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Geodesic voting methods: overview, extensions and application to blood vessel segmentation

Youssef Rouchdy1 and Laurent D. Cohen*

CEREMADE, UMR 7534, CNRS, Université Paris Dauphine, 75775 Paris Cedex 16,France

In this article we present new methods to segment thin tree structures, which are, for example, present in microglia
extensions and cardiac or neuronal blood vessels. Many authors have used minimal cost paths, or geodesics relative to a
local weighting potential P, to find a vessel pathway between two end points. We use a set of such geodesic paths to find a
tubular tree structure with minimal interaction. Recently, we have introduced a set of methods called geodesic voting. In this
article, we review all these methods and present some extensions. We also adapt these methods to the segmentation of
complex tree structures in a noisy medium and apply them to the segmentation of blood vessels in 2D and 3D.

Keywords: geodesic voting; fast marching; level set; minimal paths; tree structure segmentation

1. Introduction

In this article we present novel methods for the segmentation

of tree structures. These methods are based on minimal

paths and can be applied to extract numerous structures,

such as microglia extensions, neurovascular structures,

blood vessels and pulmonary trees. There are many studies

dedicated to the extraction of vascular or airway trees. For a

reviewof suchmethods, seeKirbas andQuek (2004), Lesage

et al. (2009), Mori et al. (1996), Agam et al. (2005), Carrillo

et al. (2007) and Lo et al. (2010). Among the approaches

used to segment such tree structures, we consider the

following three models, classified according to their method

for extracting the tubular aspect of the tree: centreline-based

models, surface models and 4D curve models. The first

category focuses on directly extracting the centrelines of the

tubular tree (Lorigo et al. 2001; Swift et al. 2002). After

extracting the centrelines, a second process can be used to

segment the lumen of the tree (see Bouix et al. 2005). The

second category directly extracts the surface of the vessel.

These approaches include explicit and implicit surface

models. The former models use a parametric representation

of the tubular structure (Frangi et al. 1999). Thesemodels are

not adapted to the segmentation of complex tree structures,

whereas the latter implicit methods can evolve the surface

through complex shape changes including changes in

topology (Manniesing et al. 2006; Yan and Kassim 2006).

However, initialisation must be carried out carefully to

obtain an accurate segmentation.

Minimal path techniques are extensively used for

centreline extraction of tubular tree structures. These

approaches are robust to the presence of local perturbations

due to stenosed branches of the tree or imaging artefacts in

which the local image information might be insufficient to

guide the shape evolution process. Several minimal path

techniques have been proposed to deal with this problem

(Deschamps and Cohen 2000, 2001; Wink et al. 2001;

Cohen and Deschamps 2001). These techniques involve

designing a metric from the image in such a way that the

tubular structures correspond to geodesic paths according to

this metric (Cohen and Kimmel 1997). Solving the problem

from the practical point of view consists in a front wave

propagation from a source point within a vessel, which

moves faster along the branches of the vascular tree. These

methods require the user to supply a starting point

(propagation source) and end points. Each end point results

in an extracted minimal path back to the source point. The

points located along thisminimal path are likely to be located

on the vessel of interest. A small amount of work has been

devoted to reduce the need for user intervention of the user in

the segmentation of tree structure to the initialisation of

the propagation from a single point. Gülsün and Tek

(2008) defined a stopping criterion based on a ‘medialness’

measure; the propagation is stopped when ‘medialness’

drops below a given threshold. This method might suffer

from the same problem as region growing because the

medialnessmeasuremight drop below the given threshold in

the presence of lesions or other local image artefacts. Wink

et al. (2001) proposed stopping the propagation when the

geodesic distance reaches a certain value. However, this

method is limited to the segmentation of a single vessel, and

the definition of the threshold of the geodesic distance is not

straightforward. Cohen and Deschamps (2007) proposed

stopping the propagation according to a criterion based on

certain geometric properties of the region covered by the

front wave. Deschamps and Cohen (2001) assumed that the

total length of the tree structure to be visited is roughly given;

the stopping criterion is based on the Euclidean length of the

minimal path.
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In this article, we present new methods to extract tree

structures without using any a priori information and using

only a single point provided by the user on the tree

structure. The methods are generic, and they can be used to

extract any type of tree structure in 2D and in 3D. These

methods were presented separately in conferences

(Rouchdy and Cohen 2008, 2009, 2011a, 2011b). Here,

we provide an overview of all these methods and propose

extensions. The approach is based on a completely new

concept, namely, geodesic voting. It consists in computing

geodesics from a given source point to a set of end points

scattered throughout the image. The target structure

corresponds to image points with a high-geodesic density.

The geodesic density is defined at each pixel of the image

as a number of geodesics pass over this pixel. Because the

potential exhibits low values along the tree structure,

geodesics will preferably migrate towards this structure

and thereby yield a high-geodesic density. We introduce

different approaches to segment complex tree structures in

noisy media environments and apply them to segment

blood vessels in medical images.

In Section 2, we introduce the geodesic voting approach.

In Section 3, we propose a variety of possible ways to obtain

both the centreline and the boundary of the vascular tree. In

Section 4, we evaluate the method on 2D retinal images.

2. Background

2.1 Minimal paths

In the context of image segmentation proposedbyCohen and

Kimmel (1997), a deformable model to extract contours

between two points was given by the user. The model is

formulated to find a geodesic for a weighted distance:

min
y

ðL
0

ðwþ PðyðsÞÞÞ ds; ð1Þ

the minimum is considered over all curves yðsÞ traced on the
image domainV that links the two end points, that is yð0Þ ¼
x0 and yðLÞ ¼ x1. The constant w imposes regularity on the

curve. P . 0 is a potential cost function computed from the

image; it takes lower values near the edges or the features.

For instance,PðyðsÞÞ ¼ IðyðsÞÞ leads to darker lines, whereas
PðyðsÞÞ ¼ gðk7IkÞ leads to the edges, where I is the image

and g is a decreasing positive function.

To compute the solution associated with the source x0
of this problem, Cohen and Kimmel (1997) proposed a

Hamiltonian approach and found the geodesic weighted

distance U that solves the Eikonal equation,

k7UðxÞk ¼ wþ PðxÞ; ;x [ V. The ray y is subsequently

computed by back-propagation from the end point x1 by

solving the ordinary differential equation:

y0ðsÞ ¼ 27UðyÞ: ð2Þ
The idea behind the fast marching algorithm is to

propagate the wave in only one direction, starting with the

smaller values of the action map U and progressing to the

larger values using the upwind property of the scheme.

Therefore, the fast marching method permits to solve the

Eikonal in complexity Oðn log ðnÞÞ (for details, see Cohen
and Kimmel 1997).

2.2 Geodesic voting for the segmentation of tree
structures

In Rouchdy and Cohen (2008), we have introduced a new

concept to segment a tree structure fromonly one point given

by the user in the tree structure. This method consists in

computing the geodesic density from a set of geodesics

extracted from the image. Assume we are looking for a tree

structure for which a potential cost function has been defined

as above and has lower values on this tree structure. First, we

provide a starting point x0 roughly at a root of the tree

structure, and we propagate a front wave in the whole image

with the fast marchingmethod, obtaining theminimal action

U. Then we consider an end point anywhere in the image.

Backtracking the minimal path from the end point, we will

reach the tree structure somewhere and stay on it until the

start point is reached. So, a part of the minimal path lies on

somebranches of the tree structure. The idea of this approach

is to consider a large number of end points {xk}
N
k¼1 on the

image domain and to analyse the set of minimal paths yk
obtained. For this, we consider a voting scheme along the

centrelines. When backtracking each path, we add 1 to each

pixel we pass over. At the end of this process, pixels on the

tree structure will have a high vote because many paths have

to pass over it. On the contrary, pixels in the backgroundwill

generally have a low vote because very few paths will pass

over them. The result of this voting scheme is what we call

the geodesic density or voting score. This means at each

pixel the density of geodesics pass over this pixel. The tree

structure corresponds to the points with high-geodesic

density.

We define the voting score or the geodesic density at

each pixel p of the image by

mðpÞ ¼
XN
k¼1

dpðykÞ; ð3Þ

where the function dpðyÞ returns 1 if the path y crosses the

pixel p, else 0. Once the geodesic voting is made, the tree

structure is obtained by a simple thresholding of the geodesic

density m. As shown in Rouchdy and Cohen (2011a) and

Figure 1, the contrast between the background and the tree is

large, and the threshold can be chosen easily.

Y. Rouchdy and L.D. Cohen2
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The set of end points for which we consider the

geodesics can be defined through different choices. This

could be all pixels over the image domain, random points,

scattered points according to some criterion, or simply the

set of points on the boundary of the image domain. Taking

only the points on the boundary of the image domain

misses some branches of the tree as explained in Rouchdy

and Cohen (2009). Considering all the points of the image

has the advantage that no possible paths are lost and that

the scores are smoothed, but it increases the computation

time and makes the thresholding more difficult. About

computation of paths, the transport equation approach of

Section 2.3 is not dependant on the number of end points,

and thus is useful when it is needed to consider a large

number of end points. A good trade-off for the choice of

end points is the adaptive set proposed in Rouchdy and

Cohen (2009), which can be viewed as a random set of

points scattered all over the image with a higher density

where the potential P is smaller (see Figure 1).

2.3 Voting with a transport equation

The geodesic voting can be obtained in a different manner

without computing the minimal paths. The trajectories yk
computed from Equation (2) are called characteristics for

the conservation equation

ut þ div ðvuÞ ¼ 0; ðt; xÞ [�0; T½£V; ð4Þ

where v ¼ 27U denotes the velocity field computed from

the distance map U. Because of the conservation of the

information transported by Equation (4) towards the source

point, we can define geodesic density as the integral of the

solution of the transport Equation (4) in time T

mðxÞ ¼
ðT
0

uðt; xÞ dt: ð5Þ

The initial conditions in the transport formulation of the

geodesic voting determine the set of end points used to

extract the geodesics in the original formulation of the

geodesic voting, presented previously. Here, we take initial

condition uð0; :Þ ¼ 1 in the interior of the image domain. A

non-null value for the initial condition in a given image point

means that a geodesic is extracted from this point, whereas

the value 0 means that no geodesic is extracted.

Integrating of the transport Equation (4) with respect to

time t we get

div ðvmÞ ¼ uð0; xÞ2 uðT ; xÞ; x [ V: ð6Þ
The partial differential Equation (6) is not elliptic, so it is

more convenient to compute the geodesic density by relation

(5) after solving the transport Equation (4). Figure 2 shows

the segmentation result obtained with this scheme. We have

considered a simple synthetic image representing a tree

structure like deer woods (see Figure 2, left). The pixels with

high density correspond to the structure extracted from the

image (see Figure 2, right).

3. Geodesic voting methods for blood vessel

segmentation

The geodesic voting method gives a good approximation

of the localisation of the tree branches, but it does not

Figure 2. Voting by transport equation. First panel: synthetic image representing a tree structure. Second panel: distance map, the source
point is indicated by a red cross. Third panel: zoom on the velocity field shown in the region indicated by a red square in the first panel.
Fourth panel: geodesic density computed by relation (6).

Figure 1. Geodesic voting method. From left to right: the first panel shows the synthetic tree, and the red cross represents the root of the
tree; the second panel shows the adaptive set obtained from the farthest point strategy, described by Rouchdy and Cohen (2009); the third
panel shows the geodesics extracted from the adaptive set of points to the root, in blue; the fourth panel shows the geodesic density; the
fifth panel shows the geodesic density after thresholding.

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 3
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allow to extract the tubular aspect of the tree. Here, we

extend the geodesic voting to the segmentation of the

boundary of the tubular structure.

3.1 Geodesic voting in an augmented space

In this section, we introduce a constraint that ensures that

the segmented tree approximates well the centrelines of

the tree, and we adapt the geodesic voting method to

segment the walls of the tubular tree structure. The idea is

to carry out the geodesic voting with a potential that

integrates an extra dimension used to measure the distance

from the centreline to the walls of the vessels. The

potential proposed by Li and Yezzi (2007) incorporates

this measure. More precisely, this potential is defined by
~P : ðx; rÞ [ V £ ½0; rmax�! ~Pðx; rÞ. It incorporates the full
set of image values within the sphere of centre x and radii

r, and it is designed in such a way that the whole sphere lies

inside the desired object and is as large as possible so that

it is tangential to the boundary of the object. The extension

of the minimal path extraction model (1) to the case of a

potential with an extra dimension is achieved by

minimising the following energy:

min
c;r

ðt
0

ðvþ ~PðcðsÞ; rðsÞÞÞ ds: ð7Þ

The minimisation of this energy allows simultaneous

approximation of the minimal path and the radii of the

spheres tangent to the boundary of the tube with centres

located along the minimal path. The computation of the

path is achieved with the framework presented in Section

2.1 in a space augmented with an extra dimension, being

the radius.

Using potential ~P and a set of end points ðxk; rkÞ (uniform
grid) in the domain, we extract a set of geodesics yk from

which we compute the geodesic density ðx; rÞ! mðx; rÞ
given by Equation (3). In this case, the geodesic voting map

is a function of the spatial dimension and also of the radii of

the spheres. There are many ways to use this (3D þ radius)

geodesic density to extract the tree structure (Rouchdy and

Figure 3. Vessel segmentation for a 2D retinal image with the geodesic voting method in augmented space. First row: the left panel
shows a 2D retinal image, the red cross indicates the source point; the centre panel shows, in (2D þ radius) domain, in green the paths
extracted from a uniform grid to the source point; the right panel shows the density computed in (2D þ radius) domain, yellow colour
corresponds to high density and brown to low density. Second row: the left panel shows the geodesic density ~mm, given by Equation (8),
red colour corresponds to high density, yellow colour to medium and green colour to low density; the centre panel shows the density ~mm

after thresholding in red; the right panel in blue shows the extraction result of the tubular structure obtained by thresholding the map
{ ~mm; ~r}, where ~rðxÞ ¼ arg max

r[½0;rmax�
~mmðx; rÞ.

Y. Rouchdy and L.D. Cohen4
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Cohen 2011a). Here, we use the following spatial density:

~mmðxÞ ¼
Xrmax

r¼0

mðx; rÞ: ð8Þ

Figure 3 illustrates the steps of this method for the

segmentation of the tubular aspect of the tree. We can see

the efficiency of the method to obtain a segmented tree that

is centred in the structure, as well as the precise boundary

of the vascular tree.

3.2 Geodesic voting shape prior to constrain the level
set evolution

Here,wepresent a second approach to extract thewalls of the

vessels using the original geodesic voting method. A shape

prior constraint is constructed from the geodesic voting tree

to constrain the evolution of a level set active contour to

extract the walls of the tree. As illustrated in Rouchdy and

Cohen (2011b) and in Section 4, a level set approach on this

kind of images, evenwith the initialisation obtained from the

geodesic voting, is inefficient because the background region

is not homogeneous. A Bayesian approach is used to

introduce this shape prior into the level set formulation. The

model is formulated as a minimisation problem of a global

energy composed of two terms. The first term corresponds to

deformation energy for a standard region-based level set

method and the second term introduces the shape prior:

Ebðf; c1; c2Þ ¼ Vðf; c1; c2Þ þ g

2s2

ð
V

ðf2 ~fÞ2d1ðfÞ dx;
ð9Þ

where the factor term d1 allows us to restrict the shape prior
within the region of interest, and ~f is the signed distance

computed from the geodesic voting tree. The segmentation

of vessels with this approach is achieved in two steps: (1) the

geodesic voting tree is extracted using the original geodesic

voting method (2) the walls of the vessels are extracted by

minimisation of the functional Eb. Figure 4 illustrates the

segmentation process. Details about thismethod are given in

Rouchdy and Cohen (2011b).

3.3 The deformable band and tube

The deformable band and tube methods, proposed byMille

and Cohen (2009), combine aspects of region-based active

contours and minimal paths. It is devoted to the recovery

of tubular structures. In this context, the segmentation

process is constrained by essence, rather than by adding

shape prior terms in a general model, as in Section 3.2. In

2D, the band is defined by an open curve G, parameterised

by arc length s [ ½0; 1�, and radius function

R : ½0; 1�! Rþ. Curve G plays the role of the medial

axis. The inner region Rin of width 2R is bounded by

curves G½R� and G½2R�, constructed by translating G both

ways along normal n by length R.

The band is endowed with energy functional E,

weighted sum of the internal energy Esmooth and the

external region energy Edata:

EðG;RÞ ¼ vEsmoothðG;RÞ þ ð12 vÞEdata ðG;RÞ: ð10Þ
The user-provided coefficientv, weighting the influence

of Esmooth over Edata, controls the elastic properties of the

deformable band. The smoothness energy Esmooth is

expressed in terms of curve length and radius first order

derivative. Because the structure of interest should satisfy an

intensity homogeneity criterion, the data term is as follows:

EdataðG;RÞ ¼
ð
Rin

ginðxÞ dxþ
ð
Rout

goutðxÞ dx; ð11Þ

where region descriptors gin and gout increase with respect to

intensity inhomogeneity. The initial curveG is built using the

geodesic voting method.

The 3D extension to deformable tube approach is

described in Mille and Cohen (2009), and Figures 5 and 6

depict results obtained on a computed tomography (CT)

volume data, starting deformation from the result of the

geodesic voting tree. Figure 6(right) represents a slice of the

CT data, with centrelines and surface positions of two

segments (aorta and superior mesenteric artery). With a

Cþþ implementation running on an Intel Core 2 Duo

2.2GHz PC (4GBRAM) (Intel Corporation), computational

cost for a 256 £ 256 £ 256 volume image is 28 s for

extracting the surface, see the result in Figure 5. According to

Figure 4. Geodesic voting shape prior segmentation of vessels from a 2D retinal image. From left to right: adaptive voting on the image,
voting tree obtained by thresholding the geodesic voting, shape prior obtained by dilation of the voting tree, segmentation result obtained
with region-based active contour with shape prior (method described in Section 3.2).

Computer Methods in Biomechanics and Biomedical Engineering: Imaging & Visualization 5
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visual inspection, we believe the reconstruction results to be

promising.

4. Results and discussion

In this section, we compare GVR (Geodesic Voting with

Radius), method with radius presented in Section 3.1, and

GVP (Geodesic Voting Prior), method with shape prior

presented in Section 3.2, with other approaches [the edge-

based level set method (Malladi et al. 1995), the Chan and

Vese (2001) method and the fuzzy connectedness method

(Udupa et al. 2002)] for vessel segmentation from retinal

images on the digital retinal images for vessel extraction

(DRIVE) data (Staal et al. 2004).

TheDRIVE data were acquired using a Canon CR5 non-

mydriatic 3CCD camera with a 458 field of view (FOV).

Each imagewas captured using 8 bits per colour plane at 768

by 584 pixels. The FOV of each image is circular with a

diameter of approximately 540 pixels. For this database, the

imageshavebeen cropped around theFOV.TheDRIVEdata

are composed of 40 images fromdifferent subjects for which

manual segmentations are also provided.

Considering the complexity of the retinal images and

the properties of our algorithm, we have cropped 12

different images from the 40 images available and made

validation of our method on them. Note that the retinal

vessels in each image do not correspond to a tree structure.

Some images may contain several disconnected trees or

networks. Note that when the image contains more than

one tree structure, the geodesic voting method tends to

create connections between them. These connections

may not make sense anatomically; therefore, a preproces-

sing or post-processing step is necessary to get an accurate

segmentation. For a completely automated application,

Figure 5. Deformable tube model: on the left, tree after thresholding on geodesic voting score; on the right, final tree with boundary
surface (from Mille and Cohen 2009).

Figure 6. Deformable tube model: a closer look at the boundary surface. On the left, a representation with centrelines; on the right, slice
of the 3D CT image, with centrelines and surface positions of two segments: aorta (bottom) and superior mesenteric artery (top) (from
Mille and Cohen 2009).

Y. Rouchdy and L.D. Cohen6
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this problem may be solved by using the selection step

proposed (for a different method) in Rouchdy et al. (2011)

to remove paths that are unlikely to belong to the microglia

extensions. This is out of focus of this article to propose

precise automatic pre- or post-processing to deal with all

kind of situations. Therefore, it was more illustrative to

choose images that contain tree structures and then crop

the image in such a way that the cropped image contains

only one tree structure. We were able to extract 12 tree

structures from 12 different images in the DRIVE data.

The size of the cropped image depends on the size of the

tree in the original image and on average corresponds to

100 pixels in height and 50 pixels in width.

For the GVR method, the augmented potential ~P used is

described in Section 3.1. The starting point was chosen as a

junction of the tree. As the end points were chosen as a

uniform grid, the spatial starting point can be chosen

anywhere within the tree. However, the starting radii should

be chosen carefully to get an optimal segmentation. In our

experiments onDRIVEdata,weobtained good estimation of

these parameters by testing different values following the

study presented by Li and Yezzi (2007). These parameters

can be optimised and automated for a given class of images.

For the GVP method, we have used the following

potential PðxÞ ¼ IðxÞ3 to run the geodesic voting segmenta-

tion,where I is the greyscale intensity of the image.Thevalue

of g, the weight on the shape prior, was chosen empirically

and used for all the experiments presented in the article. We

showed in Rouchdy and Bloch (2011) that this value can be

chosen in a large range with the same efficiency.

In Figures 7 and 8 (results obtained with the GVR and

GVP), the source point used to carry out the geodesic

voting was chosen empirically on the junction of the tree

that is connected to the largest number of branches. This

allows us to segment the largest number of branches in the

presence of small branches with weak contrast. Note that

the quality of the images provided by DRIVE is not very

good, and sometimes it is hard to set optimal sphere radii

for the GVR initialisation. When it is not possible to give a

precise radius, we underestimate the value of the radius

whenever possible; indeed, we measure the radii of the

spheres in pixels, and their diameters are odd numbers.

Concerning the end points, we have used the same number

for each method: 1200 farthest points (generated by the

process described in Rouchdy and Cohen 2009) for the

GVP method and a uniform grid of the augmented

potential for the GVR method. The threshold for the

geodesic density was defined from the first five images as

the mean value of all the threshold values manually

selected for these five images. Then this mean threshold

was used for all the 12 images. We have used two different

values for the mean threshold: one value for the GVP

method and the other for the GVR method.

In Rouchdy and Cohen (2012), we compare the GVR

and GVP results for vessel segmentation on the DRIVE

database in terms of the following evaluation measures:

Figure 7. Blood vessels segmentation using the GVR and GVP methods from one of the 12 cropped retinal images (DRIVE data). The
left panel shows the original image, the second panel shows the manual segmentation in blue, the third panel shows the segmentation
result obtained with the GVR method, the right panel shows the segmentation result obtained with the GVP method.

Figure 8. Blood vessels segmentation using the GVR and GVP methods from one of the 12 cropped retinal images (DRIVE data). The
left panel shows the initial image, the second panel shows the manual segmentation in blue, the third panel shows the segmentation
obtained with GVR method, in red, the right panel shows the segmentation obtained with our GVP method.
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dice, specificity and sensitivity. We found that GVR and

GVP gave similar results.

In the sequel, we compare the performance of GVR

and GVP methods with the edge and region-based level set

methods and the fuzzy connectedness method in the

segmentation of vessels.

Figure 9 shows the results obtained with the fuzzy

connectedness method (Udupa et al. 2002). The segmenta-

tion of the tree is obtained by thresholding the fuzzy

connectedness map. For a small threshold, the method

does not allow us to extract all the branches of the tree, and

when the threshold is increased, the propagation leaks

outside of the tree. The same problems were observed with

the edge-based level set method (Malladi et al. 1995) when

we increased the number of iterations, see Figure 10. The

shape prior allows us to constrain the propagation inside

the tubular tree. Figure 11 shows that the propagation

without shape constraints (g ¼ 0 in Equation (9)) can leak

outside of the tree structure.

Our methods (GVP and GVR) give the best results:

they succeed in segmenting more tree branches without

leaking outside of the tree structures.

5. Conclusion

In this article, we have presented a completely new

approach for the segmentation of tree structures based on

geodesic voting. This approach is adapted to automatically

segment tree structures from a single point provided by the

user with no further a priori information required about the

tree. By contrast, other methods described in the literature

for the segmentation of tree structures are not fully

automatic and require shape prior information about the

tree to be segmented. We have combined this approach

Figure 9. Fuzzy connectedness segmentation. The panels show from the left to the right: the localisation of the red seed point, the fuzzy
connectedness map, the thresholded fuzzy connectedness map with the threshold set at th1 (third panel), the thresholded fuzzy
connectedness map with a threshold set at th2 superior to th1.

Figure 10. Edge-based level set method. The left panel shows (in red) the initial position of the interface, second panel shows the
sigmoid of the gradient magnitude, the third panel shows the interface after 1000 iterations, the right panel shows the interface after 2000
iterations.

Figure 11. Comparison of the geodesic voting approach (GVP) with other methods. The left panel shows (in red) the segmentation
obtained by edge-based level set method, the second panel shows (in red) the segmentation results obtained with a Chan and Vese method
without using the geodesic voting shape prior, the third panel shows the fuzzy connectedness segmentation, the right panel shows the
segmentation result obtained with our geodesic voting with shape prior (GVP).

Y. Rouchdy and L.D. Cohen8
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with an added fourth dimension (space þ radius) or with

region-based level sets using shape priors to obtain both

the centrelines and boundaries of the tree. We have applied

our geodesic voting approach to segment different tree

structures from a variety of biomedical images. Finally, we

have evaluated our approach on retinal 2D images and

have shown segmentation results on 3D data. The results

were satisfying and promising.
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