Free energy estimates for the two-dimensional Keller-Segel model

Jean DOLBEAULT
dolbeaul@ceremade. dauphine.fr
CEREMADE
CNRS \& Université Paris-Dauphine

in collaboration with
A. Blanchet (CERMICS, ENPC \& Ceremade) \& B. Perthame (ENS, Paris VI)

The Keller-Segel model

The Keller-Segel(-Patlak) system for chemotaxis describes the collective motion of cells (bacteria or amoebae) [Othmer-Stevens, Horstman].
The complete Keller-Segel model is a system of two parabolic equations. Simplified two-dimensional version :

$$
\begin{cases}\frac{\partial n}{\partial t}=\Delta n-\chi \nabla \cdot(n \nabla c) & x \in \mathbb{R}^{2}, t>0 \tag{1}\\ -\Delta c=n & x \in \mathbb{R}^{2}, t>0 \\ n(\cdot, t=0)=n_{0} \geq 0 & x \in \mathbb{R}^{2}\end{cases}
$$

$n(x, t)$: the cell density
$c(x, t)$: concentration of chemo-attractant
$\chi>0$: sensitivity of the bacteria to the chemo-attractant

I. Main results and a priori estimates

Dimension 2 is critical

The total mass of the system

$$
M:=\int_{\mathbb{R}^{2}} n_{0} d x
$$

is conserved
There are related models in gravitation which are defined in \mathbb{R}^{3}
The L^{1}-norm is critical in the sense that there exists a critical mass above which all solution blow-up in finite time and below which they globally exist. The critical space is $L^{d / 2}\left(\mathbb{R}^{d}\right)$ for $d \geq 2$, see [Corrias-Perthame-Zaag]. In dimension $d=2$, the Green kernel associated to the Poisson equation is a logarithm, namely

$$
c=-\frac{1}{2 \pi} \log |\cdot| * n
$$

First main result

Theorem 1. Assume that $n_{0} \in L_{+}^{1}\left(\mathbb{R}^{2},\left(1+|x|^{2}\right) d x\right)$ and $n_{0} \log n_{0} \in L^{1}\left(\mathbb{R}^{2}, d x\right)$. If $M<8 \pi / \chi$, then the Keller-Segel system (1) has a global weak non-negative solution n with initial data n_{0} such that

$$
\begin{gathered}
\left(1+|x|^{2}+|\log n|\right) n \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right) \int_{0}^{t} \int_{\mathbb{R}^{2}} n|\nabla \log n-\chi \nabla c|^{2} d x d t<\infty \\
\quad \text { and } \quad \int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x=\int_{\mathbb{R}^{2}}|x|^{2} n_{0}(x) d x+4 M\left(1-\frac{\chi M}{8 \pi}\right) t
\end{gathered}
$$

for any $t>0$. Moreover $n \in L_{\text {loc }}^{\infty}\left((\varepsilon, \infty), L^{p}\left(\mathbb{R}^{2}\right)\right)$ for any $p \in(1, \infty)$ and any $\varepsilon>0$, and the following inequality holds for any $t>0$:

$$
\begin{aligned}
& F[n(\cdot, t)]+\int_{0}^{t} \int_{\mathbb{R}^{2}} n|\nabla(\log n)-\chi \nabla c|^{2} d x d s \leq F\left[n_{0}\right] \\
& \quad \text { Here } F[n]:=\int_{\mathbb{R}^{2}} n \log n d x-\frac{\chi}{2} \int_{\mathbb{R}^{2}} n c d x
\end{aligned}
$$

Notion of solution

The equation holds in the distributions sense. Indeed, writing

$$
\Delta n-\chi \nabla \cdot(n \nabla c)=\nabla \cdot[n(\nabla \log n-\chi \nabla c)]
$$

we can see that the flux is well defined in $L^{1}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$ since

$$
\begin{aligned}
& \iint_{[0, T] \times \mathbb{R}^{2}} n|\nabla \log n-\chi \nabla c| d x d t \\
& \quad \leq\left(\iint_{[0, T] \times \mathbb{R}^{2}} n d x\right)^{1 / 2}\left(\iint_{[0, T] \times \mathbb{R}^{2}} n|\nabla \log n-\chi \nabla c|^{2} d x d t\right)^{1 / 2}<\infty
\end{aligned}
$$

Second main result : Large time behavior

Use asymptotically self-similar profiles given in the rescaled variables by the equation

$$
\begin{equation*}
u_{\infty}=M \frac{e^{\chi v_{\infty}-|x|^{2} / 2}}{\int_{\mathbb{R}^{2}} e^{\chi v_{\infty}-|x|^{2} / 2} d x}=-\Delta v_{\infty} \quad \text { with } \quad v_{\infty}=-\frac{1}{2 \pi} \log |\cdot| * u_{\infty} \tag{2}
\end{equation*}
$$

In the original variables:

$$
\begin{aligned}
n_{\infty}(x, t) & :=\frac{1}{1+2 t} u_{\infty}(\log (\sqrt{1+2 t}), x / \sqrt{1+2 t}) \\
c_{\infty}(x, t) & :=v_{\infty}(\log (\sqrt{1+2 t}), x / \sqrt{1+2 t})
\end{aligned}
$$

Theorem 2. Under the same assumptions as in Theorem 1, there exists a stationary solution $\left(u_{\infty}, v_{\infty}\right)$ in the self-similar variables such that

$$
\text { ـ } \lim _{t \rightarrow \infty}\left\|n(\cdot, t)-n_{\infty}(\cdot, t)\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty}\left\|\nabla c(\cdot, t)-\nabla c_{\infty}(\cdot, t)\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0
$$

Assumptions

We assume that the initial data satisfies the following asssumptions :

$$
\begin{aligned}
& n_{0} \in L_{+}^{1}\left(\mathbb{R}^{2},\left(1+|x|^{2}\right) d x\right) \\
& n_{0} \log n_{0} \in L^{1}\left(\mathbb{R}^{2}, d x\right)
\end{aligned}
$$

The total mass is conserved

$$
M:=\int_{\mathbb{R}^{2}} n_{0}(x) d x=\int_{\mathbb{R}^{2}} n(x, t) d x
$$

Goal : give a complete existence theory [J.D.-Perthame],
[Blanchet-J.D.-Perthame] in the subcritical case, i.e. in the case

$$
M<8 \pi / \chi
$$

Alternatives

There are only two cases :

1. Solutions to (1) blow-up in finite time when $M>8 \pi / \chi$
2. There exists a global in time solution of (1) when $M<8 \pi / \chi$

The case $M=8 \pi / \chi$ is delicate and for radial solutions, some results have been obtained recently [Biler-Karch-Laurençot-Nadzieja]

Our existence theory completes the partial picture established in [Jäger-Luckhaus].

Convention

The solution of the Poisson equation $-\Delta c=n$ is given up to an harmonic function. From the beginning, we have in mind that the concentration of the chemo-attractant is defined by

$$
\begin{aligned}
& c(x, t)=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log |x-y| n(y, t) d y \\
& \nabla c(x, t)=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \frac{x-y}{|x-y|^{2}} n(y, t) d y
\end{aligned}
$$

Blow-up for super-critical masses

Case $M>8 \pi / \chi$ (Case 1) : use moments estimates

Lemma 3. Consider a non-negative distributional solution to (1) on an interval $[0, T]$ that satisfies the previous assumptions, $\int_{\mathbb{R}^{2}}|x|^{2} n_{0}(x) d x<\infty$ and such that $(x, t) \mapsto \int_{\mathbb{R}^{2}} \frac{1+|x|}{|x-y|} n(y, t) d y \in L^{\infty}\left((0, T) \times \mathbb{R}^{2}\right)$ and $(x, t) \mapsto(1+|x|) \nabla c(x, t) \in L^{\infty}\left((0, T) \times \mathbb{R}^{2}\right)$. Then it also satisfies

$$
\frac{d}{d t} \int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x=4 M\left(1-\frac{\chi M}{8 \pi}\right)
$$

Formal proof.

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x= & \int_{\mathbb{R}^{2}}|x|^{2} \Delta n(x, t) d x \\
& +\frac{\chi}{2 \pi} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}} 2 x \cdot \frac{x-y}{|x-y|^{2}} n(x, t) n(y, t) d x d y
\end{aligned}
$$

Justification

Consider a smooth function φ_{ε} with compact support such that $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon}(|x|)=|x|^{2}$

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{2}} \varphi_{\varepsilon} n d x= & \int_{\mathbb{R}^{2}} \Delta \varphi_{\varepsilon} n d x \\
& -\frac{\chi}{4 \pi} \int_{\mathbb{R}^{2}} \underbrace{\frac{\left(\nabla \varphi_{\varepsilon}(x)-\nabla \varphi_{\varepsilon}(y)\right) \cdot(x-y)}{|x-y|^{2}}}_{\rightarrow 1} n(x, t) n(y, t) d x d y
\end{aligned}
$$

Since $\frac{d}{d t} \int_{\mathbb{R}^{2}} \varphi_{\varepsilon} n d x \leq C_{\varepsilon} \int_{\mathbb{R}^{2}} n_{0} d x$ where C_{ε} is some positive constant, as $\varepsilon \rightarrow 0, \int_{\mathbb{R}^{2}} \varphi_{\varepsilon} n d x \leq c_{1}+c_{2} t$

$$
\int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x<\infty \quad \forall t \in(0, T)
$$

Weaker notion of solutions

We shall say that n is a solution to (1) if for all test functions $\psi \in \mathcal{D}\left(\mathbb{R}^{2}\right)$

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{2}} \psi(x) n(x, t) d x=\int_{\mathbb{R}^{2}} \Delta \psi(x) n(x, t) d x \\
&-\frac{\chi}{4 \pi} \int_{\mathbb{R}^{2} \times \mathbb{R}^{2}}[\nabla \psi(x)-\nabla \psi(y)] \cdot \frac{x-y}{|x-y|^{2}} n(x, t) n(y, t) d x d y
\end{aligned}
$$

Compared to standard distribution solutions, this is an improved concept that can handle some measure valued solutions because the term

$$
[\nabla \psi(x)-\nabla \psi(y)] \cdot \frac{x-y}{|x-y|^{2}}
$$

is continuous
However, this notion of solutions does not cover the case of all measure
valued $n(\cdot, t)$

Finite time blow-up

Corollary 4. Consider a non-negative distributional solution $n \in L^{\infty}\left(0, T^{*} ; L^{1}\left(\mathbb{R}^{2}\right)\right)$ to (1) and assume that $\left[0, T^{*}\right), T^{*} \leq \infty$, is the maximal interval of existence. Let
$I_{0}:=\int_{\mathbb{R}^{2}}|x|^{2} n_{0}(x) d x<\infty \quad$ and $\quad \int_{\mathbb{R}^{2}} \frac{1+|x|}{|x-y|} n(y, t) d y \in L^{\infty}\left((0, T) \times \mathbb{R}^{2}\right)$
If $\chi M>8 \pi$, then

$$
T^{*} \leq \frac{2 \pi I_{0}}{M(\chi M-8 \pi)}
$$

If $\chi M>8 \pi$ and $I_{0}=\infty$: blow-up in finite time?
Blow-up statements in bounded domains are available
Radial case : there exists a $L^{1}\left(\mathbb{R}^{2} \times \mathbb{R}^{+}\right)$radial function \tilde{n} such that

$$
n(x, t) \rightarrow \frac{8 \pi}{\chi} \delta+\tilde{n}(x, t) \quad \text { as } t \nearrow T^{*}
$$

Comments

1. $\chi M=8 \pi$ [Biler-Karch-Laurençot-Nadzieja] : blow-up only for $T^{*}=\infty$
2. If the problem is set in dimension $d \geq 3$, the critical norm is $L^{p}\left(\mathbb{R}^{d}\right)$ with $p=d / 2$ [Corrias-Perthame-Zaag]
3. In dimension $d=2$, the value of the mass M is therefore natural to discriminate between super- and sub-critical regimes. However, the limit of the L^{p}-norm is rather $\int_{\mathbb{R}^{2}} n \log n d x$ than $\int_{\mathbb{R}^{2}} n d x$, which is preserved by the evolution. This explains why it is natural to introduce the entropy, or better, as we shall see below, the free energy

The proof of Jäger and Luckhaus

[Corrias-Perthame-Zaag] Compute $\frac{d}{d t} \int_{\mathbb{R}^{2}} n \log n d x$. Using an integration by parts and the equation for c, we obtain :

$$
\begin{aligned}
\frac{d}{d t} \int_{\mathbb{R}^{2}} n \log n d x & =-4 \int_{\mathbb{R}^{2}}|\nabla \sqrt{n}|^{2} d x+\chi \int_{\mathbb{R}^{2}} \nabla n \cdot \nabla c d x \\
& =-4 \int_{\mathbb{R}^{2}}|\nabla \sqrt{n}|^{2} d x+\chi \int_{\mathbb{R}^{2}} n^{2} d x
\end{aligned}
$$

The entropy is nonincreasing if $\chi M \leq 4 C_{\mathrm{GNS}}^{-2}$, where $C_{\mathrm{GNS}}=C_{\mathrm{GNS}}^{(4)}$ is the best constant for $p=4$ in the Gagliardo-Nirenberg-Sobolev inequality :

$$
\|u\|_{L^{p}\left(\mathbb{R}^{2}\right)}^{2} \leq C_{\mathrm{GNS}}^{(p)}\|\nabla u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2-4 / p}\|u\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{4 / p} \quad \forall u \in H^{1}\left(\mathbb{R}^{2}\right) \quad \forall p \in[2, \infty)
$$

Numerically: $\chi M \leq 4 C_{\text {GNS }}^{-2} \approx 1.862 \ldots \times(4 \pi)<8 \pi$

A sharper approach : free energy

The free energy :

$$
F[n]:=\int_{\mathbb{R}^{2}} n \log n d x-\frac{\chi}{2} \int_{\mathbb{R}^{2}} n c d x
$$

Lemma 5. Consider a non-negative $C^{0}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right)$ solution n of (1) such that $n\left(1+|x|^{2}\right), n \log n$ are bounded in $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right), \nabla \sqrt{n} \in L_{\text {loc }}^{1}\left(\mathbb{R}^{+}, L^{2}\left(\mathbb{R}^{2}\right)\right)$ and $\nabla c \in L_{\text {loc }}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$. Then

$$
\frac{d}{d t} F[n(\cdot, t)]=-\int_{\mathbb{R}^{2}} n|\nabla(\log n)-\chi \nabla c|^{2} d x=: \mathcal{I}
$$

\mathcal{I} is the free energy production term or generalized relative Fisher information.
Proof.

$$
\frac{d}{d t} F[n(\cdot, t)]=\int_{\mathbb{R}^{2}}\left[(1+\log n-\chi c) \nabla \cdot\left(\frac{\nabla n}{n}-\chi \nabla c\right)\right] d x
$$

Hardy-Littlewood-Sobolev inequality

$$
F[n(\cdot, t)]=\int_{\mathbb{R}^{2}} n \log n d x+\frac{\chi}{4 \pi} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} n(x, t) n(y, t) \log |x-y| d x d y
$$

Lemma 6. [Carlen-Loss, Beckner] Let f be a non-negative function in $L^{1}\left(\mathbb{R}^{2}\right)$ such that $f \log f$ and $f \log \left(1+|x|^{2}\right)$ belong to $L^{1}\left(\mathbb{R}^{2}\right)$. If $\int_{\mathbb{R}^{2}} f d x=M$, then

$$
\int_{\mathbb{R}^{2}} f \log f d x+\frac{2}{M} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} f(x) f(y) \log |x-y| d x d y \geq-C(M)
$$

with $C(M):=M(1+\log \pi-\log M)$
The above inequality is the key functional inequality

Consequences

$(1-\theta) \int_{\mathbb{R}^{2}} n \log n d x+\theta\left[\int_{\mathbb{R}^{2}} n \log n d x+\frac{\chi}{4 \pi \theta} \iint_{\mathbb{R}^{2} \times \mathbb{R}^{2}} n(x) n(y) \log |x-y| d x d y\right]$
Lemma 7. Consider a non-negative $C^{0}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right)$ solution n of (1) such that $n\left(1+|x|^{2}\right), n \log n$ are bounded in $L_{\text {loc }}^{\infty}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right)$,
$\int_{\mathbb{R}^{2}} \frac{1+|x|}{|x-y|} n(y, t) d y \in L^{\infty}\left((0, T) \times \mathbb{R}^{2}\right), \nabla \sqrt{n} \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}^{+}, L^{2}\left(\mathbb{R}^{2}\right)\right)$ and $\nabla c \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{+} \times \mathbb{R}^{2}\right)$. If $\chi M \leq 8 \pi$, then the following estimates hold :

$$
\begin{array}{rl}
M \log M-M \log [\pi(1+t)]-K \leq \int_{\mathbb{R}^{2}} & n \log n d x \leq \frac{8 \pi F_{0}+\chi M C(M)}{8 \pi-\chi M} \\
0 \leq \int_{0}^{t} d s \int_{\mathbb{R}^{2}} n(x, s) \mid \nabla(\log n(x, s))- & \left.\chi \nabla c(x, s)\right|^{2} d x \\
\leq & C_{1}+C_{2}\left[M \log \left(\frac{\pi(1+t)}{M}\right)+K\right]
\end{array}
$$

Lower bound

Because of the bound on the second moment

$$
\begin{gathered}
\frac{1}{1+t} \int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x \leq K \quad \forall t>0 \\
\int_{\mathbb{R}^{2}} n(x, t) \log n(x, t) \geq \frac{1}{1+t} \int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x-K+\int_{\mathbb{R}^{2}} n(x, t) \log n(x, t) d x \\
=\int_{\mathbb{R}^{2}} \frac{n(x, t)}{\mu(x, t)} \log \left(\frac{n(x, t)}{\mu(x, t)}\right) \mu(x, t) d x-M \log [\pi(1+t)]-K
\end{gathered}
$$

with $\mu(x, t):=\frac{1}{\pi(1+t)} e^{-\frac{|x|^{2}}{1+t}}$. By Jensen's inequality,
$\int_{\mathbb{R}^{2}} \frac{n(x, t)}{\mu(x, t)} \log \left(\frac{n(x, t)}{\mu(x, t)}\right) d \mu(x, t) \geq X \log X$ where $X=\int_{\mathbb{R}^{2}} \frac{n(x, t)}{\mu(x, t)} d \mu=M$

$L_{\text {loe }}^{\infty}\left(\mathbb{R}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right)$ bound of the entropy term

Lemma 8. For any $u \in L_{+}^{1}\left(\mathbb{R}^{2}\right)$, if $\int_{\mathbb{R}^{2}}|x|^{2} u d x$ and $\int_{\mathbb{R}^{2}} u \log u d x$ are bounded from above, then $u \log u$ is uniformly bounded in $L^{\infty}\left(\mathbb{R}_{\mathrm{loc}}^{+}, L^{1}\left(\mathbb{R}^{2}\right)\right)$ and

$$
\int_{\mathbb{R}^{2}} u|\log u| d x \leq \int_{\mathbb{R}^{2}} u\left(\log u+|x|^{2}\right) d x+2 \log (2 \pi) \int_{\mathbb{R}^{2}} u d x+\frac{2}{e}
$$

Proof. Let $\bar{u}:=u \mathbb{1}_{\{u \leq 1\}}$ and $m=\int_{\mathbb{R}^{2}} \bar{u} d x \leq M$. Then

$$
\int_{\mathbb{R}^{2}} \bar{u}\left(\log \bar{u}+\frac{1}{2}|x|^{2}\right) d x=\int_{\mathbb{R}^{2}} U \log U d \mu-m \log (2 \pi)
$$

$U:=\bar{u} / \mu, d \mu(x)=\mu(x) d x, \mu(x)=(2 \pi)^{-1} e^{-|x|^{2} / 2}$. Jensen's inequality :

II. Proof of the existence result

Weak solutions up to critical mass

Proposition 9. If $M<8 \pi / \chi$, the Keller-Segel system (1) has a global weak non-negative solution such that, for any $T>0$,

$$
\left(1+|x|^{2}+|\log n|\right) n \in L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{2}\right)\right)
$$

and

$$
\iint_{[0, T] \times \mathbb{R}^{2}} n|\nabla \log n-\chi \nabla c|^{2} d x d t<\infty
$$

For $R>\sqrt{e}, R \mapsto R^{2} / \log R$ is an increasing function, so that
$0 \leq \iint_{|x-y|>R} \log |x-y| n(x, t) n(y, t) d x d y \leq \frac{2 \log R}{R^{2}} M \int_{\mathbb{R}^{2}}|x|^{2} n(x, t) d x$
Since $\iint_{1<|x-y|<R} \log |x-y| n(x, t) n(y, t) d x d y \leq M^{2} \log R$, we only need a uniform bound for $|x-y|<1$

A regularized model

Let $\mathcal{K}^{\varepsilon}(z):=\mathcal{K}^{1}\left(\frac{z}{\varepsilon}\right)$ with

$$
\begin{gathered}
\begin{cases}\mathcal{K}^{1}(z)=-\frac{1}{2 \pi} \log |z| & \text { if }|z| \geq 4 \\
\mathcal{K}^{1}(z)=0 & \text { if }|z| \leq 1\end{cases} \\
0 \leq-\nabla \mathcal{K}^{1}(z) \leq \frac{1}{2 \pi|z|} \quad \mathcal{K}^{1}(z) \leq-\frac{1}{2 \pi} \log |z| \quad \text { and } \quad-\Delta \mathcal{K}^{1}(z) \geq 0
\end{gathered}
$$

Since $\mathcal{K}^{\varepsilon}(z)=\mathcal{K}^{1}(z / \varepsilon)$, we also have

$$
0 \leq-\nabla \mathcal{K}^{\varepsilon}(z) \cdot \frac{z}{|z|} \leq \frac{1}{2 \pi|z|} \quad \forall z \in \mathbb{R}^{2}
$$

Proposition 10. For any fixed positive ε, if $n_{0} \in L^{2}\left(\mathbb{R}^{2}\right)$, then for any $T>0$ there exists $n^{\varepsilon} \in L^{2}\left(0, T ; H^{1}\left(\mathbb{R}^{2}\right)\right) \cap C\left(0, T ; L^{2}\left(\mathbb{R}^{2}\right)\right)$ which solves

$$
\left\{\begin{array}{l}
\frac{\partial n^{\varepsilon}}{\partial t}=\Delta n^{\varepsilon}-\chi \nabla \cdot\left(n^{\varepsilon} \nabla c^{\varepsilon}\right) \\
c^{\varepsilon}=\mathcal{K}^{\varepsilon} * n^{\varepsilon}
\end{array}\right.
$$

1. Regularize the initial data : $n_{0} \in L^{2}\left(\mathbb{R}^{2}\right)$
2. Use the Aubin-Lions compactness method with the spaces $H:=L^{2}\left(\mathbb{R}^{2}\right)$,
$V:=\left\{v \in H^{1}\left(\mathbb{R}^{2}\right): \sqrt{|x|} v \in L^{2}\left(\mathbb{R}^{2}\right)\right\}, L^{2}(0, T ; V), L^{2}(0, T ; H)$ and $\left\{v \in L^{2}(0, T ; V): \partial v / \partial t \in L^{2}\left(0, T ; V^{\prime}\right)\right\}$
3. Fixed-point method

Uniform a priori estimates

Lemma 11. Consider a solution n^{ε} of the regularized equation. If $\chi M<8 \pi$ then, uniformly as $\varepsilon \rightarrow 0$, with bounds depending only upon $\int_{\mathbb{R}^{2}}\left(1+|x|^{2}\right) n_{0} d x$ and $\int_{\mathbb{R}^{2}} n_{0} \log n_{0} d x$, we have :
(i) The function $(t, x) \mapsto|x|^{2} n^{\varepsilon}(x, t)$ is bounded in $L^{\infty}\left(\mathbb{R}_{\text {loc }}^{+} ; L^{1}\left(\mathbb{R}^{2}\right)\right)$.
(ii) The functions $t \mapsto \int_{\mathbb{R}^{2}} n^{\varepsilon}(x, t) \log n^{\varepsilon}(x, t) d x$ and $t \mapsto \int_{\mathbb{R}^{2}} n^{\varepsilon}(x, t) c^{\varepsilon}(x, t) d x$ are bounded.
(iii) The function $(t, x) \mapsto n^{\varepsilon}(x, t) \log \left(n^{\varepsilon}(x, t)\right)$ is bounded in $L^{\infty}\left(\mathbb{R}_{\mathrm{loc}}^{+} ; L^{1}\left(\mathbb{R}^{2}\right)\right)$.
(iv) The function $(t, x) \mapsto \nabla \sqrt{n^{\varepsilon}}(x, t)$ is bounded in $L^{2}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$.
(v) The function $(t, x) \mapsto n^{\varepsilon}(x, t)$ is bounded in $L^{2}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$.
(vi) The function $(t, x) \mapsto n^{\varepsilon}(x, t) \Delta c^{\varepsilon}(x, t)$ is bounded in $L^{1}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$.
(vii) The function $(t, x) \mapsto \sqrt{n^{\varepsilon}}(x, t) \nabla c^{\varepsilon}(x, t)$ is bounded in $L^{2}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$.

Proof of (iv)

$$
\begin{aligned}
& \frac{d}{d t} \int_{\mathbb{R}^{2}} n^{\varepsilon} \log n^{\varepsilon} d x \leq-4 \int_{\mathbb{R}^{2}}\left|\nabla \sqrt{n^{\varepsilon}}\right|^{2} d x+\chi \int_{\mathbb{R}^{2}} n^{\varepsilon} \cdot\left(-\Delta c^{\varepsilon}\right) d x \\
& \int_{\mathbb{R}^{2}} n^{\varepsilon} \cdot\left(-\Delta c^{\varepsilon}\right) d x=\int_{\mathbb{R}^{2}} n^{\varepsilon} \cdot\left(-\Delta\left(\mathcal{K}^{\varepsilon} * n^{\varepsilon}\right)\right) d x=(\mathrm{I})+(\mathrm{II})+(\mathrm{III})
\end{aligned}
$$

with
(I) $:=\int_{n^{\varepsilon}<K} n^{\varepsilon} \cdot\left(-\Delta\left(\mathcal{K}^{\varepsilon} * n^{\varepsilon}\right)\right),(\mathrm{II}):=\int_{n^{\varepsilon} \geq K} n^{\varepsilon} \cdot\left(-\Delta\left(\mathcal{K}^{\varepsilon} * n^{\varepsilon}\right)\right)-(\mathrm{III}),(\mathrm{III})=\int_{n^{\varepsilon} \geq K}\left|n^{\varepsilon}\right|^{2}$

Let $\frac{1}{\varepsilon^{2}} \phi_{1}(\dot{\bar{\varepsilon}}):=-\Delta \mathcal{K}^{\varepsilon}: \frac{1}{\varepsilon^{2}} \phi_{1}(\dot{\bar{\varepsilon}})=-\Delta \mathcal{K}^{\varepsilon} \rightharpoonup \delta \quad$ in \mathcal{D}^{\prime}
This heuristically explains why (II) should be small

Keller-Segel model

III. Regularity and free energy

Weak regularity results

Theorem 12. [Goudon2004] Let $n^{\varepsilon}:(0, T) \times \mathbb{R}^{N} \rightarrow \mathbb{R}$ be such that for almost all $t \in(0, T), n^{\varepsilon}(t)$ belongs to a weakly compact set in $L^{1}\left(\mathbb{R}^{N}\right)$ for almost any $t \in(0, T)$. If $\partial_{t} n^{\varepsilon}=\sum_{|\alpha| \leq k} \partial_{x}^{\alpha} g_{\varepsilon}^{(\alpha)}$ where, for any compact set $K \subset \mathbb{R}^{n}$,

$$
\limsup _{|E| \rightarrow 0}\left(\sup _{\varepsilon>0} \iint_{E \times K}\left|g_{\varepsilon}^{(\alpha)}\right| d t d x\right)=0
$$

$E \subset \mathbb{R}$ is measurable
then $\left(n^{\varepsilon}\right)_{\varepsilon>0}$ is relatively compact in $C^{0}\left([0, T] ; L_{\text {weak }}^{1}\left(\mathbb{R}^{N}\right)\right.$.
Corollary 13. Let n^{ε} be a solution of the regularized problem with initial data
$n_{0}^{\varepsilon}=\min \left\{n_{0}, \varepsilon^{-1}\right\}$ such that $n_{0}\left(1+|x|^{2}+\left|\log n_{0}\right|\right) \in L^{1}\left(\mathbb{R}^{2}\right)$. If n is a solution of (1) with initial data n_{0}, such that, for a sequence $\left(\varepsilon_{k}\right)_{k \in \mathbb{N}}$ with $\lim _{k \rightarrow \infty} \varepsilon_{k}=0$, $n^{\varepsilon_{k}} \rightharpoonup n$ in $L^{1}\left((0, T) \times \mathbb{R}^{2}\right)$, then n belongs to $C^{0}\left(0, T ; L_{\text {weak }}^{1}\left(\mathbb{R}^{2}\right)\right)$.

L^{p} uniform estimates

Proposition 14. Assume that $M<8 \pi / \chi$ holds. If n_{0} is bounded in $L^{p}\left(\mathbb{R}^{2}\right)$ for some $p>1$, then any solution n of (1) is bounded in $L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}^{+}, L^{p}\left(\mathbb{R}^{2}\right)\right)$.

$$
\begin{aligned}
\frac{1}{2(p-1)} \frac{d}{d t} \int_{\mathbb{R}^{2}}|n(x, t)|^{p} d x & =-\frac{2}{p} \int_{\mathbb{R}^{2}}\left|\nabla\left(n^{p / 2}\right)\right|^{2} d x+\chi \int_{\mathbb{R}^{2}} \nabla\left(n^{p / 2}\right) \cdot n^{p / 2} \cdot \nabla c d x \\
& =-\frac{2}{p} \int_{\mathbb{R}^{2}}\left|\nabla\left(n^{p / 2}\right)\right|^{2} d x+\chi \int_{\mathbb{R}^{2}} n^{p}(-\Delta c) d x \\
& =-\frac{2}{p} \int_{\mathbb{R}^{2}}\left|\nabla\left(n^{p / 2}\right)\right|^{2} d x+\chi \int_{\mathbb{R}^{2}} n^{p+1} d x
\end{aligned}
$$

Gagliardo-Nirenberg-Sobolev inequality with $n=v^{2 / p}$:

$$
\int_{\mathbb{R}^{2}}|v|^{2(1+1 / p)} d x \leq K_{p} \int_{\mathbb{R}^{2}}|\nabla v|^{2} d x \int_{\mathbb{R}^{2}}|v|^{2 / p} d x
$$

$$
\frac{1}{2(p-1)} \frac{d}{d t} \int_{\mathbb{R}^{2}} n^{p} d x \leq \int_{\mathbb{R}^{2}}\left|\nabla\left(n^{p / 2}\right)\right|^{2} d x\left(-\frac{2}{p}+K_{p} \chi M\right)
$$

which proves the decay of $\int_{\mathbb{R}^{2}} n^{p} d x$ if $M<\frac{2}{p K_{p} \chi}$
Otherwise, use the entropy estimate to get a bound : Let $K>1$

$$
\int_{\mathbb{R}^{2}} n^{p} d x=\int_{n \leq K} n^{p} d x+\int_{n>K} n^{p} d x \leq K^{p-1} M+\int_{n>K} n^{p} d x
$$

Let $M(K):=\int_{n>K} n d x$:

$$
M(K) \leq \frac{1}{\log K} \int_{n>K} n \log n d x \leq \frac{1}{\log K} \int_{\mathbb{R}^{2}}|n \log n| d x
$$

Redo the computation for $\int_{\mathbb{R}^{2}}(n-K)_{+}^{p} d x$ [Jäger-Luckhaus]

The free energy inequality in a regular setting

Using the a priori estimates of the previous section for $p=2+\varepsilon$, we can prove that the free energy inequality holds.
Lemma 15. Let n_{0} be in a bounded set in $L_{+}^{1}\left(\mathbb{R}^{2},\left(1+|x|^{2}\right) d x\right) \cap L^{2+\varepsilon}\left(\mathbb{R}^{2}, d x\right)$, for some $\varepsilon>0$, eventually small. Then the solution n of (1) found before, with initial data n_{0}, is in a compact set in $L^{2}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$ and moreover the free energy production estimate holds :

$$
F[n]+\int_{0}^{t}\left(\int_{\mathbb{R}^{2}} n|\nabla(\log n)-\chi \nabla c|^{2} d x\right) d s \leq F\left[n_{0}\right]
$$

1. n is bounded in $L^{2}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$
2. ∇n is bounded in $L^{2}\left(\mathbb{R}_{\text {loc }}^{+} \times \mathbb{R}^{2}\right)$
3. Compactness in $L^{2}\left(\mathbb{R}_{\mathrm{loc}}^{+} \times \mathbb{R}^{2}\right)$

Taking the limit in the Fisher information term

Up to the extraction of subsequences

$$
\begin{aligned}
& \iint_{[0, T] \times \mathbb{R}^{2}}|\nabla n|^{2} d x d t \leq \liminf _{k \rightarrow \infty} \iint_{[0, T] \times \mathbb{R}^{2}}\left|\nabla n_{k}\right|^{2} d x d t \\
& \iint_{[0, T] \times \mathbb{R}^{2}} n|\nabla|^{2} d x d t \leq \liminf _{k \rightarrow \infty} \iint_{[0, T] \times \mathbb{R}^{2}} n_{k}\left|\nabla c_{k}\right|^{2} d x d t \\
& \iint_{[0, T] \times \mathbb{R}^{2}} n^{2} d x=\liminf _{k \rightarrow \infty} \iint_{[0, T] \times \mathbb{R}^{2}}\left|n_{k}\right|^{2} d x d t
\end{aligned}
$$

Fisher information term :

$$
\begin{aligned}
& \iint_{\left[[0, T] \times \mathbb{R}^{2}\right.} n|\nabla(\log n)-\chi \nabla c|^{2} d x d t \\
& =4 \iint_{\left[[0, T] \times \mathbb{R}^{2}\right.}|\nabla \sqrt{n}|^{2} d x d t+\chi^{2} \iint_{\left[[0, T] \times \mathbb{R}^{2}\right.} n|\nabla \nabla|^{2} d x d t-2 \chi \iint_{\left[[0, T] \times \mathbb{R}^{2}\right.} n^{2} d x d t
\end{aligned}
$$

Hypercontractivity

Theorem 16. Consider a solution n of (1) such that $\chi M<8 \pi$. Then for any $p \in(1, \infty)$, there exists a continuous function h_{p} on $(0, \infty)$ such that for almost any $t>0,\|n(\cdot, t)\|_{L^{p}\left(\mathbb{R}^{2}\right)} \leq h_{p}(t)$.
Notice that unless n_{0} is bounded in $L^{p}\left(\mathbb{R}^{2}\right), \lim _{t \rightarrow 0_{+}} h_{p}(t)=+\infty$. Such a result is called an hypercontractivity result, since to an initial data which is originally in $L^{1}\left(\mathbb{R}^{2}\right)$ but not in $L^{p}\left(\mathbb{R}^{2}\right)$, we associate a solution which at almost any time $t>0$ is in $L^{p}\left(\mathbb{R}^{2}\right)$ with p arbitrarily large.

Proof. Fix $t>0$ and $p \in(1, \infty)$ and consider $q(s):=1+(p-1) \frac{s}{t}$. Define : $M(K):=\sup _{s \in(0, t)} \int_{n>K} n(\cdot, s) d x$

$$
\int_{n>K} n(\cdot, s) d x \leq \frac{1}{\log K} \int_{\mathbb{R}^{2}}|n(\cdot, s) \log n(\cdot, s)| d x
$$

and

$$
F(s):=\left[\int_{\mathbb{R}^{2}}(n-K)_{+}^{q(s)}(x, s) d x\right]^{1 / q(s)}
$$

$$
\begin{gathered}
F^{\prime} F^{q-1}=\frac{q^{\prime}}{q^{2}} \int_{\mathbb{R}^{2}}(n-K)_{+}^{q} \log \left(\frac{(n-K)_{+}^{q}}{F q}\right)+\int_{\mathbb{R}^{2}} n_{t}(n-K)_{+}^{q-1} \\
\int_{\mathbb{R}^{2}}(n-K)_{+}^{q-1} n_{t} d x=-4 \frac{q-1}{q^{2}} \int_{\mathbb{R}^{2}}|\nabla v|^{2} d x+\chi \frac{q-1}{q} \int_{\mathbb{R}^{2}} v^{2\left(1+\frac{1}{q}\right)} d x
\end{gathered}
$$

with $v:=(n-K)_{+}^{q / 2}$
Logarithmic Sobolev inequality

$$
\int_{\mathbb{R}^{2}} v^{2} \log \left(\frac{v^{2}}{\int_{\mathbb{R}^{2}} v^{2} d x}\right) d x \leq 2 \sigma \int_{\mathbb{R}^{2}}|\nabla v|^{2} d x-(2+\log (2 \pi \sigma)) \int_{\mathbb{R}^{2}} v^{2} d x
$$

Gagliardo-Nirenberg-Sobolev inequality

$$
\int_{\mathbb{R}^{2}}|v|^{2(1+1 / q)} d x \leq \mathcal{K}(q)\|\nabla v\|_{L^{2}\left(\mathbb{R}^{2}\right)}^{2} \int_{\mathbb{R}^{2}}|v|^{2 / q} d x \quad \forall q \in[2, \infty)
$$

The free energy inequality for weak solutions

Corollary 17. Let $\left(n^{k}\right)_{k \in \mathbb{N}}$ be a sequence of solutions of (1) with regularized initial data n_{0}^{k}. For any $t_{0}>0, T \in \mathbb{R}^{+}$such that $0<t_{0}<T,\left(n^{k}\right)_{k \in \mathbb{N}}$ is relatively compact in $L^{2}\left(\left(t_{0}, T\right) \times \mathbb{R}^{2}\right)$, and if n is the limit of $\left(n^{k}\right)_{k \in \mathbb{N}}$, then n is a solution of (1) such that the free energy inequality holds.

Proof.

$$
F\left[n^{k}(\cdot, t)\right]+\int_{t_{0}}^{t}\left(\int_{\mathbb{R}^{2}} n^{k}\left|\nabla\left(\log n^{k}\right)-\chi \nabla c^{k}\right|^{2} d x\right) d s \leq F\left[n^{k}\left(\cdot, t_{0}\right)\right]
$$

Passing to the limit as $k \rightarrow \infty$, we get

$$
F[n(\cdot, t)]+\int_{t_{0}}^{t}\left(\int_{\mathbb{R}^{2}} n|\nabla(\log n)-\chi \nabla c|^{2} d x\right) d s \leq F\left[n\left(\cdot, t_{0}\right)\right]
$$

Let $t_{0} \rightarrow 0_{+}$and conclude

Keller-Segel model

IV. Large time behaviour

Self-similar variables

$$
n(x, t)=\frac{1}{R^{2}(t)} u\left(\frac{x}{R(t)}, \tau(t)\right) \quad \text { and } \quad c(x, t)=v\left(\frac{x}{R(t)}, \tau(t)\right)
$$

with $R(t)=\sqrt{1+2 t} \quad$ and $\quad \tau(t)=\log R(t)$

$$
\begin{cases}\frac{\partial u}{\partial t}=\Delta u-\nabla \cdot(u(x+\chi \nabla v)) & x \in \mathbb{R}^{2}, t>0 \\ v=-\frac{1}{2 \pi} \log |\cdot| * u & x \in \mathbb{R}^{2}, t>0 \\ u(\cdot, t=0)=n_{0} \geq 0 & x \in \mathbb{R}^{2}\end{cases}
$$

Free energy : $F^{R}[u]:=\int_{\mathbb{R}^{2}} u \log u d x-\frac{\chi}{2} \int_{\mathbb{R}^{2}} u v d x+\frac{1}{2} \int_{\mathbb{R}^{2}}|x|^{2} u d x$

$$
\frac{d}{d t} F^{R}[u(\cdot, t)] \leq-\int_{\mathbb{R}^{2}} u|\nabla \log u-\chi \nabla v+x|^{2} d x
$$

Self-similar solutions : Free energy

Lemma 18. The functional F^{R} is bounded from below on the set

$$
\left\{u \in L_{+}^{1}\left(\mathbb{R}^{2}\right):|x|^{2} u \in L^{1}\left(\mathbb{R}^{2}\right) \int_{\mathbb{R}^{2}} u \log u d x<\infty\right\}
$$

if and only if $\chi\|u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \leq 8 \pi$.
Proof. If $\chi\|u\|_{L^{1}\left(\mathbb{R}^{2}\right)} \leq 8 \pi$, the bound is a consequence of the Hardy-Littlewood-Sobolev inequality

Scaling property. For a given u, let $u_{\lambda}(x)=\lambda^{-2} u\left(\lambda^{-1} x\right)$: $\left\|u_{\lambda}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}=: M$ does not depend on $\lambda>0$ and

$$
F^{R}\left[u_{\lambda}\right]=F^{R}[u]-2 M\left(1-\frac{\chi M}{8 \pi}\right) \log \lambda+\frac{\lambda-1}{2} \int_{\mathbb{R}^{2}}|x|^{2} u d x
$$

Strong convergence

Lemma 19. Let $\chi M<8 \pi$. As $t \rightarrow \infty,(s, x) \mapsto u(x, t+s)$ converges in
$L^{\infty}\left(0, T ; L^{1}\left(\mathbb{R}^{2}\right)\right)$ for any positive T to a stationary solution self-similar equation and

$$
\lim _{t \rightarrow \infty} \int_{\mathbb{R}^{2}}|x|^{2} u(x, t) d x=\int_{\mathbb{R}^{2}}|x|^{2} u_{\infty} d x=2 M\left(1-\frac{\chi M}{8 \pi}\right)
$$

Proof. We use the free energy production term :
$F^{R}\left[u_{0}\right]-\liminf _{t \rightarrow \infty} F^{R}[u(\cdot, t)]=\lim _{t \rightarrow \infty} \int_{0}^{t}\left(\int_{\mathbb{R}^{2}} u|\nabla \log u-\chi \nabla v+x|^{2} d x\right) d s$
and compute $\int_{\mathbb{R}^{2}}|x|^{2} u(x, t) d x$:

$$
\int_{\mathbb{R}^{2}}|x|^{2} u(x, t) d x=\int_{\mathbb{R}^{2}}|x|^{2} n_{0} d x e^{-2 t}+2 M\left(1-\frac{\chi M}{8 \pi}\right)\left(1-e^{-2 t}\right)
$$

Stationary solutions

Notice that under the constraint $\left\|u_{\infty}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}=M, u_{\infty}$ is a critical point of the free energy.
Lemma 20. Let $u \in L_{+}^{1}\left(\mathbb{R}^{2},\left(1+|x|^{2}\right) d x\right)$ with $M:=\int_{\mathbb{R}^{2}} u d x$, such that $\int_{\mathbb{R}^{2}} u \log u d x<\infty$, and define $v(x):=-\frac{1}{2 \pi} \int_{\mathbb{R}^{2}} \log |x-y| u(y) d y$. Then there exists a positive constant C such that, for any $x \in \mathbb{R}^{2}$ with $|x|>1$,

$$
\left|v(x)+\frac{M}{2 \pi} \log \right| x|\mid \leq C
$$

Lemma 21. [Naito-Suzuki] Assume that V is a non-negative non-trivial radial function on \mathbb{R}^{2} such that $\lim _{|x| \rightarrow \infty}|x|^{\alpha} V(x)<\infty$ for some $\alpha \geq 0$. If u is a solution of

$$
\Delta u+V(x) e^{u}=0 \quad x \in \mathbb{R}^{2}
$$

such that $u_{+} \in L^{\infty}\left(\mathbb{R}^{2}\right)$, then u is radially symmetric decreasing w.r.t. the origin

Because of the asymptotic logarithmic behavior of v_{∞}, the result of Gidas, Ni and Nirenberg does not directly apply. The boundedness from above is essential, otherwise non-radial solutions can be found, even with no singularity. Consider for instance the perturbation $\delta(x)=\frac{1}{2} \theta\left(x_{1}^{2}-x_{2}^{2}\right)$ for any $x=\left(x_{1}, x_{2}\right)$, for some fixed $\theta \in(0,1)$, and define the potential $\phi(x)=\frac{1}{2}|x|^{2}-\delta(x)$. By a fixed-point method we can find a solution of

$$
w(x)=-\frac{1}{2 \pi} \log |\cdot| * M \frac{e^{\chi w-\phi(x)}}{\int_{\mathbb{R}^{2}} e^{\chi w(y)-\phi(y)} d y}
$$

since, as $|x| \rightarrow \infty, \phi(x) \sim \frac{1}{2}\left[(1-\theta) x_{1}^{2}+(1+\theta) x_{2}^{2}\right] \rightarrow+\infty$. This solution is such that $w(x) \sim-\frac{M}{2 \pi} \log |x|$. Hence $v(x):=w(x)+\delta(x) / \chi$ is a non-radial solution of the self-similar equation, which behaves like $\delta(x) / \chi$ as $|x| \rightarrow \infty$ with $\left|x_{1}\right| \neq\left|x_{2}\right|$.

Lemma 22. If $\chi M>8 \pi$, the rescaled equation has no stationary solution (u_{∞}, v_{∞}) such that $\left\|u_{\infty}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}=M$ and $\int_{\mathbb{R}^{2}}|x|^{2} u_{\infty} d x<\infty$. If $\chi M<8 \pi$, the self-similar equation has at least one radial stationary solution. This solution is C^{∞} and u_{∞} is dominated as $|x| \rightarrow \infty$ by $e^{-(1-\varepsilon)|x|^{2} / 2}$ for any $\varepsilon \in(0,1)$.
Non-existence for $\chi M>8 \pi$:

$$
0=\frac{d}{d t} \int_{\mathbb{R}^{2}}|x|^{2} u_{\infty} d x=4 M\left(1-\frac{\chi M}{8 \pi}\right)-2 \int_{\mathbb{R}^{2}}|x|^{2} u_{\infty} d x
$$

Uniqueness : [Biler-Karch-Laurençot-Nadzieja]

Intermediate asymptotics

Lemma 23.

$$
\lim _{t \rightarrow \infty} F^{R}[u(\cdot, \cdot+t)]=F^{R}\left[u_{\infty}\right]
$$

Proof. We know that $u(\cdot, \cdot+t)$ converges to u_{∞} in $L^{2}\left((0,1) \times \mathbb{R}^{2}\right)$ and that $\int_{\mathbb{R}^{2}} u(\cdot, \cdot+t) v(\cdot, \cdot+t) d x$ converges to $\int_{\mathbb{R}^{2}} u_{\infty} v_{\infty} d x$. Concerning the entropy, it is sufficient to prove that $u(\cdot, \cdot+t) \log u(\cdot, \cdot+t)$ weakly converges in $L^{1}\left((0,1) \times \mathbb{R}^{2}\right)$ to $u_{\infty} \log u_{\infty}$. Concentration is prohibited by the convergence in $L^{2}\left((0,1) \times \mathbb{R}^{2}\right)$. Vanishing or dichotomy cannot occur either: Take indeed $R>0$, large, and compute
$\int_{|x|>R} u|\log u|=(\mathrm{I})+$ (II), with $m:=\int_{|x|>R, u<1} u d x$ and

$$
\begin{aligned}
(\mathrm{I}) & =\int_{|x|>R, u \geq 1} u \log u d x \leq \frac{1}{2} \int_{|x|>R, u \geq 1}|u|^{2} d x \\
(\mathrm{II}) & =-\int_{|x|>R, u<1} u \log u d x \leq \frac{1}{2} \int_{|x|>R, u<1}|x|^{2} u d x-m \log \left(\frac{m}{2 \pi}\right)
\end{aligned}
$$

Conclusion

The result we have shown above is actually slightly better : all terms converge to the corresponding values for the limiting stationary solution

$$
F^{R}[u]-F^{R}\left[u_{\infty}\right]=\int_{\mathbb{R}^{2}} u \log \left(\frac{u}{u_{\infty}}\right) d x-\frac{\chi}{2} \int_{\mathbb{R}^{2}}\left|\nabla v-\nabla v_{\infty}\right|^{2} d x
$$

Csiszár-Kullback inequality : for any nonnegative functions $f, g \in L^{1}\left(\mathbb{R}^{2}\right)$ such that $\int_{\mathbb{R}^{2}} f d x=\int_{\mathbb{R}^{2}} g d x=M$,

$$
\|f-g\|_{L^{1}\left(\mathbb{R}^{2}\right)}^{2} \leq \frac{1}{4 M} \int_{\mathbb{R}^{2}} f \log \left(\frac{f}{g}\right) d x
$$

Corollary 24.

$$
\lim _{t \rightarrow \infty}\left\|u(\cdot, \cdot+t)-u_{\infty}\right\|_{L^{1}\left(\mathbb{R}^{2}\right)}=0 \quad \text { and } \quad \lim _{t \rightarrow \infty}\left\|\nabla v(\cdot, \cdot+t)-\nabla v_{\infty}\right\|_{L^{2}\left(\mathbb{R}^{2}\right)}=0
$$

