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The logarithmic Sobolev inequality

dp = pdx, p(x) = (27)"92eX°/2 on RY with d > 1
Gaussian logarithmic Sobolev inequality

1
[ 196 dn= 5 [ 1o togluf di
Rd 2 Jgd
for any function u € H'(R?, dy) such that [p, |u|?dp =1

d 2t 2t
o(t) = [exp (7>_1_7} VteR

[Stam, 1959], [Weissler, 1978], [Bakry, Ledoux (2006)], [Fathi et al.
(2014)], [Dolbeault, Toscani (2014)]

Proposition

1
[ v an—3 [ 1 |0g|U|2dM290</ Juf? log|u|2du)
R4 R4 R4

Vue H\RY dp) st | |uPdp=1 and | |xP|uPdu=d
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Consequences for the heat equation

Ornstein-Uhlenbeck equation (or backward Kolmogorov equation)
of
— =Af —x-Vf
ot X

with initial datum fy € L} (R, (1 + |x|?) dp and define the entropy as
Ef] = / flogfdu, Leff]= —4/ IVVFR du < —2€]f]
Rd dt Rd

thus proving that E[f(t,-)] < &[fy] e 2. Moreover,

d

— f|x|2du:2/ f(d—|x*) du
dt Rd Rd

Assume that E[fy] is finite and [o, fo |x|* dpw = d [gq fodp. Then

Elf(t, )] < —; log [1 - (1 . e—%flfol) e—ﬂ Vt>0
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Gagliardo-Nirenberg inequalities and the FDE

IV WPy W15 ey = Con l|Wlli2ee)

With the right choice of the constants, the functional
Il = 1 (0P=1) fy (VWP de B fg (W] dix—KC Ceig (Jo W27 )

is nonnegative and J[w] > J[w,] =0

Theorem

[Dolbeault-Toscani| For some nonnegative, convex, increasing ¢
Jw] > ¢ [B (fpa Iwa |9 dx — [oo [w]97t dx)]

for any w € L9 (RY) such that [,, [Vw|? dx < co and
i 10 2 i =y w2 e

4

Consequence for decay rates of relative Rényi entropies: faster rates of
convergence in intermediate asymptotics for % = AuP

J. Dolbeault Sharp functional inequalities and nonlinear diffusions



Fast diffusion equations: new points of view
Fast diffusion equations on manifolds and sharp functional inequalities

Improved inequalities and scalings
Scalings and a concavity property
pectral estimates Best matching

Scalings and a concavity property

J. Dolbeault

[m] = -
Sharp functional inequalities and nonlinear diffusions



Fast diffusion equations: new points of view Improved inequalities and scalings
Scalings and a concavity property
Best matching

The fast diffusion equation in original variables

Consider the nonlinear diffusion equation in RY, d > 1

ou
- p
T Au

with initial datum u(x, t = 0) = up(x) > 0 such that [, updx =1 and
Jgo |XI? up dx < +-00. The large time behavior of the solutions is
governed by the source-type Barenblatt solutions

1 X
U (t, x) = B*( )
( X) (Iitl/“)d K t1/p
where
| 2pp /e

=2+d(p—-1 = |—
0 +d(p—-1), =& o1
and B, is the Barenblatt profile
(C— |x|2)i/(p71) ifp>1

(Co+ x)YP™Y ifp<t
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The entropy

The entropy is defined by

E::/ uP dx
Rd

and the Fisher information by
I ::/ ulVv|?dx with v = P
Rd

If u solves the fast diffusion equation, then

E=(1-p)l
To compute I, we will use the fact that
%:(p—l)vAv—|—|Vv|2
. o 2 1 2 1
F:=E° with o= =1 S4p-1)=— 1
BT G +1—p<d+p ) dl-p

has a linear growth asymptotically as t — +oo
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The concavity property

[Toscani-Savaré] Assume that p>1—2 ifd >1andp>0ifd = 1.
Then F(t) is increasing, (1 — p) F"(t) S 0 and

lim ()= (1-p)o lim E" M= (1-p)oES L,

t—+oo t t—+oo

[Dolbeault-Toscani] The inequality
E°tI > ET,
is equivalent to the Gagliardo-Nirenberg inequality

||VW||L2 (R9) ||W||Lq+1 (R9) > Can ||W||L2‘V(]Rd)

1f1——<p<1 Hint: uP~1/2 = w__ g =51

o HWHLZq Rd) 2p-1
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The proof

If u so/ves = AuP WIth < p <1, then

d
-2 / ulVvP e =2 [ (IDVIP + (p— 1) (AV)?) dx
R R

2

1
ID?v|? = = (Av)? + H D?v — S Avid

Q |~

27 (E7)" = (1— p) (o — 1) </R u Vv dx>2

—2(l—|—p—l>/ updx/ uP (Av)? dx
R R
2

d
s 1
2 uP dx uP ||Dv — = AvId
Rd Rd d
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Relative entropy and best matching

Consider the family of the Barenblatt profiles
_1
B,(x) := ot (Co+ L x?) VxeR?

The Barenblatt profile B, plays the role of a local Gibbs state if C, is
chosen so that [, B, dx = [pq v dx
The relative entropy is defined by

F,lv] = %1 VP — BP —pBP~' (v — B,)] dx
p R¢

To minimize F,[v] with respect to o is equivalent to fix o such that
(7/ x| B dx:/ Ix|? B, dx:/ x| v dx
R R RY
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A Csiszar-Kullback(-Pinsker) inequality

Let p € (d%rz, 1) and consider the relative entropy

1

Folu] = ——
[u] o1 )

[uP — BE — pBE™' (u—B,)] dx

Theorem

[J.D., Toscani] Assume that u is a nonnegative function in L1(RY) such
that uP and x — |x|? u are both integrable on R?. If ||u||11gsy = M and
Jgo [XIPudx = [5q |x]? By dx, then

Folul o P Cullt = Bollae +1/ Pl Byldx)
o%1-p) 8 [, BPdx \ TILERD T 5 pa 7

4
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Temperature (fast diffusion case)

The second moment functional (temperature) is defined by

ot) = %/R I u(t, x) dx

and such that

S (s+ 7'(25))(“),51/2
0 (54 To0)OL s

0 t

<> Too = limg— oo 7(s)
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Fast diffusion equations: new polnts of view

Fast diffusion equations on manifolds and sharp function:
Soe

Temperature (porous medium case) and delay

Let U] be the best matching Barenblatt function, in the sense of
relative entropy F[u|U;], among all Barenblatt functions (U5 )sso. We
define s as a function of t and consider the delay given by

Porous medium case

Too = liMg—s 00 7($)

A
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A result on delays

Assume that p > 1 — % and p # 1. The best matching Barenblatt

function of a solution u is (t, x) — U,(t + 7(t), x) and the function
t — 7(t) is nondecreasing if p > 1 and nonincreasing if 1 — % < p <1

With G := 012, = d(1— p) =2 — u, the Rényi entropy power
functional H := ©7 2 E is such that
n

G =puH with H:=0"2E

dE? ol

H/
5 — (q—1) with q:=—— >1

1-p

1 21 2
dEz——(—/ x - V(uP) dx ——(/ x-qudx)
d RY d \ Jre

1
S—/ u|x|2dx/ u|Vvi2dx =0l
d Rd Rd
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An estimate of the delay

Ifp>1—1andp+#1, then the delay satisfies

| 0(0) 10-»  (H, —H()"
Jim_tr(®) = r(0) 2 1~ pl =5 ©(0) 1(0) — d E(0)2
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Fast diffusion equations on manifolds
and sharp functional inequalities

@ The sphere
Q@ The line
@ Compact Riemannian manifolds

@ The cylinder: Caffarelli-Kohn-Nirenberg
inequalities
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Interpolation inequalities on the
sphere

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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A family of interpolation inequalities on the sphere

The following interpolation inequality holds on the sphere

_92 2/p
PT/ |V ul? dvg—i—/ lul> dv, > </ |ulP dvg> Y ue HY(SY, dvg)
s s 8

@ for any p € (2,2*] with 2* = 2% if d >3

@ for any p € (2,00) if d =2

Here dv, is the uniform probability measure: vgz(S9) = 1

Q@ 1 is the optimal constant, equality achieved by constants

Q p = 2* corresponds to Sobolev’s inequality...
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Stereographic projection
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The sphere

The line

Compact Riemannian manifolds

The Cylinder: symmetry breaking in CKN inequalities

Sobolev inequality

The stereographic projection of SY ¢ R? x R > (p ¢, z) onto RY:
top?+22=1,z¢€[-1,1],p>0, ¢ € SY~! we associate x € R? such
that r = |x]|, ¢

= x
Ix]

r2—1_ 2 2r

R = |

and transform any function v on S¢ into a function v on RY using

uy) = (£) 7 v(x) = (Z2) 7 v() = (1 2)~°F v(x)

@ p=2",S4=1d(d—2)[S?*? Euclidean Sobolev inequality

d—2

/ |Vv|? dx > Sy [/ |v|% dx} Vv € DV3(RY)
RY RY

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Extended inequality

2/p
/ |Vul? dv, > % [(/ |ulP dvg) —/ |ul? dvg] Vue HY(SY, dp)
sd p—= Sd sd

is valid
@ for any p € (1,
@ for any p € (1,

YU(2,00) if d =1, 2
YU (2,2°]if d >3

NN

Q@ Case p = 2: Logarithmic Sobolev inequality

|ul? 1(qd
|Vul? dvg > / |u|? Iog( dvg YueHY(S?, du)
/ £ f§d| ul? dvg ¢

@ Case p = 1: Poincaré inequality

/Sd|Vu|2dvg2d/Sd|u—E|2dvg with U::/Sdudvg Vue HY(SY, du)

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Optimality: a perturbation argument

@ Forany pe (1,2*]if d >3,any p>1ifd=1or 2, itis
remarkable that

Q[u] - ( ) ||VU||L2 59)

” ”LP(Sd ||u||L2(Sd) a ueHl(Sd dp)

Qlu] =
is achieved in the limiting case

IVvIE
Ol +ev]~ — LFE) 4 e—0

s
when v is an eigenfunction associated with the first nonzero
eigenvalue of Az, thus proving the optimality

Q p < 2: a proof by semi-groups using Nelson’s hypercontractivity
lemma. p > 2: no simple proof based on spectral analysis is available:
[Beckner], an approach based on Lieb’s duality, the Funk-Hecke
formula and some (non-trivial) computations

@ elliptic methods / ', formalism of Bakry-Emery /monlinear flows

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Schwarz symmetrization and the ultraspherical setting

(€0, &1, .-€q) €89, €9 = 2, 10 &[> = 1 [Smets-Willem]

Up to a rotation, any minimizer of Q depends only on £4 = z

la

o Let do() = S0 dp, 74 = \/—r(rf,ﬁ); Vv e HY([0, 7], do)

2

’%2 OW IV (0)2 da—l—/ow V(O)] do > </07T v(0)]? da)i

e Change of variables z = cos#, v(#) = f(z)

2
P—< 2 72 ' 2 ' ?
— |f| vdvg + |f|© dvg > |fIP dvy

-1 -1

where v4(2) dz = dvg(z) :== Z;* vildz, v(z) :=1— 22

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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The sphere

The line

Compact Riemannian manifolds

The Cylinder: symmetry breaking in CKN inequalities

The ultraspherical operator

With dvg = Z;* vildz, v(z) := 1 — 22, consider the space
L2((—1,1), dvy) with scalar product

1 1 :
<f1,f2>:/ fih dvg, ||f||p—(/ fpdud>
—1 -1

The self-adjoint ultraspherical operator is
d
Lf:= (1—22)f”—dzf’:1/f”—|—§1/f’

which satisfies (f, L f) = f fifvdug

Proposition

Let pe[1,2)U(2,2"], d > 1

112 — 113

— Ve HY([-1,1], dvg)

1
—(f,Lf) :/ If'1? v dvg > d
-1

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Flows on the sphere

Q@ Heat flow and the Bakry-Emery method

@ Fast diffusion (porous media) flow and the choice of the exponents

Joint work with M.J. Esteban, M. Kowalczyk and M. Loss
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Spectral estimate

Heat flow and the Bakry-Emery method

With g = fP, d.e. f =g* witha=1/p

10— lg?

(neq)  —{f.LF) = —(g° Lg*) = T[g) > g B —IETI _ Fpgy
Heat flow

98 _

ot
Llali=0, Lg =202 (F.L) =2(p-2) [ [FF v
dt 1 ) dt 1 ) ) d

which finally gives

GFle(e ) =~ S e = ~2dTle(z. )

eq. = SFlg(t,)] < 2 Flg(t,)] = STla(t,)] < ~2dT[g(r. )]

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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The equation for g = fP can be rewritten in terms of f as

of IdE

1d [,
—55/_1|f| I/dVd—

i d 12 712

dtI[g(t,~)] + 2d7Z[g(t,))] = p |f| vdug+ 2d |f| v dug

1 4 12 £11
d |f’| —1|f| f
=-2 2+ (p—1 —2(p—-1)—— 2
/_1<| FH-Dgm e 2Ny ) vV

is nonpositive if

LS
f'

%(f,ﬁf)z(ﬁf,ﬁf>+(P—1)< v, L)

N =

d |f/|4 ( ) —1|f’|2 f
d+2 Pmds2 7
is pointwise nonnegative, which is granted if

-1

"2+ (p—1) —

2

d 242 +1 24
i 1 e p< 2T gt o 2D o
d+2} =P335 P=Tad-1) R

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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up to the critical exponent: a proof in two slides

Fast diffusion equations: new points

Fast diffusion equations on manifolds and sharp functional i
Sne

Spectra

i _ I r_ "o /
[dz’ﬁ] u=(Lu) —Lu=-2z4"—du

1 1 1
/ (Lu)? dvg = / % dVd+d/ /)2 v duyg
-1 -1 -1
1 112 1 114 1 12
|| d ', d_l/ ",
Lu)—vd = — dvg — 2 d
/,1( u) = v dva d+2), @ U T g2 ), a U

On (—1,1), let us consider the porous medium (fast diffusion) flow
/12
up = 28 (L u-+ kK |uu| V)

If Kk = B(p—2)+ 1, the LP norm is conserved

1 1
% uPP dud:ﬁp(/@'—ﬁ(p—Z)—l)/ uPP=2) |12y dug =0
-1 -1

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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F= 1 By + 5% (171220 = 1oy ) 207

o'

A._/l |u"|2l/2dl/ _QQ( +5_1)/1 u”u—l/zdl/
o 1 d d 2 _1 u d

1 4
+[/€(,8—1)—|— di2(f<a—|—ﬁ—l)]/ |L:I| V2 dug

1

A is nonnegative for some f if

G- D@ —p)>0

A is a sum of squares if p € (2,2*) for an arbitrary choice of 3 in a
certain interval (depending on p and

A= [

" p+2 dl
u

4
V2 dvg >0 ifp:2*and6:6—

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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The rigidity point of view

712
Which computation have we done ? u; = u>=2# (C u+k % y)

/12
—Lu—(6—1)|u| v+ A u= A u”
u p

Multiply by £ u and integrate

1 1
u
/ Euu”dud:—ﬁ/ u —|dud
—1 —1 u

lu')?

Multiply by « =~ and integrate

’
u
1 /2
...:+H/ u"|u| dvy

-1 u

The two terms cancel and we are left only with the two-homogenous
terms

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Improvements of the inequalities
(subcritical range)

@ as long as the exponent is either in the range (1,2) or in the range
(2,2*), on can establish improved inequalities

@ An improvement automatically gives an explicit stability result of
the optimal functions in the (non-improved) inequality

Q@ By duality, this provides a stability result for Keller-Lieb-Tirring
inequalities

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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What does “improvement” mean ?

An improved inequality is

dd(e)<i VueH(SY) st.

||”||iZ(sd) =1

for some function ® such that ®(0) =0, ¢’(0) =1, ¢’ > 0 and
®(s) > s for any s. With W(s) :=s— (s)

i—de>d(Wod)(e) VuecH(S)) sit.

||U||i2(sd) =1

Lemma (Generalized Csiszdr-Kullback inequalities)
d

IV ulaeny = = [l = lullEzn]
2 llu ||2(1(§d’) r =r|2 1l/qd
> d [|ulfz(gey (W o ®){ C Tl ) [|u Loy ) VueH(S)

s(p) := max{2, p} and p € (1,2): q(p) :=2/p, r(p) := p; p € (2,4):
g=p/2,r=2p>4 q=p/(p—2), r=p—2

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Linear flow: improved Bakry-Emery method

Fast diffusion equations on manifolds and sharp functional inequalities

Cf. [Arnold, JD]
w2
wi=Lw+K——v

w

With 2¢ = 241

(Y pon@top) it dv1 m= Pl i do1
ni=\g) (o p) i L om= g i d=

If p € [1,2) U (2,29 and w is a solution, then

d 1 |W/|4 |e/|2
—(i—de) < — dvg< -y ———
Gli—de = [ Bhan <o T
Recalling that ¢’ = — i, we get a differential inequality
/|2
e/I del > |e |
+ *7171—(p—2)e

After integration: d ®(e(0)) < i(0)

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Nonlinear flow: the Holder estimate of J. Demange

2-2 w'[?
Wt—W'B(LW—FIi )
w

Forall pe[1,2*], k=8(p—2)+1, & 11W'deVd_0
—ob & 1 (I Py 4 55 (w2 —20) ) dvg = 5 [, 2 0 dg

For all w € H!((~1,1), dvg), such that f_ll whP dug = 1

1 W 1 f 2y dug f_ll W2V dug
- V2 dug > = =
1w ﬁ ( 1 28 )
Jo,w? duy

.. but there are conditions on

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Fast diffusion equations on manifolds and sharp functional inequalities

Admissible (p, 3) for d =5

. M- - Ll
0.5 1.0 15 2.0 25 3.0 35 4.0
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The line

@ A first example of a non-compact manifold

Joint work with M.J. Esteban, A. Laptev and M. Loss
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One-dimensional Gagliardo-Nirenberg-Sobolev inequalities

Fast diffusion equations on manifolds and sharp functional inequalities

1oy < Can(p) 112 1FllTay i P (2,00)
11l < Can(p) 1 I Famy Iy i pe(1,2)

w1th9——andn—ﬁ

The threshold case corresponding to the limit as p — 2 is the
logarithmic Sobolev inequality

2 [lu"]]
f]R u? |0g (W) dx < 5 HUH | og <7re |u|2L2]R))

If p> 2, u(x) = (cosh x)fﬁ solves

—(p—2%u"+4u—2p|uP2u=0

If p € (1,2) consider u.(x) = (cosx)ﬁ7 x € (—7m/2,7/2)

J. Dolbeault Sharp functional inequalities and nonlinear diffusions
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Flow

Let us define on H!(R) the functional
4
FIv] = IV [If ey + -2p V2@ = ClIVIEsm) st Flu] =0

With z(x) := tanh x, consider the flow

ViR, 2p o, p VPR 2
Vfiﬂm{v +p_z”+§T+p_zv}

Theorem (Dolbeault-Esteban-Laptev-Loss)

Let p € (2,00). Then
—Flv(t)] <0 d lim Flv(t)] =0
; [v(®)] and i [v(t)] =

%]:[V(t)] =0 < w(x)=u(x—x)

Similar results for p € (1, 2)

J. Dolbeault Sharp functional inequalities and nonlinear diffusions



The sphere

The line

Compact Riemannian manifolds

The Cylinder: symmetry breaking in CKN inequalities

The inequality (p > 2) and the ultraspherical operator

Fast diffusion equations on manifolds and sharp functional inequalities

Q The problem on the line is equivalent to the critical problem for the
ultraspherical operator

/|v|2 dx—|— /|v|2 dx>C(/|v|pdx)

z(x) =tanhx, v, =(1- zQ)ﬁ and  v(x) = v (x) f(z(x))

With

equality is achieved for f = 1 and, if we let v(z) := 1 — 22, then

1 1 1 2

2p 2p P

f°v d +7/ 12 d >7</ fIP d )
/,1| [P dva (p—2)? 71| | Y2y 71| 1" dva

where dv, denotes the probability measure dv,(z) := c_l,, =

_ 2p _ 24
d*p—z — P=3
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Ove r ATO (R

Change of variables = stereographic projection + Emden-Fowler
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Spectral estimates

Compact Riemannian manifolds

Q@ no sign is required on the Ricci tensor and an improved integral
criterion is established

Q@ the flow explores the energy landscape... and shows the
non-optimality of the improved criterion
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Riemannian manifolds with positive curvature

(91, g) is a smooth closed compact connected Riemannian manifold
dimension d, no boundary, A, is the Laplace-Beltrami operator
vol(IM) = 1, R is the Ricci tensor, Ay = A\1(—Ag)

—inf inf M
pi=inf inf N(E.E)

Theorem (Licois-Véron, Bakry-Ledoux)

Assume d > 2 and p > 0. If

dp (d=1)(p-1)
< — _— =
A 9)/\1+9d—1 e d(d—|—2)+p—1>

then for any p € (2,2*), the equation

A
— - _ P =
Agv+p_2(v v =0

has a unique positive solution v € C?(IM): v =1
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Riemannian manifolds: first improvement

Fast diffusion equations on manifolds and sharp functional inequalities

Theorem (Dolbeault-Esteban-Loss)
For any p € (1,2) U (2,2%)

6d
{(1 —0) (Agu)* + —— SR(VU,VU)} dvg
. . d—1
O< A< A= inf
uEH? (9M) Jon [Vul? dvg

there is a unique positive solution in C2("M): u=1

limp—1, 8(p) = 0= limp_1, As(p) = A1 if p is bounded
M=A=dp/(d—1)=dif M =S since p=d — 1

(1—9)A1+9%§A*§A1
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Riemannian manifolds: second improvement

(d=12(p—1)
dd+2)+p-1

Hgu denotes Hessian of v and 0 =

g (d-=1)(p—-1) [Vu®dVu g |Vuf?
= Hyu— & Agu— _eva
Qeu:=Heu = Bt = 30 u d u

(1=0) [ (@ dvg+ 75 [ [1Quul? +9(Vu. Vo)

inf
ueH2(IM)\{0} / |Vu|2 dvg

Theorem (Dolbeault-Esteban-Loss)

Assume that A\, > 0. For any p € (1,2) U (2,2*), the equation has a
unique positive solution in C?(IM) if A € (0,A,): u=1
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Optimal interpolation inequality

For any p € (1,2)U(2,2*) or p=2*if d >3

A
19Vam) > 5= [IVIEscm) — 1vIEemy| Vv € M)

Theorem (Dolbeault-Esteban-Loss)

Assume N, > 0. The above inequality holds for some X\ = N € [A, M]
If Ny < A1, then the optimal constant N is such that

AN <A< )\

Ifp=1, then N = \;

Using u =1+ e as a test function where ¢ we get A < \;
A minimum of

Vi ||VV||i2(9n) - ﬁ ||v||ip(m) - ||V||i2(9n)

under the constraint ||v||ppon) = 1 is negative if A > Ay
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The flow

The key tools the flow

2
up = u?2P <Agu+1€@) , k=1+8(p-2)

If v = v, then Z||v| om) = 0 and the functional

Flu] := /M|V(uﬁ)|2dvg+ ﬁ l/m 2P dv, — (/m Udevg>2/p]

is monotone decaying
Q@ J. Demange, Improved Gagliardo-Nirenberg-Sobolev inequalities on

manifolds with positive curvature, J. Funct. Anal., 254 (2008),
pp- 593-611. Also see C. Villani, Optimal Transport, Old and New
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Elementary observations (1/2)

Let d > 2, u € C?(9M), and consider the trace free Hessian

Leu:=Hgu— %Agu

d

d
/(Agu)2dvg:—/ ||Lgu||2dvg—|——/ R(Vu,Vu)dvg
o d—1 )y d—1 )y

Based on the Bochner-Lichnerovicz-Weitzenbock formula

1
54 IVul? = ||[Hgul? + V(Agu) - Vu +R(Vu, Vu)
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Elementary observations (2/2)

Vul?
A
/zm et u

_d |Vul* Vu® Vu
*d—+z/§m 79V~ d+2/ (Ll [7]"

/ (Agu)’dv, > )\1/ |Vul?dvg YueH* (M)
n m

and \1 is the optimal constant in the above inequality
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The key estimates

Glu) i= Jo 6 (D502 + (5 + 8 = 1) Agu S 0 (6 - 1) S dg

1 d
s == =0 [ (A dv -0l [ [VuPdy,

- u u Vul?
u::Lgu—%Z—é(n—i—ﬁ—l){V@V %‘ |}

u

0d Vult
g[“]:m {./931 ||er“||2dVg+/m§R(Vu,Vu)dvg]—u/m| ul2j| dvg
with 1= (S22 o B =1 = n (- 1) = (6 + 5= 1) 75
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The end of the proof

Assume that d > 2. If 6 = 1, then p is nonpositive if

B-(p) < B < B+(p) Vpe(l,2)

2
where [y = 2Eyb—a vzt;La witha=2—-p+ {7('1_1) (p_l)} and b = 913°P

d+2 d+2
Notice that S_(p) < B+(p) if p € (1,2*) and S_(2*) = S+(2)

dd+2)+p—1

Proposition
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The Moser-Trudinger-Onofri
inequality on Riemannian manifolds

Joint work with G. Jankowiak and M.J. Esteban

Q@ Extension to compact Riemannian manifolds of dimension 2...
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Spectral estimates

We shall also denote by 9 the Ricci tensor, by Hgu the Hessian of u
and by

g
d

the trace free Hessian. Let us denote by M, u the trace free tensor

Leu:=Hzu— = Agu

Myu:=Vu® Vu— % |Vul?
We define

./931 [||Lgu—%Mgu||2+%(Vu,Vu) e /% dv,

Ay = inf
ueH2(M)\ {0} / Vul e 2 dv,
m
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Assume that d = 2 and A\, > 0. If u is a smooth solution to

1
—EAgu—i—)\:e”

then u is a constant function if A € (0, A)

The Moser-Trudinger-Onofri inequality on 20

1
2 ||Vu||iz(m) + A / udvg > X log </ e“dvg) Vu e HY(OM)
m m

for some constant A > 0. Let us denote by A; the first positive
eigenvalue of — A,

If d = 2, then the MTO inequality holds with A = A\ := min{4 7, A\, }.
Moreover, if A is strictly smaller than \1/2, then the optimal constant
in the MTO inequality is strictly larger than N\
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The flow

of

E _ Ag(e—f/2) _ % |Vf|2 e—f/2

GAlf] == /m | Lgf — 3 Mgf |Pe "2 dv, + /m R(VF, Ve 2dy,

—)\/ |VF2e 2dy,
m
Then for any A < A, we have

i]-}[f( )= /an (=3 Dgf + ) (Ag(e—m) — L |vfP e—f/2> dvg

= —Ga[f(t,")]
Since F) is nonnegative and lim;—,o. Fx[f(t,-)] = 0, we obtain that

Falu] > /000 Galf(t,-)] dt
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Weighted Moser-Trudinger-Onofri inequalities on the
two-dimensional Euclidean space

On the Euclidean space R?, given a general probability measure s
does the inequality

1

—— [ |Vul?dx> )\ |log /e“du —/ udpu
1671' R2 Rd R4

hold for some A >0 7 Let

A, = inf — 2108/
x€R2  8mp

Assume that p is a radially symmetric function. Then any radially
symmetric solution to the EL equation is a constant if A < A, and the
inequality holds with A\ = A, if equality is achieved among radial functions
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Caftarelli-Kohn-Nirenberg

inequalities

Work in progress with M.J. Esteban and M. Loss
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Caffarelli-Kohn-Nirenberg inequalities and the symmetry
breaking issue

Let D, p 1= { veLr(RY |x|7Pdx) : [x|7?|Vv| € L2 (R, dx) }

p 2/p 2
(/ v dx> <[ Mo vien,,
R

@ |x|PP re |x[?2

hold under the conditions that a < b<a+1ifd>3,a<b<a+1if
d=2a+1/2<b<a+lifd=1and a<a.:=(d—2)/2

- 2d
- d—2+2(b-a)

p

> With

A

2
_ (p—2) (2c—2)) 72 . _
Vi (x) (1 + |x]| ) and C}, TEERAE

do we have Cyp = C} , (symmetry)
or Cop > C; ) (symmetry breaking) ¢
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The Emden-Fowler transformation and the cylinder

v(r,w)=r""%*p(s,w) with r=|x|, s=—logr and w= X
;

With this transformation, the Caffarelli-Kohn-Nirenberg inequalities
can be rewritten as

10s@lE2(ery + IV llFaiery + AMlelfey = M) [@lfoey Ve € HHC)

where A := (a. — a)?, C = R x S9! and the optimal constant u(A) is

u(/\):C with a=a.+ VA and b:%i\/x
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soF M

wf

. asymptotic

________ symmetric
20

non-symmetric

Parametric plot of the branch of optimal functions for p =2.8, d =5,

0 = 1. Non-symmetric solutions bifurcate from symmetric ones at a
bifurcation point computed by V. Felli and M. Schneider. The branch
behaves for large values of N as predicted by F. Catrina and Z.-Q. Wang
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The symmetry result

o d-s)
brs(a) == N OEDETES +a—ac

Let d > 2 and p < 2*. If either a € [0,a.) and b > 0, or a < 0 and
b > brs(a), then the optimal functions for the Caffarelli-Kohn-Nirenberg
inequalities are radially symmetric
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N

Symmetry region

b = bdirect(a) .
a

-
-
= )
2

Symmetry breaking region

The Felli-Schneider region, or symmetry breaking region, appears in dark
grey and is defined by a < 0, a < b < bwg(a). We prove that symmetry
holds in the light grey region defined by b > brs(a) when a < 0 and for any
bela,a+1] ifac]0,ac)
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Sketch of a proot

[m] = = =
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change of variables

With (r = |x|, w = x/r) € R* x S971 the Caffarelli-Kohn-Nirenberg
inequality is

2
(/ / lv|P rd=bP i dw) < Ca,b/ / |Vv[? rd-22 T dw
0 §d—1 r 0 §d—1 r

Change of variables r — r<, v(r,w) = w(r®, w)

2
o 2
_2 d—bp dr P
ol Tk lw|P r—=" — dw
0 §d—1 r

> 200w|? | 1 2 d=2a-2 45 dr
S Ca,b (Oé |W| + z |wa| ) r @ — dw
0 Sd—l

r

Choice of «
d—bp d—-2a-2

(0% (67

n—=

+2

Then p = % is the critical Sobolev exponent associated with n
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A Sobolev type inequality

The parameters a and n vary in the ranges 0 < @ < occ and d < n < >
and the Felli-Schneider curve in the (o, n) variables is given by
d—-1

o= =: QaFs
n—1

With
Dw = (a %—"r”, % wa) , du:=r"tdrdw
the inequality becomes

al™h </ |w|P dM> ’ <C,p | |DwW|?du
RY R

Proposition

Let d > 2. Optimality is achieved by radial functions and C, , = C , if
a < aFs

Gagliardo-Nirenberg inequalities on general cylinders; similar
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Fast diffusion equations: new point:

Fast diffusion equations on manifolds and sharp functional i
Spe -

Spectral estimates

Notations

When there is no ambiguity, we will omit the index ,, and from now
on write that V =V, denotes the gradient with respect to the
angular variable w € S97! and that A is the Laplace-Beltrami
operator on S9!, We define the self-adjoint operator £ by

-1 A
LW::—D*DW:a2W"—|—a2n—W/—|——2W
r r

The fundamental property of £ is the fact that

/ W1£W2d,u:—/ Dwy - Dwodp Vwy, WgED(Rd)
RY Rd

> Heuristics: we look for a monotonicity formula along a well chosen
nonlinear flow, based on the analogy with the decay of the Fisher
information along the fast diffusion flow in R?
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Fisher information

Let uz~n =|w| <= u=|w]P,p= 20

m 1
Ilu] := Dpl? d =— "1 d =1-=
[u] /R,,”| pIPdp, p=1——u and  m -

Here 7 is the Fisher information and p is the pressure function

Proposition

With A = 4a?/(p — 2)? and for some explicit numerical constant r, we
have

K u(A) = inf {I[u] : ||U1||L1(Rd’du) = 1}
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The fast diffusion equation

@zﬁu"’, m:1—1

ot n

Barenblatt self-similar solutions

. r? "
W\t =t «t 5
bty rw) ¢ +2(n—1)oz2t2

K s (N) = Z[ue(t,-)] Vt>0

> Strategy:
1) prove that %I[u(t7 J] <0,
]=0r1

2) prove that £ Z[u(t, ) neans that u = u, up to a time shift
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Decay of the Fisher information along the flow ?

op 1 5
_— = = — D
B ~pLp |Dp|

1
Qlpl =5 £ IDp|> —Dp-DLp

Kloli= [ (0l 2 (eo?) o an

d n—1
2 Zlu(t, )] = =2(n = 1) K[p]

If u is a critical point, then X[p] =0
Boundary terms ! Regularity !
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Proving decay (1/2)

1 1 1
klp] := Q(p) — < (£p)* = 5 L|Dp|* = Dp-D Lp — —(Lp)*

1
kan[p] := 5 A |[Vp[? = Vp- VAP — 715 (Ap)* = (n—2)a®|Vp[*

Lemma

Let n # 1 be any real number, d € N, d > 2, and consider a function
p € C3((0,00) x M), where (M, g) is a smooth, compact Riemannian
manifold. Then we have

1 p’ Ap 2
. 4 _ = l/___i
Kl = (1 n) {p r aQ(n—l)ﬂ]
’ Vp

Vp' — —
r

, 1 21
+20° 5 + = kan[p]
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Proving decay (2/2)

Assume that d > 3, n> d and 9t = S9~1. There is a positive constant
(s such that

Proof based on the Bochner-Lichnerowicz-Weitzenbock formula

Let d > 2 and assume that o < ars. Then for any nonnegative function
u € LY(RY) with Z[u] < +oc0 and [o, udp =1, we have

Tlu] > Z.
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A perturbation argument

Q@ If u is a critical point of Z under the mass constraint fRd udp =1,
then

o(e) =Z[u+eLu™ —Z[u] = —2(n—1)""te K[p] + o(¢)

because € L u™ is an admissible perturbation (formal). Indeed, we

know that
/(u—l—eﬁum)du:/ udp =1
RY RY

and, as we take the limit as € — 0, u 4+ ¢ £ u™ makes sense (but is
u+¢e L u™ positive ?)
@ If a < aps, then K[p] = 0 implies that u = u,
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Spectral estimates

@ Spectral estimates on the sphere

@ Spectral estimates on compact Riemannian
manifolds

@ Spectral estimates on the cylinder
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Spectral estimates on the sphere

Q@ The Keller-Lieb-Tirring inequality is equivalent to an interpolation
inequality of Gagliardo-Nirenberg-Sobolev type

@ We measure a quantitative deviation with respect to the
semi-classical regime due to finite size effects

Joint work with M.J. Esteban and A. Laptev
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An introduction to Lieb-Thirring inequalities

Consider the Schrodinger operator H = —A — V on R? and denote by
(Ak)k>1 its eigenvalues

@ Euclidean case [Keller, 1961]

+i
<Ll [ vt
Rd

[Lieb-Thirring, 1976]

> T < L%d/ VF%

k>1 Rd
v>1/2ifd=1,v>0if d =2 and v > 0 if d > 3 [Weid]], [Cwikel],
[Rosenbljum]|, [Aizenman]|, [Laptev-Weidl], [Helffer], [Robert],
[Dolbeault-Felmer-Loss-Paturel]... [Dolbeault-Laptev-Loss 2008]

@ Compact manifolds: log Sobolev case: [Federbusch], [Rothaus];
case v = 0 (Rozenbljum-Lieb-Cwikel inequality): [Levin-Solomyak];
[Lieb], [Levin], [Ouabaz-Poupaud]... [Ilyin]

> How does one take into account the finite size effects in the case of
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A Keller-Lieb-Thirring inequality on the sphere

Let d > 1, p € [max{1,d/2},+oc) and
=4 (p—1)

Theorem (Dolbeault-Esteban-Laptev)

There exists a convex increasing function o s.t. a(p) = pu if i € [0, pu.]
and a(p) > p if i1 € (ps, +00) and, for any p < d/2,

Mi(=A = V)| < a(lV]w@Es) YV eLP(S?)

This estimate is optimal

For large values of j, we have

[SIES

p—

o)t =L}y, (5ga ) (L+0(1))

If p=d/2 and d > 3, the inequality holds with a(p) = p iff pu € [0, ]
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A Keller-Lieb-Thirring inequality: second formulation

Letd>1,vy=p—d/2

Corollary (Dolbeault-Esteban-Laptev)

d
A(-A-WV)"SLE, /Sd VIt: as pu= ”V”L"’*%(]Rd) — 00

if either v > max{0,1 — d/2} ory=1/2 and d =1

However, if u = ||V|| < i, then we have

L7t (RY) =

Pa(-a- V) < [ v
Sd

for any v > max{0,1 — d/2} and this estimate is optimal

L} ; is the optimal constant in the Euclidean one bound state ineq.

a(-A— @) <LL /w*w
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Holder duality and link with interpolation inequalities

Consider the Schrodinger operator —A — V and the energy

£lu] ;=/ Va2 —/ V |uf?
s4 sd
> [ VUl ol e
Sd
> —a(p) ||U||i2(Rd) if o = [| Vi [|Le(re)
> Is it true that
V025 ey + 22y = p() 0
In other words, what are the properties of the minimum of

||VUHL2 RY) +a HUHiz(Rd)

Qulu] :=

| “”Lq(Rd

An important convention (for the numerical value of the constants):
we consider the uniform probability measure on the unit sphere S¢
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){
semi-classical regime and Kq g is the optimal constant in the
FEuclidean Gagliardo-Nirenberg-Sobolev inequality

Q flasymp(@) = Ka, » al=? 9= d Corresponds to the

Kad [VIIEogey < IV VIEame) + IvIEage Vv € HI(RY)

@ Let ¢ be a non-trivial eigenfunction of the Laplace-Beltrami
operator corresponding the first nonzero eigenvalue

—Ap=dy

Consider u =1+ €@ as € — 0 Taylor expand Q, around u =1
H0) < Qull +eel = o+ [d+a2—a)] & [ o dv+o(e?)

By taking e small enough, we get u(a) < « for all a« > d/(q —2)
Optimizing on the value of € > 0 (not necessarily small) provides an
interesting test function...
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Another inequality

Let d > 1 and v > d/2 and assume that Ll_%d is the optimal
constant in

2y —d d
_ d — o~y
1= —gy2 MO P 2 —q 72
Theorem (Dolbeault-Esteban-Laptev)
- 1 4 _ —1—1
(/\1(—A + W)) < L, 4 L Wz2="7 as g=|W “L"’_%(Rd) — 00
However, ify > 2 +1and B=|WY| ', <ild@2y—d+2)

L7 % (RY)

i—’}' d
M(=Aa+w))2 < [ we
sd
and this estimate is optimal
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Kg.q 1s the optimal constant in the Gagliardo-Nirenberg-Sobolev
1nequahty

Ko IVIE2ay S IVVIT ey + IVIEaqsy Vv € H'(RY)

1 . * - . 2
and L2 ;= (K%d) with g =2 27 d+2, 0= sg—tay dfq?df2)

Lemma (Dolbeault-Esteban-Laptev)

Let g € (0,2) and d > 1. There exists a concave increasing function v
v(B)<B VB>0 and v(B)<B VBe (3, +x)
WB) =B VBE[0,,%] if qell,2)

v(B) = Ki g (kg B)’ (L+0(1)) as B — +oo
such that

IV ullZagey + B lulfogey = ¥(B) lullfaey ¥ u € HY(ST)
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The threshold case: g =2

Lemma (Dolbeault-Esteban-Laptev)

Let p > max{1,d/2}. There exists a concave nondecreasing function &
fla)=a Vae(0,a) and &(a)<a Ya>ap

for some ag € [ (p— 1), 4 p|, and &(a) ~ o™ as o — +oo

such that, for any u € H'(SY) with ||ul|i2ga) = 1

/ lul? log |uf* d vg + p log ( Sl )) < plog (1+ Lvuli?, Rd))

\

Corollary (Dolbeault-Esteban-Laptev)

A (—A—W)/ o w/ He
a2 ([ o g)
é‘()(/ ¢
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Spectral estimates on compact
Riemannian manifolds

Joint work with M.J. Esteban, A. Laptev, and M. Loss

Q@ The same kind of results as for the sphere. However, estimates are
not, in general, sharp.
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Manifolds: the first interpolation inequality

Let us define
K= volg(fm)l_2/q

Proposition

Assume that q € (2,2*) ifd > 3, or g € (2,00) ifd =1 or 2. There
exists a conze increasing function p : R™ — R such that p(a) = K«
for any o0 < - A wa) < ko fora > ﬁ and

IV ullEamy + o lullfa@ny > m(@) lullfo@n ¥u e H (M)

The asymptotic behaviour of i is given by u(a) ~ Kg.qal=? as
a — 400, with 9 = d %2 and K g defined by

||VV|| 2(RY) + ||V||L2 (RY)

= n
veH! (R9)\{0} | v||Lq(]Rd)

J. Dolbeault Sharp functional inequalities and nonlinear diffusions



Spectral estimates on the sphere
Spectral estimates on compact Riemannian manifolds
Spectral estimates Spectral estimates on the cylinder

Manifolds: the first Keller-Lieb-Thirring estimate

We consider || V/||pem) = i = a(p)

/|Vu|2dvg—/ V|u|2dvg+a(u)/ lul? d v,
m m m

> (| Vullfagony — 1 Ul ey + (i) ullf2om)
p and 3 are Hélder conjugate exponents

Theorem

Letd>1, pe(l,400) ifd=1and p € (4,+00) ifd > 2 and assume
that A, > 0. With the above notations and definitions, for any
nonnegative V € LP(9M), we have

M(=Lg = V)| < a([IVILoem)

Moreover, we have a(p)P~# =11 , 1P (1+ o(1)) as pu — oo with
L a=Kea) " v=p—1%
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Manifolds: the second Keller-Lieb-Thirring estimate

Theorem

Let d > 1, p € (0,+00). There exists an increasing concave function
v: Rt — R*, satisfying v(3) = B/k, for any B € (0, pTH kN) if p>1,
such that for any positive potential W we have

M(—A+ W) >v(8) with 8= ([, WPdy)"”

Moreover, for large values of 5, we have
y(B)~ WD =L B (1+0(1)) as f — +oo
2),
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Spectral estimates on the cylinder

Joint work with M.J. Esteban and M. Loss

J. Dolbeault
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Spectral estimates and the symmetry breaking problem on
the cylinder

Let (9, g) be a smooth compact connected Riemannian manifold of
dimension d — 1 (no boundary) with volg(9t) = 1, and let

C=RxM>x=(s,2)

be the cylinder. A" is the lowest positive eigenvalue of the
Laplace-Beltrami operator,  := infgp inf¢cga—2 Ric(€, §)

> Is
A(p) :=sup {X{[V]: V € LYC), || VILee) = 1}

equal to
M) = sup DE[V] - V € LR, [ Vilgey = 1} ?
—A{[V] is the lowest eigenvalue of —02 — Az — V and —92 — V on C
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The Keller-Lieb-Thirring inequality on the line

- 1/q
Assume that g € (1, +00), 8 = %, w1 =q(g—1) (r\(/;+r1(/¢72))) .

() = (a = 1) (n/m)” >0,

If V is a nonnegative real valued potential in L9(R), then we have

B
MIVI € A(IVlhow) where Au(n) = (g =1 (£)7 ¥p>0

and equality holds if and only if, up to scalings, translations and
multiplications by a positive constant,

V(s) = % = Vi(s) VseR

where || Vi ||Lo(r) = p1, AE[V4] = (g — 1) and @(s) = (cosh s)'
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Noi= (140092 ) k+0(1—0)AT with 6= 5o

(d—2) (n—1) (3n+1-d (3n+5))

= hi * =
A= Ao where O a2

Theorem

|

Let d > 2 and g € (min{4,d/2},+00). The function p — N(1)
convex, positive and such that

A(p)979/2 ~ Lé,g)dﬂq as p— 4oo

Moreover, there exists a positive u, with
m
A

B
2g—1"1

P <ul <

2(¢-1" :

such that
Ap) =A(p) Ve p] and Au)>A(pn) Vo> p.

As a special case, if Mt = S?=1, inequalities are in fact equalities
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The upper estimate

I N () > 2 L7, then

sup {AT[V] : Ve LIC), [|VlLae) = 1} > A(p)

¢(5,2) == pu(s)+e (@u(s))pm di(z) and Vi(s,z):=p |pe (s, 2)|P~2

l6:12.2
where 91 is an eigenfunction of A{" and ¢,, is optimal for A, (i)

42

VL A <

(A" = 2 (P =) A1) + o(?)
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The lower estimate

IVIITeqey — 1105 Vi 1)/2||L2 © ~ Ve vieD22, .

J[V] = ||V q— 1)/2||L2(C

N() = sup {J[V] : [|V[lLaey = 1}

With a = ﬁ /A (), let us consider the operator £ such that

Lu” :z—%@s(ue*%‘s&( m—1 as))-l—e * Agu™

where m=1— %, n = 2gq. To any potential V > 0 we associate the
pressure function

pv(r):=rV(s) % VYr=e°°
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n p’ Agp 2
K — 4 n_ ¥ g 1—n d
[P] @ /Rd P r a?2(n—1)r? P #
2
1 v
+20° / = |Vep' — YeP| pi-n e
Rd I r

2 [Vep* 1=
. — /\* g 1-n
+ (A -1 (u)) /Rd —g b "du

where dy is the measure on R* x 91 with density r"~1, and ’ denotes
the derivative with respect to r

There exists a positive constant c such that, if V' is a critical point of J
under the constraint ||V ||racy = 1 and uy = V9~1/2, then we have

JIV +euyt Luf] - J[V] > ceKlpy] +o(e) as £—0
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Q@ the sphere: the flow tells us what to do, and provides a simple
proof (choice of the exponents / of the nonlinearity) once the problem
is reduced to the ultraspherical setting 4+ improvements

Q@ the spectral point of view on the inequality: how to measure the
deviation with respect to the semi-classical estimates, a nice example
of bifurcation (and symmetry breaking)

Q Riemannian manifolds: no sign is required on the Ricci tensor and
an improved integral criterion is established. We extend the theory
from pointwise criteria to a non-local Schrédinger type estimate
(Rayleigh quotient). The method generically shows the
non-optimality of the improved criterion

Q@ the flow is a nice way of exploring an energy space: it explain how
to produce a good test function at any critical point. A rigidity result
tells you that a local result is actually global because otherwise the
flow would relate (far away) extremal points while keeping the energy
minimal
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These slides can be found at

http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/
> Lectures

Thank you for your attention !
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