, Toscani, Unterreiter, 2001]
With mass normalized to 1, the unique stationary solution of (FP) is

us = e−ψ ⇐⇒ vs = 1

J. Dolbeault Stability in functional inequalities
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Definition of the ϕ-entropies

If dγ = e−ψ dx is the invariant probability measure, let

E [v ] :=

∫
Rd

ϕ(v) dγ

ϕ is a nonnegative convex continuous function on R+ such that
ϕ(1) = 0 and 1/ϕ′′ is concave on (0,+∞):

ϕ′′ ≥ 0 , ϕ ≥ ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0

Classical examples

ϕp(v) := 1
p−1

(
vp − 1− p (v − 1)

)
p ∈ (1, 2]

ϕ1(v) := v log v − (v − 1) , ϕ2(v) := |v − 1|2

The invariant measure
dγ = e−ψ dx

where ψ is a potential such that e−ψ is in L1(Rd , dx)
dγ is a probability measure

J. Dolbeault Stability in functional inequalities
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Entropy – entropy production inequalities, linear flows

Case of a smooth convex bounded domain Ω

∂v

∂t
= ∆v −∇ψ · ∇v , ∇v · ν = 0 on ∂Ω

d

dt

∫
Ω

vq − 1

q − 1
dγ = −4

q

∫
Ω

|∇w |2 dγ and w = vq/2

d

dt

∫
Ω

|∇w |2 dγ ≤ − 2 Λ(q)

∫
Ω

|∇w |2 dγ

where Λ(q) > 0 is the best constant in the inequality

2

q
(q − 1)

∫
Ω

|∇X |2 dγ +

∫
Ω

Hessψ : X ⊗ X dγ ≥ Λ(q)

∫
Ω

|X |2 dγ

Proposition

∫
Ω

vq − 1

q − 1
dγ ≤ 4

q Λ(q)

∫
Ω

∣∣∇vq/2
∣∣2 dγ for any v s.t.

∫
Ω

v dγ = 1

[Bakry, Emery, 1984] [JD, Nazaret, Savaré, 2008]
J. Dolbeault Stability in functional inequalities
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The Bakry-Emery method (domain in Rd)

With dγ = us dx and v such that
∫

Ω
v dγ = 1, q ∈ (1, 2]

q-entropy

Eq[v ] :=
1

q − 1

∫
Ω

(vq − 1− q (v − 1)) dγ

q-Fisher information with w = vq/2

Iq[v ] :=
4

q

∫
Ω

|∇w |2 dγ

B The strategy

d

dt
Eq[v(t, ·)] = −Iq[v(t, ·)] and

d

dt

(
Iq[v ]− 2λ Eq[v ]

)
≤ 0

B The decay rates

Iq[v(t, ·)] ≤ Iq[v(0, ·)] e−2λ t and Eq[v(t, ·)] ≤ Eq[v(0, ·)] e−2λ t

B The entropy-entropy production inequality

Iq[v ] ≥ 2λ Eq[v ] ∀ v ∈ H1(Ω, dγ)

J. Dolbeault Stability in functional inequalities
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Properties of the ϕ-entropies

Generalized Csiszár-Kullback-Pinsker inequality: [Pinsker], [Csiszár
1967], [Kullback 1967], [Cáceres, Carrillo, JD, 2002]

E [v ] ≥ Cq ‖v − 1‖2
Lq(Rd ,dγ) , Cq = inf

s∈(0,∞)

s2−q ϕ′′(s)

22/q
min

{
1, ‖v‖q−2

Lq(Rd ,dγ)

}
Tensorization and sub-additivity∫∫

Rd1×Rd2

ϕ′′(v) |∇v |2 dγ1 dγ2 ≥ min{Λ1,Λ2} Eγ1⊗γ2 [v ]

Holley-Stroock type perturbation results: if for some constants a,
b ∈ R, e−b dγ ≤ dµ ≤ e−a dγ, then

ea−b Λ

∫
Rd

[
ϕ(v)− ϕ(ṽ)− ϕ′(ṽ)(v − ṽ)

]
dµ ≤

∫
Rd

ϕ′′(v) |∇v |2 dµ

J. Dolbeault Stability in functional inequalities
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Improved entropy – entropy production inequalities

In the special case ψ(x) = |x |2/2 + d
2 log(2π), with w = vq/2, we

obtain that

1

2

d

dt

∫
Rd

|∇w |2 dγ +

∫
Rd

|∇w |2 dγ ≤ − 2

q
κq

∫
Rd

|∇w |4

w2
dγ

with κq = (q − 1) (2− q)/q

Cauchy-Schwarz:
(∫

Rd |∇w |2 dγ
)2 ≤

∫
Rd

|∇w |4
w2 dγ

∫
Rd w

2 dγ

d

dt
I[v ] + 2 I[v ] ≤ −κq

I[v ]2

1 + (q − 1) E [v ]

Proposition

Assume that q ∈ (1, 2) and dγ = (2π)−d/2 e−|x|
2/2 dx . There exists a

strictly convex function Ψ such that Ψ(0) = 0 and Ψ′(0) = 1 and

Ψ
(
‖f ‖2

L2(Rd ,dγ) − 1
)
≤ ‖∇f ‖2

L2(Rd ,dγ) if ‖f ‖Lq(Rd ,dγ) = 1

J. Dolbeault Stability in functional inequalities
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Two references

J.D. and X. Li. Phi-Entropies: convexity, coercivity and
hypocoercivity for Fokker-Planck and kinetic Fokker-Planck
equations. Mathematical Models and Methods in Applied Sciences, 28
(13): 2637-2666, 2018.

D. Bakry, I. Gentil, and M. Ledoux. Analysis and geometry of
Markov diffusion operators, volume 348 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer, Cham, 2014.
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Improved inequalities and stability results

Entropy – entropy production inequality

I[u] ≥ Λ E [u]

B Improved entropy – entropy production inequality (weaker
form)

I ≥ Λ Ψ(E)

for some Ψ such that Ψ(0) = 0, Ψ′(0) = 1 and Ψ′′ > 0

I − Λ E ≥ Λ (Ψ(E)− E) ≥ 0

B Improved constant means stability
Under some restrictions on the functions, there is some Λ? > Λ such
that

I − Λ E ≥ (Λ? − Λ) E ≥ 0 or I − Λ E ≥
(

1− Λ

Λ?

)
I ≥ 0

J. Dolbeault Stability in functional inequalities
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These slides can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Lectures/
B Lectures

More related papers can be found at

http://www.ceremade.dauphine.fr/∼dolbeaul/Preprints/list/
B Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeault@ceremade.dauphine.fr

Thank you for your attention !
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