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The Keller-Segel model L

The Keller-Segel(-Patlak) system for chemotaxis describes the collective
motion of cells (bacteria or amoebae) [Othmer-Stevens, Horstman].

The complete Keller-Segel model is a system of two parabolic
equations. Simplified two-dimensional version :

([ On 5
E:An—xv-(nVc) reR?, t>0

{ —Ac=n rcR?, t>0 (1)
n(-,t=0)=mng>0 r € R?

\

n(z,t) : the cell density
c(x,t) : concentration of chemo-attractant
x > 0 : sensitivity of the bacteria to the chemo-attractant

=
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Keller-Segel model

|. Main results and a priori estimates




Dimension 2 is critical

The total mass of the system

M = ng dx
R2

IS conserved
There are related models in gravitation which are defined in R?

The L!-norm is critical in the sense that there exists a critical mass
above which all solution blow-up in finite time and below which they
globally exist. The critical space is L4/2(R?) for d > 2, see
[Corrias-Perthame-Zaag]. In dimension d = 2, the Green kernel
associated to the Poisson equation is a logarithm, namely

1
c=——1log| |*n

L 27
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First main result

Theorem 1. Assume thatng € L1 (R? (1 + |x|?) dz) and nglogng € L*(R3dx).
If M < 87 /x, then the Keller-Segel system (1) has a global weak non-negative
solution n with initial data ng such that

¢
(14+]z)*+|logn|) n € LS. (R, LT (R?)) // n|Vlogn — xVel? dx dt < oo
0 JR2

M
and / z|? n(z,t) de = / z|? ng(z) dz + 4M (1 - X—) t
R2 R2 1

forany t > 0. Moreovern € LS ((g,00), LP(R?)) forany p € (1, 00) and any
e > 0, and the following inequality holds for anyt > 0 :

Fln(-,t)] + /0 /]12{2 n |V (logn) — xVe|® dzds < F[no]

L Here Fn] := [, nlognds — % [, ncdx
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Notion of solution

The equation holds in the distributions sense. Indeed, writing
An —xV-(nVec) = V- [n(Vlogn — xVc)]

we can see that the flux is well defined in L* (R} . x R?) since
// n|Vlogn — xVe| dx dt
[0,T] xR?

1/2 1/2
< // n dx dt // n|Vlogn — xVel? dedt | < oo
[0, T] xR? [0, T] xR?

=
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Second main result : Large time behavior

Use asymptotically self-similar profiles given in the rescaled variables by
the equation

eX Voo —|z|? /2 A i 1
e fR2 eX Voo —|z[?/2 o = TAUo W vm:—%log|-|*uoo @)

In the original variables :

1

Noo (X, 1) = T (log(vV1+ 2t), z/V1+ 2t)

Voo (log(v1+ 2t),z/v1+ 2t)

Coo(T, 1)

Theorem 2. Under the same assumptions as in Theorem 1, there exists a stationary
solution (Ueo, Vo ) in the self-similar variables such that

L lim Hn<°,t)—noo(°,t)HL1(R2) =0 and lim ch('at)_vcoo('yt)HL?(R?) =0

t—o0 t—o0
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Assumptions

We assume that the initial data satisfies the following asssumptions :
no € LY (R (1 + |z]?) dx)
nglogng € L*(R%dx)

The total mass is conserved

M := no(z) dx :/ n(z,t) dr
R2 R2

Goal : give a complete existence theory [J.D.-Perthame],
[Blanchet-J.D.-Perthame] in the subcritical case, i.e. in the case

M < 87/x

=
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Alternatives

There are only two cases :
1. Solutions to (1) blow-up in finite time when M > 87/
2. There exists a global in time solution of (1) when M < 87/

The case M = 8x/x is delicate and for radial solutions, some results
have been obtained recently [Biler-Karch-Laurencot-Nadzieja]

Our existence theory completes the partial picture established in
[Jager-Luckhaus].

=
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Convention

The solution of the Poisson equation —Ac = n Is given up to an
harmonic function. From the beginning, we have in mind that the
concentration of the chemo-attractant is defined by

1

c(@,t) = — o . log |z — y[n(y,t) dy

1 T —1y

Ve(x,t) = n(y,t) dy

27 r2 [T — y[?

=
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Blow-up for super-critical masses

Case M > 8x/x (Case 1) : use moments estimates

Lemma 3. Consider a non-negative distributional solution to (1) on an interval [0, T'|
that satisfies the previous assumptions, [ |x|? no(z) dz < oo and such that

(z,t) = g |1x+_|z|| n(y,t) dy € L>=((0,T) x R?) and

(z,t) — (1 + |z|)Ve(z,t) € L= ((0,T) x R?). Then it also satisfies

d M
— z|* n(x,t) do = 4M (1 — A
dt R2 ST

Formal proof.

d
- z|* n(x, t) de
dt R2 R2

X L —Y
o 21 - t t) dx d
L +27T RZ 3 R2 X |£E - y|2 ’I”L(QU, )n(ya ) L ay

z|* An(z,t) dx
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Justification

Consider a smooth function . with compact support such that

lim. .o ¢ (|]) = [z[*

d
o R2gpsndx = /R2Ag0€nd:z:
X [ (Vee(r) = Vee(y)) - (z —y)
— = t t) de d

A\ . 4
~

—1

Since £ [, p.ndx < C. [.,no dz where C. is some positive constant,
as e — 0, fR2 wendr <cp+cot

/ lz|*n(z,t) dx < oo Vtec(0,T)
R2

[]

=
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Weaker notion of solutions

We shall say that » is a solution to (1) if for all test functions ) € D(R?)

d

— Y(x)n(z,t) de = Ap(x)n(x,t) dx
dt R2 R2
“ar Lo V@) = V)] () () de dy

Compared to standard distribution solutions, this is an improved concept
that can handle some measure valued solutions because the term

Vip(x) — Vo (y)] - ——

|z —y|?

IS continuous
However, this notion of solutions does not cover the case of all measure

Lvalued (-, 1)
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Finite time blow-up

Corollary 4. Consider a non-negative distributional solutionn € L>°(0,T*; L' (R?))
to (1) and assume that [0, T*), T* < oo, is the maximal interval of existence. Let

1
Iy = [z|* no(z) dr < oo and / *lz n(y,t) dy € L=((0,T) x R?)
R2 Rz [T — Y|
If x M > 8w, then
T* < 2T IQ
= M(x M — 8r)

If xy M > 87 and Iy = oo : blow-up in finite time ?
Blow-up statements in bounded domains are available
Radial case : there exists a L' (R? x R™) radial function 7 such that

L n(z.t) — ST 5+ f(a,t) ast ST
X
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Comments
1. x M = 8 [Biler-Karch-Laurencot-Nadzieja] : blow-up only for T = oo

2. If the problem is set in dimension d > 3, the critical norm is LP(R%)
with p = d/2 [Corrias-Perthame-Zaag]

3. In dimension d = 2, the value of the mass M is therefore natural to
discriminate between super- and sub-critical regimes. However, the limit
of the LP-norm is rather fRQ n logn dx than fR2 n dz, which is preserved
by the evolution. This explains why it is natural to introduce the entropy,
or better, as we shall see below, the free energy

=
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The proof of Jager and Luckhaus L

[Corrias-Perthame-Zaag] Compute % Jg2 nlogn dz. Using an integration
by parts and the equation for ¢, we obtain :

4 Jganlogndr = —4 [o, |Vy/nl” do+ x foo Vn-Vedz

= —4 [po IV\/ﬁ\2 dx + X [ge n’ dz

The entropy is nonincreasing if xM < 4Cg 5, Where Cans = cgﬂs is the

best constant for p = 4 in the Gagliardo-Nirenberg-Sobolev inequality :

2—4 4
lul2o @2y < CRes [Vullra il lulloeey ¥ ue HY(R?) ¥ p e [2,00)

Numerically : xM < 4C5xq ~ 1.862... x (47) < 87

=
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A sharper approach : free energy

The free energy :

Fn] ::/ nlogndx—z/ nc dx
- 2 S

Lemma 5. Consider a non-negative C°(R™, L' (IR?)) solution n of (1) such that
n(1 + |z|?), nlogn are bounded in L° (R, L' (R?)), Vy/n € Li (RY, L?(R?))
and Ve € L (RT x R?). Then

loc

L P 1) = —/ n |V (logn) — xVel? dz = T
it o

7 IS the free energy production term Or generalized relative Fisher information.
Proof.

L %F[n(.,t)]:/R2 [(1—|—logn—xc) v. (%—ch)] dz
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Hardy-Littlewood-Sobolev inequality

F[n(-,t)]:/ nlognda:—l——// n(zx,t)n(y,t) log|r — y| de dy
R2 R2 x R2

Lemma 6. [Carlen-Loss, Beckner] Let f be a non-negative function in L* (R?) such
that f log f and flog(1 + |z|*) belong to L' (R?). If [, f dx = M, then

flogfda:+—// y)log |x — y| de dy > — C(M)
R2 R2><R2

with C(M) := M (1 + logm — log M)

The above inequality is the key functional inequality

=
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Consequences

(1—9)/nlogndx—|—0 [/ nlognda:+—// y) log |z — dxdy]
R2 R2 410 RQXRQ

Lemma 7. Consider a non-negative C° (R™, L1 (IR?)) solution n of (1) such that
n(1 + |x|?), nlogn are bounded in L° (R, L1 (R?)),

loc
Je 2 n(y, £) dy € L((0,T) x R?), V/n € Ll (R, L2(R?)) and
Ve e LE° (R+ x R?). If x M < 8, then the following estimates hold :

loc

87TFO+XMC(M)
8T —x M

M log M — M log|m(1 + t)] —K§/ nlogn dr <
R2

O§/OdS/RQn(x,s)}V(logn(a:,s)) — XVC(:E,S)}Qd:E

<O+ Oy [M log (W(lj\; t>> +K]

=
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Lower bound

Because of the bound on the second moment

1
151 /) z*n(z,t)de <K Vt>0,
1
/ n(x,t)logn(x,t) — lz|* n(z,t) doe — K —|—/ n(x,t)logn(x,t)dr
R2 1 _|_ t RQ R2
n(x,t) (n(:z:,t))
= —— log uw(x,t)de—M log|m(1+1t)|—K
/R? p(z,t) p(z,t) &%) it +2)
with p(x,t) := ﬁ e By Jensen’s inequality,
t t

/ LCILIR. ("(x’ )) du(z,t) > X log X where X = [ &0 4y

R2 ,LL(l’,t) /L(ZC,t) R2 /L(ZIZ‘,t)
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> (R, L1(IR%)) bound of the entropy term L

loc

Lemma 8. Foranyu € LY (R?), if [, |z]|? uwdx and [5, u logu dx are bounded

from above, then u log u is uniformly bounded in L (R," | L*(R?)) and

2
/u|logu|daj§/ u(logu+]a:]2> d:c—|—210g(27r)/ u dx + —
R2 R2

R2 €

Proof. Let @ := w1y, <1y and m = [, adz < M. Then

1
/ u (logu + §|x|2) dr = / UlogU du — mlog (27)
R2 R2

U :=a/u, du(z) = p(z)de, p(z) = (27) " te=171°/2_ Jensen’s inequality :

m 1

1 1
/ u logu dx > mlog (—)——/ z|* a dx > ———Mlog(27r)——/ z|* u d
R2 2T 2 R2 € 2 R2

L and conclude using
Jre wllogu| de = [p, ulogu dr —2 [, @ logu dx
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Keller-Segel model

ll. Proof of the existence result




Weak solutions up to critical mass

Proposition 9. If M < 87 / X, the Keller-Segel system (1) has a global weak
non-negative solution such that, for any I’ > 0,

(1+ |z|? + |logn|)n € L>=(0,T; L*(R?))

and

// n|Vlegn — xVe|* dz dt < oo
0,7

| xR2

For R > /e, R +— R?/log R is an increasing function, so that

2 log R
0 < // log [z—y|n(x,t)n(y,t) dedy < 0g2 M z|* n(z,t) do
lz—y[>R R

RQ

Since [/, j_yi<rloglz —yln(z, t)n(y,t) dedy < M? log R, we only
L need a uniform bound for |z — y| < 1
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A regularized model

Let K=(2) := K (2) with

( 1 :
Kl(z) = —=—log|z| if |z| >4
< 2T
L K'(z) =0 if [z] <1
0< VK Nz) < —— K M2) < ——log|z| and — AK(z) >0
- — 27 |7 — 2 -

Since K¢(z) = K'(z/¢), we also have

z 1

0< —VK(2) — < V 2z € R?

2| 7 2m 2]

=
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Proposition 10. For any fixed positive €, if ng € L2(R2), then for any T" > 0 there
existsn® € L?(0,T; H (R?)) N C(0,T; L*(R?)) which solves

(o _ An® —xV-(n°Vc°)
< ot
\ C€ — ICE * nE

1. Regularize the initial data : no € L?(R?)

2. Use the Aubin-Lions compactness method with the spaces H := L?(R?),
Vi={ve HY R?) : /|z|v € L*(R?)}, L*(0,T;V), L*(0,T; H) and
{ve L*0,T;V) : (%/875 c L*(0,T;V")}

3. Fixed-point method

=
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Uniform a priori estimates

Lemma 11. Consider a solution n® of the regularized equation. If Y M < 8 then,
uniformly as € — 0, with bounds depending only upon [, (1 4 |z|*) ng dx and
Jg2 1o logng dx, we have :

(i) The function (t, ) — |z|?>n®(x,t) is bounded in L> (R;"

10c7

L' (R?)).
(i) The functions t — [, n®(z,t)logn®(z,t) dx and

t = oo n®(2,t) ¢ (x,t) dz are bounded.
(iii) The function (t, z) — n®(x,t)log(n®(z,t)) is bounded in L>°(R;" ;

V/ne(z,t) is bounded in L? (R = x R?).
°(z,t) is bounded in L*(R;" = x R?).
)

L' (R?)).
(iv) The function (t, x

(v) The function loc

n®(x,t) Act (x,t) is bounded in L (R x R?).

loc

Vneé(x,t) Ve (x,t) is bounded in L2 (R"  x R?).

loc

)
(t,x) —
(t,z) —n
(vi) The function (t, ) —
(t,x) —

(vii) The function (t, x

=

Jean DOLBEAULT Cergy - October 9, 2006 — p.25/44



Proof of (iv)
d 2
— | n®logn® dr < —4/ VVvne| dx + X/ n® - (—Ac®) dx
dt R2 R2 R2

./1@2 n® - (—Ac®) dr = ‘/RQ n® - (—A(K® *n®)) de = (1) + (II) + (III)

with

(I) ::/ n®-(—A(Kxn®)), (II) ::/ n®-(—A(K®xn®))—(III), (III) = Inc|?

<K e>K ne>K

Lot Lon (:) = —AKT: Lon(:) = —AKZ =6 inD’
This heuristically explains why (II) should be small

=
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Keller-Segel model

Ill. Reqularity and free energy




1

Weak regularity results

Theorem 12. [Goudon2004] Letn® : (0,T) x RY — R be such that for almost all
t € (0,T), n°(t) belongs to a weakly compact set in L1 (R for almost any
t € (0,T). IfOn® = Z|a|<k 6§g§a) where, for any compact set K C R",

lim sup (Sup / / 19| dt d:c) =0
|E|—0 e>0.J JExK

ECR IS measurable

then (n).~q is relatively compact in C° ([0, T]; LL . (RY).

Corollary 13. Letn® be a solution of the regularized problem with initial data

ng = min{ng, e~} such thatng (1 + |x|? + |logng|) € L1(R?). Ifn is a solution
of (1) with initial data nq, such that, for a sequence (€ )ken With limg_, o € = 0,
nt — nin L'((0,T) x R?), thenn belongs to C°(0,T; L . (R?)).

=
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LP uniform estimates

Proposition 14. Assume that M < 8/ holds. If ng is bounded in L? (R?) for some
p > 1, then any solution n. of (1) is bounded in L° (R™, LP (R?)).

loc

1 d 2
n(z, )| de = —- V(nP'?)|? dz + x V(nP'?).nP/2.Ve da
o i L@ " ver) [ v

2

= —= IV (nP/?)|? d:c+x/ n? (—Ac) dz
D JRr2 R2
2

- = |V(np/2)\2 dx—|—x/ nPT! dx
P Jr2 R2

Gagliardo-Nirenberg-Sobolev inequality with n = v2/7 :

0|20HL/P) 4 < K, / Vol? dx 0|2/P dx
R2

R2 R?

=
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1 d
2(p—1) dt

2
/ n? dx < IV (nP/?)|? dx (——+prM>
R2 R2 p

2

which proves the decay of [, n” dz if M < S72—

Otherwise, use the entropy estimate to get a bound : Let K > 1

/ npda;:/ npda;+/ npdeKp_1M+/ nP dx
R2 n<K n>K n>K

Let M(K) := [ _,ndx:
M(K)<1/ logn dz < —— | |nlogn]| d
n 102 n ax
S logK [ op OB S 100K Jp BT

Redo the computation for [.(n — K)% dx [Jager-Luckhaus]

=
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The free energy inequality in a regular setting

Using the a priori estimates of the previous section for p = 2 + ¢, we can
prove that the free energy inequality holds.

Lemma 15. Letng be in a bounded setin L} (R?, (1 + |z|*)dx) N L*T=(R?, dx),
for some € > 0, eventually small. Then the solution n of (1) found before, with initial

data no, is in a compact set in L?(IR;"  x R?) and moreover the free energy

loc

production estimate holds :

Fln] + /Ot (/R n |V (logn) — xVe| daz) ds < Fng)

1. nis bounded in L2(R;"  x R?)

loc

2. Vn is bounded in L2(R;"  x R?)

loc

LS. Compactness in L2(R;" x R?)

loc
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Taking the limit in the Fisher information term

Up to the extraction of subsequences

// Vn|? dedt < 11m1nf// Vng|* de dt
0,7 xR2 k—o0 0,T] x R2

// |Vc|2da:dt < hmmf// Nk |V0k| dx dt
0,7] xR2 k—o0 0,T] X R2

// n? dr dt = liminf// Ing|* de dt
[0,T] x R2 k—o0 0,7 xR2

Fisher information term :

// IV (logn) — xVe|* dz dt
[0,T] xR?

:4/ IV/n|? dx dt + x* // |Vc\2d$dt—2xf/n2dwdt
L ([0, 7] xR2 0,7 xR [0,T]xR2  []
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Hypercontractivity

Theorem 16. Consider a solution n of (1) such that x M < 8. Then for any

p € (1, 00), there exists a continuous function h,, on (0, 00) such that for almost any
t> 0, ln(-,1)l|pocea) < hy(2).

Notice that unless ng is bounded in L?(R?), lim;_.¢, h,(t) = +oc. Such a
result is called an hypercontractivity result, since to an initial data which is
originally in L' (R?) but not in LP(R?), we associate a solution which at
almost any time ¢ > 0 is in L?(R?) with p arbitrarily large.

Proof. Fix t > 0 and p € (1,00) and consider ¢(s) := 1+ (p — 1) . Define :
M(K) = SUPse(0,t) fn>K n(-,s) dr

1
n(-,s) dr < n(-,s) logn(-,s)| dr
| ntsyde < [ ) logn.s

and

=
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_ q n— K)4 _
F' 1 1:—2 (n—K)ilog(( )+)+/ nt(n—K)il
q° JRr2 R2
—1 —1
d 5 Vol? d:c+xq— w29 gy
q R2 q R2

/ (n—K)+_ ne de = —4
R2

. 2
with v := (n — K)i/

Logarithmic Sobolev inequality

2
2 v 2 2
v log( )deZJ Vou|“dx — (24 log(2mo / v°dx
[ ves (e [ Vol do— (2 +10g(270)) |

Gagliardo-Nirenberg-Sobolev inequality

L [oPUHYD dr < K(q) [[Voll ey | /9 da ¥ q € [2,00) -
R2 R2
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The free energy inequality for weak solutions

Corollary 17. Let (n”),cn be a sequence of solutions of (1) with regularized initial
datanf . Foranyty > 0,T € RT suchthat0 < to < T, (n®)ren is relatively
compact in L?((to, T) x R?), and if n is the limit of (n*)cn, then n is a solution
of (1) such that the free energy inequality holds.

Proof.

t
F[n"(-,t)] —|—/ (/ nk A% (logn*) — chk‘z d:z:) ds < Fnf (-, to)]
to R2
Passing to the limit as £ — oo, we get
t
Fn(-,t)] +/ (/ n|V (logn) — xVe|’ dx) ds < F[n(-,tg)]

to R2

Let t; — 0, and conclude ]

=
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Keller-Segel model

IV. Large time behaviour




Jean DOLBEAULT

Self-similar variables

1 x x
n(zx,t) = 0 u (W’T(t)> and c(x,t) =wv (W,T(to
with R(t) = v1+2t and 7(t) =log R(t)

(0
O Au- V(e X)) B2, 450
1
{ v:——log‘-‘*u $ER2,I§>0
2T
L u(,t=0)=ng >0 r € R?

Free energy : F¥[u| := [, ulogudr — & [ouvde+ 5 [ [2]*u dx

d
— FRu(, )] < —/ u |[Vlogu — xVo + z|° dx

L dt R2
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Self-similar solutions : Free energy

Lemma 18. The functional F'** is bounded from below on the set

{u e IL(R?) : |ofu € L}(R?) /

u logu dor < oo}
RQ

if and only if x ||u|| 11 (r2) < 8.
Proof. If x ||u||,1(r2) < 87, the bound is a consequence of the
Hardy-Littlewood-Sobolev inequality

Scaling property. For a given u, let uy(z) = A 2u(A"1z) :
|ux||z1(r2)y =: M does not depend on A > 0 and

M A1
FRluy| = FRlu] —2M (1 -2 Y logh+ 2= | |2Puda
87'(' 2 R2

[

=
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Strong convergence

Lemma19. Letxy M < 8m. Ast — o0, (s,x) — u(x,t + s) converges in
L>(0,T; L*(IR?)) for any positive T to a stationary solution self-similar equation and

M
lim ]az|2 u(x,t) doe = \:1:\2 Uso dx = 2M (1 — X—)

t—o00 R2 R2 87T

Proof. We use the free energy production term :

t— o0 t— o0

¢
Ffug] — liminf F®u(-,t)] = lim </ u |[Vlegu — xVu + x| dx) ds
0 \JR2

and compute [o, |z|* u(z,t) dx :

M
z|* u(x, t) de = z|* no do e + 2M (1 — X—) (1 —e 2%
[]

L R2 R2 87
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Stationary solutions

Notice that under the constraint ||u| .1 (r2) =M, u is a critical point of
the free energy.

Lemma 20. Letu € LY (R?, (1 + |x|?) dz) with M := [, u dx, such that
o2 w log u da: < 00, and define v(z) := — 5= [, log |z — y| u(y) dy. Then there
exists a positive constant C' such that, for any x € R? with |x| > 1,

M
v(z) + 7= log|z| | < C
27

Lemma 21. [Naito-Suzuki] Assume that V' is a non-negative non-trivial radial function
onR? such thatlimy | |2|* V (z) < oo for some ac > 0. If w is a solution of

Au+V(z)e =0 z € R?

L such thatu € L°°(R?), then u is radially symmetric decreasing w.r.t. the origin
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Because of the asymptotic logarithmic behavior of v, the result of
Gidas, Ni and Nirenberg does not directly apply. The boundedness from
above is essential, otherwise non-radial solutions can be found, even
with no singularity. Consider for instance the perturbation

6(z) = 50 («3 — x3) for any z = (z1, z2), for some fixed 6 € (0, 1), and
define the potential ¢(z) = : |=|*> — d(x). By a fixed-point method we can
find a solution of

1 eXxw—o(z)

w(x) = o log| |+ M ng =) d

since, as |z| — oo, ¢(x) ~ 3 [(1 — 0)z] + (1 + 0)z3] — +oo. This solution
is such that w(z) ~ —2% log |z|. Hence v(x) := w(x) + §(x)/x is a
non-radial solution of the self-similar equation, which behaves like

L5(x)/x as |z| — oo with |z1| # |z2].
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Lemma 22. /fy M > 8, the rescaled equation has no stationary solution (U, Voo )
such that ||ueo|| L1 (r2) = M and [, |2]? teo dx < 00. If x M < 8, the
self-similar equation has at least one radial stationary solution. This solution is C'°° and
Use is dominated as |z| — oo by e=(1=9)121°/2 for any e € (0, 1).

Non-existence for y M > 87 :

d M
0= |:Jc|2uoO de = 4M (1 - 22 —2/ 2% Uoe dx
dt ST R2

Uniqueness : [Biler-Karch-Laurencgot-Nadzieja]

=
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Intermediate asymptotics

Lemma 23.
lim F2u(-, - +1t)] = F®us]

t— o0

Proof. We know that u(-, - + t) converges to u, in L?((0,1) x R?) and that
Jgo u(e, - +t)v(-, - +t) de converges to [, us v dz. Concerning the
entropy, it is sufficient to prove that u(-,- +t) logu(-,- + t) weakly
converges in L1((0,1) x R?) to us log us,. Concentration is prohibited by
the convergence in L?((0, 1) x R?). Vanishing or dichotomy cannot occur
either : Take indeed R > 0, large, and compute

Jieis g ullogu| = (I) + (A1), withm := | |, udz and

1
(I) = / u logu dx < —/ u|? dz
|>R, u>1 2 Jiz|>R, u>1

1 m

(1) = _/ u logu dr < —/ z|* w dz — mlog (—)
L |lz| >R, u<l 2 |lz| >R, u<l 27
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Conclusion

The result we have shown above is actually slightly better : all terms
converge to the corresponding values for the limiting stationary solution

FEu] — FRlug] :/ u log (i) daz—% Vv — Ve | do
R2

uoo RQ

Csiszar-Kullback inequality : for any nonnegative functions f, g € L'(IR?)
such that [, f dz = [, g de = M,

1 J
f—all3:ipe < — flog(—) dx
H ||L (R2) 4 M R q

Corollary 24.

lim Hu(, -+ t) — uooHLl(R2) =0 and lim HV’U(, -+ t) — VUOOHL2(R2) =0

t— o0 t— o0

=
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