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Definition of the ϕ-entropies

E[w] :=
∫
Rd
ϕ(w) dγ

ϕ is a nonnegative convex continuous function on R+ such that
ϕ(1) = 0 and 1/ϕ′′ is concave on (0,+∞):

ϕ′′ ≥ 0 , ϕ ≥ ϕ(1) = 0 and (1/ϕ′′)′′ ≤ 0

Classical examples

ϕp(w) := 1
p−1

(
wp − 1− p (w − 1)

)
p ∈ (1, 2]

ϕ1(w) := w logw − (w − 1)

The invariant measure
dγ = e−ψ dx

where ψ is a potential such that e−ψ is in L1(Rd, dx)
dγ is a probability measure
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Diffusions
Ornstein-Uhlenbeck equation or backward Kolmogorov equation

∂w

∂t
= Lw := ∆w −∇ψ · ∇w

−
∫
Rd

(Lw1)w2 dγ =
∫
Rd
∇w1 · ∇w2 dγ ∀w1, w2 ∈ H1(Rd, dγ)

1 =
∫
Rd
w0 dγ =

∫
Rd
w(t, ·) dγ and limt→+∞ w(t, ·) = 1

d

dt
E[w] = −

∫
Rd
ϕ′′(w) |∇xw|2 dγ =: − I[w] (Fisher information)

If for some Λ > 0
I[w] ≥ ΛE[w] ∀w ∈ H1(Rd, dγ)

(entropy – entropy production inequality), then
E[w(t, ·)] ≤ E[w0] e−Λ t ∀ t ≥ 0

Fokker-Planck equation : u = w γ converges to u? = γ

∂u

∂t
= ∆u+∇x · (u∇xψ)

A nonnegative solution with initial datum u0 ∈ L1(Rd, dx) and∫
Rd u0 dx = M > 0 has constant mass M =

∫
Rd u(t, ·) dx for any t > 0,

and converges towards the unique stationary solution

u? = M
e−ψ∫

Rd e
−ψ dx

Without loss of generality, we shall assume that M = 1. Then one
observes that w = u/u? solves (??), which allows to control the rate
of convergence of u to u?. A list of results concerning the solutions
of (??) and (??) is also collected in Section ??
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Generalized Csiszár-Kullback-Pinsker inequality

(Pinsker), (Csiszár 1967), (Kullback 1967), (Cáceres, Carrillo, JD,
2002)

Proposition

Let p ∈ [1, 2], w ∈ L1 ∩ Lp(Rd, dγ) be a nonnegative function, and
assume that ϕ ∈ C2(0,+∞) is a nonnegative strictly convex function
such that ϕ(1) = ϕ′(1) = 0. If A := infs∈(0,∞) s

2−p ϕ′′(s) > 0, then

E[w] ≥ 2−
2
p A min

{
1, ‖w‖p−2

Lp(Rd,dγ)

}
‖w − 1‖2Lp(Rd,dγ)
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Convexity, tensorization and sub-additivity
∫
Rdi

ϕ′′(w) |∇w|2 dγi =: Iγi [w] ≥ Λi Eγi [w] ∀w ∈ H1(Rdi , dγi)

Theorem

If dγ1 and dγ2 are two probability measures on Rd1 × Rd2 , then

Iγ1⊗γ2 [w] =
∫
Rd1×Rd2

ϕ′′(w) |∇w|2 dγ1 dγ2

≥ min{Λ1,Λ2}Eγ1⊗γ2 [w] ∀w ∈ H1(Rd1 × Rd2 , dγ)

Iγ1 ⊗ γ2[w] =
∫
Rd2

Iγ1[w] dγ2 +
∫
Rd1

Iγ2[w] dγ1

Eγ1⊗γ2 [w] ≤
∫
Rd2

Eγ1 [w] dγ2 +
∫
Rd1

Eγ2 [w] dγ1 ∀w ∈ L1(dγ1 ⊗ γ2)
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Perturbation (Holley-Stroock type) results

With w :=
∫
Rd w dγ, assume that

Λ
[∫

Rd
ϕ(w) dγ − ϕ(w)

]
≤
∫
Rd
ϕ′′(w)|∇w|2 dγ ∀w ∈ H1(dγ)

and, for some constants a, b ∈ R,

e−b dγ ≤ dµ ≤ e−a dγ

Lemma

If ϕ is a C2 function such that ϕ′′ > 0 and w̃ :=
∫
Rd w dµ/

∫
Rd dµ,

then

ea−b Λ
∫
Rd

[
ϕ(w)− ϕ(w̃)− ϕ′(w̃)(w − w̃)

]
dµ ≤

∫
Rd
ϕ′′(w) |∇w|2 dµ
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Entropy – entropy production inequalities, linear flows
On a smooth convex bounded domain Ω, consider

∂w

∂t
= Lw := ∆w −∇ψ · ∇w , ∇w · ν = 0 on ∂Ω

d

dt

∫
Ω

wp − 1
p− 1 dγ = −4

p

∫
Ω
|∇z|2 dγ and z = wp/2

d

dt

∫
Ω
|∇z|2 dγ ≤ − 2 Λ(p)

∫
Ω
|∇z|2 dγ

where Λ(p) > 0 is the best constant in the inequality
2
p

(p− 1)
∫

Ω
|∇X|2 dγ +

∫
Ω

Hessψ : X ⊗X dγ ≥ Λ(p)
∫

Ω
|X|2 dγ

Proposition

∫
Ω

wp − 1
p− 1 dγ ≤ 4

pΛ

∫
Ω
|∇wp/2|2 dγ for any w s.t.

∫
Ω
w dγ = 1

(Bakry, Emery 1985)
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An interpolation inequality

Corollary

Assume that q ∈ [1, 2). With Λ = Λ(2/q), we have

‖f‖2L2(Rd,dγ) − ‖f‖
2
Lq(Rd,dγ)

2− q ≤ 1
Λ

∫
Rd
|∇f |2 dγ ∀ f ∈ H1(Rd, dγ)
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Improved entropy – entropy production inequalities
In the special case ψ(x) = |x|2/2, with z = wp/2, we obtain that

1
2
d

dt

∫
Rd
|∇z|2 dγ +

∫
Rd
|∇z|2 dγ ≤ − 2

p
κp

∫
Rd

|∇z|4

z2 dγ

with κp = (p− 1) (2− p)/p
Cauchy-Schwarz:

(∫
Rd |∇z|

2 dγ
)2 ≤ ∫Rd |∇z|4z2 dγ

∫
Rd z

2 dγ

d

dt
I[w] + 2 I[w] ≤ −κp

I[w]2

1 + (p− 1)E[w]

Proposition

Assume that q ∈ (1, 2) and dγ = (2π)−d/2 e−|x|2/2 dx. There exists a
strictly convex function F such that F (0) = 0 and F ′(0) = 1 and

F
(
‖f‖2L2(Rd,dγ) − 1

)
≤ ‖∇f‖2L2(Rd,dγ) if ‖f‖Lq(Rd,dγ) = 1
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ϕ-hypocoercivity (H1 framework)

B adapt the strategy of ϕ-entropies to kinetic equations

B Villani’s strategy: derive H1 estimates (using a twisted Fisher
information) and then use standard interpolation inequalities to
establish entropy decay rates

The twisted Fisher information is not the derivative of the ϕ-entropy
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The kinetic Fokker-Planck equation, or Vlasov-Fokker-Planck
equation:

∂f

∂t
+ v · ∇xf −∇xψ · ∇vf = ∆vf +∇v · (v f) (1)

with ψ(x) = |x|2/2 and ‖f‖L1(Rd×Rd) = 1 has a unique nonnegative
stationary solution

f?(x, v) = (2π)−d e−
1
2 (|x|2+|v|2)

and the function g = f/f? solves the kinetic Ornstein-Uhlenbeck
equation

∂g

∂t
+ Tg = L g

with transport operator T and Ornstein-Uhlenbeck operator L given
by

Tg := v · ∇xg − x · ∇vg and L g := ∆vg − v · ∇vg
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Sharp rates for the kinetic Fokker-Planck equation

Let ψ(x) = |x|2/2, dµ := f? dx dv, E[g] :=
∫∫

Rd×Rd
ϕp(g) dµ

Proposition

Let p ∈ [1, 2] and consider a nonnegative solution g ∈ L1(Rd × Rd) of
the kinetic Fokker-Planck equation. There is a constant C > 0 such
that

E[g(t, ·, ·)] ≤ C e−t ∀ t ≥ 0

and the rate e−t is sharp as t→ +∞

(Villani), (Arnold, Erb): a twisted Fisher information functional

Jλ[h] = (1−λ)
∫
Rd
|∇vh|2 dµ+(1−λ)

∫
Rd
|∇xh|2 dµ+λ

∫
Rd
|∇xh+∇vh|2 dµ

(Arnold, Erb) relies on λ = 1/2 and d
dtJ1/2[h(t, ·)] ≤ − J1/2[h(t, ·)]
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Improved rates (in the large entropy regime)
Rewrite the decay of the Fisher information functional as

− 1
2
d

dt

∫
Rd
X⊥ ·M0X dµ =

∫
Rd
X⊥ ·M1X dµ+

∫
Rd
Y ⊥ ·M2 Y dµ

where X = (∇vh,∇xh) , Y = (Hvv,Hxv,Mvv,Mxv)

M0 =
(

1 λ
λ ν

)
⊗ IdRd , M1 =

(
1− λ 1+λ−ν

2
1+λ−ν

2 λ

)
⊗ IdRd

M2 =


1 λ −κ2 −κλ2
λ ν −κλ2 −κ ν2
−κ2 −κλ2 2κ 2κλ
−κλ2 −κ ν2 2κλ 2κν

⊗ IdRd×Rd

With constant coefficients

λ?(λ, ν) = max
{

min
X

X⊥ ·M1X

X⊥ ·M0X
: (λ, ν) ∈ R2 s.t. M2 ≥ 0

}
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For (λ, ν) = (1/2), λ? = 1/2 and the eigenvalues of M2( 1
2 , 1) are given

as a function of κ = 8 (2− p)/p ∈ [0, 8] are all nonnegative

2 4 6 8

0.5

1.0

1.5

λ1(κ)

λ2(κ)

λ3(κ)

λ4(κ)

κ

J. Dolbeault From ϕ-entropies to hypocoercivity without confinement



From ϕ-entropies to H1 hypocoercivity
An abstract hypocoercivity result

Mode-by-mode hypocoercivity
ϕ-entropies and diffusions
ϕ-hypocoercivity (H1 framework)

We know that
Y ⊥ ·M2 Y ≥ λ1(p, λ) |Y |2

for some λ1(p, λ) > 0 and |Y |2 ≥ ‖Mvv‖2 so that, by Cauchy-Schwarz,(∫
Rd
|∇vh|2 dµ

)2
≤
∫
Rd
h2 dµ

∫
Rd
‖Mvv‖2 dµ ≤ c0

∫
Rd
‖Mvv‖2 dµ

Theorem

Let p ∈ (1, 2) and h be a solution of the kinetic Ornstein-Uhlenbeck
equation. Then there exists a function λ : R+ → [1/2, 1) such that
λ(0) = limt→+∞ λ(t) = 1/2 and a function ρ > 1/2 s.t.

d

dt
Jλ(t)[h(t, ·)] ≤ − 2 ρ(t) Jλ(t)[h(t, ·)]

As a consequence, for any t ≥ 0 we have the global estimate

Jλ(t)[h(t, ·)] ≤ J1/2[h0] exp
(
− 2

∫ t

0
ρ(s) ds

)
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Let us define a := et
∫
Rd |∇vh|

2 dµ, b := et
∫
Rd ∇vh · ∇xh dµ,

c := et
∫
Rd |∇xh|

2 dµ and j := a + b + c
da
dt
≤ a− 2 (j− c) , dc

dt
≤ 2 (j− a)− c and d j

dt
≤ 0

with the constraints a ≥ 0, c ≥ 0 and b2 ≤ a c

0.0 0.5 1.0 1.5 2.0

0.0

0.5

1.0

1.5

2.0
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An abstract evolution equation

Let us consider the equation

dF

dt
+ TF = LF (2)

In the framework of kinetic equations, T and L are respectively the
transport and the collision operators

We assume that T and L are respectively anti-Hermitian and
Hermitian operators defined on the complex Hilbert space (H, 〈·, ·〉)

A :=
(
1 + (TΠ)∗TΠ

)−1(TΠ)∗

∗ denotes the adjoint with respect to 〈·, ·〉

Π is the orthogonal projection onto the null space of L
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The assumptions
λm, λM , and CM are positive constants such that, for any F ∈ H

B microscopic coercivity:

−〈LF, F 〉 ≥ λm ‖(1−Π)F‖2 (H1)

B macroscopic coercivity:

‖TΠF‖2 ≥ λM ‖ΠF‖2 (H2)

B parabolic macroscopic dynamics:

ΠTΠF = 0 (H3)

B bounded auxiliary operators:

‖AT(1−Π)F‖+ ‖ALF‖ ≤ CM ‖(1−Π)F‖ (H4)

The estimate
1
2
d

dt
‖F‖2 = 〈LF, F 〉 ≤ −λm ‖(1−Π)F‖2

is not enough to conclude that ‖F (t, ·)‖2 decays exponentially
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Equivalence and entropy decay
For some δ > 0 to be determined later, the L2 entropy / Lyapunov
functional is defined by

H[F ] := 1
2 ‖F‖

2 + δRe〈AF, F 〉

as in (J.D.-Mouhot-Schmeiser) so that 〈ATΠF, F 〉 ∼ ‖ΠF‖2 and

− d

dt
H[F ] = : D[F ]

= − 〈LF, F 〉+ δ 〈ATΠF, F 〉
− δRe〈TAF, F 〉+ δRe〈AT(1−Π)F, F 〉 − δRe〈ALF, F 〉

B entropy decay rate: for any δ > 0 small enough and λ = λ(δ)

λH[F ] ≤ D[F ]

B norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2
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Exponential decay of the entropy

λ = λM
3 (1+λM ) min

{
1, λm, λm λM

(1+λM )C2
M

}
, δ = 1

2 min
{

1, λm, λm λM
(1+λM )C2

M

}
h1(δ, λ) := (δ CM )2 − 4

(
λm − δ − 2 + δ

4 λ

)(
δ λM

1 + λM
− 2 + δ

4 λ

)

Theorem

Let L and T be closed linear operators (respectively Hermitian and
anti-Hermitian) on H. Under (H1)–(H4), for any t ≥ 0

H[F (t, ·)] ≤ H[F0] e−λ?t

where λ? is characterized by

λ? := sup
{
λ > 0 : ∃ δ > 0 s.t. h1(δ, λ) = 0 , λm − δ − 1

4 (2 + δ)λ > 0
}
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Sketch of the proof
Since ATΠ =

(
1 + (TΠ)∗TΠ

)−1 (TΠ)∗TΠ, from (H1) and (H2)

−〈LF, F 〉+ δ 〈ATΠF, F 〉 ≥ λm ‖(1−Π)F‖2 + δ λM
1 + λM

‖ΠF‖2

By (H4), we know that
|Re〈AT(1−Π)F, F 〉+ Re〈ALF, F 〉| ≤ CM ‖ΠF‖ ‖(1−Π)F‖

The equation G = AF is equivalent to (TΠ)∗F = G+ (TΠ)∗ TΠG

〈TAF, F 〉 = 〈G, (TΠ)∗ F 〉 = ‖G‖2 + ‖TΠG‖2 = ‖AF‖2 + ‖TAF‖2

By the Cauchy-Schwarz inequality, for any µ > 0

〈G, (TΠ)∗ F 〉 ≤ ‖TAF‖ ‖(1−Π)F‖ ≤ 1
2µ ‖TAF‖2 + µ

2 ‖(1−Π)F‖2

‖AF‖ ≤ 1
2 ‖(1−Π)F‖ , ‖TAF‖ ≤ ‖(1−Π)F‖ , |〈TAF, F 〉| ≤ ‖(1−Π)F‖2

With X := ‖(1−Π)F‖ and Y := ‖ΠF‖

D[F ]−λH[F ] ≥ (λm− δ)X2+ δ λM
1 + λM

Y 2− δ CM X Y−2 + δ

4 λ (X2+Y 2)
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Hypocoercivity

Corollary

For any δ ∈ (0, 2), if λ(δ) is the largest positive root of h1(δ, λ) = 0 for
which λm − δ − 1

4 (2 + δ)λ > 0, then for any solution F of (2)

‖F (t)‖2 ≤ 2 + δ

2− δ
e−λ(δ) t ‖F (0)‖2 ∀ t ≥ 0

From the norm equivalence of H[F ] and ‖F‖2

2− δ

4 ‖F‖2 ≤ H[F ] ≤ 2 + δ

4 ‖F‖2

We use 2− δ
4 ‖F0‖2 ≤ H[F0] so that λ? ≥ supδ∈(0,2) λ(δ)

J. Dolbeault From ϕ-entropies to hypocoercivity without confinement



From ϕ-entropies to H1 hypocoercivity
An abstract hypocoercivity result

Mode-by-mode hypocoercivity

Strategy
Result and proof
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A toy problem

du

dt
= (L−T)u , L =

(
0 0
0 −1

)
, T =

(
0 −k
k 0

)
, k2 ≥ Λ > 0

Non-monotone decay, a well known picture:
see for instance (Filbet, Mouhot, Pareschi, 2006)

H-theorem: d
dt |u|

2 = − 2u2
2

macroscopic limit: du1
dt = − k2 u1

generalized entropy: H(u) = |u|2 − δ k
1+k2 u1 u2

dH
dt

= −
(

2− δ k2

1 + k2

)
u2

2 −
δ k2

1 + k2 u
2
1 + δ k

1 + k2 u1 u2

≤ −(2− δ)u2
2 −

δΛ
1 + Λ u2

1 + δ

2 u1u2
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Plots for the toy problem
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Fokker-Planck equation with general equilibria
We consider the Cauchy problem

∂tf + v · ∇xf = Lf , f(0, x, v) = f0(x, v) (3)

for a distribution function f(t, x, v), with position variable x ∈ Rd or
x ∈ Td the flat d-dimensional torus

Fokker-Planck collision operator with a general equilibrium M

Lf = ∇v ·
[
M ∇v

(
M−1 f

) ]
Notation and assumptions: an admissible local equilibrium M is
positive, radially symmetric and∫

Rd
M(v) dv = 1 , dγ = γ(v) dv := dv

M(v)
γ is an exponential weight if

lim
|v|→∞

|v|k

γ(v) = lim
|v|→∞

M(v) |v|k = 0 ∀ k ∈ (d,∞)
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Definitions

Θ = 1
d

∫
Rd
|v|2M(v) dv =

∫
Rd

(v · e)2M(v) dv

for an arbitrary e ∈ Sd−1∫
Rd
v ⊗ vM(v) dv = Θ Id

Then
θ = 1

d
‖∇vM‖2L2(dγ) = 4

d

∫
Rd
|∇v
√
M
∣∣2 dv <∞

If M(v) = e−
1
2 |v|

2

(2π)d/2 , then Θ = 1 and θ = 1

σ := 1
2
√
θ/Θ

Microscopic coercivity property (Poincaré inequality): for all
u = M−1 F ∈ H1(M dv)∫

Rd
|∇u|2M dv ≥ λm

∫
Rd

(
u−

∫
Rd
uM dv

)2
M dv
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Scattering collision operators
Scattering collision operator

Lf =
∫
Rd
σ(·, v′)

(
f(v′)M(·)− f(·)M(v′)

)
dv′

Main assumption on the scattering rate σ: for some positive, finite σ

1 ≤ σ(v, v′) ≤ σ ∀ v, v′ ∈ Rd

Example: linear BGK operator

Lf = Mρf − f , ρf (t, x) =
∫
Rd
f(t, x, v) dv

Local mass conservation ∫
Rd

Lf dv = 0

and we have ∫
Rd
|Lf |2 dγ ≤ 4σ2

∫
Rd
|Mρf − f |2 dγ
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The symmetry condition∫
Rd

(
σ(v, v′)− σ(v′, v)

)
M(v′) dv′ = 0 ∀ v ∈ Rd

implies the local mass conservation
∫
Rd Lf dv = 0

Micro-reversibility, i.e., the symmetry of σ, is not required

The null space of L is spanned by the local equilibrium M
L only acts on the velocity variable

Microscopic coercivity property: for some λm > 0

1
2

∫∫
Rd×Rd

σ(v, v′)M(v)M(v′) (u(v)− u(v′))2
dv′ dv

≥ λm
∫
Rd

(u− ρuM )2
M dv

holds according to Proposition 2.2 of (Degond, Goudon, Poupaud,
2000) for all u = M−1 F ∈ L2(M dv). If σ ≡ 1, then λm = 1
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Fourier modes
In order to perform a mode-by-mode hypocoercivity analysis, we
introduce the Fourier representation with respect to x,

f(t, x, v) =
∫
Rd
f̂(t, ξ, v) e−i x·ξ dµ(ξ)

dµ(ξ) = (2π)−d dξ and dξ is the Lesbesgue measure if x ∈ Rd
dµ(ξ) = (2π)−d

∑
z∈Zd δ(ξ − z) is discrete for x ∈ Td

Parseval’s identity if ξ ∈ Zd and Plancherel’s formula if x ∈ Rd read

‖f(t, ·, v)‖L2(dx) =
∥∥∥f̂(t, ·, v)

∥∥∥
L2(dµ(ξ))

The Cauchy problem is now decoupled in the ξ-direction

∂tf̂ + Tf̂ = Lf̂ , f̂(0, ξ, v) = f̂0(ξ, v)

Tf̂ = i (v · ξ) f̂

J. Dolbeault From ϕ-entropies to hypocoercivity without confinement



From ϕ-entropies to H1 hypocoercivity
An abstract hypocoercivity result

Mode-by-mode hypocoercivity

Hypocoercivity results
Application to the torus and some numerical results
Decay rates in the whole space

For any fixed ξ ∈ Rd, let us apply the abstract result with

H = L2 (dγ) , ‖F‖2 =
∫
Rd
|F |2 dγ , ΠF = M

∫
Rd
F dv = M ρF

and Tf̂ = i (v · ξ) f̂ , TΠF = i (v · ξ) ρF M ,

‖TΠF‖2 = |ρF |2
∫
Rd
|v · ξ|2M(v) dv = Θ |ξ|2 |ρF |2 = Θ |ξ|2 ‖ΠF‖2

(H2) Macroscopic coercivity ‖TΠF‖2 ≥ λM ‖ΠF‖2 : λM = Θ |ξ|2

(H3)
∫
Rd vM(v) dv = 0

The operator A is given by

AF =
− i ξ ·

∫
Rd v

′ F (v′) dv′

1 + Θ |ξ|2 M
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A mode-by-mode hypocoercivity result

‖AF‖ = ‖A(1−Π)F‖ ≤ 1
1 + Θ |ξ|2

∫
Rd

|(1−Π)F |√
M

|v · ξ|
√
M dv

≤ 1
1 + Θ |ξ|2 ‖(1−Π)F‖

(∫
Rd

(v · ξ)2M dv

)1/2

=
√

Θ |ξ|
1 + Θ |ξ|2 ‖(1−Π)F‖

Scattering operator ‖LF‖2 ≤ 4σ2 ‖(1−Π)F‖2
Fokker-Planck (FP) operator

‖ALF‖ ≤ 2
1 + Θ |ξ|2

∫
Rd

|(1−Π)F |√
M

|ξ·∇v
√
M | dv ≤

√
θ |ξ|

1 + Θ |ξ|2 ‖(1−Π)F‖

In both cases with κ =
√
θ (FP) or κ = 2σ

√
Θ we obtain

‖ALF‖ ≤ κ |ξ|
1 + Θ |ξ|2 ‖(1−Π)F‖
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TAF (v) = − (v · ξ)M
1 + Θ |ξ|2

∫
Rd

(v′ · ξ) (1−Π)F (v′) dv′

is estimated by

‖TAF‖ ≤ Θ |ξ|2

1 + Θ |ξ|2 ‖(1−Π)F‖

(H4) holds with CM = κ |ξ|+Θ |ξ|2
1+Θ |ξ|2

Two elementary estimates

Θ |ξ|2

1 + Θ |ξ|2 ≥
Θ

max{1,Θ}
|ξ|2

1 + |ξ|2

λM
(1 + λM )C2

M

=
Θ
(
1 + Θ |ξ|2

)
(κ+ Θ |ξ|)2 ≥ Θ

κ2 + Θ
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Mode-by-mode hypocoercivity with exponential weights

Theorem
Let us consider an admissible M and a collision operator L satisfying
Assumption (H), and take ξ ∈ Rd. If f̂ is a solution such that
f̂0(ξ, ·) ∈ L2(dγ), then for any t ≥ 0, we have∥∥∥f̂(t, ξ, ·)

∥∥∥2

L2(dγ)
≤ 3 e−µξ t

∥∥∥f̂0(ξ, ·)
∥∥∥2

L2(dγ)

where

µξ := Λ |ξ|2

1 + |ξ|2 and Λ = Θ
3 max{1,Θ} min

{
1, λm Θ
κ2 + Θ

}
with κ = 2σ

√
Θ for scattering operators

and κ =
√
θ for (FP) operators

J. Dolbeault From ϕ-entropies to hypocoercivity without confinement



From ϕ-entropies to H1 hypocoercivity
An abstract hypocoercivity result

Mode-by-mode hypocoercivity

Hypocoercivity results
Application to the torus and some numerical results
Decay rates in the whole space

Enlargement of the space by factorization
A simple case (factorization of order 1) of the factorization method
of (Gualdani, Mischler, Mouhot)

Theorem

Let B1, B2 be Banach spaces and let B2 be continuously imbedded in
B1, i.e., ‖ · ‖1 ≤ c1‖ · ‖2. Let B and A + B be the generators of the
strongly continuous semigroups eB t and e(A+B) t on B1. If for all
t ≥ 0,∥∥∥e(A+B) t

∥∥∥
2→2
≤ c2 e−λ2 t ,

∥∥eBt∥∥1→1 ≤ c3 e
−λ1 t , ‖A‖1→2 ≤ c4

where ‖ · ‖i→j denotes the operator norm for linear mappings from Bi
to Bj. Then there exists a positive constant C = C(c1, c2, c3, c4) such
that, for all t ≥ 0,

∥∥∥e(A+B) t
∥∥∥

1→1
≤

{
C
(
1 + |λ1 − λ2|−1) e−min{λ1,λ2} t for λ1 6= λ2

C (1 + t) e−λ1 t for λ1 = λ2
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Integrating the identity d
ds

(
e(A+B) s eB (t−s)) = e(A+B) s A eB (t−s)

with respect to s ∈ [0, t] gives

e(A+B) t = eB t +
∫ t

0
e(A+B) s A eB (t−s) ds

The proof is completed by the straightforward computation

∥∥e(A+B) t∥∥
1→1 ≤ c3 e

−λ1 t + c1

∫ t

0

∥∥e(A+B) s A eB (t−s)∥∥
1→2 ds

≤ c3 e−λ1 t + c1 c2 c3 c4 e
−λ1 t

∫ t

0
e(λ1−λ2) s ds
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Weights with polynomial growth

Let us consider the measure

dγk := γk(v) dv where γk(v) = πd/2 Γ((k−d)/2)
Γ(k/2)

(
1 + |v|2

)k/2
for an arbitrary k ∈ (d,+∞)

We choose B1 = L2(dγk) and B2 = L2(dγ)

Theorem

Let Λ = Θ
3 max{1,Θ} min

{
1, λm Θ

κ2+Θ

}
and k ∈ (d,∞]. For any ξ ∈ Rd if

f̂ is a solution with initial datum f̂0(ξ, ·) ∈ L2(dγk), then there exists
a constant C = C(k, d, σ) such that∥∥∥f̂(t, ξ, ·)

∥∥∥2

L2(dγk)
≤ C e−µξ t

∥∥∥f̂0(ξ, ·)
∥∥∥2

L2(dγk)
∀ t ≥ 0
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Fokker-Planck: AF = N χRF and BF = − i (v · ξ)F + LF − AF
N and R are two positive constants, χ is a smooth cut-off function
and χR := χ(·/R)
For any R and N large enough, according to Lemma 3.8 of (Mischler,
Mouhot, 2016) ∫

Rd
(L− A)(F )F dγk ≤ −λ1

∫
Rd
F 2 dγk

for some λ1 > 0 if k > d, and λ2 = µξ/2 ≤ 1/4

Scattering operator:

AF (v) = M(v)
∫
Rd
σ(v, v′)F (v′) dv′

BF (v) = −
[
i (v · ξ) +

∫
Rd
σ(v, v′)M(v′) dv′

]
F (v)

Boundedness: ‖AF‖L2(dγ) ≤ σ
(∫

Rd γ
−1
k dv

)1/2 ‖F‖L2(dγk)
λ1 = 1 and λ2 = µξ/2 ≤ 1/4
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Exponential convergence to equilibrium in Td

The unique global equilibrium in the case x ∈ Td is given by

f∞(x, v) = ρ∞M(v) with ρ∞ = 1
|Td|

∫∫
Td×Rd

f0 dx dv

Theorem

Assume that k ∈ (d,∞] and γ has an exponential growth if k =∞.
We consider an admissible M , a collision operator L satisfying
Assumption (H), and Λ given by (11)
There exists a positive constant Ck such that the solution f of (3) on
Td × Rd with initial datum f0 ∈ L2(dx dγk) satisfies

‖f(t, ·, ·)− f∞‖L2(dx dγk) ≤ Ck ‖f0 − f∞‖L2(dx dγk) e
− 1

4 Λ t ∀ t ≥ 0
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If we represent the flat torus Td by the box [0, 2π)d with periodic
boundary conditions, the Fourier variable satisfies ξ ∈ Zd. For ξ = 0,
the microscopic coercivity implies∥∥∥f̂(t, 0, ·)− f̂∞(0, ·)

∥∥∥
L2(dγ)

≤
∥∥∥f̂0(0, ·)− f̂∞(0, ·)

∥∥∥
L2(dγ)

e−t

Otherwise µξ ≥ Λ/2 for any ξ 6= 0

Parseval’s identity applies, with measure dγ(v) and C∞ =
√

3
The result with weight γk follows from the factorization result for
some Ck > 0

J. Dolbeault From ϕ-entropies to hypocoercivity without confinement



From ϕ-entropies to H1 hypocoercivity
An abstract hypocoercivity result

Mode-by-mode hypocoercivity

Hypocoercivity results
Application to the torus and some numerical results
Decay rates in the whole space

Computation of the constants
B A more numerical point of view

Two simple examples: L denotes either the Fokker-Planck operator

L1f := ∆vf +∇v · (v f)

or the linear BGK operator

L2f := Πf − f

Πf = ρf M is the projection operator on the normalized Gaussian
function

M(v) = e−
1
2 |v|

2

(2π)d/2

and ρf :=
∫
Rd f dv is the spatial density
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Where do we have space for improvements ?
With X := ‖(1−Π)F‖ and Y := ‖ΠF‖, we wrote

D[F ]− λH[F ]

≥ (λm − δ)X2 + δ λM
1 + λM

Y 2 − δ CM X Y − λ

2
(
X2 + Y 2 + δ X Y

)
≥ (λm − δ)X2 + δ λM

1 + λM
Y 2 − δ CM X Y − 2 + δ

4 λ (X2 + Y 2)

We can directly study the positivity condition for the quadratic
form

(λm − δ)X2 + δ λM
1 + λM

Y 2 − δ CM X Y − λ

2
(
X2 + Y 2 + δ X Y

)
λm = 1, λM = |ξ|2 and CM = |ξ| (1 + |ξ|)/(1 + |ξ|2)
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With λm = 1, λM = |ξ|2 and CM = |ξ| (1 + |ξ|)/(1 + |ξ|2), we
optimize λ under the condition that the quadratic form

(λm − δ)X2 + δ λM
1 + λM

Y 2 − δ CM X Y − λ

2
(
X2 + Y 2 + δ X Y

)
is positive, thus getting a λ(ξ)

By taking also δ = δ(ξ) where ξ is seen as a parameter, we get a
better estimate of λ(ξ)
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By taking δ = δ(ξ), for each value of ξ we build a different Lyapunov
function, namely

Hξ[F ] := 1
2 ‖F‖

2 + δ(ξ) Re〈AF, F 〉

where the operator A is given by

AF =
− i ξ ·

∫
Rd v

′ F (v′) dv′

1 + |ξ|2 M

We can consider

AεF =
− i ξ ·

∫
Rd v

′ F (v′) dv′

ε+ |ξ|2 M

and look for the optimal value of ε...
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The dependence of λ in ε is monotone, and the limit as ε→ 0+ gives
the optimal estimate of λ. The operator

A0F =
− i ξ ·

∫
Rd v

′ F (v′) dv′

|ξ|2
M

is not bounded anymore, but estimates still make sense
and limξ→0 δ(ξ) = 0 (see below)
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Theorem (Hypocoercivity on Td with exponential weight)

Assume that L = L1 or L = L2. If f is a solution, then

‖f(t, ·, ·)− f∞‖2L2(dx dγ) ≤ C? ‖f0‖2L2(dx dγ) e
−λ?t ∀ t ≥ 0

with f∞(x, v) = M(v)
∫∫

Td×Rd f0(x, v) dx dv

C? ≈ 1.75863 and λ? = 2
13 (5− 2

√
3) ≈ 0.236292.

(work in progress)
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Some comments on recent works

A more algebraic approach based on the spectral analysis of
symmetric and non-symmetric operators

On BGK models
(Achleitner, Arnold, Carlen)

On Fokker-Planck models
(Arnold, Erb)
(Arnold, Stürzer)
(Arnold, Einav, Wöhrer)
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Decay rates in the whole space
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Algebraic decay rates in Rd

On the whole Euclidean space, we can define the entropy
H[f ] := 1

2 ‖f‖
2
L2(dx dγk) + δ 〈Af, f〉dx dγk

Replacing the macroscopic coercivity condition by Nash’s inequality

‖u‖2L2(dx) ≤ CNash ‖u‖
4
d+2
L1(dx) ‖∇u‖

2 d
d+2
L2(dx)

proves that

H[f ] ≤ C
(

H[f0] + ‖f0‖2L1(dx dv)

)
(1 + t)− d2

Theorem
Assume that γk has an exponential growth (k =∞) or a polynomial
growth of order k > d

There exists a constant C > 0 such that, for any t ≥ 0

‖f(t, ·, ·)‖2L2(dx dγk) ≤ C
(
‖f0‖2L2(dx dγk) + ‖f0‖2L2(dγk; L1(dx))

)
(1 + t)− d2
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A direct proof... Recall that µξ = Λ |ξ|2
1+|ξ|2

By the Plancherel formula

‖f(t, ·, ·)‖2L2(dx dγk) ≤ C
∫
Rd

(∫
Rd
e−µξ t |f̂0|2 dξ

)
dγk

if |ξ| < 1, then µξ ≥ Λ
2 |ξ|

2

∫
|ξ|≤1

e−µξ t |f̂0|2 dξ ≤ C ‖f0(·, v)‖2L1(dx)

∫
Rd
e−

Λ
2 |ξ|

2 t dξ

≤ C ‖f0(·, v)‖2L1(dx) t
− d2

if |ξ| ≥ 1, then µξ ≥ Λ/2 when |ξ| ≥ 1∫
|ξ|>1

e−µξ t |f̂0|2 dξ ≤ C e−
Λ
2 t ‖f0(·, v)‖2L2(dx)
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Improved decay rate for zero average solutions

Theorem
Assume that f0 ∈ L1

loc(Rd × Rd) with
∫∫

Rd×Rd f0(x, v) dx dv = 0 and
C0 := ‖f0‖2L2(dγk+2; L1(dx)) + ‖f0‖2L2(dγk; L1(|x| dx)) + ‖f0‖2L2(dx dγk) <∞

Then there exists a constant ck > 0 such that

‖f(t, ·, ·)‖2L2(dx dγk) ≤ ck C0 (1 + t)−(1+ d
2 )
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Step 1: Decay of the average in space, factorization

x-average in space

f•(t, v) :=
∫
Rd
f(t, x, v) dx

with
∫
Rd f•(t, v) dv = 0 and observe that f• solves a Fokker-Planck

equation
∂tf• = Lf•

From the microscopic coercivity property, we deduce that

‖f•(t, ·)‖2L2(dγ) ≤ ‖f•(0, ·)‖
2
L2(dγ) e

−λm t

Factorisation

‖f•(t, ·)‖2L2(|v|2 dγk) ≤ C ‖f0‖2L2(|v|2 dγk ;L1(dx)) e
−λ t
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Step 2: Improved decay of f

Let us define g := f − f• ϕ, with ϕ(x) := (2π)−d/2 e−|x|2/2
The Fourier transform ĝ solves

∂tĝ + Tĝ = Lĝ − f• Tϕ̂ with Tϕ̂ = i (v · ξ) ϕ̂
Duhamel’s formula

ĝ = ei(L−T) tĝ0︸ ︷︷ ︸
C e−

1
2 µξ t ‖ĝ0(ξ,·)‖L2(dγk)

+
∫ t

0
ei(L−T) (t−s) (−f•(s, v) Tϕ̂(ξ))︸ ︷︷ ︸

C e−
µξ
2 (t−s)‖f•(s,·)‖L2(|v|2 dγk)|ξ| |ϕ̂(ξ)|

ds

ĝ0(ξ, v) = ĝ0(0, v)︸ ︷︷ ︸
=0

+
∫ |ξ|

0
ξ
|ξ| · ∇ξ ĝ0

(
η ξ
|ξ| , v

)
dη yields

|ĝ0(ξ, v)| ≤ |ξ| ‖∇ξ ĝ0(·, v)‖L∞(dv) ≤ |ξ| ‖g0(·, v)‖L1(|x| dx)

µξ = Λ |ξ|2/(1 + |ξ|2) ≥ Λ/2 if |ξ| > 1 (contribution O(e−Λ
2 t)) and∫

|ξ|≤1
∫
Rd
∣∣ei(L−T) tĝ0

∣∣2 dγk dξ ≤ ∫
Rd
|ξ|2 e−Λ

2 |ξ|
2 t dξ︸ ︷︷ ︸

=O(t−(d+2))

‖g0‖2L2(dγk; L1(|x| dx))
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