Free energy estimates for the two-dimensional Keller-Segel model

Jean DOLBEAULT

dolbeaul@ceremade.dauphine.fr

CEREMADE

CNRS & Université Paris-Dauphine

in collaboration with

A. Blanchet (CERMICS, ENPC & Ceremade) & B. Perthame (ENS, Paris VI)

MODOLOD ON ENTROPY INFORMATION AND EUNOTIONAL INFOLIALITIES (AND IEO): ADDIL O. F. 0000

The Keller-Segel model

The Keller-Segel(-Patlak) system for chemotaxis describes the collective motion of cells (bacteria or amoebae) [Othmer-Stevens, Horstman]. The complete Keller-Segel model is a system of two parabolic equations. Simplified two-dimensional version :

$$\begin{cases} \frac{\partial n}{\partial t} = \Delta n - \chi \nabla \cdot (n \nabla c) & x \in \mathbb{R}^2, \ t > 0 \\ -\Delta c = n & x \in \mathbb{R}^2, \ t > 0 \end{cases}$$
(1)
$$n(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

n(x,t) : the cell density c(x,t) : concentration of chemo-attractant $\chi > 0$: *sensitivity* of the bacteria to the chemo-attractant Keller-Segel model

I. Main results and a priori estimates

Jean DOLBEAULT

Dimension 2 is critical

The total mass of the system

$$M := \int_{\mathbb{R}^2} n_0 \ dx$$

is conserved

There are related models in gravitation which are defined in \mathbb{R}^3

The L^1 -norm is critical in the sense that there exists a critical mass above which all solution blow-up in finite time and below which they globally exist. The critical space is $L^{d/2}(\mathbb{R}^d)$ for $d \ge 2$, see [Corrias-Perthame-Zaag]. In dimension d = 2, the Green kernel associated to the Poisson equation is a logarithm, namely

$$c = -\frac{1}{2\pi} \log|\cdot| * n$$

First main result

Theorem 1. Assume that $n_0 \in L^1_+(\mathbb{R}^2, (1 + |x|^2) dx)$ and $n_0 \log n_0 \in L^1(\mathbb{R}^2, dx)$. If $M < 8\pi/\chi$, then the Keller-Segel system (1) has a global weak non-negative solution n with initial data n_0 such that

$$(1+|x|^{2}+|\log n|) n \in L^{\infty}_{\text{loc}}(\mathbb{R}^{+}, L^{1}(\mathbb{R}^{2})) \quad \int_{0}^{t} \int_{\mathbb{R}^{2}} n |\nabla \log n - \chi \nabla c|^{2} dx dt < \infty$$

and
$$\int_{\mathbb{R}^2} |x|^2 n(x,t) \, dx = \int_{\mathbb{R}^2} |x|^2 n_0(x) \, dx + 4M \left(1 - \frac{\chi M}{8\pi}\right) t$$

for any t > 0. Moreover $n \in L^{\infty}_{loc}((\varepsilon, \infty), L^p(\mathbb{R}^2))$ for any $p \in (1, \infty)$ and any $\varepsilon > 0$, and the following inequality holds for any t > 0:

$$F[n(\cdot,t)] + \int_0^t \int_{\mathbb{R}^2} n |\nabla (\log n) - \chi \nabla c|^2 dx \, ds \le F[n_0]$$

Here $F[n] := \int_{\mathbb{R}^2} n \log n \, dx - \frac{\chi}{2} \int_{\mathbb{R}^2} n c \, dx$

Notion of solution

The equation holds in the distributions sense. Indeed, writing

$$\Delta n - \chi \nabla \cdot (n \nabla c) = \nabla \cdot [n(\nabla \log n - \chi \nabla c)]$$

we can see that the flux is well defined in $L^1(\mathbb{R}^+_{loc} \times \mathbb{R}^2)$ since

$$\begin{split} \iint_{[0,T]\times\mathbb{R}^2} & n |\nabla \log n - \chi \nabla c| \ dx \ dt \\ & \leq \left(\iint_{[0,T]\times\mathbb{R}^2} n \ dx \ dt \right)^{1/2} \left(\iint_{[0,T]\times\mathbb{R}^2} n |\nabla \log n - \chi \nabla c|^2 \ dx \ dt \right)^{1/2} < \infty \end{split}$$

Second main result : Large time behavior

Use asymptotically self-similar profiles given in the rescaled variables by the equation

$$u_{\infty} = M \frac{e^{\chi v_{\infty} - |x|^{2}/2}}{\int_{\mathbb{R}^{2}} e^{\chi v_{\infty} - |x|^{2}/2} dx} = -\Delta v_{\infty} \quad \text{with} \quad v_{\infty} = -\frac{1}{2\pi} \log |\cdot| * u_{\infty} \quad (2)$$

In the original variables :

$$n_{\infty}(x,t) := \frac{1}{1+2t} u_{\infty} \left(\log(\sqrt{1+2t}), x/\sqrt{1+2t} \right)$$

$$c_{\infty}(x,t) := v_{\infty} \left(\log(\sqrt{1+2t}), x/\sqrt{1+2t} \right)$$

Theorem 2. Under the same assumptions as in Theorem 1, there exists a stationary solution (u_{∞}, v_{∞}) in the self-similar variables such that

$$\lim_{t \to \infty} \|n(\cdot, t) - n_{\infty}(\cdot, t)\|_{L^{1}(\mathbb{R}^{2})} = 0 \quad \text{and} \quad \lim_{t \to \infty} \|\nabla c(\cdot, t) - \nabla c_{\infty}(\cdot, t)\|_{L^{2}(\mathbb{R}^{2})} = 0$$

Assumptions

We assume that the initial data satisfies the following asssumptions :

 $n_0 \in L^1_+(\mathbb{R}^2, (1+|x|^2) \, dx)$

 $n_0 \log n_0 \in L^1(\mathbb{R}^2, dx)$

The total mass is conserved

$$M := \int_{\mathbb{R}^2} n_0(x) \, dx = \int_{\mathbb{R}^2} n(x,t) \, dx$$

Goal : give a complete existence theory [J.D.-Perthame], [Blanchet-J.D.-Perthame] in the subcritical case, *i.e.* in the case

 $M < 8\pi/\chi$

Alternatives

There are only two cases :

- 1. Solutions to (1) blow-up in finite time when $M>8\pi/\chi$
- 2. There exists a global in time solution of (1) when $M < 8\pi/\chi$

The case $M = 8\pi/\chi$ is delicate and for radial solutions, some results have been obtained recently [Biler-Karch-Laurençot-Nadzieja]

Our existence theory completes the partial picture established in [Jäger-Luckhaus].

Convention

The solution of the Poisson equation $-\Delta c = n$ is given up to an harmonic function. From the beginning, we have in mind that the concentration of the chemo-attractant is defined by

$$c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| n(y,t) \, dy$$

$$\nabla c(x,t) = -\frac{1}{2\pi} \int_{\mathbb{R}^2} \frac{x-y}{|x-y|^2} n(y,t) \, dy$$

Blow-up for super-critical masses

Case $M > 8\pi/\chi$ (Case 1) : use moments estimates

Lemma 3. Consider a non-negative distributional solution to (1) on an interval [0, T]that satisfies the previous assumptions, $\int_{\mathbb{R}^2} |x|^2 n_0(x) dx < \infty$ and such that $(x,t) \mapsto \int_{\mathbb{R}^2} \frac{1+|x|}{|x-y|} n(y,t) dy \in L^{\infty}((0,T) \times \mathbb{R}^2)$ and $(x,t) \mapsto (1+|x|) \nabla c(x,t) \in L^{\infty}((0,T) \times \mathbb{R}^2)$. Then it also satisfies

$$\frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 n(x,t) \, dx = 4M\left(1 - \frac{\chi M}{8\pi}\right)$$

Formal proof.

$$\frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 n(x,t) \, dx = \int_{\mathbb{R}^2} |x|^2 \Delta n(x,t) \, dx \\ + \frac{\chi}{2\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} 2x \cdot \frac{x-y}{|x-y|^2} \, n(x,t) \, n(y,t) \, dx \, dy$$

Justification

Consider a smooth function φ_{ε} with compact support such that $\lim_{\varepsilon \to 0} \varphi_{\varepsilon}(|x|) = |x|^2$

$$\frac{d}{dt} \int_{\mathbb{R}^2} \varphi_{\varepsilon} n \, dx = \int_{\mathbb{R}^2} \Delta \varphi_{\varepsilon} n \, dx$$
$$-\frac{\chi}{4\pi} \int_{\mathbb{R}^2} \underbrace{\frac{(\nabla \varphi_{\varepsilon}(x) - \nabla \varphi_{\varepsilon}(y)) \cdot (x - y)}{|x - y|^2}}_{\rightarrow 1} n(x, t) n(y, t) \, dx \, dy$$

Since $\frac{d}{dt} \int_{\mathbb{R}^2} \varphi_{\varepsilon} n \, dx \leq C_{\varepsilon} \int_{\mathbb{R}^2} n_0 \, dx$ where C_{ε} is some positive constant, as $\varepsilon \to 0$, $\int_{\mathbb{R}^2} \varphi_{\varepsilon} n \, dx \leq c_1 + c_2 t$

$$\int_{\mathbb{R}^2} |x|^2 n(x,t) \, dx < \infty \quad \forall \ t \in (0,T)$$

Weaker notion of solutions

We shall say that n is a solution to (1) if for all test functions $\psi \in \mathcal{D}(\mathbb{R}^2)$

$$\frac{d}{dt} \int_{\mathbb{R}^2} \psi(x) n(x,t) \, dx = \int_{\mathbb{R}^2} \Delta \psi(x) n(x,t) \, dx$$
$$-\frac{\chi}{4\pi} \int_{\mathbb{R}^2 \times \mathbb{R}^2} \left[\nabla \psi(x) - \nabla \psi(y) \right] \cdot \frac{x-y}{|x-y|^2} n(x,t) n(y,t) \, dx \, dy$$

Compared to standard distribution solutions, this is an improved concept that can handle some measure valued solutions because the term

$$\left[\nabla\psi(x) - \nabla\psi(y)\right] \cdot \frac{x - y}{|x - y|^2}$$

is continuous

However, this notion of solutions does not cover the case of all measure valued $n(\cdot,t)$

Finite time blow-up

Corollary 4. Consider a non-negative distributional solution $n \in L^{\infty}(0, T^*; L^1(\mathbb{R}^2))$ to (1) and assume that $[0, T^*), T^* \leq \infty$, is the maximal interval of existence. Let

$$I_0 := \int_{\mathbb{R}^2} |x|^2 n_0(x) \, dx < \infty \quad \text{and} \quad \int_{\mathbb{R}^2} \frac{1+|x|}{|x-y|} n(y,t) \, dy \in L^\infty\big((0,T) \times \mathbb{R}^2\big)$$

If $\chi M > 8\pi$, then

$$T^* \le \frac{2\pi I_0}{M(\chi M - 8\pi)}$$

If $\chi M > 8\pi$ and $I_0 = \infty$: blow-up in finite time? Blow-up statements in bounded domains are available Radial case : there exists a $L^1(\mathbb{R}^2 \times \mathbb{R}^+)$ radial function \tilde{n} such that

$$n(x,t) \to \frac{8\pi}{\chi} \,\delta + \tilde{n}(x,t) \quad \text{as } t \nearrow T^*$$

Comments

1. $\chi M = 8\pi$ [Biler-Karch-Laurençot-Nadzieja] : blow-up only for $T^* = \infty$

2. If the problem is set in dimension $d \ge 3$, the critical norm is $L^p(\mathbb{R}^d)$ with p = d/2 [Corrias-Perthame-Zaag]

3. In dimension d = 2, the value of the mass M is therefore natural to discriminate between super- and sub-critical regimes. However, the limit of the L^p -norm is rather $\int_{\mathbb{R}^2} n \log n \, dx$ than $\int_{\mathbb{R}^2} n \, dx$, which is preserved by the evolution. This explains why it is natural to introduce the entropy, or better, as we shall see below, the *free energy*

The proof of Jäger and Luckhaus

[Corrias-Perthame-Zaag] Compute $\frac{d}{dt} \int_{\mathbb{R}^2} n \log n \, dx$. Using an integration by parts and the equation for c, we obtain :

$$\frac{d}{dt} \int_{\mathbb{R}^2} n \log n \, dx = -4 \int_{\mathbb{R}^2} \left| \nabla \sqrt{n} \right|^2 \, dx + \chi \int_{\mathbb{R}^2} \nabla n \cdot \nabla c \, dx$$
$$= -4 \int_{\mathbb{R}^2} \left| \nabla \sqrt{n} \right|^2 \, dx + \chi \int_{\mathbb{R}^2} n^2 \, dx$$

The entropy is nonincreasing if $\chi M \leq 4C_{\text{GNS}}^{-2}$, where $C_{\text{GNS}} = C_{\text{GNS}}^{(4)}$ is the best constant for p = 4 in the Gagliardo-Nirenberg-Sobolev inequality :

$$\|u\|_{L^{p}(\mathbb{R}^{2})}^{2} \leq C_{\text{GNS}}^{(p)} \|\nabla u\|_{L^{2}(\mathbb{R}^{2})}^{2-4/p} \|u\|_{L^{2}(\mathbb{R}^{2})}^{4/p} \quad \forall \ u \in H^{1}(\mathbb{R}^{2}) \quad \forall \ p \in [2, \infty)$$

Numerically : $\chi M \leq 4C_{\rm GNS}^{-2} \approx 1.862... \times (4\pi) < 8\pi$

A sharper approach : free energy

The free energy :

$$F[n] := \int_{\mathbb{R}^2} n \log n \, dx - \frac{\chi}{2} \int_{\mathbb{R}^2} n \, c \, dx$$

Lemma 5. Consider a non-negative $C^0(\mathbb{R}^+, L^1(\mathbb{R}^2))$ solution n of (1) such that $n(1 + |x|^2)$, $n \log n$ are bounded in $L^{\infty}_{\text{loc}}(\mathbb{R}^+, L^1(\mathbb{R}^2))$, $\nabla \sqrt{n} \in L^1_{\text{loc}}(\mathbb{R}^+, L^2(\mathbb{R}^2))$ and $\nabla c \in L^{\infty}_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R}^2)$. Then

$$\frac{d}{dt}F[n(\cdot,t)] = -\int_{\mathbb{R}^2} n \left|\nabla\left(\log n\right) - \chi\nabla c\right|^2 \, dx =: \mathcal{I}$$

 \mathcal{I} is the free energy production term Or generalized relative Fisher information. *Proof.*

$$\frac{d}{dt}F[n(\cdot,t)] = \int_{\mathbb{R}^2} \left[\left(1 + \log n - \chi c \right) \nabla \cdot \left(\frac{\nabla n}{n} - \chi \nabla c \right) \right] dx$$

Jean DOLBEAULT

Cergy - October 9, 2006 - p.16/44

Hardy-Littlewood-Sobolev inequality

$$F[n(\cdot,t)] = \int_{\mathbb{R}^2} n\log n \, dx + \frac{\chi}{4\pi} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} n(x,t) \, n(y,t) \, \log|x-y| \, dx \, dy$$

Lemma 6. [Carlen-Loss, Beckner] Let f be a non-negative function in $L^1(\mathbb{R}^2)$ such that $f \log f$ and $f \log(1 + |x|^2)$ belong to $L^1(\mathbb{R}^2)$. If $\int_{\mathbb{R}^2} f \, dx = M$, then

$$\int_{\mathbb{R}^2} f \log f \, dx + \frac{2}{M} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} f(x) f(y) \log |x - y| \, dx \, dy \ge -C(M)$$

with $C(M) := M(1 + \log \pi - \log M)$

The above inequality is the key functional inequality

Consequences

$$(1-\theta)\int_{\mathbb{R}^2} n\log n \, dx + \theta \left[\int_{\mathbb{R}^2} n\log n \, dx + \frac{\chi}{4\pi\theta} \iint_{\mathbb{R}^2 \times \mathbb{R}^2} n(x) \, n(y) \, \log|x-y| \, dx \, dy\right]$$

Lemma 7. Consider a non-negative $C^0(\mathbb{R}^+, L^1(\mathbb{R}^2))$ solution n of (1) such that $n(1 + |x|^2)$, $n \log n$ are bounded in $L^{\infty}_{\text{loc}}(\mathbb{R}^+, L^1(\mathbb{R}^2))$, $\int_{\mathbb{R}^2} \frac{1+|x|}{|x-y|} n(y,t) \, dy \in L^{\infty}((0,T) \times \mathbb{R}^2)$, $\nabla \sqrt{n} \in L^1_{\text{loc}}(\mathbb{R}^+, L^2(\mathbb{R}^2))$ and $\nabla c \in L^{\infty}_{\text{loc}}(\mathbb{R}^+ \times \mathbb{R}^2)$. If $\chi M \leq 8\pi$, then the following estimates hold :

$$M \log M - M \log[\pi(1+t)] - K \leq \int_{\mathbb{R}^2} n \log n \, dx \leq \frac{8\pi F_0 + \chi M C(M)}{8\pi - \chi M}$$
$$0 \leq \int_0^t ds \int_{\mathbb{R}^2} n(x,s) |\nabla (\log n(x,s)) - \chi \nabla c(x,s)|^2 dx$$
$$\leq C_1 + C_2 \left[M \log\left(\frac{\pi(1+t)}{M}\right) + K \right]$$

Jean DOLBEAULT

Lower bound

Because of the bound on the second moment

$$\begin{split} \frac{1}{1+t} \int_{\mathbb{R}^2} |x|^2 \, n(x,t) \, dx &\leq K \quad \forall \, t > 0 \;, \\ \int_{\mathbb{R}^2} n(x,t) \log n(x,t) &\geq \frac{1}{1+t} \int_{\mathbb{R}^2} |x|^2 \, n(x,t) \, dx - K + \int_{\mathbb{R}^2} n(x,t) \log n(x,t) \, dx \\ &= \int_{\mathbb{R}^2} \frac{n(x,t)}{\mu(x,t)} \log \left(\frac{n(x,t)}{\mu(x,t)}\right) \mu(x,t) \, dx - M \, \log[\pi(1+t)] - K \end{split}$$

with $\mu(x,t) := \frac{1}{\pi(1+t)} e^{-\frac{|x|^2}{1+t}}$. By Jensen's inequality,

$$\int_{\mathbb{R}^2} \frac{n(x,t)}{\mu(x,t)} \log\left(\frac{n(x,t)}{\mu(x,t)}\right) \, d\mu(x,t) \ge X \, \log X \text{ where } X = \int_{\mathbb{R}^2} \frac{n(x,t)}{\mu(x,t)} \, d\mu = M$$

$L^{\infty}_{\text{loc}}(\mathbb{R}^+, L^1(\mathbb{R}^2))$ bound of the entropy term

Lemma 8. For any $u \in L^1_+(\mathbb{R}^2)$, if $\int_{\mathbb{R}^2} |x|^2 u \, dx$ and $\int_{\mathbb{R}^2} u \log u \, dx$ are bounded from above, then $u \log u$ is uniformly bounded in $L^{\infty}(\mathbb{R}^+_{\text{loc}}, L^1(\mathbb{R}^2))$ and

$$\int_{\mathbb{R}^2} u \left| \log u \right| \, dx \le \int_{\mathbb{R}^2} u \left(\log u + |x|^2 \right) \, dx + 2 \log(2\pi) \int_{\mathbb{R}^2} u \, dx + \frac{2}{e}$$

Proof. Let $\bar{u} := u \, \mathbb{1}_{\{u \leq 1\}}$ and $m = \int_{\mathbb{R}^2} \bar{u} \, dx \leq M$. Then

$$\int_{\mathbb{R}^2} \bar{u} \left(\log \bar{u} + \frac{1}{2} |x|^2 \right) \, dx = \int_{\mathbb{R}^2} U \log U \, d\mu - m \log \left(2\pi \right)$$

 $U := \bar{u}/\mu$, $d\mu(x) = \mu(x) dx$, $\mu(x) = (2\pi)^{-1} e^{-|x|^2/2}$. Jensen's inequality :

$$\int_{\mathbb{R}^2} \bar{u} \, \log \bar{u} \, dx \ge m \log \left(\frac{m}{2\pi}\right) - \frac{1}{2} \int_{\mathbb{R}^2} |x|^2 \, \bar{u} \, dx \ge -\frac{1}{e} - M \log(2\pi) - \frac{1}{2} \int_{\mathbb{R}^2} |x|^2 \, \bar{u} \, dx$$

 $\int_{\mathbb{R}^2} u |\log u| \, dx = \int_{\mathbb{R}^2} u \log u \, dx - 2 \int_{\mathbb{R}^2} \overline{u} \log \overline{u} \, dx$

Cergy - October 9, 2006 – p.20/44

Keller-Segel model

II. Proof of the existence result

Weak solutions up to critical mass

Proposition 9. If $M < 8\pi/\chi$, the Keller-Segel system (1) has a global weak non-negative solution such that, for any T > 0,

$$(1 + |x|^2 + |\log n|) n \in L^{\infty}(0, T; L^1(\mathbb{R}^2))$$

and

$$\iint_{[0,T]\times\mathbb{R}^2} \log n - \chi \nabla c|^2 \, dx \, dt < \infty$$

For $R > \sqrt{e}$, $R \mapsto R^2 / \log R$ is an increasing function, so that

$$0 \le \iint_{|x-y|>R} \log |x-y| \, n(x,t) \, n(y,t) \, dx \, dy \le \frac{2 \, \log \, R}{R^2} \, M \, \int_{\mathbb{R}^2} |x|^2 \, n(x,t) \, dx$$

Since $\iint_{1 \le |x-y| \le R} \log |x-y| n(x,t) n(y,t) dx dy \le M^2 \log R$, we only need a uniform bound for |x-y| < 1

A regularized model

Let $\mathcal{K}^{\varepsilon}(z) := \mathcal{K}^1\left(\frac{z}{\varepsilon}\right)$ with

$$\begin{cases} \mathcal{K}^{1}(z) = -\frac{1}{2\pi} \log |z| & \text{if } |z| \ge 4 \\ \mathcal{K}^{1}(z) = 0 & \text{if } |z| \le 1 \end{cases}$$

$$0 \le -\nabla \mathcal{K}^1(z) \le \frac{1}{2\pi |z|} \quad \mathcal{K}^1(z) \le -\frac{1}{2\pi} \log |z| \quad \text{and} \quad -\Delta \mathcal{K}^1(z) \ge 0$$

Since $\mathcal{K}^{\varepsilon}(z) = \mathcal{K}^1(z/\varepsilon)$, we also have

$$0 \le -\nabla \mathcal{K}^{\varepsilon}(z) \cdot \frac{z}{|z|} \le \frac{1}{2\pi |z|} \quad \forall \ z \in \mathbb{R}^2$$

Proposition 10. For any fixed positive ε , if $n_0 \in L^2(\mathbb{R}^2)$, then for any T > 0 there exists $n^{\varepsilon} \in L^2(0,T; H^1(\mathbb{R}^2)) \cap C(0,T; L^2(\mathbb{R}^2))$ which solves

$$\begin{cases} \frac{\partial n^{\varepsilon}}{\partial t} = \Delta n^{\varepsilon} - \chi \nabla \cdot (n^{\varepsilon} \nabla c^{\varepsilon}) \\ c^{\varepsilon} = \mathcal{K}^{\varepsilon} * n^{\varepsilon} \end{cases}$$

1. Regularize the initial data : $n_0 \in L^2(\mathbb{R}^2)$

2. Use the Aubin-Lions compactness method with the spaces $H := L^2(\mathbb{R}^2)$, $V := \{v \in H^1(\mathbb{R}^2) : \sqrt{|x|} v \in L^2(\mathbb{R}^2)\}, L^2(0,T;V), L^2(0,T;H) \text{ and}$ $\{v \in L^2(0,T;V) : \frac{\partial v}{\partial t} \in L^2(0,T;V')\}$

3. Fixed-point method

Uniform a priori estimates

Lemma 11. Consider a solution n^{ε} of the regularized equation. If $\chi M < 8\pi$ then, uniformly as $\varepsilon \to 0$, with bounds depending only upon $\int_{\mathbb{R}^2} (1 + |x|^2) n_0 dx$ and $\int_{\mathbb{R}^2} n_0 \log n_0 dx$, we have :

(i) The function $(t, x) \mapsto |x|^2 n^{\varepsilon}(x, t)$ is bounded in $L^{\infty}(\mathbb{R}^+_{\text{loc}}; L^1(\mathbb{R}^2))$.

(ii) The functions
$$t \mapsto \int_{\mathbb{R}^2} n^{\varepsilon}(x,t) \log n^{\varepsilon}(x,t) \, dx$$
 and $t \mapsto \int_{\mathbb{R}^2} n^{\varepsilon}(x,t) \, c^{\varepsilon}(x,t) \, dx$ are bounded.

- (iii) The function $(t, x) \mapsto n^{\varepsilon}(x, t) \log(n^{\varepsilon}(x, t))$ is bounded in $L^{\infty}(\mathbb{R}^+_{\text{loc}}; L^1(\mathbb{R}^2))$.
- (iv) The function $(t, x) \mapsto \nabla \sqrt{n^{\varepsilon}}(x, t)$ is bounded in $L^2(\mathbb{R}^+_{\text{loc}} \times \mathbb{R}^2)$.
- (v) The function $(t, x) \mapsto n^{\varepsilon}(x, t)$ is bounded in $L^2(\mathbb{R}^+_{\text{loc}} \times \mathbb{R}^2)$.
- (vi) The function $(t, x) \mapsto n^{\varepsilon}(x, t) \Delta c^{\varepsilon}(x, t)$ is bounded in $L^1(\mathbb{R}^+_{\text{loc}} \times \mathbb{R}^2)$.

(vii) The function $(t, x) \mapsto \sqrt{n^{\varepsilon}}(x, t) \nabla c^{\varepsilon}(x, t)$ is bounded in $L^2(\mathbb{R}^+_{\text{loc}} \times \mathbb{R}^2)$.

Proof of (iv)

$$\frac{d}{dt} \int_{\mathbb{R}^2} n^{\varepsilon} \log n^{\varepsilon} \, dx \le -4 \int_{\mathbb{R}^2} \left| \nabla \sqrt{n^{\varepsilon}} \right|^2 \, dx + \chi \int_{\mathbb{R}^2} n^{\varepsilon} \cdot \left(-\Delta c^{\varepsilon} \right) \, dx$$
$$\int_{\mathbb{R}^2} n^{\varepsilon} \cdot \left(-\Delta c^{\varepsilon} \right) \, dx = \int_{\mathbb{R}^2} n^{\varepsilon} \cdot \left(-\Delta (\mathcal{K}^{\varepsilon} * n^{\varepsilon}) \right) \, dx = (\mathbf{I}) + (\mathbf{II}) + (\mathbf{III})$$

with

$$(\mathbf{I}) := \int_{n^{\varepsilon} < K} n^{\varepsilon} (-\Delta(\mathcal{K}^{\varepsilon} * n^{\varepsilon})), \ (\mathbf{II}) := \int_{n^{\varepsilon} \ge K} n^{\varepsilon} (-\Delta(\mathcal{K}^{\varepsilon} * n^{\varepsilon})) - (\mathbf{III}), \ (\mathbf{III}) = \int_{n^{\varepsilon} \ge K} |n^{\varepsilon}|^{2} d\varepsilon = 0$$

Let
$$\frac{1}{\varepsilon^2}\phi_1\left(\frac{\cdot}{\varepsilon}\right) := -\Delta \mathcal{K}^{\varepsilon} : \frac{1}{\varepsilon^2}\phi_1\left(\frac{\cdot}{\varepsilon}\right) = -\Delta \mathcal{K}^{\varepsilon} \rightharpoonup \delta \quad \text{in } \mathcal{D}'$$

This heuristically explains why (II) should be small

Keller-Segel model

III. Regularity and free energy

Weak regularity results

Theorem 12. [Goudon2004] Let $n^{\varepsilon} : (0,T) \times \mathbb{R}^N \to \mathbb{R}$ be such that for almost all $t \in (0,T)$, $n^{\varepsilon}(t)$ belongs to a weakly compact set in $L^1(\mathbb{R}^N)$ for almost any $t \in (0,T)$. If $\partial_t n^{\varepsilon} = \sum_{|\alpha| \le k} \partial_x^{\alpha} g_{\varepsilon}^{(\alpha)}$ where, for any compact set $K \subset \mathbb{R}^n$,

$$\lim_{\substack{|E|\to 0\\ E\subset\mathbb{R} \text{ is measurable}}} \left(\sup_{\varepsilon>0} \int \int_{E\times K} |g_{\varepsilon}^{(\alpha)}| \, dt \, dx \right) = 0$$

then $(n^{\varepsilon})_{\varepsilon>0}$ is relatively compact in $C^0([0,T]; L^1_{\text{weak}}(\mathbb{R}^N)$. **Corollary 13.** Let n^{ε} be a solution of the regularized problem with initial data $n_0^{\varepsilon} = \min\{n_0, \varepsilon^{-1}\}$ such that $n_0(1 + |x|^2 + |\log n_0|) \in L^1(\mathbb{R}^2)$. If n is a solution of (1) with initial data n_0 , such that, for a sequence $(\varepsilon_k)_{k\in\mathbb{N}}$ with $\lim_{k\to\infty} \varepsilon_k = 0$, $n^{\varepsilon_k} \rightarrow n$ in $L^1((0,T) \times \mathbb{R}^2)$, then n belongs to $C^0(0,T; L^1_{\text{weak}}(\mathbb{R}^2))$.

L^p uniform estimates

Proposition 14. Assume that $M < 8\pi/\chi$ holds. If n_0 is bounded in $L^p(\mathbb{R}^2)$ for some p > 1, then any solution n of (1) is bounded in $L^{\infty}_{loc}(\mathbb{R}^+, L^p(\mathbb{R}^2))$.

$$\frac{1}{2(p-1)} \frac{d}{dt} \int_{\mathbb{R}^2} |n(x,t)|^p \, dx = -\frac{2}{p} \int_{\mathbb{R}^2} |\nabla(n^{p/2})|^2 \, dx + \chi \int_{\mathbb{R}^2} \nabla(n^{p/2}) \cdot n^{p/2} \cdot \nabla c \, dx$$
$$= -\frac{2}{p} \int_{\mathbb{R}^2} |\nabla(n^{p/2})|^2 \, dx + \chi \int_{\mathbb{R}^2} n^p (-\Delta c) \, dx$$
$$= -\frac{2}{p} \int_{\mathbb{R}^2} |\nabla(n^{p/2})|^2 \, dx + \chi \int_{\mathbb{R}^2} n^{p+1} \, dx$$

Gagliardo-Nirenberg-Sobolev inequality with $n = v^{2/p}$:

$$\int_{\mathbb{R}^2} |v|^{2(1+1/p)} \, dx \le K_p \, \int_{\mathbb{R}^2} |\nabla v|^2 \, dx \, \int_{\mathbb{R}^2} |v|^{2/p} \, dx$$

$$\frac{1}{2(p-1)} \frac{d}{dt} \int_{\mathbb{R}^2} n^p \, dx \le \int_{\mathbb{R}^2} |\nabla(n^{p/2})|^2 \, dx \left(-\frac{2}{p} + K_p \, \chi \, M \right)$$

which proves the decay of $\int_{\mathbb{R}^2} n^p dx$ if $M < \frac{2}{p K_p \chi}$

Otherwise, use the entropy estimate to get a bound : Let K > 1

$$\int_{\mathbb{R}^2} n^p \, dx = \int_{n \le K} n^p \, dx + \int_{n > K} n^p \, dx \le K^{p-1} M + \int_{n > K} n^p \, dx$$

Let $M(K) := \int_{n > K} n \, dx$:

$$M(K) \le \frac{1}{\log K} \int_{n>K} n \log n \, dx \le \frac{1}{\log K} \int_{\mathbb{R}^2} |n \log n| \, dx$$

Redo the computation for $\int_{\mathbb{R}^2} (n-K)_+^p dx$ [Jäger-Luckhaus]

The free energy inequality in a regular setting

Using the *a priori* estimates of the previous section for $p = 2 + \varepsilon$, we can prove that the free energy inequality holds.

Lemma 15. Let n_0 be in a bounded set in $L^1_+(\mathbb{R}^2, (1+|x|^2)dx) \cap L^{2+\varepsilon}(\mathbb{R}^2, dx)$, for some $\varepsilon > 0$, eventually small. Then the solution n of (1) found before, with initial data n_0 , is in a compact set in $L^2(\mathbb{R}^+_{loc} \times \mathbb{R}^2)$ and moreover the free energy production estimate holds :

$$F[n] + \int_0^t \left(\int_{\mathbb{R}^2} n \left| \nabla \left(\log n \right) - \chi \nabla c \right|^2 \, dx \right) \, ds \le F[n_0]$$

- 1. *n* is bounded in $L^2(\mathbb{R}^+_{\text{loc}} \times \mathbb{R}^2)$
- 2. ∇n is bounded in $L^2(\mathbb{R}^+_{\text{loc}} \times \mathbb{R}^2)$
- 3. Compactness in $L^2(\mathbb{R}^+_{loc} \times \mathbb{R}^2)$

Taking the limit in the Fisher information term

Up to the extraction of subsequences

$$\begin{split} &\iint_{[0,T]\times\mathbb{R}^2} |\nabla n|^2 \, dx \, dt \leq \liminf_{k\to\infty} \iint_{[0,T]\times\mathbb{R}^2} |\nabla n_k|^2 \, dx \, dt \\ &\iint_{[0,T]\times\mathbb{R}^2} n \, |\nabla c|^2 \, dx \, dt \leq \liminf_{k\to\infty} \iint_{[0,T]\times\mathbb{R}^2} n_k \, |\nabla c_k|^2 \, dx \, dt \\ &\iint_{[0,T]\times\mathbb{R}^2} n^2 \, dx \, dt = \liminf_{k\to\infty} \iint_{[0,T]\times\mathbb{R}^2} |n_k|^2 \, dx \, dt \end{split}$$

Fisher information term :

$$\iint_{[[0,T]\times\mathbb{R}^2} n \left|\nabla\left(\log n\right) - \chi\nabla c\right|^2 dx dt$$
$$= 4 \iint_{[[0,T]\times\mathbb{R}^2} |\nabla\sqrt{n}|^2 dx dt + \chi^2 \iint_{[[0,T]\times\mathbb{R}^2} n \left|\nabla c\right|^2 dx dt - 2\chi \iint_{[[0,T]\times\mathbb{R}^2} n^2 dx dt$$

Hypercontractivity

Theorem 16. Consider a solution n of (1) such that $\chi M < 8\pi$. Then for any $p \in (1, \infty)$, there exists a continuous function h_p on $(0, \infty)$ such that for almost any t > 0, $||n(\cdot, t)||_{L^p(\mathbb{R}^2)} \le h_p(t)$.

Notice that unless n_0 is bounded in $L^p(\mathbb{R}^2)$, $\lim_{t\to 0_+} h_p(t) = +\infty$. Such a result is called an *hypercontractivity* result, since to an initial data which is originally in $L^1(\mathbb{R}^2)$ but not in $L^p(\mathbb{R}^2)$, we associate a solution which at almost any time t > 0 is in $L^p(\mathbb{R}^2)$ with p arbitrarily large.

Proof. Fix t > 0 and $p \in (1, \infty)$ and consider $q(s) := 1 + (p - 1) \frac{s}{t}$. Define : $M(K) := \sup_{s \in (0,t)} \int_{n > K} n(\cdot, s) dx$

$$\int_{n>K} n(\cdot,s) \, dx \le \frac{1}{\log K} \int_{\mathbb{R}^2} |n(\cdot,s)| \log n(\cdot,s)| \, dx$$

and

 $F(s) := \left[\int_{\mathbb{R}^2} (n - K)^{q(s)}_+(x, s) \, dx \right]^{1/q(s)}$

Jean DOLBEAULT

Cergy - October 9, 2006 - p.33/44

$$F' F^{q-1} = \frac{q'}{q^2} \int_{\mathbb{R}^2} (n-K)_+^q \log\left(\frac{(n-K)_+^q}{F^q}\right) + \int_{\mathbb{R}^2} n_t (n-K)_+^{q-1}$$
$$\int_{\mathbb{R}^2} (n-K)_+^{q-1} n_t \, dx = -4 \, \frac{q-1}{q^2} \int_{\mathbb{R}^2} |\nabla v|^2 \, dx + \chi \, \frac{q-1}{q} \int_{\mathbb{R}^2} v^{2(1+\frac{1}{q})} \, dx$$
with $v := (n-K)_+^{q/2}$

Logarithmic Sobolev inequality

$$\int_{\mathbb{R}^2} v^2 \log\left(\frac{v^2}{\int_{\mathbb{R}^2} v^2 \, dx}\right) \, dx \le 2\,\sigma \int_{\mathbb{R}^2} |\nabla v|^2 \, dx - (2 + \log(2\,\pi\,\sigma)) \int_{\mathbb{R}^2} v^2 \, dx$$

Gagliardo-Nirenberg-Sobolev inequality

$$\int_{\mathbb{R}^2} |v|^{2(1+1/q)} \, dx \le \mathcal{K}(q) \, \|\nabla v\|_{L^2(\mathbb{R}^2)}^2 \, \int_{\mathbb{R}^2} |v|^{2/q} \, dx \quad \forall \, q \in [2,\infty)$$

The free energy inequality for weak solutions

Corollary 17. Let $(n^k)_{k \in \mathbb{N}}$ be a sequence of solutions of (1) with regularized initial data n_0^k . For any $t_0 > 0$, $T \in \mathbb{R}^+$ such that $0 < t_0 < T$, $(n^k)_{k \in \mathbb{N}}$ is relatively compact in $L^2((t_0, T) \times \mathbb{R}^2)$, and if n is the limit of $(n^k)_{k \in \mathbb{N}}$, then n is a solution of (1) such that the free energy inequality holds.

Proof.

$$F[n^{k}(\cdot,t)] + \int_{t_{0}}^{t} \left(\int_{\mathbb{R}^{2}} n^{k} \left| \nabla \left(\log n^{k} \right) - \chi \nabla c^{k} \right|^{2} dx \right) ds \leq F[n^{k}(\cdot,t_{0})]$$

Passing to the limit as $k \to \infty$, we get

$$F[n(\cdot,t)] + \int_{t_0}^t \left(\int_{\mathbb{R}^2} n \left| \nabla \left(\log n \right) - \chi \nabla c \right|^2 \, dx \right) \, ds \le F[n(\cdot,t_0)]$$

Let $t_0 \rightarrow 0_+$ and conclude

Keller-Segel model

IV. Large time behaviour

Self-similar variables

$$n(x,t) = \frac{1}{R^2(t)} u\left(\frac{x}{R(t)}, \tau(t)\right) \quad \text{and} \quad c(x,t) = v\left(\frac{x}{R(t)}, \tau(t)\right)$$

with $R(t) = \sqrt{1+2t}$ and $\tau(t) = \log R(t)$

$$\begin{cases} \frac{\partial u}{\partial t} = \Delta u - \nabla \cdot (u(x + \chi \nabla v)) & x \in \mathbb{R}^2, \ t > 0 \\ v = -\frac{1}{2\pi} \log |\cdot| * u & x \in \mathbb{R}^2, \ t > 0 \\ u(\cdot, t = 0) = n_0 \ge 0 & x \in \mathbb{R}^2 \end{cases}$$

Free energy : $F^R[u] := \int_{\mathbb{R}^2} u \log u \, dx - \frac{\chi}{2} \int_{\mathbb{R}^2} u \, v \, dx + \frac{1}{2} \int_{\mathbb{R}^2} |x|^2 \, u \, dx$

$$\frac{d}{dt}F^{R}[u(\cdot,t)] \leq -\int_{\mathbb{R}^{2}} u \left|\nabla \log u - \chi \nabla v + x\right|^{2} dx$$

Self-similar solutions : Free energy

Lemma 18. The functional F^R is bounded from below on the set

$$\left\{ u \in L^1_+(\mathbb{R}^2) : |x|^2 \, u \in L^1(\mathbb{R}^2) \, \int_{\mathbb{R}^2} u \, \log u \, dx < \infty \right\}$$

if and only if $\chi \|u\|_{L^1(\mathbb{R}^2)} \leq 8\pi$.

Proof. If $\chi ||u||_{L^1(\mathbb{R}^2)} \le 8\pi$, the bound is a consequence of the Hardy-Littlewood-Sobolev inequality

Scaling property. For a given u, let $u_{\lambda}(x) = \lambda^{-2}u(\lambda^{-1}x)$: $\|u_{\lambda}\|_{L^{1}(\mathbb{R}^{2})} =: M$ does not depend on $\lambda > 0$ and

$$F^{R}[u_{\lambda}] = F^{R}[u] - 2M\left(1 - \frac{\chi M}{8\pi}\right)\log\lambda + \frac{\lambda - 1}{2}\int_{\mathbb{R}^{2}}|x|^{2}u\ dx$$

Strong convergence

Lemma 19. Let $\chi M < 8\pi$. As $t \to \infty$, $(s, x) \mapsto u(x, t + s)$ converges in $L^{\infty}(0, T; L^{1}(\mathbb{R}^{2}))$ for any positive T to a stationary solution self-similar equation and

$$\lim_{t \to \infty} \int_{\mathbb{R}^2} |x|^2 \, u(x,t) \, dx = \int_{\mathbb{R}^2} |x|^2 \, u_\infty \, dx = 2M \left(1 - \frac{\chi \, M}{8\pi} \right)$$

Proof. We use the free energy production term :

$$F^{R}[u_{0}] - \liminf_{t \to \infty} F^{R}[u(\cdot, t)] = \lim_{t \to \infty} \int_{0}^{t} \left(\int_{\mathbb{R}^{2}} u \left| \nabla \log u - \chi \nabla v + x \right|^{2} dx \right) ds$$

and compute $\int_{\mathbb{R}^2} |x|^2 \, u(x,t) \; dx$:

$$\int_{\mathbb{R}^2} |x|^2 \, u(x,t) \, dx = \int_{\mathbb{R}^2} |x|^2 \, n_0 \, dx \, e^{-2t} + 2M \left(1 - \frac{\chi \, M}{8\pi} \right) \, \left(1 - e^{-2t} \right) \quad \Box$$

Stationary solutions

Notice that under the constraint $||u_{\infty}||_{L^{1}(\mathbb{R}^{2})} = M$, u_{∞} is a critical point of the free energy.

Lemma 20. Let $u \in L^1_+(\mathbb{R}^2, (1+|x|^2) dx)$ with $M := \int_{\mathbb{R}^2} u \, dx$, such that $\int_{\mathbb{R}^2} u \log u \, dx < \infty$, and define $v(x) := -\frac{1}{2\pi} \int_{\mathbb{R}^2} \log |x-y| \, u(y) \, dy$. Then there exists a positive constant C such that, for any $x \in \mathbb{R}^2$ with |x| > 1,

$$v(x) + \frac{M}{2\pi} \log|x| \le C$$

Lemma 21. [Naito-Suzuki] Assume that V is a non-negative non-trivial radial function on \mathbb{R}^2 such that $\lim_{|x|\to\infty} |x|^{\alpha} V(x) < \infty$ for some $\alpha \ge 0$. If u is a solution of

$$\Delta u + V(x) e^u = 0 \quad x \in \mathbb{R}^2$$

such that $u_+ \in L^{\infty}(\mathbb{R}^2)$, then u is radially symmetric decreasing w.r.t. the origin

Because of the asymptotic logarithmic behavior of v_{∞} , the result of Gidas, Ni and Nirenberg does not directly apply. The boundedness from above is essential, otherwise non-radial solutions can be found, even with no singularity. Consider for instance the perturbation $\delta(x) = \frac{1}{2} \theta (x_1^2 - x_2^2)$ for any $x = (x_1, x_2)$, for some fixed $\theta \in (0, 1)$, and define the potential $\phi(x) = \frac{1}{2} |x|^2 - \delta(x)$. By a fixed-point method we can find a solution of

$$w(x) = -\frac{1}{2\pi} \log |\cdot| * M \frac{e^{\chi w - \phi(x)}}{\int_{\mathbb{R}^2} e^{\chi w(y) - \phi(y)} dy}$$

since, as $|x| \to \infty$, $\phi(x) \sim \frac{1}{2} \left[(1 - \theta) x_1^2 + (1 + \theta) x_2^2 \right] \to +\infty$. This solution is such that $w(x) \sim -\frac{M}{2\pi} \log |x|$. Hence $v(x) := w(x) + \delta(x)/\chi$ is a non-radial solution of the self-similar equation, which behaves like $\delta(x)/\chi$ as $|x| \to \infty$ with $|x_1| \neq |x_2|$. Lemma 22. If $\chi M > 8\pi$, the rescaled equation has no stationary solution (u_{∞}, v_{∞}) such that $||u_{\infty}||_{L^{1}(\mathbb{R}^{2})} = M$ and $\int_{\mathbb{R}^{2}} |x|^{2} u_{\infty} dx < \infty$. If $\chi M < 8\pi$, the self-similar equation has at least one radial stationary solution. This solution is C^{∞} and u_{∞} is dominated as $|x| \to \infty$ by $e^{-(1-\varepsilon)|x|^{2}/2}$ for any $\varepsilon \in (0, 1)$. Non-existence for $\chi M > 8\pi$:

$$0 = \frac{d}{dt} \int_{\mathbb{R}^2} |x|^2 u_{\infty} dx = 4M \left(1 - \frac{\chi M}{8\pi} \right) - 2 \int_{\mathbb{R}^2} |x|^2 u_{\infty} dx$$

Uniqueness : [Biler-Karch-Laurençot-Nadzieja]

Intermediate asymptotics

Lemma 23.

$$\lim_{t \to \infty} F^R[u(\cdot, \cdot + t)] = F^R[u_\infty]$$

Proof. We know that $u(\cdot, \cdot + t)$ converges to u_{∞} in $L^{2}((0, 1) \times \mathbb{R}^{2})$ and that $\int_{\mathbb{R}^{2}} u(\cdot, \cdot + t) v(\cdot, \cdot + t) dx$ converges to $\int_{\mathbb{R}^{2}} u_{\infty} v_{\infty} dx$. Concerning the entropy, it is sufficient to prove that $u(\cdot, \cdot + t) \log u(\cdot, \cdot + t)$ weakly converges in $L^{1}((0, 1) \times \mathbb{R}^{2})$ to $u_{\infty} \log u_{\infty}$. Concentration is prohibited by the convergence in $L^{2}((0, 1) \times \mathbb{R}^{2})$. Vanishing or dichotomy cannot occur either : Take indeed R > 0, large, and compute $\int_{|x|>R} u |\log u| = (I) + (II)$, with $m := \int_{|x|>R, u<1} u \, dx$ and

(I) =
$$\int_{|x|>R, u\ge 1} u \log u \, dx \le \frac{1}{2} \int_{|x|>R, u\ge 1} |u|^2 \, dx$$

(II) = $-\int_{|x|>R, u<1} u \log u \, dx \le \frac{1}{2} \int_{|x|>R, u<1} |x|^2 \, u \, dx - m \log\left(\frac{m}{2\pi}\right)$

Conclusion

The result we have shown above is actually slightly better : all terms converge to the corresponding values for the limiting stationary solution

$$F^{R}[u] - F^{R}[u_{\infty}] = \int_{\mathbb{R}^{2}} u \log\left(\frac{u}{u_{\infty}}\right) dx - \frac{\chi}{2} \int_{\mathbb{R}^{2}} |\nabla v - \nabla v_{\infty}|^{2} dx$$

Csiszár-Kullback inequality : for any nonnegative functions $f, g \in L^1(\mathbb{R}^2)$ such that $\int_{\mathbb{R}^2} f \, dx = \int_{\mathbb{R}^2} g \, dx = M$,

$$||f - g||^2_{L^1(\mathbb{R}^2)} \le \frac{1}{4M} \int_{\mathbb{R}^2} f \log\left(\frac{f}{g}\right) dx$$

Corollary 24.

$$\lim_{t \to \infty} \|u(\cdot, \cdot + t) - u_{\infty}\|_{L^{1}(\mathbb{R}^{2})} = 0 \quad \text{and} \quad \lim_{t \to \infty} \|\nabla v(\cdot, \cdot + t) - \nabla v_{\infty}\|_{L^{2}(\mathbb{R}^{2})} = 0$$