# Symmetry and symmetry breaking of extremal functions in some interpolation inequalities: an overview 

Jean Dolbeault<br>dolbeaul@ceremade.dauphine.fr<br>CEREMADE<br>CNRS \& Université Paris-Dauphine<br>http://www.ceremade.dauphine.fr/~dolbeaul<br>IN COLLABORATION WITH<br>M. del Pino, M. Esteban, S. Filippas, M. Loss, G. Tarantello, A. Tertikas<br>1/9/2011<br>Benasque

e Some slides related to this talk:
http://www.ceremade.dauphine.fr/~dolbeaul/Conferences/

Q A review of known results: Jean Dolbeault and Maria J. Esteban About existence, symmetry and symmetry breaking for extremal functions of some interpolation functional inequalities
http://www.ceremade.dauphine.fr/~dolbeaul/Preprints/

## Introduction

A symmetry breaking mechanism


## The energy point of view (ground state)




symmety is erengetiolly
mon frevomuble then
the one mith radid
rymmety

# Caffarelli-Kohn-Nirenberg inequalities (Part I) 

Joint work(s) with M. Esteban, M. Loss and G. Tarantello

## Caffarelli-Kohn-Nirenberg (CKN) inequalities

$$
\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b p}} d x\right)^{2 / p} \leq \mathrm{C}_{a, b} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x \quad \forall u \in \mathcal{D}_{a, b}
$$

with $a \leq b \leq a+1$ if $d \geq 3, a<b \leq a+1$ if $d=2$, and $a \neq \frac{d-2}{2}=: a_{c}$

$$
p=\frac{2 d}{d-2+2(b-a)}
$$

$$
\mathcal{D}_{a, b}:=\left\{|x|^{-b} u \in L^{p}\left(\mathbb{R}^{d}, d x\right):|x|^{-a}|\nabla u| \in L^{2}\left(\mathbb{R}^{d}, d x\right)\right\}
$$



## The symmetry issue

$$
\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b p}} d x\right)^{2 / p} \leq \mathrm{C}_{a, b} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x \quad \forall u \in \mathcal{D}_{a, b}
$$

$\mathrm{C}_{a, b}=$ best constant for general functions $u$
$\mathrm{C}_{a, b}^{*}=$ best constant for radially symmetric functions $u$

$$
\mathrm{C}_{a, b}^{*} \leq C_{a, b}
$$

Up to scalar multiplication and dilation, the optimal radial function is

$$
u_{a, b}^{*}(x)=|x|^{a+\frac{d}{2} \frac{b-a}{b-a+1}}\left(1+|x|^{2}\right)^{-\frac{d-2+2(b-a)}{2(1+a-b)}}
$$

Questions: is optimality (equality) achieved ? do we have $u_{a, b}=u_{a, b}^{*}$ ?

## Known results

[Aubin, Talenti, Lieb, Chou-Chu, Lions, Catrina-Wang, ...]
2. Extremals exist for $a<b<a+1$ and $0 \leq a \leq \frac{d-2}{2}$, for $a \leq b<a+1$ and $a<0$ if $d \geq 2$
Q Optimal constants are never achieved in the following cases
e "critical / Sobolev" case: for $b=a<0, d \geq 3$
Q "Hardy" case: $b=a+1, d \geq 2$
Q If $d \geq 3,0 \leq a<\frac{d-2}{2}$ and $a \leq b<a+1$, the extremal functions are radially symmetric ... $u(x)=|x|^{a} v(x)+$ Schwarz symmetrization


## More results on symmetry

Q Radial symmetry has also been established for $d \geq 3, a<0,|a|$ small and $0<b<a+1$ : [Lin-Wang, Smets-Willem]
a Schwarz foliated symmetry [Smets-Willem]

$d=3$ : optimality is achieved among solutions which depend only on the "latitude" $\theta$ and on $r$. Similar results hold in higher dimensions

## Symmetry breaking

Q [Catrina-Wang, Felli-Schneider] if $a<0, a \leq b<b^{F S}(a)$, the extremal functions ARE NOT radially symmetric !


$$
b^{F S}(a)=\frac{d(d-2-2 a)}{2 \sqrt{(d-2-2 a)^{2}+4(d-1)}}-\frac{1}{2}(d-2-2 a)
$$

Q [Catrina-Wang] As $a \rightarrow-\infty$, optimal functions look like some decentered optimal functions for some Gagliardo-Nirenberg interpolation inequalities (after some appropriate transformation)

## Approaching Onofri's inequality ( $d=2$ )

e[J.D., M. Esteban, G. Tarantello] A generalized Onofri inequality
On $\mathbb{R}^{2}$, consider $d \mu_{\alpha}=\frac{\alpha+1}{\pi} \frac{|x|^{2 \alpha} d x}{\left(1+|x|^{2(\alpha+1)}\right)^{2}}$ with $\alpha>-1$

$$
\log \left(\int_{\mathbb{R}^{2}} e^{v} d \mu_{\alpha}\right)-\int_{\mathbb{R}^{2}} v d \mu_{\alpha} \leq \frac{1}{16 \pi(\alpha+1)}\|\nabla v\|_{L^{2}\left(\mathbb{R}^{2}, d x\right)}^{2}
$$

eFor $d=2$, radial symmetry holds if $-\eta<a<0$ and $-\varepsilon(\eta) a \leq b<a+1$
Theorem 1. [J.D.-Esteban-Tarantello] For all $\varepsilon>0 \exists \eta>0$ s.t. for $a<0,|a|<\eta$
(i) if $|a|>\frac{2}{p-\varepsilon}\left(1+|a|^{2}\right)$, then
$\mathrm{C}_{a, b}>\mathrm{C}_{a, b}^{*}$ (symmetry breaking)
(ii) if $|a|<\frac{2}{p+\varepsilon}\left(1+|a|^{2}\right)$, then

$$
s \mathrm{C}_{a, b}=\mathrm{C}_{a, b}^{*} \text { and } u_{a, b}=u_{a, b}^{*}
$$



## A larger symetry region

eFor $d \geq 2$, radial symmetry can be proved when $b$ is close to $a+1$
Theorem 2. [J.D.-Esteban-Loss-Tarantello] Let $d \geq 2$. For every $A<0$, there exists $\varepsilon>0$ such that the extremals are radially symmetric if $a+1-\varepsilon<b<a+1$ and $a \in(A, 0)$. So they are given by $u_{a, b}^{*}$, up to a scalar multiplication and a dilation


## Two regions and a curve

eThe symmetry and the symmetry breaking zones are simply connected and separated by a continuous curve

Theorem 3. [J.D.-Esteban-Loss-Tarantello] For all $d \geq 2$, there exists a continuous function $a^{*}:\left(2,2^{*}\right) \longrightarrow(-\infty, 0)$ such that $\lim _{p \rightarrow 2_{-}^{*}} a^{*}(p)=0$, $\lim _{p \rightarrow 2_{+}} a^{*}(p)=-\infty$ and
(i) If $(a, p) \in\left(a^{*}(p), \frac{d-2}{2}\right) \times\left(2,2^{*}\right)$, all extremals radially symmetric
(ii) If $(a, p) \in\left(-\infty, a^{*}(p)\right) \times\left(2,2^{*}\right)$, none of the extremals is radially symmetric


Open question. Do the curves obtained by Felli-Schneider and ours coincide?

## Emden-Fowler transformation and the cylinder $\mathcal{C}=\mathbb{R} \times \mathbb{S}^{d-1}$

$t=\log |x|, \quad \omega=\frac{x}{|x|} \in \mathbb{S}^{d-1}, \quad w(t, \omega)=|x|^{-a} v(x), \quad \Lambda=\frac{1}{4}(d-2-2 a)^{2}$
eCaffarelli-Kohn-Nirenberg inequalities rewritten on the cylinder become standard interpolation inequalities of Gagliardo-Nirenberg type

$$
\begin{gathered}
\|w\|_{L^{p}(\mathcal{C})}^{2} \leq C_{\Lambda, p}\left[\|\nabla w\|_{L^{2}(\mathcal{C})}^{2}+\Lambda\|w\|_{L^{2}(\mathcal{C})}^{2}\right] \\
\mathcal{E}_{\Lambda}[w]:=\|\nabla w\|_{L^{2}(\mathcal{C})}^{2}+\Lambda\|w\|_{L^{2}(\mathcal{C})}^{2} \\
C_{\Lambda, p}^{-1}:=\mathrm{C}_{a, b}^{-1}=\inf \left\{\mathcal{E}_{\Lambda}(w):\|w\|_{L^{p}(\mathcal{C})}^{2}=1\right\} \\
a<0 \Longrightarrow \Lambda>a_{c}^{2}=\frac{1}{4}(d-2)^{2} \\
\text { "critical / Sobolev" case: } b-a \rightarrow 0 \Longleftrightarrow p \rightarrow \frac{2 d}{d-2} \\
\text { "Hardy" case: } b-(a+1) \rightarrow 0 \Longleftrightarrow p \rightarrow 2_{+}
\end{gathered}
$$

## Perturbative methods for proving symmetry

eEuler-Lagrange equations
eA priori estimates (use radial extremals)
e Spectral analysis (gap away from the FS region of symmetry breaking)
eElliptic regularity
eArgue by contradiction

## Scaling and consequences

eA scaling property along the axis of the cylinder ( $d \geq 2$ )
let $w_{\sigma}(t, \omega):=w(\sigma t, \omega)$ for any $\sigma>0$

$$
\mathcal{F}_{\sigma^{2} \Lambda, p}\left(w_{\sigma}\right)=\sigma^{1+2 / p} \mathcal{F}_{\Lambda, p}(w)-\sigma^{-1+2 / p}\left(\sigma^{2}-1\right) \frac{\int_{\mathcal{C}}\left|\nabla_{\omega} w\right|^{2} d y}{\left(\int_{\mathcal{C}}|w|^{p} d y\right)^{2 / p}}
$$

Lemma 4. [JD, Esteban, Loss, Tarantello] If $d \geq 2, \Lambda>0$ and $p \in\left(2,2^{*}\right)$
(i) If $\mathrm{C}_{\Lambda, p}^{d}=\mathrm{C}_{\Lambda, p}^{d, *}$, then $C_{\lambda, p}^{d}=\mathrm{C}_{\lambda, p}^{d, *}$ and $w_{\lambda, p}=w_{\lambda, p}^{*}$, for any $\lambda \in(0, \Lambda)$
(ii) If there is a non radially symmetric extremal $w_{\Lambda, p}$, then $\mathrm{C}_{\lambda, p}^{d}>\mathrm{C}_{\lambda, p}^{d, *}$ for all $\lambda>\Lambda$

## A curve separates symmetry and symmetry breaking regions

Corollary 5. [JD, Esteban, Loss, Tarantello] Let $d \geq 2$. For all $p \in\left(2,2^{*}\right)$, $\Lambda^{*}(p) \in\left(0, \Lambda^{\mathrm{FS}}(p)\right]$ and
(i) If $\lambda \in\left(0, \Lambda^{*}(p)\right)$, then $w_{\lambda, p}=w_{\lambda, p}^{*}$ and clearly, $C_{\lambda, p}^{d}=C_{\lambda, p}^{d, *}$
(ii) If $\lambda=\Lambda^{*}(p)$, then $C_{\lambda, p}^{d}=C_{\lambda, p}^{d, *}$
(iii) If $\lambda>\Lambda^{*}(p)$, then $C_{\lambda, p}^{d}>C_{\lambda, p}^{d, *}$

Upper semicontinuity is easy to prove For continuity, a delicate spectral analysis is needed


# Caffarelli-Kohn-Nirenberg inequalities (Part II) and Logarithmic Hardy inequalities 

Joint work with M. del Pino, S. Filippas and A. Tertikas

## Generalized Caffarelli-Kohn-Nirenberg inequalities (CKN)

Let $2^{*}=\infty$ if $d=1$ or $d=2,2^{*}=2 d /(d-2)$ if $d \geq 3$ and define

$$
\vartheta(p, d):=\frac{d(p-2)}{2 p}
$$

Theorem 6. [Caffarelli-Kohn-Nirenberg-84] Let $d \geq 1$. For any $\theta \in[\vartheta(p, d), 1]$, with $p=\frac{2 d}{d-2+2(b-a)}$, there exists a positive constant $\mathrm{C}_{\mathrm{CKN}}(\theta, p, a)$ such that
$\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b p}} d x\right)^{\frac{2}{p}} \leq \mathrm{C}_{\mathrm{CKN}}(\theta, p, a)\left(\int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x\right)^{\theta}\left(\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} d x\right)^{1-\theta}$
In the radial case, with $\Lambda=\left(a-a_{c}\right)^{2}$, the best constant when the inequality is restricted to radial functions is $\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p, a)$ and

$$
\begin{gathered}
\mathrm{C}_{\mathrm{CKN}}(\theta, p, a) \geq \mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p, a)=\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p) \Lambda^{\frac{p-2}{2 p}-\theta} \\
\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, p)=\left[\frac{2 \pi^{d / 2}}{\Gamma(d / 2)}\right]^{2 \frac{p-1}{p}}\left[\frac{(p-2)^{2}}{2+(2 \theta-1) p}\right]^{\frac{p-2}{2 p}}\left[\frac{2+(2 \theta-1) p}{2 p \theta}\right]^{\theta}\left[\frac{4}{p+2}\right]^{\frac{6-p}{2 p}}\left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{2}{p-2}\right)}\right]
\end{gathered}
$$

## Weighted logarithmic Hardy inequalities (WLH)

QA "logarithmic Hardy inequality"
Theorem 7. [del Pino, J.D. Filippas, Tertikas] Let $d \geq 3$. There exists a constant
$\mathrm{C}_{\mathrm{LH}} \in(0, \mathrm{~S}]$ such that, for all $u \in \mathcal{D}^{1,2}\left(\mathbb{R}^{d}\right)$ with $\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2}} d x=1$, we have

$$
\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2}} \log \left(|x|^{d-2}|u|^{2}\right) d x \leq \frac{d}{2} \log \left[C_{L H} \int_{\mathbb{R}^{d}}|\nabla u|^{2} d x\right]
$$

a A "weighted logarithmic Hardy inequality" (WLH)
Theorem 8. [del Pino, J.D. Filippas, Tertikas] Let $d \geq 1$. Suppose that $a<(d-2) / 2$, $\gamma \geq d / 4$ and $\gamma>1 / 2$ if $d=2$. Then there exists a positive constant $\mathrm{C}_{\mathrm{WLH}}$ such that, for any $u \in \mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$ normalized by $\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} d x=1$, we have

$$
\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} \log \left(|x|^{d-2-2 a}|u|^{2}\right) d x \leq 2 \gamma \log \left[\mathrm{C}_{\mathrm{WLH}} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x\right]
$$

## Weighted logarithmic Hardy inequalities: radial case

Theorem 9. [del Pino, J.D. Filippas, Tertikas] Let $d \geq 1, a<(d-2) / 2$ and $\gamma \geq 1 / 4$. If $u=u(|x|) \in \mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$ is radially symmetric, and $\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} d x=1$, then

$$
\begin{gathered}
\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} \log \left(|x|^{d-2-2 a}|u|^{2}\right) d x \leq 2 \gamma \log \left[\mathrm{C}_{\mathrm{WLH}}^{*} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x\right] \\
\mathrm{C}_{\mathrm{WLH}}^{*}=\frac{1}{\gamma} \frac{\left[\Gamma\left(\frac{d}{2}\right)\right]^{\frac{1}{2 \gamma}}}{\left(8 \pi^{d+1} e\right)^{\frac{1}{4 \gamma}}}\left(\frac{4 \gamma-1}{(d-2-2 a)^{2}}\right)^{\frac{4 \gamma-1}{4 \gamma}} \text { if } \gamma>\frac{1}{4} \\
\mathrm{C}_{\mathrm{WLH}}^{*}=4 \frac{\left[\Gamma\left(\frac{d}{2}\right)\right]^{2}}{8 \pi^{d+1} e} \quad \text { if } \gamma=\frac{1}{4}
\end{gathered}
$$

If $\gamma>\frac{1}{4}$, equality is achieved by the function

$$
u=\frac{\tilde{u}}{\int_{\mathbb{R}^{d}} \frac{|\tilde{u}|^{2}}{|x|^{2}} d x} \quad \text { where } \quad \tilde{u}(x)=|x|^{-\frac{d-2-2 a}{2}} \exp \left(-\frac{(d-2-2 a)^{2}}{4(4 \gamma-1)}[\log |x|]^{2}\right)
$$

# Extremal functions for Caffarelli-Kohn-Nirenberg and logarithmic Hardy inequalities 

Joint work with Maria J. Esteban

## First existence result: the sub-critical case

Theorem 10. [J.D. Esteban] Let $d \geq 2$ and assume that $a \in\left(-\infty, a_{c}\right)$
(i) For any $p \in\left(2,2^{*}\right)$ and any $\theta \in(\vartheta(p, d), 1)$, the Caffarelli-Kohn-Nirenberg inequality (CKN)

$$
\left(\int_{\mathbb{R}^{d}} \frac{|u|^{p}}{|x|^{b p}} d x\right)^{\frac{2}{p}} \leq \mathrm{C}(\theta, p, a)\left(\int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x\right)^{\theta}\left(\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} d x\right)^{1-\theta}
$$

admits an extremal function in $\mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$
Critical case: there exists a continuous function $a^{*}:\left(2,2^{*}\right) \rightarrow\left(-\infty, a_{c}\right)$ such that the inequality also admits an extremal function in $\mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$ if $\theta=\vartheta(p, d)$ and $a \in\left(a^{*}(p), a_{c}\right)$
(ii) For any $\gamma>d / 4$, the weighted logarithmic Hardy inequality (WLH)

$$
\int_{\mathbb{R}^{d}} \frac{|u|^{2}}{|x|^{2(a+1)}} \log \left(|x|^{d-2-2 a}|u|^{2}\right) d x \leq 2 \gamma \log \left[C_{\mathrm{WLH}} \int_{\mathbb{R}^{d}} \frac{|\nabla u|^{2}}{|x|^{2 a}} d x\right]
$$

admits an extremal function in $\mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$
Critical case: idem if $\gamma=d / 4, d \geq 3$ and $a \in\left(a^{\star}, a_{c}\right)$ for some $a^{\star} \in\left(-\infty, a_{c}\right)$

## Existence for CKN


$d=3, \theta=1$

$d=3, \theta=0.8$

## Second existence result: the critical case

Let

$$
a_{\star}:=a_{c}-\sqrt{(d-1) e\left(2^{d+1} \pi\right)^{-1 /(d-1)} \Gamma(d / 2)^{2 /(d-1)}}
$$

Theorem 11 (Critical cases). [J.D. Esteban]
(i) if $\theta=\vartheta(p, d)$ and $\mathrm{C}_{\mathrm{GN}}(p)<\mathrm{C}_{\mathrm{CKN}}(\theta, p, a)$, then (CKN) admits an extremal function in $\mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$,
(ii) if $\gamma=d / 4, d \geq 3$, and $\mathrm{C}_{\mathrm{LS}}<\mathrm{C}_{\mathrm{WLH}}(\gamma, a)$, then (WLH) admits an extremal function in $\mathcal{D}_{a}^{1,2}\left(\mathbb{R}^{d}\right)$

If $a \in\left(a_{\star}, a_{c}\right)$ then

$$
\mathrm{C}_{\mathrm{LS}}<\mathrm{C}_{\mathrm{WLH}}(d / 4, a)
$$

# Radial symmetry and symmetry breaking 

Joint work with

M. del Pino, S. Filippas and A. Tertikas (symmetry breaking) Maria J. Esteban, Gabriella Tarantello and Achilles Tertikas

## Implementing the method of Catrina-Wang / Felli-Schneider

Among functions $w \in H^{1}(\mathcal{C})$ which depend only on $s$, the minimum of

$$
\mathcal{J}[w]:=\int_{\mathcal{C}}\left(|\nabla w|^{2}+\frac{1}{4}(d-2-2 a)^{2}|w|^{2}\right) d y-\left[\mathbf{C}^{*}(\theta, p, a)\right]^{-\frac{1}{\theta}} \frac{\left(\int_{\mathcal{C}}|w|^{p} d y\right)^{\frac{2}{p \theta}}}{\left(\int_{\mathcal{C}}|w|^{2} d y\right)^{\frac{1-\theta}{\theta}}}
$$

is achieved by $\bar{w}(y):=[\cosh (\lambda s)]^{-\frac{2}{p-2}}, y=(s, \omega) \in \mathbb{R} \times \mathbb{S}^{d-1}=\mathcal{C}$ with $\lambda:=\frac{1}{4}(d-2-2 a)(p-2) \sqrt{\frac{p+2}{2 p \theta-(p-2)}}$ as a solution of

$$
\lambda^{2}(p-2)^{2} w^{\prime \prime}-4 w+2 p|w|^{p-2} w=0
$$

Spectrum of $\mathcal{L}:=-\Delta+\kappa \bar{w}^{p-2}+\mu$ is given for $\sqrt{1+4 \kappa / \lambda^{2}} \geq 2 j+1$ by

$$
\lambda_{i, j}=\mu+i(d+i-2)-\frac{\lambda^{2}}{4}\left(\sqrt{1+\frac{4 \kappa}{\lambda^{2}}}-(1+2 j)\right)^{2} \quad \forall i, j \in \mathbb{N}
$$

Q The eigenspace of $\mathcal{L}$ corresponding to $\lambda_{0,0}$ is generated by $\bar{w}$
Q The eigenfunction $\phi_{(1,0)}$ associated to $\lambda_{1,0}$ is not radially symmetric and such that $\int_{\mathcal{C}} \bar{w} \phi_{(1,0)} d y=0$ and $\int_{\mathcal{C}} \bar{w}^{p-1} \phi_{(1,0)} d y=0$
Q If $\lambda_{1,0}<0$, optimal functions for (CKN) cannot be radially symmetric and

$$
\mathrm{C}(\theta, p, a)>\mathrm{C}^{*}(\theta, p, a)
$$

## Schwarz' symmetrization

With $u(x)=|x|^{a} v(x),(\mathrm{CKN})$ is then equivalent to

$$
\left\||x|^{a-b} v\right\|_{\mathrm{L}^{p}\left(\mathbb{R}^{N}\right)}^{2} \leq \mathrm{C}_{\mathrm{CKN}}(\theta, p, \Lambda)(\mathcal{A}-\lambda \mathcal{B})^{\theta} \mathcal{B}^{1-\theta}
$$

with $\mathcal{A}:=\|\nabla v\|_{\mathrm{L}^{2}\left(\mathbb{R}^{N}\right)}^{2}, \mathcal{B}:=\left\|\left.x\right|^{-1} v\right\|_{\mathrm{L}^{2}\left(\mathbb{R}^{N}\right)}^{2}$ and $\lambda:=a\left(2 a_{c}-a\right)$. We observe that the function $B \mapsto h(\mathcal{B}):=(\mathcal{A}-\lambda \mathcal{B})^{\theta} \mathcal{B}^{1-\theta}$ satisfies

$$
\frac{h^{\prime}(\mathcal{B})}{h(\mathcal{B})}=\frac{1-\theta}{\mathcal{B}}-\frac{\lambda \theta}{\mathcal{A}-\lambda \mathcal{B}}
$$

By Hardy's inequality ( $d \geq 3$ ), we know that

$$
\mathcal{A}-\lambda \mathcal{B} \geq \inf _{a>0}\left(\mathcal{A}-a\left(2 a_{c}-a\right) \mathcal{B}\right)=\mathcal{A}-a_{c}^{2} \mathcal{B}>0
$$

and so $h^{\prime}(\mathcal{B}) \leq 0$ if $(1-\theta) \mathcal{A}<\lambda \mathcal{B} \Longleftrightarrow \mathcal{A} / \mathcal{B}<\lambda /(1-\theta)$
By interpolation $\mathcal{A} / \mathcal{B}$ is small if $a_{c}-a>0$ is small enough, for $\theta>\vartheta(p, d)$ and $d \geq 3$

## Regions in which Schwarz' symmetrization holds



QHere $d=5, a_{c}=1.5$ and $p=2.1,2.2, \ldots 3.2$
e Symmetry holds if $a \in\left[a_{0}(\theta, p), a_{c}\right), \theta \in(\vartheta(p, d), 1)$
QHorizontal segments correspond to $\theta=\vartheta(p, d)$
QHardy's inequality: the above symmetry region is contained in $\theta>\left(1-\frac{a}{a_{c}}\right)^{2}$
Alternatively, we could prove the symmetry by the moving planes method in the same region

## Summary (1/2): Existence for (CKN)



The zones in which existence is known are:
(1) extremals are achieved among radial functions, by the Schwarz symmetrization method
(1)+(2) this follows from the explicit a priori estimates; $\Lambda_{1}=\left(a_{c}-a_{1}\right)^{2}$
(1)+(2)+(3) this follows by comparison of the optimal constant for (CKN) with the optimal constant in the corresponding Gagliardo-Nirenberg-Sobolev inequality

## Summary (2/2): Symmetry and symmetry breaking for (CKN)

The zone of symmetry breaking contains:
(1) by linearization around radial extremals
(1)+(2) by comparison with the Gagliardo-Nirenberg-Sobolev inequality

In (3) it is not known whether symmetry holds or if there is symmetry breaking, while in (4), that is, for $a_{0} \leq a<a_{c}$, symmetry holds by the Schwarz symmetrization


# bound state Lieb-Thirring inequalities and symmetry 

Joint work with Maria J. Esteban and M. Loss

## Symmetry: a new quantitative approach

$$
b_{\star}(a):=\frac{d(d-1)+4 d\left(a-a_{c}\right)^{2}}{6(d-1)+8\left(a-a_{c}\right)^{2}}+a-a_{c}
$$

Theorem 12. Let $d \geq 2$. When $a<0$ and $b_{\star}(a) \leq b<a+1$, the extremals of the Caffarelli-Kohn-Nirenberg inequality with $\theta=1$ are radial and

$$
C_{a, b}^{d}=\left|\mathbb{S}^{d-1}\right|^{\frac{p-2}{p}}\left[\frac{\left(a-a_{c}\right)^{2}(p-2)^{2}}{p+2}\right]^{\frac{p-2}{2 p}}\left[\frac{p+2}{2 p\left(a-a_{c}\right)^{2}}\right]\left[\frac{4}{p+2}\right]^{\frac{6-p}{2 p}}\left[\frac{\Gamma\left(\frac{2}{p-2}+\frac{1}{2}\right)}{\sqrt{\pi} \Gamma\left(\frac{2}{p-2}\right)}\right]^{\frac{p-2}{p}}
$$

## The symmetry region



## The symmetry result on the cylinder

$$
\Lambda_{\star}(p):=\frac{(d-1)(6-p)}{4(p-2)}
$$

$d \omega$ : the uniform probability measure on $\mathbb{S}^{d-1}$
$L^{2}$ : the Laplace-Beltrami operator on $\mathbb{S}^{d-1}$
Theorem 13. Let $d \geq 2$ and let $u$ be a non-negative function on $\mathcal{C}=\mathbb{R} \times \mathbb{S}^{d-1}$ that satisfies

$$
-\partial_{s}^{2} u-L^{2} u+\Lambda u=u^{p-1}
$$

and consider the symmetric solution $u_{*}$. Assume that

$$
\int_{\mathcal{C}}|u(s, \omega)|^{p} d s d \omega \leq \int_{\mathbb{R}}\left|u_{*}(s)\right|^{p} d s
$$

for some $2<p<6$ satisfying $p \leq \frac{2 d}{d-2}$. If $\Lambda \leq \Lambda_{\star}(p)$, then for a.e. $\omega \in \mathbb{S}^{d-1}$ and $s \in \mathbb{R}$, we have $u(s, \omega)=u_{*}\left(s-s_{0}\right)$ for some constant $s_{0}$

## The one-bound state version of the Lieb-Thirring inequality

Let $K(\Lambda, p, d):=C_{a, b}^{d}$ and

$$
\Lambda_{\gamma}^{d}(\mu):=\inf \left\{\Lambda>0: \mu^{\frac{2 \gamma}{2 \gamma+1}}=1 / K(\Lambda, p, d)\right\}
$$

Lemma 14. For any $\gamma \in(2, \infty)$ if $d=1$, or for any $\gamma \in(1, \infty)$ such that $\gamma \geq \frac{d-1}{2}$ if $d \geq 2$, if $V$ is a non-negative potential in $\mathrm{L}^{\gamma+\frac{1}{2}}(\mathcal{C})$, then the operator $-\partial^{2}-L^{2}-V$ has at least one negative eigenvalue, and its lowest eigenvalue, $-\lambda_{1}(V)$ satisfies

$$
\lambda_{1}(V) \leq \Lambda_{\gamma}^{d}(\mu) \text { with } \mu=\mu(V):=\left(\int_{\mathcal{C}} V^{\gamma+\frac{1}{2}} d s d \omega\right)^{\frac{1}{\gamma}}
$$

Moreover, equality is achieved if and only if the eigenfunction $u$ corresponding to $\lambda_{1}(V)$ satisfies $u=V^{(2 \gamma-1) / 4}$ and $u$ is optimal for (CKN)

$$
\text { Symmetry } \quad \Longleftrightarrow \quad \Lambda_{\gamma}^{d}(\mu)=\Lambda_{\gamma}^{d}(1) \mu
$$

## The generalized Poincaré inequality

Theorem 15. [Bidaut-Véron, Véron] $(\mathcal{M}, g)$ is a compact Riemannian manifold of dimension $d-1 \geq 2$, without boundary, $\Delta_{g}$ is the Laplace-Beltrami operator on $\mathcal{M}$, the Ricci tensor $R$ and the metric tensor $g$ satisfy $R \geq \frac{d-2}{d-1}(q-1) \lambda g$ in the sense of quadratic forms, with $q>1, \lambda>0$ and $q \leq \frac{d+1}{d-3}$. Moreover, one of these two inequalities is strict if $(\mathcal{M}, g)$ is $\mathbb{S}^{d-1}$ with the standard metric.

If $u$ is a positive solution of

$$
\Delta_{g} u-\lambda u+u^{q}=0
$$

then $u$ is constant with value $\lambda^{1 /(q-1)}$ Moreover, if $\operatorname{vol}(\mathcal{M})=1$ and $\mathrm{D}(\mathcal{M}, q):=\max \left\{\lambda>0: R \geq \frac{N-2}{N-1}(q-1) \lambda g\right\}$ is positive, then

$$
\frac{1}{\mathrm{D}(\mathcal{M}, q)} \int_{\mathcal{M}}|\nabla v|^{2}+\int_{\mathcal{M}}|v|^{2} \geq\left(\int_{\mathcal{M}}|v|^{q+1}\right)^{\frac{2}{q+1}} \quad \forall v \in W^{1,1}(\mathcal{M})
$$

Applied to $\mathcal{M}=\mathbb{S}^{d-1}: \mathrm{D}\left(\mathbb{S}^{d-1}, q\right)=\frac{q-1}{d-1}$

## The case: $\theta<1$

$$
\begin{aligned}
\mathfrak{C}(p, \theta):=\frac{(p+2)^{\frac{p+2}{(2 \theta-1) p+2}}}{(2 \theta-1) p+2} & \left(\frac{2-p(1-\theta)}{2}\right)^{2 \frac{2-p(1-\theta)}{(2 \theta-1) p+2}} \\
& \cdot\left(\frac{\Gamma\left(\frac{p}{p-2}\right)}{\Gamma\left(\frac{\theta p}{p-2}\right)}\right)^{\frac{4(p-2)}{(2 \theta-1) p+2}}\left(\frac{\Gamma\left(\frac{2 \theta p}{p-2}\right)}{\Gamma\left(\frac{2 p}{p-2}\right)}\right)^{\frac{2(p-2)}{(2 \theta-1) p+2}}
\end{aligned}
$$

Notice that $\mathfrak{C}(p, \theta) \geq 1$ and $\mathfrak{C}(p, \theta)=1$ if and only if $\theta=1$
Theorem 16. With the above notations, for any $d \geq 3$, any $p \in\left(2,2^{*}\right)$ and any $\theta \in[\vartheta(p, d), 1)$, we have the estimate

$$
\mathrm{C}_{\mathrm{CKN}}^{*}(\theta, a, p) \leq \mathrm{C}_{\mathrm{CKN}}(\theta, a, p) \leq \mathrm{C}_{\mathrm{CKN}}^{*}(\theta, a, p) \mathfrak{C}(p, \theta)^{\frac{(2 \theta-1) p+2}{2 p}}
$$

under the condition

$$
\left(a-a_{c}\right)^{2} \leq \frac{(d-1)}{\mathfrak{C}(p, \theta)} \frac{(2 \theta-3) p+6}{4(p-2)}
$$

## Thank you!

