From p-entropies to hypocoercivity without
confinement

Jean Dolbeault

http://www.ceremade.dauphine.fr/~dolbeaul
Ceremade, Université Paris-Dauphine
June 26, 2018

An Analyst, a Geometer & a Probabilist Walk Into a Bar
(Cardiff University, 25-29 June 2018)


http://www.ceremade.dauphine.fr/~dolbeaul

Outline

e From p-entropies to H' hypocoercivity
> p-entropies and diffusions
> p-hypocoercivity (H! framework)

e An L? abstract hypocoercivity result
D> Abstract statement
> A toy model

o L2 framework: mode-by-mode hypocoercivity
> Fokker-Planck equation and scattering collision operators
> A mode-by-mode hypocoercivity result
> Enlargement of the space by factorization
o> Application to the torus
> A more numerical point of view
> Decay rates in the Euclidean space without confinement

> In collaboration with X. Li
and E. Bouin, S. Mischler, C. Mouhot, C. Schmeiser

J. Dolbeault From ¢-entropies to hypocoercivity without confinement



From p-entropies to H hypocoercivity T .
An abstract hypocoercivity result e s [ e ol
de-by-mode hypocoercivity prLipeeEiElay ( FRIHETTELS)

From p-entropies to
H! hypocoercivity

> Some references of related works

(Chafai 2004), (Bolley, Gentil 2010)

(Baudoin 2017)

(Monmarché), (Evans, 2017)

(Arnold, Erb, 2014), (Arnold, Stiirzer), (Achleitner, Arnold, Stiirzer,
2016), (Achleitner, Arnold, Carlen, 2017), (Arnold, Einav, Wohrer,
2017)
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From g-entropies to H! hypocoercivity p-entropies and diffysions

@-hypocoercivity (H' framework)

Definition of the p-entropies

elu] = [ otw)dy

¢ is a nonnegative convex continuous function on R* such that
©(1) =0 and 1/¢" is concave on (0, +00):

¢"20, ¢=¢(1)=0 and (1/¢")" <0
Classical examples
op(w) := ﬁ (WP —1-=pw-1)) pe(1,2]

v1(w) :=wlogw — (w—1)
The invariant measure
dy=e Ydx

where 1 is a potential such that e~? is in L'(R?, dx)
dv is a probability measure
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From g-entropies to H! hypocoercivity p-entropies and diffysions

@-hypocoercivity (H' framework)

Diffusions

Ornstein- Uhlenbeck equation or backward Kolmogorov equation
ow

E:Lw::Aw—Vw~Vw

Q —/ (Lwl)wgdvz/ Vw;i - Vws dy th’ngHl(Rd,d’y)
Rd Rd

Q@ 1= / wo dy = / w(t, ) dy and limy oo w(t, <) = 1
Rd ]Rd

Qa —¢&

dt

If for some A > 0

[w] = _/ " (w) |Vaw|?dy =: —I[w] (Fisher information)
Rd

Jw] > A&fw] YVw e HY(RY, dy)
(entropy — entropy production inequality), then
Elw(t,-)] < Efwole ™t Vt>0
Fokker-Planck equation : u = wy converges to u, = -y
ou
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From g-entropies to H! hypocoercivity p-entropies and diffysions

@-hypocoercivity (H' framework)

Generalized Csiszar-Kullback-Pinsker inequality

(Pinsker), (Csiszar 1967), (Kullback 1967), (Céceres, Carrillo, JD,
2002)

Proposition

Let p € [1,2], w € L N LP(RY, dv) be a nonnegative function, and
assume that ¢ € C2(0,+00) is a nonnegative strictly convex function
such that (1) = ¢’ (1) = 0. If A :=inf(0,00) > P ¢"(s) > 0, then

_2 2 —2 2
elw] 2 27% A min {1, il 1) } 10 = 10 ge.an)
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From g-entropies to H! hypocoercivity p-entropies and diffysions

@-hypocoercivity (H' framework)

Convexity, tensorization and sub-additivity

/ wll(w) ‘vw‘z dvi =: Jyi [w} > A 8%‘ [’LU] Vwe Hl(Rdia d’}/i)
R

Theorem

If dyi and dvys are two probability measures on R x R% | then

T malte] = / o' (1) [V l? dyy dye
Rd1 x R42

> min{A1,As} €, 94, [w] Yw € HYR™M x R%, dy)

’

Im @ yolw] = /

Iy1[w] d’72+/ Ive[w] dy1
Rd2 Rd1

871@72 [U}] < / 8’)’1 [w] d’}/? + / 8’)’2 [w] d’Yl Vw e Ll(d’Yl Y ’72)
R%2 R41
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From g-entropies to H! hypocoercivity p-entropies and diffysions

@-hypocoercivity (H' framework)

Perturbation (Holley-Stroock type) results

With @ := [, wdy, assume that

A [ e —eo) < [ Fwvutar vueta
Rd Rd
and, for some constants a, b € R,

e ldy <dp<e%dy

If ¢ is a C? function such that ¢ >0 and @ := [p, wdp [ [pa dp,
then

A [ otw) = o(@ — P @w =) du < [ ) [Vl d
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From g-entropies to H! hypocoercivity e omdl GHEwHEm

@-hypocoercivity (H' framework)

Entropy — entropy production inequalities, linear flows

On a smooth convex bounded domain 2, consider

%—?:Lw::Aw—Vz/J-Vw, Vw-v=0 on 02
p_

4 [w 1d’y:fé/|Vz|2d’y and z = wP/?

dt Jo p—1 P Ja

d
& [vep < —2a0) [ vePan
Q Q

where A(p) > 0 is the best constant in the inequality

2
f(p—l)/ |VX\2d'y+/Hesszp:X@dezA(p)/ IX[2 dy
p Q Q Q

P —1 4
/w dvg—/ |VwP/2|2dy  for any w s.t. /wdy:l
o p—1 pA Jo Q

(Bakrv. Emerv 1985)
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From g-entropies to H! hypocoercivity p-entropies and diffysions

@-hypocoercivity (H' framework)

An interpolation inequality

Assume that g € [1,2). With A = A(2/q), we have

112 ey = | ame gy 1 , .
<7 [ IViPdy VfeH (R dy)
Rd

2—q
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From g-entropies to H! hypocoercivity e omdl GHEwHEm

@-hypocoercivity (H' framework)

Improved entropy — entropy production inequalities

In the special case 9(z) = |z|?/2, with z = wP/2, we obtain that

1d ) ) 2 /|Vz|4
-4 d dy<—2 d
m/ww v+/Rd|VZ| <2y | Soen

with £y = (p—1)(2—p)/p \
Cauchy-Schwarz: ( [, |Vz|? d7)2 < Jpa V21" gy S 22 dy

22

d I[w]?

gl 200] < =k T

Assume that q € (1,2) and dy = (2r)~4/? e~121°/2 dz. There exists a
strictly convex function F such that F(0) =0 and F'(0) =1 and

2 2 0
F (1 e@eay = 1) S UV ey o I lLogaany = 1
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From g-entropies to H! hypocoercivity p-entropies and diffysions

An abstract hypocoercivity result Gt
Mode-by-mode hypocoercivity w-hypocoercivity (H™ framework)

p-hypocoercivity (H! framework)

> adapt the strategy of p-entropies to kinetic equations

> Villani’s strategy: derive H! estimates (using a twisted Fisher
information) and then use standard interpolation inequalities to
establish entropy decay rates

The twisted Fisher information is not the derivative of the w-entropy
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From g-entropies to H1 hypocoercivity
{n abstract hypocoercivity result

Mode-by-mode hypocoercivity

(-entropies and diffysions
@-hypocoercivity (H* framework)

The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck
equation:

of

a'i‘Usz_Vzwvvf:Avf"_vv(vf) (1)
with ¢ (z) = |z|>/2 and [ flly1 (raxray = 1 has a unique nonnegative
stationary solution

fulw,v) = 2m)~ e (ol il)

and the function g = f/f, solves the kinetic Ornstein-Uhlenbeck
equation
9g
at
with transport operator T and Ornstein-Uhlenbeck operator L given
by

+Tg=Lg

Tg:=v-Vyag—2-Vug and Lg:=A,g—v-V,g
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From g-entropies to H! hypocoercivity -entropies and diffysions

@-hypocoercivity (H* framework)

Sharp rates for the kinetic Fokker-Planck equation

Lot v(a) = [of?/2, dui= fododo, €lg)i= ([ (o) d

Proposition

Let p € [1,2] and consider a nonnegative solution g € L*(R? x R?) of
the kinetic Fokker-Planck equation. There is a constant € > 0 such
that

E[g(t,-, )] <Ce " VE>0

and the rate e~t is sharp as t — 400

(Villani), (Arnold, Erb): a twisted Fisher information functional
'R :(1—/\)/ |Vvh|2du+(1—)\)/ |Vxh|2du+>\/ Voh + Voh|? dp
R R4 R?

(Arnold, Erb) relies on A = 1/2 and £d1 2[h(t,-)] < — J1/2[h(t, )]
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From ¢g-entropies to H! hypocoercivity -entropies and diffysions
@-hypocoercivity (H* framework)

Improved rates (in the large entropy regime)

Rewrite the decay of the Fisher information functional as
d
1= Xt My Xdp=[ X" Xdu+ [ Y -MYdp
dt Jra Rd Rd

Where X = (Vvh, Vzh) B Y == (vaa H:mn Mvva va)

1A 1—x =
— - 2
mo — < )\ v ) ® Ide, 93'(1 — ( 1_;'_;_,/ )\ ) ® Ide

A
L Ty T
A v —E2 _EY
- 2 2 1d
Ms T R e PO
—"‘7)‘ —% 28N 2KV

With constant coefficients

XL X ,
)\*(A, l/) = max {H}}HW . ()\,I/) S R s.t. WIQ Z O}
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From g-entropies to H! hypocoercivity
An abstract hypocoercivity result
Mode-by-mode hypocoercivity

w-entropies and diffysions
p-hypocoercivity (H* framework)

For (\,v) = (1/2), A, = 1/2 and the eigenvalues of My(3,1) are given
as a function of kK = 8 (2 — p)/p € [0, 8] are all nonnegative

)\3(/’{)
1.0 -
f Az (k)
0.5 I
L /\1 (Ii)
K
. . . | . . . | . . . | . ! >
2 4 6 8
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From g-entropies to H! hypocoercivity -entropies and diffysions

@-hypocoercivity (H1 framework)

We know that
YL Y > M(p, )|V

for some A1(p, ) > 0 and |[Y|* > |[M,,||? so that, by Cauchy-Schwarz,

2
(/ |vvh2du) < [ [ Ml i< co [ Mol d
R4 Rd Rd Rd

Theorem

Let p € (1,2) and h be a solution of the kinetic Ornstein- Uhlenbeck
equation. Then there exists a function X : Rt — [1/2,1) such that
A(0) = limy—, 4 oo A(t) = 1/2 and a function p > 1/2 s.t.

Sa0lh(E, ) < = 2000 330 (1, )

As a consequence, for any t > 0 we have the global estimate

Inco(t, )] < 81 jalo] exp (— 2 [ ot ds)
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From g-entropies to H! hypocoercivity p-entropies and diffysions

An abstract hypocoercivity result o
Mode-by-mode hypocoercivity w-hypocoercivity (H™ framework)

Let us define a:= e [5, |V h|?du, b= e [, Voh - Vihdp,
ci=¢€" [pa|Vah[*dpand j:=a+b+c

da i dc : dj
dtga 2(—c), dtSZ(J a)—c and dtSO
with the constraints a > 0, ¢ > 0 and b?<ac

20F \\\\\\\\\\\,
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From @-entropies to H' hypocoercivity Strategy
An abstract hypocoercivity result
Mode-by-mode hypocoercivity

Result and proof
Toy model

An abstract hypocoercivity result

> Abstract statement

> A toy model

J. Dolbeault

[m]

(=)
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Strategy
An abstract hypocoercivity result Result and proof
Toy model

An abstract evolution equation

Let us consider the equation

dF
— +TF=LF 2
pras (2)

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (X, (-, -))

A= (1+ (TI)*TI) ™ (TTD)*
* denotes the adjoint with respect to (-, )

II is the orthogonal projection onto the null space of L
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An abstract hypocoercivity result

The assumptions

Strategy
Result and proof
Toy model

Am, Au, and Cyy are positive constants such that, for any F' € H

> microscopic coercivity:

—(LE,F) 2 A (1 = IDF| (H1)
B> macroscopic coercivity:
ITILE|* > Ay (1L (H2)
> parabolic macroscopic dynamics:
ITIIF =0 (H3)
> bounded auziliary operators:
[AT(L = I F| + |ALF[| < Car [|[(1 = T F| (H4)
The estimate
3 SIFIP = (L, F) <~ A (1~ T FJ?

is not enough to conclude that || F(¢

J. Dolbeault

,)||? decays exponentially
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Strategy
An abstract hypocoercivity result Result and proof
Toy model

Equivalence and entropy decay

For some J > 0 to be determined later, the L? entropy / Lyapunov
functional is defined by

H[F] := % ||[F|> + 6 Re(AF, F)
as in (J.D.-Mouhot-Schmeiser) so that (ATILF, F) ~ |[ILF||? and

d

— —H[F] = : D[F]

= — (LF,F) + 6 (ATIIF, F)
— §Re(TAF, F) 4+ § Re(AT(1 — I)F, F) — § Re(ALF, F)

> entropy decay rate: for any ¢ > 0 small enough and A = A(9)
AH[F] < D[F]
> norm equivalence of H[F] and | F|?

2—-9 244
2P < HIF < 0 ER
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Strategy
An abstract hypocoercivity result Result and proof
Toy model

Exponential decay of the entropy

_ Am : Am Am [ Am AM
A= T min {1, A [(ESynren }, 0 = 5 min {1, A T €2

) 2496 d A 249
= -4 0T T 4
o= 60— (o202 (235,

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on 3. Under (H1)—(H4), for any t >0

H[F(t,)] < H[Fy] e ™!

where A\, is characterized by

Ae=sup{A>0:36>0st hi(5,N) =0, Ay — 6 — 1 (2+6) A >0}
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Strategy
An abstract hypocoercivity result Result and proof
Toy model

Sketch of the proof

@ Since ATII = (1 + (TH)*TH)f1 (TID)*TII, from (H1) and (H2)
S A

—(LF, F) 4+ 6 (ATIIF, F) > \,, |(1 = ID) F||? +
14+ Ay

[TLF?

@ By (H4), we know that
IRe(AT(1 — II)F, F) + Re(ALF, F)| < Oy |[TIF||[|(1 — IT) F|
@ The equation G = AF is equivalent to (TII)*F = G + (TI)* TII G
(TAF, F) = (G, (TI)* F) = |G||* + | THG|* = |AF|* + | TAF|*
By the Cauchy-Schwarz inequality, for any p > 0

* 1 I
(G, (TI)" F) < [[TAF| |1 - F| < 2 ITAE(? + 5 = mF|?*

1
IAF] < S 10 =TOF|, | TAF| < [[(1 = IDF||, |(TAF, F)| < [|(1 - I F|?
@ With X := ||(1 - I)F| and Y := ||IIF
D[F]=AH[F] > (A —0) x24 OMM 2 6CMXY—L§A(X2+Y2)
14+ Ay
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Strate
An abstract hypocoercivity result Rl el mxeel
Toy model

Hypocoercivity

For any ¢ € (0,2),
which Ay, — 6 — 2 (24 6) X > 0, then for any solution F of (2)

if N(0) is the largest positive Toot of h1(d,\) =0 for

246
PO < 722

¢ OHUFOI vt>0

From the norm equivalence of H[F] and ||F||?

2

-9 2+5
=L IF|2 < HIF) <

172

We use 252 || Fp||? < H[Fp] so that A, > SUPse(0,2) AM9)
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Strategy
Result and proof

An abstract hypocoercivity result
Toy model

A toy problem

du {0 0 (0 —k )
= =T, L_<0 _1>, T_(k 0 ) K> A>0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

cod2 2
o H-theorem: J|u|* = —2u3
@ macroscopic limit: % =—k%u
e generalized entropy: H(u) = |u|? — % U1 U

Mo 2—751€2 uj — ok ui + Ok UL u
. 1+k2) 2 1+k2 P14 R
oA

J. Dolbeault From ¢-entropies to hypocoercivity without confinement



From p-entropies to H! hypocoercivity

An abstract hypocoercivity result

Strategy
Result and proof

Mode-by-mode hypocoercivity Toy model
Plots for the toy problem
ul1? ul1?+u2?

1 0.7
0.6

0.8
0.5
0-6 0.4
0.4 0.3
0.2

.2
0 /\ 0.1

1 2 3 4 5 6 1 2 3 4 5 6
u1? H
1~ ul?+u2? 1
0.8 0.8
0.6 0.6
0.4 0.4
0.2 0.2
1 2 3 4 5 6 1 2 3 4 5 6
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¢p-entropies to H' hypocoercivity Hypocoercivity results
An abstract hypocoercivity result Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

From

Mode-by-mode hypocoercivity

> Fokker-Planck equation and scattering collision operators
> A mode-by-mode hypocoercivity result
> Enlargement of the space by factorization

> Application to the torus and some numerical results

(Bouin, J.D., Mischler, Mouhot, Schmeiser)
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Hypocoercivity results
Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

Fokker-Planck equation with general equilibria

We consider the Cauchy problem
8tf+Uva:Lf7 f(O,J,‘,’U):fo(x,U) (3)

for a distribution function f(¢,z,v), with position variable x € R% or
x € T? the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M
Lf = Vo [MV, (M7 )]

Notation and assumptions: an admissible local equilibrium M is
positive, radially symmetric and

dv
» M (v) dv , dy=~(v)dv M)

~ is an exponential weight if

m i: lim M(v)|v|* =0 VEk e (d,o0)
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From ¢-entropies to H! hypocoercivity Hypocoercivity results

An abstract hypocoercivity result Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

Definitions

e):-/ |v|2M(U)dv:/ (v- )2 M(v) du
d R4 Rd
for an arbitrary e € S41
/ v@uvMw)dv=061d
Rd
Then
HV M||L2 () = / [V, V | dv < 00

1,2
IfM(v):%,thenG):landﬁzl

__1
7= g 0/0

Microscopic coercivity property (Poincaré inequality): for all
u=M"1tF e HY(M dv)

2
/ |Vu|2Mdv2>\m/ (u—/ uMdv) M dv
R4 R R4
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From p-entropies to H! hypocoercivit Hypocoercivity results
An abstract hypocoercivity result Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

Scattering collision operators

Scattering collision operator

L = [ o) () MO) = 7O M)

R
Main assumption on the scattering rate o: for some positive, finite &
1<o(v,v) <7 Vv, v €R?

Example: linear BGK operator

L=~ f. prit)= [ fta)do

R

Local mass conservation

/ Lfdv=0
]Rd

and we have
[k iy <as® [ s - gy
R Rd

J. Dolbeault From ¢-entropies to hypocoercivity without confinement



From p-entropies to H! hypocoercivit Hypocoercivity results
An abstract hypocoercivity result Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

The symmetry condition
/ (o(v,0') =o', v)) M(v))dv' =0 Vv eR
Rd

implies the local mass conservation fRd Lfdv=0
Micro-reversibility, i.e., the symmetry of ¢, is not required

The null space of L is spanned by the local equilibrium M
L only acts on the velocity variable

Microscopic coercivity property: for some \,, > 0

1 ) / L
5//RdXRda(v,v)M(v)M(v)(u(v)—u(v)) dv’ dv

> A | (u—purs)® Mdv
Rd

holds according to Proposition 2.2 of (Degond, Goudon, Poupaud,
2000) for all u = M ' F € L2(M dv). If o = 1, then \,,, = 1

J. Dolbeault From ¢-entropies to hypocoercivity without confinement



Hypocoercivity results
Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

Fourier modes

In order to perform a mode-by-mode hypocoercivity analysis, we
introduce the Fourier representation with respect to x,

flta) = [ Ft60 e € dute)

du(€) = (2m)~%d¢ and d¢ is the Lesbesgue measure if x € R?
du(€) = (2m) =% Y2, ca 6(€ — 2) is discrete for z € T¢

Parseval’s identity if £ € Z¢ and Plancherel’s formula if 2 € R read

1) oany = || £8-,0)

L2(dp(§))

The Cauchy problem is now decoupled in the £-direction
o0f +Tf=LF, F(0,60) = fol&v)
Tf=i(w-&f
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From @p-entrop to H1 l‘\‘nuu( rcivity Hypocoercivity results
An abs n Gt ln »coercivity result Application to the torus and some numerical results
Mode- by ruode };ypoweruv;ty Decay rates in the whole space

For any fixed & € R?, let us apply the abstract result with

s=L2d), PP = [ 1FPar, =1 [ Pav =0

and Tf =i(v-&) f, TIF =i (v-&) pr M,

IToF|* = \pF|2/d [v-€* M(v)dv = O ¢ |pr|* = O ¢ |TIF |
(H2) Macroscopic coercivity ||TILF||* > Ay [ILF||? : Ay = O |€?
(H3) [gavM(v)dv =0

The operator A is given by

—i& - [pa V' F(v") dv'

AF =
1+ 0 [¢)?
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Hypocoercivity results
Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

A mode-by-mode hypocoercivity result

IAF|| = [A(L - T F|| < —— /]R (A=IDF] e /A dv

T ORP Jou VAT
1 , 1/2
< e l0-FI ([ w92 ara)
_ Vel
- o -

@ Scattering operator ||[LF||? < 452 ||(1 —II)F||?
@ Fokker-Planck (FP) operator

Rl < i [ D e v < YRS o -

1+ 0> VM 1+ 0 [¢?
In both cases with & = v/ (FP) or k = 25 v/© we obtain
K €]
ALF|| < —=— |1 -I)F
I ||_1+@|£|2 11— I)F]|
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From @-entropies to H! hypocoercivity Hypocoercivity results
An abstract hypocoercivity result Application to the torus and some numerical results
Mode-by-mode hypocoercivity Decay rates in the whole space

(- M

TAF = ——
() 1+ OE]2 Jau

(v &) (1 - IDF() do’

is estimated by

CINE
ITAF] < 28 - m|

+ 0O

3 2
(H4) holds with Cy = %

Two elementary estimates

o . o g
T+ O[EF = max(1,0) 1+ [

A O(+elf) e

(1+xu)C3 (k+0¢))? ~ w2 +6
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Mode-by-mode hypocoercivity with exponential weights

Theorem

Let us consider an admissible M and a collision operator L satisfying
Assumption (H), and take € € RY. If f is a solution such that
fo(€,-) € L2(dy), then for any t > 0, we have

2
< pe t
[FR3] R ] YR T
where
Alg? e . Am ©
= A= ——— 1. M=
He =T o 3max{1,0} | " K2+6

with k = 25 \/© for scattering operators
and & = /0 for (FP) operators
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Enlargement of the space by factorization

A simple case (factorization of order 1) of the factorization method
of (Gualdani, Mischler, Mouhot)

Theorem

Let B1, By be Banach spaces and let Bo be continuously imbedded in
By, e, |||l <cll - |l2- Let B and A+ B be the generators of the
strongly continuous semigroups e®t and eA+t®)t on By. If for all
t>0,

He(er‘B)tHZHQ < e ei&ta ||€£BtH1—>1 <cs e M t, ||Ql||1—>2 <o

where || - ||;—; denotes the operator norm for linear mappings from B;
to B;. Then there exists a positive constant C = C(cy, ¢, c3,c4) such
that, for allt > 0,

“6(m+%)t“ - C (]. + A1 — )\2|*1) e~ min{A1, 2}t for A # A
151 C (1 + 1) gt for Ay = X
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Integrating the identity % (e(m"’%) s B (t_s)) = (A+B) s 9 B (t—3)
with respect to s € [0, ] gives

t
e(QH—%)t — e%t _|_/ e(QH—%)SQLe’B (t—s) ds
0

The proof is completed by the straightforward computation

ds

||e(m+%)tH1—>1 = C3e_>\1t+cl/ ||e(91+%)sme (s ||1—>2
0

t
<cge ™Mb 4bcieacsey e_Alt/ eMi—A2)s gg
0
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Weights with polynomial growth

Let us consider the measure

dy = (V) dv  where ~(v) = 7Y/? % (1+ [v]

2)16/2
for an arbitrary k € (d, +o0)
We choose By = L%(dv;,) and By = L2(dv)

Theorem

Let A = m min{l,iﬂ%} and k € (d,00]. For any ¢ € R if

f is a solution with initial datum fo(€,-) € L2(dvy), then there eists
a constant C' = C(k,d, @) such that

< Ce Het

Vt>0
L2(dk)

e

fole. )

L2 (dvk)
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@ Fokker-Planck: JAF = N xgF and BF = —i(v-&) F+LF —AF
N and R are two positive constants, y is a smooth cut-off function
and xr = x(-/R)

For any R and N large enough, according to Lemma 3.8 of (Mischler,
Mouhot, 2016)

[ =@ ras-x [ P
R4 R4

for some A\ > 0if k > d, and Ay = pe/2 <1/4

Q@ Scattering operator:
AF(v) = M(U)/ a(v,v") F(v') dv'
Rd
BF(v) = - [z (v-€) +/ o(v,v") M) dv'| F(v)
Rd
_ _ 1/2
Boundedness: || %F||r2(4y) <7 (Jga 7 " dv) / 1 2 (dv)

)\1 =1 and /\2 Z/,l,g/Q S 1/4
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Exponential convergence to equilibrium in T¢

The unique global equilibrium in the case 2 € T¢ is given by

1
foo(®,0) = poo M(v)  With po = v // fodz dv
‘T | Td xR

Theorem

Assume that k € (d, 00] and v has an exponential growth if k = co.
We consider an admissible M, a collision operator L satisfying
Assumption (H), and A given by (11)

There exists a positive constant Cy, such that the solution f of (3) on
T4 x RY with initial datum fo € L2(dz dry) satisfies

Hf(tu K ) - fOOHLQ(dxdfyk) < Cr ”fO - foo”LZ(dzd’Yk) e 1At vVt >0
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If we represent the flat torus T¢ by the box [0,27)? with periodic
boundary conditions, the Fourier variable satisfies £ € Z¢. For £ = 0,
the microscopic coercivity implies

e—t
L2(dv)

Hf(t’07 ) - foo(oa )‘

< ||£o(0.) = fict0.)|

L2(dv)
Otherwise p¢ > A/2 for any £ # 0

Parseval’s identity applies, with measure dy(v) and Co = /3
The result with weight 4 follows from the factorization result for
some Ci > 0
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Computation of the constants

> A more numerical point of view

Two simple examples: L denotes either the Fokker-Planck operator
Lif ==Auf+Vy-(vf)
or the linear BGK operator
Lof:=Nf—f
MNf = py M is the projection operator on the normalized Gaussian
function

6_ % "U|2

(2 m)d/2
and py := [pa fdv is the spatial density

M(v) =
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Where do we have space for improvements 7
@ With X :=||(1 —I)F|| and Y := ||IIF||, we wrote

D[F] — AH[F]
O Ay
14+ Ay

O AMm 2+6 2
T —5C'MXY—T/\( +Y?)

> (A — 0) X2+ Y2—50MXY—5(X2+Y2+5xy)

>A\m— 0) X2+

@ We can directly study the positivity condition for the quadratic
form

OAM o Ao 2
Y*-90Cy XY — = (X Y 0XY
L+ s M g (Y24 )

Am =1, A = [€]? and O = €] (1 + [€])/(1 + |€]?)

A — 6) X2 +
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With A, =1, Ayr = [€]? and Cir = [€] (1 +[€])/(1 + [¢]?), we
optimize A under the condition that the quadratic form

My o vy A

— 2 —_—
(Am — 0 X +1+)\M 5

(X2+Y?+6XY)
is positive, thus getting a A(£)

@ By taking also § = 0(&) where £ is seen as a parameter, we get a
better estimate of A(§)
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By taking § = §(&), for each value of £ we build a different Lyapunov

function, namely

He[F] = 5 | FII* + 6(¢) Re(AF, F)

where the operator A is given by

AP — —i&- fpa V' F(V') dv
1+ ¢

@ We can consider

AF — —i& [pa V' F(v") dv'
e+1¢J2

and look for the optimal value of ...

M

J. Dolbeault
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The dependence of X in € is monotone, and the limit as € — 04 gives

the optimal estimate of A\. The operator

—i&- f]Rd v F(v')dv'
IqE

is not bounded anymore, but estimates still make sense
and limg_,9 (&) = 0 (see below)

AoF = M
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Theorem (Hypocoercivity on T¢ with exponential weight)

Assume that L =11 or L= Ly. If f is a solution, then
£t -) = FoollF2(dmary < Cx lfollF2(deary € " VE>0
with foo(z,v) = M(v) [[ra,ga fo(z,v) dz dv

C, ~ 1.75863 and A\, = Z(5 — 2+/3) ~ 0.236292.

(work in progress)
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Some comments on recent works

A more algebraic approach based on the spectral analysis of
symmetric and non-symmetric operators

@ On BGK models
(Achleitner, Arnold, Carlen)

@ On Fokker-Planck models
(Arnold, Erb)

(Arnold, Stiirzer)

(Arnold, Einav, Wohrer)
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Algebraic decay rates in R?

On the whole Euclidean space, we can define the entropy

HUfT o= 5 112w ay) + O (AL Faz dn

Replacing the macroscopic coercivity condition by Nash’s inequality

_4_ 24
HU”iz(dL) < CNash HU”fT(de) HquLd;—(de)

proves that

d
2

HIf) < © (HIfol + 1ol an)) (141

Theorem

Assume that i, has an exponential growth (k = oo) or a polynomial
growth of order k > d

There exists a constant C > 0 such that, for anyt > 0

ol

2 2 2 —
£ MEaas ary < € (1olEaqaany + 10l Eaars; Lacasy ) (1 +9)

V.
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A direct proof... Recall that pe =

By the Plancherel formula

15 iy <€ [ (/ 6_”5t|f0|2d§) d
Re \JRd

@ if [¢] < 1, then pg > 5 [¢]?

[ et P d < C Mol [ ¥ g
13 R

I<1
2 _d
< C [ folv)laam t2

@ if [¢] > 1, then pg > A/2 when [¢] > 1

3 A _a
/5 1 e Pt |folPde < Ce 2t ||f0('7v)||iQ(dz)
>
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Improved decay rate for zero average solutions

Theorem
Assume that fo € Ll (R x RY) with [[qa, g4 fo(x,v)dzdv =0 and

2 2 2
Co = Il FollLa (aypas L (@) + IfollLa(aye; 1r(al azy) T 1FollLa(az ayey < 00

Then there exists a constant ci, > 0 such that

£y, ) 2w gy < 0k Co (1+1)~(+2)
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Step 1: Decay of the average in space, factorization

Q Tr-average mn space

fo(t,v) := ft,z,v)de

Rd

with [oq fo(t,v) dv =0 and observe that f, solves a Fokker-Planck
equation

atfo == I—fo

From the microscopic coercivity property, we deduce that

1ot F2 () < 15000, ) Fagayy €

Q@  Factorisation

2 2 _
1fo (s L2 of2 ey < C N follce (o avs i any) €
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Step 2: Improved decay of f

Let us define g := f — f, o, with p(z) := (2r)~%/2 e=l=l*/2
The Fourier transform § solves

09+ Tig=Lg— fo TopwithTe =i (v-£)p

Duhamel’s formula

t
g _ ez(L—T) tgo +/ ez(L—T) (t—s) (_f.(s7 ’U) T@(f)) ds
N—— 0
— Lt 4 m
Ce 2 He |‘90(§1')”L2(d7k) Ce*TE (tfs)”f.(sy.)”I)(lv|2 dwk)lfl [6(6)]
Q go(&v) = fm & Vedo (n %,U) dn yields
:O

190(&; V)| < €] [IVedo (s 0) Iy o0 () < 181 190 (s )Lt (1) ax)
Q@ e = AJE2/(1+ |€2) > A/2 if |¢] > 1 (contribution O(e™21)) and
AL—T A |2 —A g2 2
f\f\gl fRd |6 (L T)th‘ d’yk d£ < /]Rd ‘€|2€ z ¢l tdf ||90||L2(d'yk;L1(|m\d:c))

=0(t—(d+2))
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These slides can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Lectures/
> Lectures
The papers can be found at
http://www.ceremade.dauphine.fr/~dolbeaul /Preprints/
> Preprints / papers

For final versions, use Dolbeault as login and Jean as password

Thank you for your attention !

J. Dolbeault From ¢-entropies to hypocoercivity without confinement


https://www.ceremade.dauphine.fr/~dolbeaul/Lectures/
https://www.ceremade.dauphine.fr/~dolbeaul/Preprints/

	From -entropies to H1 hypocoercivity
	-entropies and diffusions
	-hypocoercivity (H1 framework)

	An abstract hypocoercivity result
	Strategy
	Result and proof
	Toy model

	Mode-by-mode hypocoercivity
	Hypocoercivity results
	Application to the torus and some numerical results
	Decay rates in the whole space


