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The Keller-Segel model

The Keller-Segel(-Patlak) system for chemotaxis describes the collective
motion of cells (bacteria or amoebae) [Othmer-Stevens, Horstman].
The complete Keller-Segel model is a system of two parabolic
equations. Simplified two-dimensional version :







∂n

∂t
= ∆n− χ∇·(n∇c) x ∈ R

2 , t > 0

−∆c = n x ∈ R
2 , t > 0

n(·, t = 0) = n0 ≥ 0 x ∈ R
2

(1)

n(x, t) : the cell density
c(x, t) : concentration of chemo-attractant
χ > 0 : sensitivity of the bacteria to the chemo-attractant
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Keller-Segel model

I. Main results and a priori estimates
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Dimension 2 is critical

The total mass of the system

M :=

∫

R2

n0 dx

is conserved

There are related models in gravitation which are defined in R
3

The L1-norm is critical in the sense that there exists a critical mass
above which all solution blow-up in finite time and below which they
globally exist. The critical space is Ld/2(Rd) for d ≥ 2, see
[Corrias-Perthame-Zaag]. In dimension d = 2, the Green kernel
associated to the Poisson equation is a logarithm, namely

c = − 1

2π
log | · | ∗ n
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First main result

Theorem 1. Assume that n0 ∈ L1
+(R2, (1 + |x|2) dx) and n0 log n0 ∈ L1(R2, dx).

If M < 8π/χ, then the Keller-Segel system (1) has a global weak non-negative

solution n with initial data n0 such that

(1+|x|2+| logn|)n ∈ L∞
loc(R

+, L1(R2))

∫ t

0

∫

R2

n |∇ log n− χ∇c|2 dx dt <∞

and

∫

R2

|x|2 n(x, t) dx =

∫

R2

|x|2 n0(x) dx+ 4M

(

1 − χM

8π

)

t

for any t > 0. Moreover n ∈ L∞
loc((ε,∞), Lp(R2)) for any p ∈ (1,∞) and any

ε > 0, and the following inequality holds for any t > 0 :

F [n(·, t)] +
∫ t

0

∫

R2

n |∇ (log n) − χ∇c|2 dx ds ≤ F [n0]

Here F [n] :=
∫

R2 n log n dx− χ
2

∫

R2 n c dx
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Notion of solution

The equation holds in the distributions sense. Indeed, writing

∆n− χ∇·(n∇c) = ∇·[n(∇ log n− χ∇c)]

we can see that the flux is well defined in L1(R+
loc × R

2) since

∫∫

[0,T ]×R2

n |∇ log n− χ∇c| dx dt

≤
(
∫∫

[0,T ]×R2

n dx dt

)1/2(∫∫

[0,T ]×R2

n |∇ log n− χ∇c|2 dx dt
)1/2

<∞
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Second main result : Large time behavior

Use asymptotically self-similar profiles given in the rescaled variables by
the equation

u∞ = M
eχ v∞−|x|2/2

∫

R2 eχ v∞−|x|2/2 dx
= −∆v∞ with v∞ = − 1

2π
log | · | ∗ u∞ (2)

In the original variables :

n∞(x, t) :=
1

1 + 2t
u∞

(
log(

√
1 + 2t), x/

√
1 + 2t

)

c∞(x, t) := v∞
(
log(

√
1 + 2t), x/

√
1 + 2t

)

Theorem 2. Under the same assumptions as in Theorem 1, there exists a stationary

solution (u∞, v∞) in the self-similar variables such that

lim
t→∞

‖n(·, t)−n∞(·, t)‖L1(R2) = 0 and lim
t→∞

‖∇c(·, t)−∇c∞(·, t)‖L2(R2) = 0
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Assumptions

We assume that the initial data satisfies the following asssumptions :

n0 ∈ L1
+(R2, (1 + |x|2) dx)

n0 log n0 ∈ L1(R2, dx)

The total mass is conserved

M :=

∫

R2

n0(x) dx =

∫

R2

n(x, t) dx

Goal : give a complete existence theory [J.D.-Perthame],
[Blanchet-J.D.-Perthame] in the subcritical case, i.e. in the case

M < 8π/χ
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Alternatives

There are only two cases :

1. Solutions to (1) blow-up in finite time when M > 8π/χ

2. There exists a global in time solution of (1) when M < 8π/χ

The case M = 8π/χ is delicate and for radial solutions, some results
have been obtained recently [Biler-Karch-Laurençot-Nadzieja]

Our existence theory completes the partial picture established in
[Jäger-Luckhaus].
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Convention

The solution of the Poisson equation −∆c = n is given up to an
harmonic function. From the beginning, we have in mind that the
concentration of the chemo-attractant is defined by

c(x, t) = − 1

2π

∫

R2

log |x− y|n(y, t) dy

∇c(x, t) = − 1

2π

∫

R2

x− y

|x− y|2 n(y, t) dy
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Blow-up for super-critical masses

Case M > 8π/χ (Case 1) : use moments estimates

Lemma 3. Consider a non-negative distributional solution to (1) on an interval [0, T ]

that satisfies the previous assumptions,
∫

R2 |x|2 n0(x) dx <∞ and such that

(x, t) 7→
∫

R2

1+|x|
|x−y| n(y, t) dy ∈ L∞

(
(0, T ) × R

2
)

and

(x, t) 7→ (1 + |x|)∇c(x, t) ∈ L∞
(
(0, T ) × R

2
)
. Then it also satisfies

d

dt

∫

R2

|x|2 n(x, t) dx = 4M

(

1 − χM

8π

)

Formal proof .

d

dt

∫

R2

|x|2 n(x, t) dx =

∫

R2

|x|2 ∆n(x, t) dx

+
χ

2π

∫

R2×R2

2x · x− y

|x− y|2 n(x, t)n(y, t) dx dy
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Justification

Consider a smooth function ϕε with compact support such that
limε→0 ϕε(|x|) = |x|2

d

dt

∫

R2

ϕε n dx =

∫

R2

∆ϕε n dx

− χ

4π

∫

R2

(∇ϕε(x) −∇ϕε(y)) · (x− y)

|x− y|2
︸ ︷︷ ︸

→1

n(x, t)n(y, t) dx dy

Since d
dt

∫

R2 ϕε n dx ≤ Cε

∫

R2 n0 dx where Cε is some positive constant,
as ε→ 0,

∫

R2 ϕε n dx ≤ c1 + c2 t

∫

R2

|x|2 n(x, t) dx <∞ ∀ t ∈ (0, T )

�
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Weaker notion of solutions

We shall say that n is a solution to (1) if for all test functions ψ ∈ D(R2)

d

dt

∫

R2

ψ(x)n(x, t) dx =

∫

R2

∆ψ(x)n(x, t) dx

− χ

4π

∫

R2×R2

[∇ψ(x) −∇ψ(y)] · x− y

|x− y|2 n(x, t)n(y, t) dx dy

Compared to standard distribution solutions, this is an improved concept
that can handle some measure valued solutions because the term

[∇ψ(x) −∇ψ(y)] · x− y

|x− y|2

is continuous
However, this notion of solutions does not cover the case of all measure
valued n(·, t)
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Finite time blow-up

Corollary 4. Consider a non-negative distributional solution n ∈ L∞(0, T ∗;L1(R2))

to (1) and assume that [0, T ∗), T ∗ ≤ ∞, is the maximal interval of existence. Let

I0 :=

∫

R2

|x|2 n0(x) dx <∞ and

∫

R2

1 + |x|
|x− y| n(y, t) dy ∈ L∞

(
(0, T )×R

2
)

If χM > 8π, then

T ∗ ≤ 2π I0
M(χM − 8π)

If χM > 8π and I0 = ∞ : blow-up in finite time ?
Blow-up statements in bounded domains are available
Radial case : there exists a L1(R2 × R

+) radial function ñ such that

n(x, t) → 8π

χ
δ + ñ(x, t) as t↗ T ∗
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Comments

1. χM = 8π [Biler-Karch-Laurençot-Nadzieja] : blow-up only for T ∗ = ∞

2. If the problem is set in dimension d ≥ 3, the critical norm is Lp(Rd)

with p = d/2 [Corrias-Perthame-Zaag]

3. In dimension d = 2, the value of the mass M is therefore natural to
discriminate between super- and sub-critical regimes. However, the limit
of the Lp-norm is rather

∫

R2 n log n dx than
∫

R2 n dx, which is preserved
by the evolution. This explains why it is natural to introduce the entropy,
or better, as we shall see below, the free energy
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The proof of Jäger and Luckhaus

[Corrias-Perthame-Zaag] Compute d
dt

∫

R2 n log n dx. Using an integration
by parts and the equation for c, we obtain :

d
dt

∫

R2 n log n dx = −4
∫

R2 |∇
√
n|2 dx+ χ

∫

R2 ∇n·∇c dx

= −4
∫

R2 |∇
√
n|2 dx+ χ

∫

R2 n
2 dx

The entropy is nonincreasing if χM ≤ 4C−2
GNS, where CGNS = C

(4)
GNS is the

best constant for p = 4 in the Gagliardo-Nirenberg-Sobolev inequality :

‖u‖2
Lp(R2) ≤ C

(p)
GNS ‖∇u‖

2−4/p
L2(R2) ‖u‖

4/p
L2(R2) ∀ u ∈ H1(R2) ∀ p ∈ [2,∞)

Numerically : χM ≤ 4C−2
GNS ≈ 1.862...× (4π) < 8π
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A sharper approach : free energy

The free energy :

F [n] :=

∫

R2

n log n dx− χ

2

∫

R2

n c dx

Lemma 5. Consider a non-negative C0(R+, L1(R2)) solution n of (1) such that

n(1 + |x|2), n log n are bounded in L∞
loc(R

+, L1(R2)), ∇√
n ∈ L1

loc(R
+, L2(R2))

and ∇c ∈ L∞
loc(R

+ × R
2). Then

d

dt
F [n(·, t)] = −

∫

R2

n |∇ (log n) − χ∇c|2 dx =: I

I is the free energy production term or generalized relative Fisher information.

Proof.
d

dt
F [n(·, t)] =

∫

R2

[(

1 + log n− χ c
)

∇ ·
(∇n
n

− χ∇c
)]

dx
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Hardy-Littlewood-Sobolev inequality

F [n(·, t)] =

∫

R2

n log n dx+
χ

4π

∫∫

R2×R2

n(x, t)n(y, t) log |x− y| dx dy

Lemma 6. [Carlen-Loss, Beckner] Let f be a non-negative function in L1(R2) such

that f log f and f log(1 + |x|2) belong to L1(R2). If
∫

R2 f dx = M , then

∫

R2

f log f dx+
2

M

∫∫

R2×R2

f(x)f(y) log |x− y| dx dy ≥ − C(M)

with C(M) := M(1 + log π − logM)

The above inequality is the key functional inequality
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Consequences

(1−θ)
∫

R2

n log n dx+θ

[∫

R2

n log n dx+
χ

4πθ

∫∫

R2×R2

n(x)n(y) log |x− y| dx dy
]

Lemma 7. Consider a non-negative C0(R+, L1(R2)) solution n of (1) such that

n(1 + |x|2), n log n are bounded in L∞
loc(R

+, L1(R2)),
∫

R2

1+|x|
|x−y| n(y, t) dy ∈ L∞

(
(0, T ) × R

2
)
, ∇√

n ∈ L1
loc(R

+, L2(R2)) and

∇c ∈ L∞
loc(R

+ × R
2). If χM ≤ 8π, then the following estimates hold :

M logM −M log[π(1 + t)] −K ≤
∫

R2

n log n dx ≤ 8π F0 + χM C(M)

8π − χM

0 ≤
∫ t

0

ds

∫

R2

n(x, s)
∣
∣∇ (log n(x, s)) − χ∇c(x, s)

∣
∣
2
dx

≤ C1 + C2

[

M log

(
π(1 + t)

M

)

+K

]
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Lower bound

Because of the bound on the second moment

1

1 + t

∫

R2

|x|2 n(x, t) dx ≤ K ∀ t > 0 ,

∫

R2

n(x, t) log n(x, t) ≥ 1

1 + t

∫

R2

|x|2 n(x, t) dx−K +

∫

R2

n(x, t) log n(x, t) dx

=

∫

R2

n(x, t)

µ(x, t)
log

(
n(x, t)

µ(x, t)

)

µ(x, t) dx−M log[π(1 + t)]−K

with µ(x, t) := 1
π(1+t) e

−
|x|2

1+t . By Jensen’s inequality,

∫

R2

n(x, t)

µ(x, t)
log

(
n(x, t)

µ(x, t)

)

dµ(x, t) ≥ X logX where X =

∫

R2

n(x, t)

µ(x, t)
dµ = M
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L∞
loc(R

+, L1(R2)) bound of the entropy term

Lemma 8. For any u ∈ L1
+(R2), if

∫

R2 |x|2 u dx and
∫

R2 u log u dx are bounded

from above, then u log u is uniformly bounded in L∞(R+
loc, L

1(R2)) and

∫

R2

u | log u| dx ≤
∫

R2

u
(

log u+ |x|2
)

dx+ 2 log(2π)

∫

R2

u dx+
2

e

Proof. Let ū := u 1l{u≤1} and m =
∫

R2 ū dx ≤M . Then

∫

R2

ū (log ū+
1

2
|x|2) dx =

∫

R2

U logU dµ−m log (2π)

U := ū/µ, dµ(x) = µ(x) dx, µ(x) = (2π)−1e−|x|2/2. Jensen’s inequality :
∫

R2

ū log ū dx ≥ m log
(m

2π

)

−1

2

∫

R2

|x|2 ū dx ≥ −1

e
−M log(2π)−1

2

∫

R2

|x|2 ū dx

and conclude using
∫

R2 u | log u| dx =
∫

R2 u log u dx− 2
∫

R2 ū log ū dx
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Keller-Segel model

II. Proof of the existence result
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Weak solutions up to critical mass

Proposition 9. If M < 8π/χ, the Keller-Segel system (1) has a global weak

non-negative solution such that, for any T > 0,

(1 + |x|2 + | logn|)n ∈ L∞(0, T ;L1(R2))

and
∫∫

[0,T ]×R2

n |∇ log n− χ∇c|2 dx dt <∞

For R >
√
e, R 7→ R2/ log R is an increasing function, so that

0 ≤
∫∫

|x−y|>R

log |x−y|n(x, t)n(y, t) dx dy ≤ 2 log R

R2
M

∫

R2

|x|2 n(x, t) dx

Since
∫∫

1<|x−y|<R
log |x− y|n(x, t)n(y, t) dx dy ≤M 2 logR, we only

need a uniform bound for |x− y| < 1
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A regularized model

Let Kε(z) := K1
(

z
ε

)
with







K1(z) = − 1

2π
log |z| if |z| ≥ 4

K1(z) = 0 if |z| ≤ 1

0 ≤ −∇K1(z) ≤ 1

2π |z| K1(z) ≤ − 1

2π
log |z| and − ∆K1(z) ≥ 0

Since Kε(z) = K1(z/ε), we also have

0 ≤ −∇Kε(z) · z|z| ≤
1

2π |z| ∀ z ∈ R
2
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Proposition 10. For any fixed positive ε, if n0 ∈ L2(R2), then for any T > 0 there

exists nε ∈ L2(0, T ;H1(R2)) ∩ C(0, T ;L2(R2)) which solves







∂nε

∂t
= ∆nε − χ∇·(nε∇cε)

cε = Kε ∗ nε

1. Regularize the initial data : n0 ∈ L2(R2)

2. Use the Aubin-Lions compactness method with the spaces H := L2(R2),
V := {v ∈ H1(R2) :

√

|x| v ∈ L2(R2)}, L2(0, T ;V ), L2(0, T ;H) and
{v ∈ L2(0, T ;V ) : ∂v/∂t ∈ L2(0, T ;V ′)}

3. Fixed-point method
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Uniform a priori estimates
Lemma 11. Consider a solution nε of the regularized equation. If χM < 8π then,

uniformly as ε→ 0, with bounds depending only upon
∫

R2(1 + |x|2)n0 dx and
∫

R2 n0 log n0 dx, we have :

(i) The function (t, x) 7→ |x|2nε(x, t) is bounded in L∞(R+
loc;L

1(R2)).

(ii) The functions t 7→
∫

R2 n
ε(x, t) log nε(x, t) dx and

t 7→
∫

R2 n
ε(x, t) cε(x, t) dx are bounded.

(iii) The function (t, x) 7→ nε(x, t) log(nε(x, t)) is bounded in L∞(R+
loc;L

1(R2)).

(iv) The function (t, x) 7→ ∇
√
nε(x, t) is bounded in L2(R+

loc × R
2).

(v) The function (t, x) 7→ nε(x, t) is bounded in L2(R+
loc × R

2).

(vi) The function (t, x) 7→ nε(x, t) ∆cε(x, t) is bounded in L1(R+
loc × R

2).

(vii) The function (t, x) 7→
√
nε(x, t)∇cε(x, t) is bounded in L2(R+

loc × R
2).
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Proof of (iv)

d

dt

∫

R2

nε log nε dx ≤ −4

∫

R2

∣
∣
∣∇

√
nε
∣
∣
∣

2

dx+ χ

∫

R2

nε · (−∆cε) dx

∫

R2

nε · (−∆cε) dx =

∫

R2

nε · (−∆(Kε ∗ nε)) dx = (I) + (II) + (III)

with

(I) :=

∫

nε<K

nε·(−∆(Kε∗nε)), (II) :=

∫

nε≥K

nε·(−∆(Kε∗nε))−(III), (III) =

∫

nε≥K

|nε|2

Let 1
ε2φ1

(
·
ε

)

:= −∆Kε : 1
ε2φ1

(
·
ε

)

= −∆Kε ⇀ δ in D′

This heuristically explains why (II) should be small
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Keller-Segel model

III. Regularity and free energy
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Weak regularity results

Theorem 12. [Goudon2004] Let nε : (0, T ) × R
N → R be such that for almost all

t ∈ (0, T ), nε(t) belongs to a weakly compact set in L1(RN ) for almost any

t ∈ (0, T ). If ∂tn
ε =

∑

|α|≤k ∂
α
x g

(α)
ε where, for any compact set K ⊂ R

n,

lim sup
|E|→0

E⊂R is measurable

(

sup
ε>0

∫ ∫

E×K

|g(α)
ε | dt dx

)

= 0

then (nε)ε>0 is relatively compact in C0([0, T ];L1
weak(R

N ).

Corollary 13. Let nε be a solution of the regularized problem with initial data

nε
0 = min{n0, ε

−1} such that n0 (1 + |x|2 + | log n0|) ∈ L1(R2). If n is a solution

of (1) with initial data n0, such that, for a sequence (εk)k∈N with limk→∞ εk = 0,

nεk ⇀ n in L1((0, T ) × R
2), then n belongs to C0(0, T ;L1

weak(R
2)).
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Lp uniform estimates

Proposition 14. Assume that M < 8π/χ holds. If n0 is bounded in Lp(R2) for some

p > 1, then any solution n of (1) is bounded in L∞
loc(R

+, Lp(R2)).

1

2(p− 1)

d

dt

∫

R2

|n(x, t)|p dx = −2

p

∫

R2

|∇(np/2)|2 dx+ χ

∫

R2

∇(np/2)·np/2 ·∇c dx

= −2

p

∫

R2

|∇(np/2)|2 dx+ χ

∫

R2

np (−∆c) dx

= −2

p

∫

R2

|∇(np/2)|2 dx+ χ

∫

R2

np+1 dx

Gagliardo-Nirenberg-Sobolev inequality with n = v2/p :
∫

R2

|v|2(1+1/p) dx ≤ Kp

∫

R2

|∇v|2 dx
∫

R2

|v|2/p dx
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1

2(p− 1)

d

dt

∫

R2

np dx ≤
∫

R2

|∇(np/2)|2 dx
(

−2

p
+Kp χM

)

which proves the decay of
∫

R2 n
p dx if M < 2

p Kp χ

Otherwise, use the entropy estimate to get a bound : Let K > 1

∫

R2

np dx =

∫

n≤K

np dx+

∫

n>K

np dx ≤ Kp−1M +

∫

n>K

np dx

Let M(K) :=
∫

n>K
n dx :

M(K) ≤ 1

logK

∫

n>K

n log n dx ≤ 1

logK

∫

R2

|n log n| dx

Redo the computation for
∫

R2(n−K)p
+ dx [Jäger-Luckhaus]
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The free energy inequality in a regular setting

Using the a priori estimates of the previous section for p = 2 + ε, we can
prove that the free energy inequality holds.

Lemma 15. Let n0 be in a bounded set in L1
+(R2, (1 + |x|2)dx) ∩ L2+ε(R2, dx),

for some ε > 0, eventually small. Then the solution n of (1) found before, with initial

data n0, is in a compact set in L2(R+
loc × R

2) and moreover the free energy

production estimate holds :

F [n] +

∫ t

0

(∫

R2

n |∇ (log n) − χ∇c|2 dx
)

ds ≤ F [n0]

1. n is bounded in L2(R+
loc × R

2)

2. ∇n is bounded in L2(R+
loc × R

2)

3. Compactness in L2(R+
loc × R

2)
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Taking the limit in the Fisher information term

Up to the extraction of subsequences
∫∫

[0,T ]×R2

|∇n|2 dx dt ≤ lim inf
k→∞

∫∫

[0,T ]×R2

|∇nk|2 dx dt
∫∫

[0,T ]×R2

n |∇c|2 dx dt ≤ lim inf
k→∞

∫∫

[0,T ]×R2

nk |∇ck|2 dx dt
∫∫

[0,T ]×R2

n2 dx dt = lim inf
k→∞

∫∫

[0,T ]×R2

|nk|2 dx dt

Fisher information term :
∫∫

[[0,T ]×R2

n |∇ (log n) − χ∇c|2 dx dt

= 4

∫∫

[[0,T ]×R2

|∇
√
n|2 dx dt+ χ2

∫∫

[[0,T ]×R2

n |∇c|2 dx dt− 2χ

∫∫

[[0,T ]×R2

n2 dx dt
�
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Hypercontractivity
Theorem 16. Consider a solution n of (1) such that χM < 8π. Then for any

p ∈ (1,∞), there exists a continuous function hp on (0,∞) such that for almost any

t > 0, ‖n(·, t)‖Lp(R2) ≤ hp(t).

Notice that unless n0 is bounded in Lp(R2), limt→0+
hp(t) = +∞. Such a

result is called an hypercontractivity result, since to an initial data which is
originally in L1(R2) but not in Lp(R2), we associate a solution which at
almost any time t > 0 is in Lp(R2) with p arbitrarily large.

Proof. Fix t > 0 and p ∈ (1,∞) and consider q(s) := 1 + (p− 1) s
t . Define :

M(K) := sups∈(0,t)

∫

n>K
n(·, s) dx

∫

n>K

n(·, s) dx ≤ 1

logK

∫

R2

|n(·, s) log n(·, s)| dx

and

F (s) :=

[∫

R2

(n−K)
q(s)
+ (x, s) dx

]1/q(s)
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F ′ F q−1 =
q′

q2

∫

R2

(n−K)q
+ log

(
(n−K)q

+

F q

)

+

∫

R2

nt (n−K)q−1
+

∫

R2

(n−K)q−1
+ nt dx = −4

q − 1

q2

∫

R2

|∇v|2 dx+ χ
q − 1

q

∫

R2

v2(1+ 1
q
) dx

with v := (n−K)
q/2
+

Logarithmic Sobolev inequality

∫

R2

v2 log

(
v2

∫

R2 v2 dx

)

dx ≤ 2σ

∫

R2

|∇v|2 dx− (2 + log(2π σ))

∫

R2

v2 dx

Gagliardo-Nirenberg-Sobolev inequality
∫

R2

|v|2(1+1/q) dx ≤ K(q) ‖∇v‖2
L2(R2)

∫

R2

|v|2/q dx ∀ q ∈ [2,∞)
�

Jean DOLBEAULT Cergy - October 9, 2006 – p.34/44



The free energy inequality for weak solutions

Corollary 17. Let (nk)k∈N be a sequence of solutions of (1) with regularized initial

data nk
0 . For any t0 > 0, T ∈ R

+ such that 0 < t0 < T , (nk)k∈N is relatively

compact in L2((t0, T ) × R
2), and if n is the limit of (nk)k∈N, then n is a solution

of (1) such that the free energy inequality holds.

Proof.

F [nk(·, t)] +
∫ t

t0

(∫

R2

nk
∣
∣∇
(
log nk

)
− χ∇ck

∣
∣
2
dx

)

ds ≤ F [nk(·, t0)]

Passing to the limit as k → ∞, we get

F [n(·, t)] +
∫ t

t0

(∫

R2

n |∇ (log n) − χ∇c|2 dx
)

ds ≤ F [n(·, t0)]

Let t0 → 0+ and conclude �
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Keller-Segel model

IV. Large time behaviour
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Self-similar variables

n(x, t) =
1

R2(t)
u

(
x

R(t)
, τ(t)

)

and c(x, t) = v

(
x

R(t)
, τ(t)

)

with R(t) =
√

1 + 2t and τ(t) = logR(t)







∂u

∂t
= ∆u−∇·(u(x+ χ∇v)) x ∈ R

2 , t > 0

v = − 1

2π
log | · | ∗ u x ∈ R

2 , t > 0

u(·, t = 0) = n0 ≥ 0 x ∈ R
2

Free energy : FR[u] :=
∫

R2 u log u dx− χ
2

∫

R2 u v dx+ 1
2

∫

R2 |x|2 u dx

d

dt
FR[u(·, t)] ≤ −

∫

R2

u |∇ log u− χ∇v + x|2 dx
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Self-similar solutions : Free energy

Lemma 18. The functional FR is bounded from below on the set

{

u ∈ L1
+(R2) : |x|2 u ∈ L1(R2)

∫

R2

u log u dx <∞
}

if and only if χ ‖u‖L1(R2) ≤ 8π.

Proof. If χ ‖u‖L1(R2) ≤ 8π, the bound is a consequence of the
Hardy-Littlewood-Sobolev inequality

Scaling property. For a given u, let uλ(x) = λ−2u(λ−1x) :
‖uλ‖L1(R2) =: M does not depend on λ > 0 and

FR[uλ] = FR[u] − 2M

(

1 − χM

8π

)

log λ+
λ− 1

2

∫

R2

|x|2 u dx

�
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Strong convergence

Lemma 19. Let χM < 8π. As t→ ∞, (s, x) 7→ u(x, t+ s) converges in

L∞(0, T ;L1(R2)) for any positive T to a stationary solution self-similar equation and

lim
t→∞

∫

R2

|x|2 u(x, t) dx =

∫

R2

|x|2 u∞ dx = 2M

(

1 − χM

8π

)

Proof. We use the free energy production term :

FR[u0] − lim inf
t→∞

FR[u(·, t)] = lim
t→∞

∫ t

0

(∫

R2

u |∇ log u− χ∇v + x|2 dx
)

ds

and compute
∫

R2 |x|2 u(x, t) dx :

∫

R2

|x|2 u(x, t) dx =

∫

R2

|x|2 n0 dx e
−2t + 2M

(

1 − χM

8π

)

(1 − e−2t)
�
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Stationary solutions

Notice that under the constraint ‖u∞‖L1(R2) =M , u∞ is a critical point of
the free energy.

Lemma 20. Let u ∈ L1
+(R2, (1 + |x|2) dx) with M :=

∫

R2 u dx, such that
∫

R2 u log u dx <∞, and define v(x) := − 1
2π

∫

R2 log |x− y|u(y) dy. Then there

exists a positive constant C such that, for any x ∈ R
2 with |x| > 1,

∣
∣
∣
∣
v(x) +

M

2π
log |x|

∣
∣
∣
∣
≤ C

Lemma 21. [Naito-Suzuki] Assume that V is a non-negative non-trivial radial function

on R
2 such that lim|x|→∞ |x|α V (x) <∞ for some α ≥ 0. If u is a solution of

∆u+ V (x) eu = 0 x ∈ R
2

such that u+ ∈ L∞(R2), then u is radially symmetric decreasing w.r.t. the origin
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Because of the asymptotic logarithmic behavior of v∞, the result of
Gidas, Ni and Nirenberg does not directly apply. The boundedness from
above is essential, otherwise non-radial solutions can be found, even
with no singularity. Consider for instance the perturbation
δ(x) = 1

2 θ (x2
1 − x2

2) for any x = (x1, x2), for some fixed θ ∈ (0, 1), and
define the potential φ(x) = 1

2 |x|2 − δ(x). By a fixed-point method we can
find a solution of

w(x) = − 1

2π
log | · | ∗M eχw−φ(x)

∫

R2 eχw(y)−φ(y) dy

since, as |x| → ∞, φ(x) ∼ 1
2

[
(1 − θ)x2

1 + (1 + θ)x2
2

]
→ +∞. This solution

is such that w(x) ∼ −M
2π log |x|. Hence v(x) := w(x) + δ(x)/χ is a

non-radial solution of the self-similar equation, which behaves like
δ(x)/χ as |x| → ∞ with |x1| 6= |x2|.
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Lemma 22. If χM > 8π, the rescaled equation has no stationary solution (u∞, v∞)

such that ‖u∞‖L1(R2) = M and
∫

R2 |x|2 u∞ dx <∞. If χM < 8π, the

self-similar equation has at least one radial stationary solution. This solution is C∞ and

u∞ is dominated as |x| → ∞ by e−(1−ε)|x|2/2 for any ε ∈ (0, 1).

Non-existence for χM > 8π :

0 =
d

dt

∫

R2

|x|2 u∞ dx = 4M

(

1 − χM

8π

)

− 2

∫

R2

|x|2 u∞ dx

�

Uniqueness : [Biler-Karch-Laurençot-Nadzieja]
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Intermediate asymptotics
Lemma 23.

lim
t→∞

FR[u(·, · + t)] = FR[u∞]

Proof. We know that u(·, · + t) converges to u∞ in L2((0, 1) × R
2) and that

∫

R2 u(·, · + t) v(·, · + t) dx converges to
∫

R2 u∞ v∞ dx. Concerning the
entropy, it is sufficient to prove that u(·, · + t) log u(·, · + t) weakly
converges in L1((0, 1)×R

2) to u∞ log u∞. Concentration is prohibited by
the convergence in L2((0, 1)× R

2). Vanishing or dichotomy cannot occur
either : Take indeed R > 0, large, and compute
∫

|x|>R
u | log u| = (I) + (II), with m :=

∫

|x|>R, u<1
u dx and

(I) =

∫

|x|>R, u≥1

u log u dx ≤ 1

2

∫

|x|>R, u≥1

|u|2 dx

(II) = −
∫

|x|>R, u<1

u log u dx ≤ 1

2

∫

|x|>R, u<1

|x|2 u dx−m log
(m

2π

)
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Conclusion

The result we have shown above is actually slightly better : all terms
converge to the corresponding values for the limiting stationary solution

FR[u] − FR[u∞] =

∫

R2

u log

(
u

u∞

)

dx− χ

2

∫

R2

|∇v −∇v∞|2 dx

Csiszár-Kullback inequality : for any nonnegative functions f , g ∈ L1(R2)

such that
∫

R2 f dx =
∫

R2 g dx = M ,

‖f − g‖2
L1(R2) ≤

1

4M

∫

R2

f log

(
f

g

)

dx

Corollary 24.

lim
t→∞

‖u(·, ·+ t)− u∞‖L1(R2) = 0 and lim
t→∞

‖∇v(·, ·+ t)−∇v∞‖L2(R2) = 0
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