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STATISTICAL MECHANICS

Understand the large scale behavior of a physics system
whose interactions are described on the microscopic level

Start from a model, whose general framework is the following.

> Structure of the physics system is represented by
a graph G = (V, E), finite.
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STATISTICAL MECHANICS

> Set of configurations on the graph G: C(G),

> vertex configurations,
> edge configurations.

» Parameters:

> intensity of interactions between microscopic components
> external temperature.

= Positive weight function w = (Wg)eeg on the edges.
X
e=xy



STATISTICAL MECHANICS

> To a configuration C, one assigns an energy &,,(C).

> Boltzmann measure on configurations:

—-Ew(C)

VCeC@G). P(C)= ﬁ

where Z(G,w) = 3, e ¢(© is the partition function.
CeC(G)

Understand the behavior of configurations
when the graph is large (infinite).




TaE ISING MODEL

Model of ferromagnetism - mixture of two materials

Wilhelm Lenz (1888-1957) Ernst Ising (1900-1998)
» Graph G = (V,E).

> A spin configuration o assigns a spin oy € {—1,1} to a each vertex
x of the graph G.

= CG) ={-1, 1}V = set of spin configurations.



THE ISING MODEL

> A spin configuration
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THE ISING MODEL

> A spin configuration / two interpretations

Magnetic moments:
+1/—, =1/«



THE ISING MODEL

> A spin configuration / two interpretations

Magnetic moments: Mixture of two materials:
+1/—, -1/ +1/e, -1/e.
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THE ISING MODEL

> Positive weight function: coupling constants J = (Jg)eeE-

> Energy of a spin configuration: ;(0) = - 3 Jyoxoy.
e=xyeE

» Ising Boltzmann measure:
e~

Voe{-11)Y, Pq =
o€ } Ismg(o-) ZIs'mg (G.7)

> Two neighboring spins oy, oy tend to align.
> The higher the coupling Jyy, the higher this tendency.



THE DIMER MODEL

Adsorption of di-atomic molecules on the surface of a cristal

Sir Ralph H. Fowler (1889-1944) George S. Rushbrooke (1915-1995)

Congres Solvay 1927.
» Graph G = (V,E).

> A dimer configuration or perfect matching: subset of edges such
that each vertex touches exactly one edge of this subset.

= C(G) = M(G) = set of dimer configurations.



THE DIMER MODEL

> A dimer configuration.
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THE DIMER MODEL

> A dimer configuration.
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THE DIMER MODEL

> A dimer configuration.
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> Positive weight function: v = (Ve)eck-
> Energy of a configuration M: £,(M) = — > ¢em log ve.
» Dimer Botzmann measure:

[T ve

YMeM Pyimer(M) = —M
€ (G), dtme( ) Zdimer(GaV)

> Edges with higher weights are more likely to occur.



SPANNING TREES

Related to electrical networks

Gustav Kirchhoff (1824-1887)

» Graph G = (V,E).
> A spanning tree: subset of edges covering all vertices of the
graph, connected, with no cycle.

= C(G) = T(G) = set of spanning trees.



SPANNING TREES

> A spanning tree
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SPANNING TREES

> A spanning tree

> Positive weight function: p = (0e)eckE-
> Energy of a tree T: E,(T) = — Y oct l0g po.

» Tree Boltzmann measure:

[TeeT pe

VT € T(G), Puee(T) = m
tree )

> Edges with higher weights are more likely to occur.



PERCOLATION

Flow of a liquid through a porous material

Simon Broadbent (1928-2002)
» Graph G = (V,E).

RSN
John Hammersley (1920-2004)
> Configuration of opened and closed edges: Ye € E, we € {0,1}.

= CG) = {0, 1}E.




PERCOLATION

> A percolation configuration
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PERCOLATION

> A percolation configuration
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> Let p € [0,1]. Each edge is opened/closed with probability p /
1 - p, independently.
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» Percolation measure:

Ywe {0, 1}E, Pperco(w) = pzeeE w9(1 _ p)|E|—ZeeE We

> The higher p is, the more open edges there are
> For which values of p do we percolate ?



MACROSCOPIC BEHAVIOR

Let the edge-length tend to 0
Look at a “typical” configuration.

> Ising model (Illustrations of R. Cerf)

J small J critical J large

> On 7% J, = 3 log(1 + V2) [Kramers et Wannier]

> Phase transition: studied through magnetization.



MACROSCOPIC BEHAVIOR

> Dimer model (Illustration of R. Kenyon)

> One sees two phases on the same figure.

> Phase transition studied through decay of correlations



MACROSCOPIC BEHAVIOR

> Percolation (Illustration of Erzbischof)
IJ_‘ [

> On Z% p. = 0.5 [Kesten]
> Phase transition: (non) existence of an infinite connected
component.



MACROSCOPIC BEHAVIOR

> Identification of the phase transition.

» Understand the sub/super critical models.

» Understand the critical model (at the phase transition):

> Universality and conformal invariance.
> Conjectures: Nienhuis, Cardy, Duplantier ...

Proofs: Lawler, Schramm, Werner (Fields 2006), D. Chelkak, S.
Smirnov (Fields 2010), H. Duminil-Copin (Fields 2022), ...



2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FiSHER'66]
> Ising model on G.
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2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FiSHER'66]

xpansion [Kramers-Wannier].

> Low temperature e
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2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FiSHER'66]

> Low temperature expansion [Kramers-Wannier].




2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FiSHER'66]

> Polygon contour configurations on G*.




2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FiSHER'66]

> Fisher’s correspondence: exactly keep the polygon contour edges.




2. RELATIONS BETWEEN MODELS: ISING - DIMERS [FiSHER'66]

> Fill the decorations: 2V’ possibilities.
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EXACTLY SOLVABLE MODELS

»> One of the tools to study the macroscopic behavior is the
partition function:

Z(G,w) = Z e_‘g‘”(c),
CeC(G)

the normalizing constant in the Boltzmann measure.

e—&w(©)
¥CeCG), PC)=——.
@), P(©C) ZG.w)
» The model is exactly solvable if there exists an exact, explicit
formula for the partition function
> Three exactly solvable models:
> Ising-2d: Onsager (1944) - Fisher (1966).
> Dimers-2d: Kasteleyn, Temperley-Fisher (1961).
> Spanning trees: Kirchhoff (1848).



PRELIMINARIES

> Let My, My be two dimer configurations of G, and M; U Mg be
their superposition.
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PRELIMINARIES

> Let My, My be two dimer configurations of G, and M; U Mg be

their superposition.
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PRELIMINARIES

> Let My, My be two dimer configurations of G, and M; U Mg be
their superposition.
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> M; UMs is a disjoint union of alternating cycles, where an
alternating cycles has edges alternating between M; and Ma.
Alternating cycles of length 2 are called doubled edges.



