Stability results for Sobolev and logarithmic Sobolev inequalities

Jean Dolbeault

Ceremade, CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/~dolbeaul

Perspectives in PDEs, Global and Functional Analysis

A conference on the occasion of Gabriele Grillo's 60th birthday

Universit degli Studi dell'Insubria, Como (5-7 June, 2024)

June 5, 2024

Outline

- $lue{1}$ Stability for Sobolev and LSI on \mathbb{R}^d
 - Main results, optimal dimensional dependence
 - The history of the problem
- Explicit stability result for the Sobolev inequality: proof
 - Sketch of the proof and definitions
 - Competing symmetries
 - The main steps of the proof
- Explicit stability results for the logarithmic Sobolev inequality
 - Subcritical interpolation inequalities on the sphere
 - The large dimensional limit
 - More results on logarithmic Sobolev inequalities

Explicit stability results for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence

Joint papers with M.J. Esteban, A. Figalli, R. Frank, M. Loss Sharp stability for Sobolev and log-Sobolev inequalities, with optimal dimensional dependence

arXiv: 2209.08651

 $A \ short \ review \ on \ improvements \ and \ stability \ for \ some \ interpolation \ inequalities$

arXiv: 2402.08527

An explicit stability result for the Sobolev inequality

Sobolev inequality on \mathbb{R}^d with $d \geq 3$, $2^* = \frac{2d}{d-2}$ and sharp constant S_d

$$\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \geq S_d \ \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2 \quad \forall \, f \in \dot{\mathrm{H}}^1(\mathbb{R}^d) = \mathcal{D}^{1,2}(\mathbb{R}^d)$$

with equality on the manifold $\mathcal M$ of the Aubin–Talenti functions

$$g_{a,b,c}(x)=c\left(a+|x-b|^2\right)^{-\frac{d-2}{2}}\,,\quad a\in(0,\infty)\,,\quad b\in\mathbb{R}^d\,,\quad c\in\mathbb{R}$$

Theorem (JD, Esteban, Figalli, Frank, Loss)

There is a constant $\beta>0$ with an explicit lower estimate which does not depend on d such that for all $d\geq 3$ and all $f\in H^1(\mathbb{R}^d)\setminus \mathcal{M}$ we have

$$\|\nabla f\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2} - S_{d} \|f\|_{\mathrm{L}^{2^{*}}(\mathbb{R}^{d})}^{2} \ge \frac{\beta}{d} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^{2}(\mathbb{R}^{d})}^{2}$$

- No compactness argument
- \bigcirc The (estimate of the) constant β is explicit
- \bigcirc The decay rate β/d is optimal as $d \to +\infty$

A stability result for the logarithmic Sobolev inequality

 \bigcirc Use the inverse stereographic projection to rewrite the result on \mathbb{S}^d

$$\begin{split} \|\nabla F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} &- \frac{1}{4} \, d \, (d-2) \, \Big(\|F\|_{\mathrm{L}^{2^{*}}(\mathbb{S}^{d})}^{2} - \|F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \Big) \\ &\geq \frac{\beta}{d} \, \inf_{G \in \mathcal{M}(\mathbb{S}^{d})} \left(\|\nabla F - \nabla G\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \frac{1}{4} \, d \, (d-2) \, \|F - G\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right) \end{split}$$

lacktriangle Rescale by \sqrt{d} , consider a function depending only on n coordinates and take the limit as $d \to +\infty$ to approximate the Gaussian measure $d\gamma = e^{-\pi |x|^2} dx$

Corollary (JD, Esteban, Figalli, Frank, Loss)

With $\beta > 0$ as in the result for the Sobolev inequality

$$\begin{split} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{n},d\gamma)}^{2} - \pi \int_{\mathbb{R}^{n}} u^{2} \log \left(\frac{|u|^{2}}{\|u\|_{\mathrm{L}^{2}(\mathbb{R}^{n},d\gamma)}^{2}} \right) d\gamma \\ & \geq \frac{\beta \pi}{2} \inf_{a \in \mathbb{R}^{d}, \ c \in \mathbb{R}} \int_{\mathbb{R}^{n}} |u - c|^{a \cdot x}|^{2} d\gamma \end{split}$$

Stability for the Sobolev inequality: the history

▶ [Rodemich, 1969], [Aubin, 1976], [Talenti, 1976]

In the inequality $\|\nabla f\|_{L^2(\mathbb{R}^d)}^2 \geq S_d \|f\|_{L^{2^*}(\mathbb{R}^d)}^2$, the optimal constant is

$$S_d = \frac{1}{4} d(d-2) |\mathbb{S}^d|^{1-2/d}$$

with equality on the manifold $\mathcal{M} = \{g_{a,b,c}\}$ of the Aubin-Talenti *functions*

▶ Lions a qualitative stability result

$$\text{if } \lim_{n \to \infty} \|\nabla f_n\|_2^2 / \|f_n\|_{2^*}^2 = S_d \text{ , then } \lim_{n \to \infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 / \|\nabla f_n\|_2^2 = 0$$

- ▷ [Brezis, Lieb], 1985 a quantitative stability result?
- [Bianchi, Egnell, 1991] there is some non-explicit $c_{\rm BE} > 0$ such that

$$\|\nabla f\|_{2}^{2} \geq S_{d} \|f\|_{2^{*}}^{2} + c_{\mathrm{BE}} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2}$$

- The strategy of Bianchi & Egnell involves two steps:
- a local (spectral) analysis: the neighbourhood of \mathcal{M}
- a local-to-global extension based on concentration-compactness:
- \bigcirc The constant c_{BE} is not explicit

the far away regime

Stability for the logarithmic Sobolev inequality

 \triangleright [Gross, 1975] Gaussian logarithmic Sobolev inequality for $n \ge 1$

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2 \geq \pi \int_{\mathbb{R}^n} u^2 \log \left(\frac{|u|^2}{\|u\|_{\mathrm{L}^2(\mathbb{R}^n,d\gamma)}^2}\right) d\gamma$$

- ▶ [Weissler, 1979] scale invariant (but dimension-dependent) version of the Euclidean form of the inequality
- ▷ [Stam, 1959], [Federbush, 69], [Costa, 85] *Cf.* [Villani, 08]
- ▷ [Bakry, Emery, 1984], [Carlen, 1991] equality iff

$$u \in \mathscr{M} := \{ w_{\mathsf{a},\mathsf{c}} : (\mathsf{a},\mathsf{c}) \in \mathbb{R}^d \times \mathbb{R} \} \quad \text{where} \quad w_{\mathsf{a},\mathsf{c}}(\mathsf{x}) = \mathsf{c} \; \mathsf{e}^{\mathsf{a} \cdot \mathsf{x}} \quad \forall \, \mathsf{x} \in \mathbb{R}^n \}$$

- ▷ [McKean, 1973], [Beckner, 92] (LSI) as a large d limit of Sobolev
- ▷ [Carlen, 1991] reinforcement of the inequality (Wiener transform)
- ▷ [JD, Toscani, 2016] Comparison with Weissler's form, a (dimension dependent) improved inequality
- ▶ [Bobkov, Gozlan, Roberto, Samson, 2014], [Indrei et al., 2014-23] stability in Wasserstein distance, in $W^{1,1}$, etc.
- ▶ [Fathi, Indrei, Ledoux, 2016] improved inequality assuming a Poincaré inequality (Mehler formula)

Sketch of the proof and definitions Competing symmetries The main steps of the proof

Explicit stability result for the Sobolev inequality Proof

Sketch of the proof

Goal: prove that there is an *explicit* constant $\beta > 0$ such that for all $d \geq 3$ and all $f \in \dot{H}^1(\mathbb{R}^d)$

$$\|\nabla f\|_{2}^{2} \geq S_{d} \|f\|_{2^{*}}^{2} + \frac{\beta}{d} \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2}$$

Part 1. We show the inequality for nonnegative functions far from \mathcal{M} ... the far away regime

Make it *constructive*

Part 2. We show the inequality for nonnegative functions close to \mathcal{M} ... the local problem

Get *explicit* estimates and remainder terms

Part 3. We show that the inequality for nonnegative functions implies the inequality for functions without a sign restriction, up to an acceptable loss in the constant
... dealing with sign-changing functions

Some definitions

What we want to minimize is

$$\mathcal{E}(f) := \frac{\|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - \mathcal{S}_d \, \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2}{\mathsf{d}(f,\mathcal{M})^2} \quad f \in \dot{\mathrm{H}}^1(\mathbb{R}^d) \setminus \mathcal{M}$$

where

$$\mathsf{d}(f,\mathcal{M})^2 := \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$$

 \triangleright up to a conformal transformation, we assume that $d(f, \mathcal{M})^2 = \|\nabla f - \nabla g_*\|_{L^2(\mathbb{R}^d)}^2$ with

$$g_*(x) := |\mathbb{S}^d|^{-\frac{d-2}{2d}} \left(\frac{2}{1+|x|^2}\right)^{\frac{d-2}{2}}$$

□ use the inverse stereographic projection

$$F(\omega) = \frac{f(x)}{g_*(x)} \quad x \in \mathbb{R}^d \text{ with } \left\{ \begin{array}{l} \omega_j = \frac{2 x_j}{1 + |x|^2} & \text{if } 1 \le j \le d \\ \omega_{d+1} = \frac{1 - |x|^2}{1 + |x|^2} \end{array} \right.$$

The problem on the unit sphere

Stability inequality on the unit sphere \mathbb{S}^d for $F \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$

$$\begin{split} \int_{\mathbb{S}^d} \left(|\nabla F|^2 + \mathsf{A} \, |F|^2 \right) d\mu - \mathsf{A} \left(\int_{\mathbb{S}^d} |F|^{2^*} \, d\mu \right)^{2/2^*} \\ & \geq \frac{\beta}{d} \inf_{G \in \mathscr{M}} \left\{ \|\nabla F - \nabla G\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 + \mathsf{A} \, \|F - G\|_{\mathrm{L}^2(\mathbb{S}^d)}^2 \right\} \end{split}$$

with $A = \frac{1}{4} d(d-2)$ and a manifold \mathcal{M} of optimal functions made of

$$G(\omega) = c \left(a + b \cdot \omega \right)^{-\frac{d-2}{2}} \quad \omega \in \mathbb{S}^d \quad (a, b, c) \in (0, +\infty) \times \mathbb{R}^d \times \mathbb{R}$$

- \blacksquare make the reduction of a far~away~problem to a local problem constructive... on \mathbb{R}^d
- \bigcirc make the analysis of the **local problem** explicit... on \mathbb{S}^d

Competing symmetries

$$(Uf)(x) := \left(\frac{2}{|x - e_d|^2}\right)^{\frac{d-2}{2}} f\left(\frac{x_1}{|x - e_d|^2}, \dots, \frac{x_{d-1}}{|x - e_d|^2}, \frac{|x|^2 - 1}{|x - e_d|^2}\right)$$
$$\mathcal{E}(Uf) = \mathcal{E}(f)$$

The method of *competing symmetries*

Theorem (Carlen, Loss, 1990)

Let $f \in L^{2^*}(\mathbb{R}^d)$ be a non-negative function with $\|f\|_{L^{2^*}(\mathbb{R}^d)} = \|g_*\|_{L^{2^*}(\mathbb{R}^d)}$. The sequence $f_n = (\mathcal{R} U)^n f$ is such that $\lim_{n \to +\infty} \|f_n - g_*\|_{L^{2^*}(\mathbb{R}^d)} = 0$. If $f \in \dot{H}^1(\mathbb{R}^d)$, then $(\|\nabla f_n\|_{L^2(\mathbb{R}^d)})_{n \in \mathbb{N}}$ is a non-increasing sequence

Useful preliminary results

- $\square \lim_{n\to\infty} \|f_n h_f\|_{2^*} = 0$ where $h_f = \|f\|_{2^*} g_* / \|g_*\|_{2^*} \in \mathcal{M}$
- \bigcirc $(\|\nabla f_n\|_2^2)_{n\in\mathbb{N}}$ is a nonincreasing sequence

Lemma

$$\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2 = \|\nabla f\|_2^2 - S_d \sup_{g \in \mathcal{M}, \|g\|_{2^*} = 1} (f, g^{2^* - 1})^2$$

Corollary

 $\left(\mathsf{d}(f_n,\mathcal{M})\right)_{n\in\mathbb{N}}$ is strictly decreasing, $n\mapsto \sup_{g\in\mathcal{M}_1}\left(f_n,g^{2^*-1}\right)$ is strictly increasing, and

$$\lim_{n \to \infty} d(f_n, \mathcal{M})^2 = \lim_{n \to \infty} \|\nabla f_n\|_2^2 - S_d \|h_f\|_{2^*}^2 = \lim_{n \to \infty} \|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2$$

but no monotonicity for
$$n \mapsto \mathcal{E}(f_n) = \frac{\|\nabla f_n\|_{\mathbf{L}^2(\mathbb{R}^d)}^2 - S_d \|f_n\|_{\mathbf{L}^{2^*}(\mathbb{R}^d)}^2}{\mathsf{d}(f_n, \mathcal{M})^2}$$

Part 1: Global to local reduction

The *local problem*

$$\mathscr{I}(\delta) := \inf \left\{ \mathcal{E}(f) \, : \, f \geq 0 \, , \; \mathsf{d}(f,\mathcal{M})^2 \leq \delta \, \| \nabla f \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \right\}$$

Assume that $f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$ is a nonnegative function in the $far\ away\ regime$

$$\mathsf{d}(f,\mathcal{M})^2 = \inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 > \delta \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$$

for some $\delta \in (0,1)$

Let $f_n = (\mathcal{R}U)^n f$. There are two cases:

- igspace (Case 2) for some $n \in \mathbb{N}$, $\mathsf{d}(f_n, \mathcal{M})^2 < \delta \, \|\nabla f_n\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$

Global to local reduction – Case 1

Assume that $f \in \dot{\mathrm{H}}^1(\mathbb{R}^d)$ is a nonnegative function in the far away regime

$$\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 > \delta \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2$$

Lemma

Let $f_n = (\mathcal{R}U)^n f$ and $\delta \in (0,1)$. If $d(f_n, \mathcal{M})^2 \geq \delta \|\nabla f_n\|_{L^2(\mathbb{R}^d)}^2$ for all $n \in \mathbb{N}$, then

$$\mathcal{E}(f) \geq \delta$$

$$\lim_{n \to +\infty} \|\nabla f_n\|_2^2 \le \frac{1}{\delta} \lim_{n \to +\infty} \inf_{g \in \mathcal{M}} \|\nabla f_n - \nabla g\|_2^2 = \frac{1}{\delta} \left(\lim_{n \to +\infty} \|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2 \right)$$

$$\mathcal{E}(f) = \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_2^2} \ge \frac{\|\nabla f\|_2^2 - S_d \|f\|_{2^*}^2}{\|\nabla f\|_2^2} \ge \frac{\|\nabla f_n\|_2^2 - S_d \|f\|_{2^*}^2}{\|\nabla f_n\|_2^2} \ge \delta$$

$$\mathcal{E}(f) = \frac{\|\nabla f\|_{2} - \|\nabla f\|_{2}^{2}}{\inf_{g \in \mathcal{M}} \|\nabla f - \nabla g\|_{2}^{2}} \ge \frac{\|\nabla f\|_{2}^{2} - \|\nabla f\|_{2}^{2}}{\|\nabla f\|_{2}^{2}} \ge \frac{\|\nabla f\|_{2}^{2}}{\|\nabla f\|_{2}^{2}} \le \frac{\|\nabla f\|_{2}^{2}}{\|\nabla f\|_{2}} \le \frac{\|\nabla f\|_{2}}{\|\nabla f\|_{2}}$$

Global to local reduction – Case 2

$$\mathscr{I}(\delta) := \inf \left\{ \mathcal{E}(f) \, : \, f \geq 0 \, , \, \operatorname{\mathsf{d}}(f, \mathcal{M})^2 \leq \delta \, \|\nabla f\|_{\operatorname{L}^2(\mathbb{R}^d)}^2 \right\}$$

Lemma

$$\mathcal{E}(f) \geq \delta \mathscr{I}(\delta)$$

$$\begin{aligned} \text{if} \quad & \inf_{g \in \mathcal{M}} \| \nabla f_{n_0} - \nabla g \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 > \delta \, \| \nabla f_{n_0} \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \\ \quad & \quad \text{and} \quad & \inf_{g \in \mathcal{M}} \| \nabla f_{n_0+1} - \nabla g \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 < \delta \, \| \nabla f_{n_0+1} \|_{\mathrm{L}^2(\mathbb{R}^d)}^2 \end{aligned}$$

Adapt a strategy due to Christ: build a (semi-)continuous rearrangement flow (f_{τ}) $_{n_0 \leq \tau < n_0 + 1}$ with $f_{n_0} = Uf_n$ such that $||f_{\tau}||_{2^*} = ||f||_2$, $\tau \mapsto ||\nabla f_{\tau}||_2$ is nonincreasing, and $\lim_{\tau \to n_0 + 1} f_{\tau} = f_{n_0 + 1}$

$$\mathcal{E}(f) \geq 1 - S_d \frac{\|f\|_{2^*}^2}{\|\nabla f\|_2^2} \geq 1 - S_d \frac{\|f_{\tau_0}\|_{2^*}^2}{\|\nabla f_{\tau_0}\|_2^2} = \delta \, \mathcal{E}(f_{\tau_0}) \geq \delta \, \mathscr{I}(\delta)$$

Altogether: if $d(f, \mathcal{M})^2 > \delta \|\nabla f\|_{L^2(\mathbb{R}^d)}^2$, then $\mathcal{E}(f) \ge \min \{\delta, \delta \mathscr{I}(\delta)\}$

Part 2: The (simple) Taylor expansion

Proposition

Let $(X, d\mu)$ be a measure space and u, $r \in L^q(X, d\mu)$ for some $q \ge 2$ with $u \ge 0$, $u + r \ge 0$ and $\int_X u^{q-1} r d\mu = 0$

 \triangleright If q = 6, then

$$||u+r||_{q}^{2} \leq ||u||_{q}^{2} + ||u||_{q}^{2-q} \left(5 \int_{X} u^{q-2} r^{2} d\mu + \frac{20}{3} \int_{X} u^{q-3} r^{3} d\mu + 5 \int_{X} u^{q-4} r^{4} d\mu + 2 \int_{X} u^{q-5} r^{5} d\mu + \frac{1}{3} \int_{X} r^{6} d\mu\right)$$

ightharpoonup If $3 \le q \le 4$, then

$$||u+r||_q^2 - ||u||_q^2$$

$$\leq \|u\|_q^{2-q} \left((q-1) \int_X u^{q-2} r^2 d\mu + \frac{(q-1)(q-2)}{3} \int_X u^{q-3} r^3 d\mu + \frac{2}{q} \int_X |r|^q d\mu \right)$$

$$ightharpoonup$$
 If $2 \le q \le 3$, then

$$||u+r||_q^2 \le ||u||_q^2 + ||u||_q^{2-q} \left((q-1) \int_X u^{q-2} r^2 d\mu + \frac{2}{q} \int_X r_+^q d\mu \right)$$

Corollary

For all $\nu > 0$ and for all $r \in H^1(\mathbb{S}^d)$ satisfying $r \ge -1$,

$$\left(\int_{\mathbb{S}^d}|r|^q\,d\mu\right)^{2/q}\leq
u^2\quad ext{and}\quad \int_{\mathbb{S}^d}r\,d\mu=0=\int_{\mathbb{S}^d}\omega_j\,r\,d\mu\quad orall\,j=1,\dots d+1$$

if $d\mu$ is the uniform probability measure on \mathbb{S}^d , then

$$\begin{split} \int_{\mathbb{S}^d} \left(|\nabla r|^2 + \mathsf{A} \, (1+r)^2 \right) d\mu - \mathsf{A} \, \left(\int_{\mathbb{S}^d} \left(1+r \right)^q d\mu \right)^{2/q} \\ & \geq \mathsf{m}(\nu) \int_{\mathbb{S}^d} \left(|\nabla r|^2 + \mathsf{A} \, r^2 \right) d\mu \\ \mathsf{m}(\nu) &:= \frac{4}{d+4} - \frac{2}{q} \, \nu^{q-2} & \text{if} \quad d \geq 6 \\ \mathsf{m}(\nu) &:= \frac{4}{d+4} - \frac{1}{3} \, (q-1) \, (q-2) \, \nu - \frac{2}{q} \, \nu^{q-2} & \text{if} \quad d = 4, 5 \\ \mathsf{m}(\nu) &:= \frac{4}{7} - \frac{20}{3} \, \nu - 5 \, \nu^2 - 2 \, \nu^3 - \frac{1}{3} \, \nu^4 & \text{if} \quad d = 3 \end{split}$$

An explicit expression of $\mathscr{I}(\delta)$ if $\nu > 0$ is small enough so that $m(\nu) > 0$

Part 3: Removing the positivity assumption

Take $f = f_+ - f_-$ with $||f||_{L^{2^*}(\mathbb{R}^d)} = 1$ and define $m := ||f_-||_{L^{2^*}(\mathbb{R}^d)}^{2^*}$ and $1 - m = ||f_+||_{L^{2^*}(\mathbb{R}^d)}^{2^*} > 1/2$. The positive concave function

$$h_d(m) := m^{\frac{d-2}{d}} + (1-m)^{\frac{d-2}{d}} - 1$$

satisfies

$$2 h_d(1/2) m \le h_d(m), \quad h_d(1/2) = 2^{2/d} - 1$$

With $\delta(f) = \|\nabla f\|_{\mathrm{L}^2(\mathbb{R}^d)}^2 - S_d \|f\|_{\mathrm{L}^{2^*}(\mathbb{R}^d)}^2$, one finds $g_+ \in \mathcal{M}$ such that

$$m{\delta}(f) \geq C_{ ext{BE}}^{d, ext{pos}} \left\|
abla f_{+} -
abla g_{+}
ight\|_{ ext{L}^{2}(\mathbb{R}^{d})}^{2} + rac{2 \, h_{d}(1/2)}{h_{d}(1/2) + 1} \left\|
abla f_{-}
ight\|_{ ext{L}^{2}(\mathbb{R}^{d})}^{2}$$

and therefore

$$C_{\mathrm{BE}}^{d} \geq \tfrac{1}{2} \, \min \left\{ \max_{0 < \delta < 1/2} \, \delta \, \mathscr{I}(\delta), \frac{2 \, h_d(1/2)}{h_d(1/2) + 1} \right\}$$

Part 2, refined: The (complicated) Taylor expansion

To get a dimensionally sharp estimate, we expand $(1+r)^{2^*}-1-2^*r$ with an accurate remainder term for all $r \ge -1$

$$r_1 := \min\{r, \gamma\}, \quad r_2 := \min\{(r - \gamma)_+, M - \gamma\} \quad \text{and} \quad r_3 := (r - M)_+$$

with $0 < \gamma < M$. Let $\theta = 4/(d - 2)$

Lemma

Given $d \ge 6$, $r \in [-1, \infty)$, and $\overline{M} \in [\sqrt{e}, +\infty)$, we have

$$\begin{aligned} (1+r)^{2^*} - 1 - 2^* r \\ &\leq \frac{1}{2} 2^* (2^* - 1) (r_1 + r_2)^2 + 2 (r_1 + r_2) r_3 + \left(1 + C_M \theta \overline{M}^{-1} \ln \overline{M} \right) r_3^{2^*} \\ &+ \left(\frac{3}{2} \gamma \theta r_1^2 + C_{M, \overline{M}} \theta r_2^2 \right) \mathbb{1}_{\{r \leq M\}} + C_{M, \overline{M}} \theta M^2 \mathbb{1}_{\{r > M\}} \end{aligned}$$

where all the constants in the above inequality are explicit

There are constants ϵ_1 , ϵ_2 , k_0 , and $\epsilon_0 \in (0, 1/\theta)$, such that

$$\begin{split} \left\| \nabla r \right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \mathrm{A} \ \left\| r \right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} - \mathrm{A} \ \left\| 1 + r \right\|_{\mathrm{L}^{2*}(\mathbb{S}^{d})}^{2} \\ & \geq \frac{4 \epsilon_{0}}{d - 2} \left(\left\| \nabla r \right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} + \mathrm{A} \ \left\| r \right\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right) + \sum_{k=1}^{3} I_{k} \end{split}$$

$$I_1 := (1 - \theta \, \epsilon_0) \int_{\mathbb{S}^d} \left(|\nabla r_1|^2 + \mathrm{A} \, r_1^2 \right) d\mu - \mathrm{A} \left(2^* - 1 + \epsilon_1 \, \theta \right) \int_{\mathbb{S}^d} r_1^2 \, d\mu + \mathrm{A} \, k_0 \, \theta \int_{\mathbb{S}^d} \left(r_2^2 \dots I_2 := (1 - \theta \, \epsilon_0) \int_{\mathbb{S}^d} \left(|\nabla r_2|^2 + \mathrm{A} \, r_2^2 \right) d\mu - \mathrm{A} \left(2^* - 1 + (k_0 + C_{\epsilon_1, \epsilon_2}) \, \theta \right) \int_{\mathbb{S}^d} r_2^2 \, d\mu$$

$$I_3 := (1 - \theta \, \epsilon_0) \int_{\mathbb{S}^d} \left(|\nabla r_3|^2 + A \, r_3^2 \right) d\mu - \frac{2}{2^*} \, A \left(1 + \epsilon_2 \, \theta \right) \int_{\mathbb{S}^d} r_3^{2^*} \, d\mu - A \, k_0 \, \theta \int_{\mathbb{S}^d} r_3^2 \, d\mu$$

- \bigcirc spectral gap estimates : $I_1 \ge 0$
- \bigcirc Sobolev inequality : $I_3 \ge 0$
- lacktriangle improved spectral gap inequality using that $\mu(\{r_2>0\})$ is small: $I_2\geq 0$

Subcritical interpolation inequalities on the sphere The large dimensional limit More results on logarithmic Sobolev inequalities

Explicit stability result for the logarithmic Sobolev inequality

Subcritical interpolation inequalities on the sphere

• Gagliardo-Nirenberg-Sobolev inequality

$$\|\nabla F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \geq d \, \mathcal{E}_{p}[F] := \frac{d}{p-2} \left(\|F\|_{\mathrm{L}^{p}(\mathbb{S}^{d})}^{2} - \|F\|_{\mathrm{L}^{2}(\mathbb{S}^{d})}^{2} \right)$$

for any
$$p \in [1,2) \cup (2,2^*)$$
 with $2^* := \frac{2d}{d-2}$ if $d \ge 3$ and $2^* = +\infty$ if $d = 1$ or 2

 $lue{}$ Limit ho o 2: the logarithmic Sobolev inequality

$$\int_{\mathbb{S}^d} |\nabla F|^2 \, d\mu \geq \frac{d}{2} \int_{\mathbb{S}^d} F^2 \, \log \left(\frac{F^2}{\|F\|_{\mathrm{L}^2(\mathbb{S}^d)}^2} \right) d\mu \quad \forall \, F \in \mathrm{H}^1(\mathbb{S}^d, d\mu)$$

Gagliardo-Nirenberg inequalities: stability

An improved inequality under orthogonality constraint and the stability inequality arising from the *carré du champ* method can be combined *in the subcritical case* as follows

Theorem

Let $d \geq 1$ and $p \in (1,2) \cup (2,2^*)$. For any $F \in H^1(\mathbb{S}^d,d\mu)$, we have

$$\begin{split} \int_{\mathbb{S}^{d}} |\nabla F|^{2} d\mu - d \, \mathcal{E}_{p}[F] \\ & \geq \mathscr{S}_{d,p} \left(\frac{\|\nabla \Pi_{1} F\|_{L^{2}(\mathbb{S}^{d})}^{4}}{\|\nabla F\|_{L^{2}(\mathbb{S}^{d})}^{2} + \|F\|_{L^{2}(\mathbb{S}^{d})}^{2}} + \|\nabla (\operatorname{Id} - \Pi_{1}) \, F\|_{L^{2}(\mathbb{S}^{d})}^{2} \right) \end{split}$$

for some explicit stability constant $\mathcal{S}_{d,p} > 0$

 \triangleright The same result holds true for the logarithmic Sobolev inequality, again with explicit constants, for any finite dimension d

Carré du champ – admissible parameters on \mathbb{S}^d

[JD, Esteban, Kowalczyk, Loss] Monotonicity of the deficit along

$$\frac{\partial u}{\partial t} = u^{-p(1-m)} \left(\Delta u + (mp - 1) \frac{|\nabla u|^2}{u} \right)$$

$$m_{\pm}(d,p) := \frac{1}{(d+2)\,p}\left(d\,p + 2\pm\sqrt{d\,(p-1)\,\left(2\,d - (d-2)\,p\right)}\right)$$

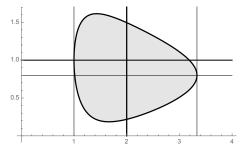


Figure: Case d=5: admissible parameters $1 \le p \le 2^* = 10/3$ and m (horizontal axis: p, vertical axis: m). Improved inequalities inside!

Gaussian carré du champ and nonlinear diffusion

$$\frac{\partial v}{\partial t} = v^{-p(1-m)} \left(\mathcal{L}v + (mp-1) \frac{|\nabla v|^2}{v} \right)$$
 on \mathbb{R}^n

[JD, Brigati, Simonov] Ornstein-Uhlenbeck operator: $\mathcal{L} = \Delta - x \cdot \nabla$

$$m_{\pm}(p) := \lim_{d \to +\infty} m_{\pm}(d, p) = 1 \pm \frac{1}{p} \sqrt{(p-1)(2-p)}$$

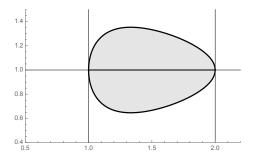


Figure: The admissible parameters 1 and <math>m are independent of nJ. Dolbeault

Large dimensional limit

Gagliardo-Nirenberg-Sobolev inequalities on \mathbb{S}^d , $p \in [1, 2)$

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{S}^{d},d\mu_{d})}^{2} \geq \frac{d}{\rho-2} \left(\|u\|_{\mathrm{L}^{\rho}(\mathbb{S}^{d},d\mu_{d})}^{2} - \|u\|_{\mathrm{L}^{2}(\mathbb{S}^{d},d\mu_{d})}^{2} \right)$$

Theorem

Let $v \in \mathrm{H}^1(\mathbb{R}^n, dx)$ with compact support, $d \geq n$ and

$$u_d(\omega) = v\left(\omega_1/r_d, \omega_2/r_d, \dots, \omega_n/r_d\right), \quad r_d = \sqrt{\frac{d}{2\pi}}$$

where $\omega \in \mathbb{S}^d \subset \mathbb{R}^{d+1}$. With $d\gamma(y) := (2\pi)^{-n/2} e^{-\frac{1}{2}|y|^2} dy$,

$$\lim_{d \to +\infty} d \left(\|\nabla u_d\|_{\mathrm{L}^2(\mathbb{S}^d, d\mu_d)}^2 - \frac{d}{2-p} \left(\|u_d\|_{\mathrm{L}^2(\mathbb{S}^d, d\mu_d)}^2 - \|u_d\|_{\mathrm{L}^p(\mathbb{S}^d, d\mu_d)}^2 \right) \right)$$

$$= \|\nabla v\|_{\mathrm{L}^2(\mathbb{R}^n, d\gamma)}^2 - \frac{1}{2-p} \left(\|v\|_{\mathrm{L}^2(\mathbb{R}^n, d\gamma)}^2 - \|v\|_{\mathrm{L}^p(\mathbb{R}^n, d\gamma)}^2 \right)$$

Stability of LSI: some comments

$$\begin{split} \|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{n},d\gamma)}^{2} - \pi \int_{\mathbb{R}^{n}} u^{2} \log \left(\frac{|u|^{2}}{\|u\|_{\mathrm{L}^{2}(\mathbb{R}^{n},d\gamma)}^{2}} \right) d\gamma \\ & \geq \frac{\beta \pi}{2} \inf_{a \in \mathbb{R}^{d}, \ c \in \mathbb{R}} \int_{\mathbb{R}^{n}} |u - c|^{a \cdot \mathsf{x}}|^{2} d\gamma \end{split}$$

- f Q. The $\dot{\mathrm{H}}^1(\mathbb{R}^n)$ does not appear, it gets lost in the limit $d \to +\infty$
- ${\color{red} \underline{ }}$. Two proofs. Taking the limit is difficult because of the lack of compactness
- floor One dimension is lost (for the manifold of invariant functions) in the limiting process
- Euclidean forms of the stability

Subcritical interpolation inequalities on the sphere The large dimensional limit More results on logarithmic Sobolev inequalities

More results on logarithmic Sobolev inequalities

Joint work with G. Brigati and N. Simonov Stability for the logarithmic Sobolev inequality arXiv:2303.12926

> Entropy methods, with constraints

Stability under a constraint on the second moment

$$u_{\varepsilon}(x) = 1 + \varepsilon x$$
 in the limit as $\varepsilon \to 0$

$$d(u_{\varepsilon},1)^{2} = \|u_{\varepsilon}'\|_{\mathrm{L}^{2}(\mathbb{R},d\gamma)}^{2} = \varepsilon^{2} \quad \text{and} \quad \inf_{w \in \mathscr{M}} d(u_{\varepsilon},w)^{\alpha} \leq \frac{1}{2} \varepsilon^{4} + O(\varepsilon^{6})$$

$$\mathscr{M} := \{ w_{a,c} : (a,c) \in \mathbb{R}^d \times \mathbb{R} \} \text{ where } w_{a,c}(x) = c e^{-a \cdot x}$$

Proposition

For all $u \in H^1(\mathbb{R}^d, d\gamma)$ such that $\|u\|_{L^2(\mathbb{R}^d)} = 1$ and $\|x u\|_{L^2(\mathbb{R}^d)}^2 \leq d$, we have

$$\|\nabla u\|_{\mathrm{L}^{2}(\mathbb{R}^{d},d\gamma)}^{2} - \frac{1}{2} \int_{\mathbb{R}^{d}} |u|^{2} \log|u|^{2} d\gamma \geq \frac{1}{2d} \left(\int_{\mathbb{R}^{d}} |u|^{2} \log|u|^{2} d\gamma \right)^{2}$$

and, with $\psi(s) := s - \frac{d}{4} \log \left(1 + \frac{4}{d} s\right)$,

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 - \frac{1}{2} \int_{\mathbb{R}^d} |u|^2 \log |u|^2 d\gamma \ge \frac{\psi}{\psi} \left(\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 \right)$$

Stability under log-concavity

Theorem

For all $u \in H^1(\mathbb{R}^d, d\gamma)$ such that $u^2 \gamma$ is log-concave and such that

$$\int_{\mathbb{R}^d} (1,x) \; |u|^2 \, d\gamma = (1,0) \quad \text{and} \quad \int_{\mathbb{R}^d} |x|^2 \, |u|^2 \, d\gamma \leq \mathsf{K}$$

we have

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 - \frac{\mathscr{C}_{\star}}{2} \int_{\mathbb{R}^d} |u|^2 \log |u|^2 \, d\gamma \ge 0$$

$$\mathscr{C}_{\star} = 1 + \frac{1}{432 \, \text{K}} \approx 1 + \frac{0.00231481}{\text{K}}$$

Theorem

Let $d \geq 1$. For any $\varepsilon > 0$, there is some explicit $\mathscr{C} > 1$ depending only on ε such that, for any $u \in H^1(\mathbb{R}^d, d\gamma)$ with

$$\int_{\mathbb{R}^d} (1,x) |u|^2 d\gamma = (1,0), \int_{\mathbb{R}^d} |x|^2 |u|^2 d\gamma \leq d, \int_{\mathbb{R}^d} |u|^2 e^{\varepsilon |x|^2} d\gamma < \infty$$

for some $\varepsilon > 0$, then we have

$$\|\nabla u\|_{\mathrm{L}^2(\mathbb{R}^d,d\gamma)}^2 \ge \frac{\mathscr{C}}{2} \int_{\mathbb{R}^d} |u|^2 \log|u|^2 \, d\gamma$$

with
$$\mathscr{C}=1+\frac{\mathscr{C}_{\star}(\mathsf{K}_{\star})-1}{1+R^2\,\mathscr{C}_{\star}(\mathsf{K}_{\star})},\;\mathsf{K}_{\star}:=\;\max\left(d,\frac{(d+1)\,R^2}{1+R^2}\right)\;\text{if}\;\mathrm{supp}(u)\subset B(0,R)$$

Compact support: [Lee, Vázquez, '03]; [Chen, Chewi, Niles-Weed, '21]

These slides can be found at

More related papers can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/list/ > Preprints and papers

For final versions, use Dolbeault as login and Jean as password

E-mail: dolbeaul@ceremade.dauphine.fr

Thank you for your attention!

