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Foreword

Welcome to the Seventh International Conference on Mathematical Methods for Curves and Sur-
faces. The previous conferences were held in Oslo (1988), Biri (1991), Ulvik (1994), Lillehammer
(1997), Oslo (2000), and Tromsø (2004). This time we gather in Tønsberg, the centre of a popular
summer resort area and Norway’s oldest city, dating back to early Viking times. This conference se-
ries is integrated with the French conferences (Curves and Surfaces) organised by SMAI-Association
Francaise d’Approximation, and the next conference will bein Avignon, France in 2010.

With more than 170 participants and almost 140 talks, including 9 invited speakers and 7 mini-
symposia, the week is going to be very busy, with a varied and interesting scientific program.
We have attempted to group related talks together, but please note that there has been some late
rescheduling that may have caused seemingly unrelated talks to end up together.

The conference proceedings will be published in an international journal. Details about submis-
sion of manuscripts will be announced during the conference, and onwww.ifi.uio.no/˜cagd/
after the conference.

As usual, we have had considerable help from a number of people. Andrew McMurry has helped
with web programming, scripts and other technical challenges. Anne Cathrine and Nina Modahl
have provided expert help with all financial issues, and SaraMørken will assist us with registration
in Tønsberg. Thank you very much to all of you!

We are grateful for financial support from the Department of Informatics and the Centre of Math-
ematics for Applications at the University of Oslo, and fromthe eVITA Program in the Research
Council of Norway

Last, but not least, we thank you, the participants, for yourcontributions—without you, there
simply would be no conference. Enjoy your time in Tønsberg!

The organisers
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Scientific Programme

Time Wed Thu Fri Sat Sun Mon Tue

7:30 Registration

8:15 Opening

8.30 Invited
Talk

Invited
Talk

Invited
Talk

Invited
Talk

Invited
Talk

9.20 Coffee Coffee Coffee Coffee Coffee

9.50 Talks 4x2 Talks 4x2 Talks 4x2 Talks 4x2 Talks 4x2

11.10 Break Break Break Break Break

11.20 Talks 3x2 Talks 3x2 Talks 3x2 Talks 3x2 Talks 4x2

12.20 Lunch Lunch Lunch Lunch

12.40 The End

14:00
Excursion

14.10 Talks 3x2 Talks 3x2 Talks 3x2 Talks 3x2

15.10 Break Break Break Break

15.20 Invited
Talk

Invited
Talk

Invited
Talk

Invited
Talk

16.10 Coffee Coffee Coffee Coffee

16.30 Mini-
symposia
Talks 4x2

Mini-
symposia
Talks 4x2

Mini-
symposia
Talks 4x2

Mini-
symposia
Talks 4x2

17:00 Registration

18.30 Talks
End

Talks
End

Talks
End

Talks
End

19:30 Welcome
Party

For lunch and dinner we recommend that you sample the many restaurants in Tønsberg. The
welcome party on Thursday night and the excursion on Sunday include dinner.
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Thursday 26. June, Morning Session

Time Room I Room II

7.30 Registration

Chair: Tom Lyche

8:15 Opening

Invited Talk:
8.30 Sampling and Stability

Robert Schaback

9.20 Coffee

Chair: Robert Schaback Chair: Gudrun Albrecht

9.50 Hermite Mean Value Interpolation in
R

n

Solveig Bruvoll

Progressive iteration approximation
property

Jorge Delgado

10.10 Pointwise radial minimization: Hermite
interpolation on arbitrary domains

Christian Schulz

A generalized B-spline matrix form of
spline

Arne Lakså

10.30 CSG operations of arbitrary primitives
with inclusion arithmetic and real-time

ray tracing
Younis Hijazi

Circular spline approximation
Xinghua Song

10.50 Ray Casting Algebraic Surfaces using
the Frustum Form
Martin Reimers

Application of the dual Bernstein basis
polynomials to the multi-degree
reduction of Bézier curves with

constraints
Pawel Wozny

11.10 Break

Chair: Dianne Hansford Chair: Rick Beatson

11.20 Computing envelope approximations
using MOS surfaces

Bohumír Bastl

Error bounds for anisotropic RBF
interpolation

Oleg Davydov

11.40 Spatial polynomial curves with
different Pythagorean structures and

associated frames
Carlotta Giannelli

Biharmonic Spline Approximation
from Simple Layer Potentials

Thomas Hangelbroek

12.00 Computing with implicit support
function representation of

hypersurfaces
Miroslav Lávička

An iterative algorithm with joint
sparsity constraints for magnetic

tomography
Francesca Pitolli

12.20 Lunch
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Thursday 26. June, Afternoon Session

Time Room I Room II

Chair: Costanza Conti Chair: Juan Manuel Pena

14.10 Interpolation by Planar CubicG2

Pythagorean-hodograph Spline Curves
Gašper Jaklič

A Newton Basis for Kernel Spaces
Stefan Mueller

14.30 Hermite and Lagrangue Interpolation
by Pythagorean Hodograph Curves

Zbyněk Šír

Sharp Estimates of the Constants of
Equivalence between Integral Moduli
of Smoothness andK-Functionals in

the Multivariate Case
Ilya V. Kachkovskiy

14.50 Geometric Lagrange Interpolation by
Planar Cubic Pythagorean-hodograph

Curves
Emil Žagar

Convergence of Increasingly Flat
Radial Basis Interpolants to Polynomial

Interpolants
Jungho Yoon

15.10 Break

Chair: Richard Riesenfeld

Invited Talk:
15.20 Isogeometric Analysis: Progress and

Challenges
Thomas J.R. Hughes

16.10 Coffee

Isogeometric Analysis Algebraic Geometry Methods
Chair: Trond Kvamsdal Chair: Rimvydas Krasauskas

16.30 N-widths, sup-infs, and optimality
ratios for the k-version of the

isogeometric finite element method
Yuri Bazilevs

Linear precision for parametric patches
Frank Sottile

17.00 Adaptive isogeometric analysis by local
h-refinement with T-Splines

Bert Jüttler

Rational envelopes of two-parameter
families of spheres
Martin Peternell

17.30 “Model Quality”: The Mesh Quality
Analogy for Isogeometric Analysis

Elaine Cohen

Vertex blending via surfaces with
rational offsets

Rimvydas Krasauskas

18.00 CAD and iso-geometric analysis
Vibeke Skytt

Computing the topology of algebraic
curves and surfaces
Bernard Mourrain

18.30 Talks End

19.30 Welcome Barbecue on the Hotel Roof
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Friday 27. June, Morning Session

Time Room I Room II

Chair: Ron Goldman

Invited Talk:
8.30 Polar varieties of real algebraic curves

and surfaces
Ragni Piene

9.20 Coffee

Chair: Tom Hughes Chair: Ragni Piene

9.50 Transfinite interpolation along parallel
lines, based on splines in tension

Ziv Ayalon

A closed formulae for the separation of
two ellipsoids involving only six

polynomials
Esmeralda Mainar

10.10 Interpolation of a bidirectional curve
network by B-spline surfaces on

criss-cross triangulations
Paola Lamberti

Approximating implicitly defined
curves by fat arcs

Szilvia Béla

10.30 Scattered Data Fitting using extended
B-Splines

Jennifer Prasiswa

Two Computational Advantages of
Mu-Bases for the Analysis of Rational

Planar Curves
Ron Goldman

10.50 Adaptive Fitting ofC∞ Surfaces to
Dense Triangle Meshes

M. Siqueira

Multivariate Chebyshev Polynomials
and Applications

Brett Ryland

11.10 Break

Chair: Carla Manni Chair: Charles Loop

11.20 Constructing good coefficient
functionals for bivariateC1 quadratic

spline quasi-interpolants
Sara Remogna

Subdivision Matrices of Normals and
Jacobians for Surface and Volume

Subdivision Schemes
Hiroshi Kawaharada

11.40 A Non–Uniform Hermite Spline
Quasi–Interpolation Scheme

Alessandra Sestini

Subdivision schemes for ruled surfaces
and canal surfaces

Boris Odehnal

12.00 Extracting a Shape Descriptor for 3D
Models by means of a Rotation Variant

Similarity Measure
Michael Martinek

Vector Field Subdivision
Thomas P. Y. Yu

12.20 Lunch
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Friday 27. June, Afternoon Session

Time Room I Room II

Chair: Panagiotis Kaklis Chair: Jesús M. Carnicer

14.10 Generalized expo-rational B-splines
Lubomir T. Dechevsky

A Topological Lattice Refinement
Descriptor for Subdivision Scheme

François Destelle

14.30 Generalized expo-rational B-splines for
curves, surfaces, volume deformations

andn-dimensional geometric
modelling

A. R. Kristoffersen

A Zoo of Special Features for ternary
Catmull-Clark Subdivision Surfaces

Christoph Fuenfzig

14.50 Generalized expo-rational B-splines
and finite element methods for ODEs

Olga L. Pichkaleva

Antagonism between Extraordinary
Vertex and its Neighbourhood for

Defining Nested Box-Splines
Cédric Gérot

15.10 Break

Chair: Hans Hagen

Invited Talk:
15.20 Recent Techniques and Algorithms for

High(er)-Quality Shape Design and
Surface Representation

Jorg Peters

16.10 Coffee

Visualization Constrained Representations
Chair: Charles Hansen Chair: Carla Manni

16.30 Visualizing the Unknown
Min Chen

An algorithm for computing the
curvature-sign domain of influence of

Bezier control points
Panagiotis Kaklis

17.00 Generalized Voronoi Diagrams in
Urban Planning

Hans Hagen

Constrained T-spline Level Set
Evolution

Bert Jüttler

17.30 Interactive Visual Analysis of
Timedependent Multivariate Data

Helwig Hauser

Compactly Supported Splines with
Tension Properties on a Regular

Triangulation
Francesca Pelosi

18.00 Interactive Texture Based Flow
Visualization

Charles Hansen

C1 Blending of Wachspress Rational
Patches

Aparajita Ojha

18.30 Talks End
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Saturday 28. June, Morning Session

Time Room I Room II

Chair: Malcolm Sabin

Invited Talk:
8.30 Interpolation and Compression of

Image Data with Partial Differential
Equations

Joachim Weickert

9.20 Coffee

Chair: Joachim Weickert Chair: Jorg Peters

9.50 Uniform convergence of discrete
curvatures on nets of curvature lines

Ulrich Bauer

Approximation and Grid Generation
using Subdivision Schemes

Karl-Heinz Brakhage

10.10 Hexagonal meshes as discrete minimal
surfaces

Christian Mueller

Automated Generation of Finite
Element Meshes Suitable for

Floodplain Modelling
Andrew Goodwin

10.30 On the Logarithmic Curvature and
Torsion Graphs

Norimasa Yoshida

The Adaptive Delaunay Triangulation -
Properties and Proofs

Burkhard Lehner

10.50 Local Shape of Classical and
Generalized Offsets to Plane Algebraic

Curves
Juan Gerardo Alcazar

Numerical Solutions of the Kawahara
and Modified Kawahara Equations

Using Radial Basis Functions
Yilmaz Dereli

11.10 Break

Chair: Charles Hansen Chair: Rimvydas Krasauskas

11.20 Quadrangular Parameterization for
Reverse Engineering

David Bommes

From a single point to a surface patch
by growing minimal paths

Fethallah Benmansour

11.40 Computing the intersection with ringed
surfaces

Mario Fioravanti

Implicit shape reconstruction using a
variational approach

Serena Morigi

12.00 Finite multisided surface fillings
Kȩstutis Karčiauskas

Classification with Gaussians and
Convex Loss

Daohong Xiang

12.20 Lunch
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Saturday 28. June, Afternoon Session

Time Room I Room II

Chair: Paolo Costantini Chair: Trond Kvamsdal

14.10 Bézier approximation to Surfaces of
Constant Mean Curvature

Rubén Dorado

Contextual Image Compression and
Delaunay Triangulations

Laurent Demaret

14.30 Rational spline developable surfaces
Leonardo Fernandez-Jambrina

Normal multilevel triangulations for
geometric image compression

Ward Van Aerschot

14.50 Support Function Representation of
Surfaces for Geometric Computing

Maria Lucia Sampoli

Interpolation using scaled Gaussian
Radial Basis functions

Marshall Walker

15.10 Break

Chair: Elaine Cohen

Invited Talk:
15.20 Delaunay refinement for manifold

approximation
Jean-Daniel Boissonnat

16.10 Coffee

Subdivision
Chair: Bin Han Chair: Lubomir Dechevsky

16.30 Subdivision Schemes and Seminormed
Spaces

Serge Dubuc

Newton-Cotes cubature rules over
(d+ 1)-pencil lattices

Vito Vitrih

17.00 Blending Based Corner Cutting
Subdivision Scheme for Nets of Curves

Costanza Conti

Numerical Integration over Spherical
Caps

Kerstin Hesse

17.30 Multiresolution analysis for minimal
Cr-surfaces on Powell-Sabin type

meshes
M.J. Moncayo

Sampling Inequalities and Applications
Christian Rieger

18.00 Convergence of Subdivision Schemes
with Hoelder Continuous Masks and its

Applications
Bin Han

Hyperinterpolation in the cube
Stefano De Marchi

18.30 Talks End

10



Monday 30. June, Morning Session

Time Room I Room II

Chair: Paul Sablonnière

Invited Talk:
8.30 Variational principles and compressive

algorithms
Massimo Fornasier

9.20 Coffee

Chair: Jean-Daniel Boissonnat Chair: Massimo Fornasier

9.50 Planar rational quadratics and cubics:
parametrization and shape control

Gudrun Albrecht

First applications of a formula for the
error of finite sinc interpolation

Jean-Paul Berrut

10.10 Partial Differential Equations for
Interpolation and Compression of

Surfaces
Egil Bae

Learning Rates of Moving Least-square
Regression in a Finite Dimensional

Hilbert Space
Hongyan Wang

10.30 Mean distance from a curve to its
control polygon

Jesús M. Carnicer

An Improved Error Bound for Gaussian
Interpolation
Lin-Tian Luh

10.50 A point-based Clenshaw-Curtis type
algorithm for computing curve length

Atgeirr F. Rasmussen

Gradient Learning in a Classification
Setting by Gradient Descent

Jia Cai

11.10 Break

Chair: Emil Žagar Chair: Bin Han

11.20 New Quasi-interpolants Based on
Near-Best Discrete Spline

Quasi-interpolants on Uniform
Triangulations

D. Barrera

Generalization of Midpoint Subdivision
Qi Chen

11.40 From PS splines to QHPS splines
Hendrik Speleers

Curvature Continuity at Extraordinary
Vertices

Charles Loop

12.00 Shape preserving Hermite interpolation
by rational biquadratic splines

Sablonnière Paul

Continuity analysis of double insertion,
non-uniform, stationary Subdivision

Surfaces
Kerstin Mueller

12.20 Lunch
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Monday 30. June, Afternoon Session

Time Room I Room II

Chair: Domingo Barrera Chair: Adi Levin

14.10 Weighted semiorthogonal spline
wavelets and applications

Mario Kapl

The parametric four point scheme
Kai Hormann

14.30 Anisotropic methods for restoring
rotated and sheared rectangular shapes

Tanja Teuber

Non-uniform interpolatory subdivision
designed from splines

Lucia Romani

14.50 Natural Neighbor Extrapolation
Tom Bobach

Convergence and Smoothness Analysis
of Nonlinear Stationary Subdivision

Schemes in the Presence of
Extaordinary Points
Andreas Weinmann

15.10 Break

Chair: Gerald Farin

Invited Talk:
15.20 Tetrahedral Meshes with Good

Dihedral Angles
Jonathan Shewchuk

16.10 Coffee

Radial Basis Functions Heterogeneous Computing
Chair: Oleg Davydov Chair: Tor Dokken

16.30 Computational issues in RBF fitting
Rick Beatson

Geometry Processing and
Hetrogeneous Computing

Tor Dokken

17.00 Non-regular surface approximation
Mira Bozzini

Parallel Example-based Texture
Synthesis for Surfaces

Sylvain Lefebvre

17.30 Approximation on two-point
homogeneous manifolds

Jeremy Levesley

A Comparison of Three
Commodity-Level Parallel

Architectures: Multi-core CPU, the
Cell BE and the GPU

André Rigland Brodtkorb

18.00 Scattered Data Reconstruction of
Radon Data for Computer Tomography

Wolfgang zu Castell

Simplification of FEM-models on
multi-core processors and the Cell BE

Jon Hjelmervik

18.30 Talks End
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Tuesday 1. July, Morning Session

Time Room I Room II

Chair: Serge Dubuc

Invited Talk:
8.30 Conformal Equivalence of Triangle

Meshes
Peter Schroeder

9.20 Coffee

Chair: Jonathan Shewchuk Chair: Peter Schroeder

9.50 Detecting and Preserving Sharp
Features in Anisotropic Smoothing for

Noised Mesh
Masatake Higashi

Computingn-variate orthogonal
discrete wavelet transforms on the GPU

Joakim Gundersen

10.10 Stochastic resonance in quantized
triangle meshes

Ioannis Ivrissimtzis

Computing multivariate intersections
on the GPU.
Børre Bang

10.30 Tensor Product B-Spline Mesh
Generation for Accurate Surface

Visualizations in the NIST Digital
Library of Mathematical Functions

Bonita Saunders

Scattered data approximation onSO(3)
Dominik Schmid

10.50 Online Triangulation of Laserscan Data
Klaus Denker

A greedy algorithm for adaptive
hierarchical anisotropic triangulations

Jean-Marie Mirebeau

11.10 End of Conference
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Turkey
ydereli@anadolu.edu.tr

François Destelle
25 rue de Visille
38000 Grenoble
France
francois.destelle@gipsa-lab.inpg.fr

Tor Dokken
P.O. Box 124 Blindern
0314 Oslo
Norway
tor.dokken@sintef.no

Rubén Dorado
Departamento de Ingeniería Mecánica y Minera
Edificio A-3, Campus Las Lagunillas
23071 Jaén
Spain
rdorado@ujaen.es

Serge Dubuc
Department of Mathematics and Statistics
C.P. 6128 - Succursale Centre-ville
H3C 3J7 Montreal
Canada
dubucs@dms.umontreal.ca

Morten Dæhlen
P.O. Box 1080, Blindern
0316 Oslo
Norway
mortend@ifi.uio.no

Gerald Farin
4952 E Mockingbird
AZ 85253 Paradise Valley
United States
farin@asu.edu

Leonardo Fernández-Jambrina
ETSI Navales, Arco de la Victoria s/n
28040 Madrid
Spain
leonardo.fernandez@upm.es

Mario Fioravanti
Facultad de Ciencias - MATESCO
Universidad de Cantabria
39012 Santander
Spain
mario.fioravanti@unican.es

Michael Floater
CMA
P.O. Box 1053 Blindern
0316 Oslo
Norway
michaelf@ifi.uio.no

Massimo Fornasier
Altenbergerstrasse 56
4040 Linz
Austria
massimo.fornasier@oeaw.ac.at

Miguel Ángel Fortes Escalona
Edificio Politécnico. Campus de Fuentenueva
C/Severo Ochoa, s/n.
18071 Granada
Spain
mafortes@ugr.es

Christoph Fuenfzig
Postfach 3049
67653 Kaiserslautern
Germany
c.fuenfzig@gmx.de

Cédric Gerot
961, rue de la Houille Blanche
38402 Saint Martin d’Hères
France
Cedric.Gerot@gipsa-lab.inpg.fr

Carlotta Giannelli
Dipartimento di Sistemi e Informatica
Viale Morgagni 65
50134 Firenze
Italy
giannelli@dsi.unifi.it

17



Ronald Goldman
6100 M ain Street
77251 Houston
United States
rng@rice.edu

Andrew Goodwin
68 Atherton Close
2287 Rankin Park
Australia
agoodwin@umwelt.com.au

Joakim Gundersen
Postbok 385
8505 Narvik
Norway
joag@hin.no

Hans Hagen
P.O. Box 3049
B. 36/ R. 226
67653 Kaiserslautern
Germany
hagen@informatik.uni-kl.de

Trond Runar Hagen
Pb. 124 Blindern
0314 Oslo
Norway
Trond.R.Hagen@sintef.no

Bin Han
Department of Mathematical and Statistical
Science
University of Alberta
T6G 2G1 Edmonton
Canada
bhan@math.ualberta.ca

Thomas Hangelbroek
Department of Mathematics / Mailstop 3368
Texas A&M University
77843 College Station, TX
United States
hangelbr@math.tamu.edu

Chuck Hansen
Scientific Computing and Imaging Institute
50 S. Central Campus Dr, 3190 MEB
84112 Salt Lake City, UT
United States
hansen@cs.utah.edu

Dianne Hansford
School of Computing and Informatics
PO Box 878809
85287 Tempe, Arizona
United States
dianne.hansford@asu.edu

Helwig Hauser
Institutt for Informatikk
P.O.Box 7803
5020 Bergen
Norway
Helwig.Hauser@UiB.no

Kerstin Hesse
Department of Mathematics, Mantell Building
University of Sussex, Falmer
BN1 9RF Brighton
United Kingdom
k.hesse@sussex.ac.uk

Masatake Higashi
2-12-1, Hisakata, Tempaku-ku
468-8511 Nagoya
Japan
higashi@toyota-ti.ac.jp

Younis Hijazi
Erwin-Schroedinger-Strasse, 36/230
P.O. Box 3049
67653 Kaiserslautern
Germany
hijazi@informatik.uni-kl.de

Jon Hjelmervik
Pb. 124 Blindern
0314 Oslo
Norway
jon.m.hjelmervik@sintef.no

Kai Hormann
Department of Informatics
Julius-Albert-Str. 4
38678 Clausthal-Zellerfeld
Germany
kai.hormann@tu-clausthal.de

Tom Hughes
201 East 24th Street, ACES 5.430A
1 University Station C0200
78712-0027 Austin, Texas
United States
hughes@ices.utexas.edu

María José Ibáñez Pérez
Facultad de Ciencias, Campus de Fuentenueva
s/n
18071 Granada
Spain
mibanez@ugr.es

Ioannis Ivrissimtzis
Science Laboratories, South Road
DH1 3LE Durham
United Kingdom
ioannis.ivrissimtzis@durham.ac.uk

18



Gasper Jaklic
Jadranska 19
1000 Ljubljana
Slovenia
gasper.jaklic@fmf.uni-lj.si

Bert Juettler
Altenberger Str. 69
4040 Linz
Austria
bert.juettler@jku.at

Ilya Kachkovskiy
Lodve Langes gt. 2
P.O.B. 385
8505 Narvik
Norway
ilya.kachkovskiy@gmail.com

Panagiotis Kaklis
9, Heroon Polytechneiou
Zografou
157 73 Athens
Greece
kaklis@deslab.ntua.gr

Mario Kapl
Altenbergerstr. 69
4040 Linz
Austria
mario.kapl@sfb013.uni-linz.ac.at

Kestutis Karciauskas
Faculty of Mathematics and Informatics
Naugarduko 24
03225 Vilnius
Lithuania
kestutis.karciauskas@mif.vu.lt

Hiroshi Kawaharada
2-1 Hirosawa, Wako, Saitama
351-0198 Wako
Japan
kawaharada@riken.jp

Jiri Kosinka
P.O. Box 1053 Blindern
0316 Oslo
Norway
jiri.kosinka@cma.uio.no

Jernej Kozak
Jadranska 21
1000 Ljubljana
Slovenia
Jernej.Kozak@FMF.Uni-Lj.Si

Marjetka Krajnc
Jadranska 19
1000 Ljubljana
Slovenia
marjetka.krajnc@fmf.uni-lj.si

Rimvydas Krasauskas
Faculty of Mathematics and Informatics
Naugarduko 24
03225 Vilnius
Lithuania
rimvydas.krasauskas@mif.vu.lt

Arnt Roald Kristoffersen
Lodve Langes gt. 2
postboks 385
8505 NARVIK
Norway
arntrk@hin.no

Trond Kvamsdal
Alfred Getz vei 1
7034 Trondheim
Norway
Trond.Kvamsdal@sintef.no

Arne Lakså
Lodve Langes gt.. 2
Postbox 285
N-8505 Narvik
Norway
ala@hin.no

Paola Lamberti
via Carlo Alberto, 10
10123 TORINO
Italy
paola.lamberti@unito.it

Miroslav Lavicka
Univerzitni 22
301 00 Plzen
Czech Republic
lavicka@kma.zcu.cz

Sylvain Lefebvre
2004 route des Lucioles
06902 Sophia-Antipolis
France
sylvain.lefebvre@sophia.inria.fr

Burkhard Lehner
Department of Computer Science
P.O.Box 3049
67653 Kaiserslautern
Germany
lehner@informatik.uni-kl.de

Jeremy Levesley
Department of Mathematics
Leicester
LE1 7RH Leicester
United Kingdom
jl1@le.ac.uk

19



Adi Levin
17 Ha’Taasiya st.
60212 Or Yehuda
Israel
adi@cadent.co.il

Charles Loop
One Microsoft Way
98052 Redmond
United States
cloop@microsoft.com

Lin-Tian Luh
Dept. of Math, Providence University, Shalu
Town,
Taichung County, Taiwan
433 Taichung
Taiwan, Province of China
ltluh@pu.edu.tw

Tom Lyche
PO Box 1053, Blindern
0316 Oslo
Norway
tom@ifi.uio.no

Esmeralda Mainar
Facultad de Ciencias. Avda de los Castros s/n
39005 Santander
Spain
mainare@unican.es

Carla Manni
Dipartimento di Matematica
Via della Ricerca Scientifica
00133 Roma
Italy
manni@mat.uniroma2.it

Michael Martinek
Am Wolfsmantel 33
91058 Erlangen
Germany
simimart@i9.informatik.uni-erlangen.de

Michael Matt
Lehrstuhl Mathematik IV
A5, 6 C
68131 Mannheim
Germany
mmatt@rumms.uni-mannheim.de

Eivind Lyche Melvær
Pb 1053 Blindern
0316 Oslo
Norway
eivindlm@ifi.uio.no

Jean-Louis Merrien
20 av. des Buttes de Coësmes,
CS 14315
35043 RENNES
France
Jean-Louis.Merrien@insa-rennes.fr

Jean-Marie Mirebeau
21 rue Jean-Baptiste Corot
91140 Villebon sur Yvette
France
mirebeau@ann.jussieu.fr

Maria Moncayo Hormigo
Escuela Tecnica Superior de Ingenieria
Industrial
Doctor Fleming, s/n
30202 Cartagena
Spain
maria.moncayo@upct.es

Serena Morigi
P.zza porta san donato 5
40126 bologna
Italy
morigi@dm.unibo.it

Knut Mørken
Dept. of Informatics and CMA
0316 Oslo
Norway
knutm@ifi.uio.no

Sara Mørken
P.O Box 1080 Blindern
0316 Oslo
Norway
sara.morken@mac.com

Bernard Mourrain
BP 93
06902 Sophia Antipolis
France
mourrain@sophia.inria.fr

Christian Mueller
Kopernikusgasse 24
A-8010 Graz
Austria
christian.mueller@tugraz.at

Stefan Mueller
Lotzestrasse 16-18
37083 Goettingen
Germany
smueller@math.uni-goettingen.de

Georg Muntingh
Knut Alvssonsvei 29
0574 Oslo
Norway
georg.muntingh@gmail.com

20



Kerstin Müller
Fachbereich Informatik,
Postfach 3049
67653 Kaiserslautern
Germany
Kerstin.Mueller@gmx.org

Boris Odehnal
Wiedner Hauptstrasse 8-10
A-1040 Vienna
Austria
boris@geometrie.tuwien.ac.at

Aparajita Ojha
IT Building, JEC Campus, Ranjhi Jabalpur
482011 Jabalpur
India
aojha@iiitdm.in

Francesca Pelosi
Pian dei Mantellini, 44
53100 Siena
Italy
pelosi@unisi.it

Juan Manuel Pena
Departamento de Matematica Aplicada
Universidad de Zaragoza
50009 Zaragoza
Spain
jmpena@unizar.es

Martin Peternell
Wiedner Hauptstrasse 8-10
1040 Vienna
Austria
martin@geometrie.tuwien.ac.at

Jorg Peters
Dept CISE
32611-6120 Gainesville, FL
United States
jorg@cise.ufl.edu

Kjell Fredrik Pettersen
Pb 124, Blindern
0314 Oslo
Norway
Kjell.Fredrik.Pettersen@sintef.no

Olga Pichkaleva
Lodve Langes gt. 2
P.O.B. 385
8505 Narvik
Norway
olga.pichkaleva@gmail.com

Ragni Piene
P.O.Box 1053 Blindern
0378 Oslo
Norway
ragnip@math.uio.no

Francesca Pitolli
Dip. MeMoMat
Via Antonio Scarpa 16
00161 Roma
Italy
pitolli@dmmm.uniroma1.it

Jennifer Prasiswa
TUD - Fachbereich Mathematik
Schloßgartenstr. 7
64289 Darmstadt
Germany
prasiswa@mathematik.tu-darmstadt.de

Atgeirr Flø Rasmussen
Box 124
Blindern
0314 Oslo
Norway
atgeirr@sintef.no

Martin Reimers
CMA, University of Oslo
Norway
martinre@ifi.uio.no

Sara Remogna
Via Carlo Alberto, 10
10123 Torino
Italy
sara.remogna@unito.it

Markus Rhein
Lehrstuhl Mathematik IV
A5, 6 C
68131 Mannheim
Germany
mrhein@rumms.uni-mannheim.de

Christian Rieger
Institut fuer Numerische und Angewandte
Mathematik
Lotzestr. 16-18
37083 Goettingen
Germany
crieger@math.uni-goettingen.de

Richard Riesenfeld
50 S. Central Campus Drive, MEB 3190
84112 Salt Lake City, Utah
United States
rfr@cs.utah.edu

Lucia Romani
Via R. Cozzi 53
20125 Milano
Italy
lucia.romani@unimib.it

21



Milvia Rossini
via Cozzi 53
20125 Milano
Italy
milvia.rossini@unimib.it

Brett Ryland
Matematisk institutt
Johannes Brunsgate 12
5008 Bergen
Norway
nappers@gmail.com

Malcolm Sabin
19 John Amner Close
CB6 1DT Ely, Cambs.
United Kingdom
malcolm@geometry.demon.co.uk

Paul Sablonniere
20, avenue des Buttes de Coesmes, CS 14315
35043 RENNES Cedex
France
psablonn@insa-rennes.fr

Takafumi Saito
BASE, 2-24-16 Naka-cho
184-8588 Koganei
Japan
txsaito@cc.tuat.ac.jp

Maria Lucia Sampoli
Pian dei Mantellini 44
53100 Siena
Italy
sampoli@unisi.it

Bonita Saunders
100 Bureau Drive
Stop 8910
20899-8910 Gaithersburg, Maryland
United States
bonita.saunders@nist.gov

Robert Schaback
Institut für Numerische und Angewandte
Mathematik
Lotzestrasse 16-18
D-37083 Göttingen
Germany
schaback@math.uni-goettingen.de

Inga Scheler
P.O. Box 3049
B. 36/ R. 227
67653 Kaiserslautern
Germany
scheler@rhrk.uni-kl.de

Dominik Schmid
Institute of Biomathematics and Biometry
Ingolstädter Landstrasse 1
85764 Neuherberg
Germany
dominik.schmid@helmholtz-muenchen.de

Peter Schroeder
1200 E. California Blvd.
Mail Code 256-80
91125 Pasadena, California
United States
ps@cs.caltech.edu

Christian Schulz
Center of Mathematics for Applications
P.O. Box 1053, Blindern
0316 Oslo
Norway
christian.schulz@cma.uio.no

Larry L. Schumaker
Mathematics Department
37240 Nashville
United States
larry.schumaker@vanderbilt.edu

Alessandra Sestini
Dip. di Matematica Ulisse Dini
Viale Morgagni 67/a
50134 Firenze
Italy
sestini@math.unifi.it

Jonathan Shewchuk
625 Soda Hall
94720-1776 Berkeley
United States
jrs@cs.berkeley.edu

Marcelo Siqueira
Rua 13 de Junho, 1651, Ap. 1602, Monte
Castelo
79010-200 Campo Grande (MS)
Brazil
mfsiqueira@gmail.com

Zbynek Sir
KDM MFF UK
Sokolovska 83
183 00 Prague
Czech Republic
zbynek.sir@mff.cuni.cz

Vibeke Skytt
Forskningsveien 1
P.O.Box 124, Blindern
0314 Oslo
Norway
Vibeke.Skytt@sintef.no

22



Xinghua Song
Altenbergerstr. 69
4040 Linz
Austria
xinghua.song@oeaw.ac.at

Frank Sottile
Department of Mathematics, mailstop 3368
Texas A&M University
77843-3368 College Station, Texas
United States
sottile@math.tamu.edu

Hendrik Speleers
(VAT: BE 0419.052.173)
Celestijnenlaan 200A
BE-3001 Leuven
Belgium
Hendrik.Speleers@cs.kuleuven.be

Tatiana Surazhsky
Ortal 11/4
20692 Yokneam
Israel
tatiana.surazhsky@samsung.com

Javier Sánchez-Reyes Fernández
ETS Ingenieros Industriales
Campus Universitario
13071 Ciudad Real
Spain
Javier.SanchezReyes@uclm.es

Tanja Teuber
A5, B 109
68131 Mannheim
Germany
tteuber@kiwi.math.uni-mannheim.de

Georg Umlauf
Gottlieb-Daimler-Str.
Department of Computer Science
D-67663 Kaiserslautern
Germany
umlauf@informatik.uni-kl.de

Ward Van Aerschot
(VAT: BE 0419.052.173)
Celestijnenlaan 200A
BE-3001 Leuven
Belgium
Ward.VanAerschot@cs.kuleuven.be

Vito Vitrih
Muzejski trg 2
6000 Koper
Slovenia
vito.vitrih@upr.si

Marshall Walker
4700 Keele St.
M3J 1P3 Toronto
Canada
walker@yorku.ca

Hongyan Wang
Department of Mathematics, City University of
Hong Kong
Kowloon Tong
0000 Hong Kong
China
hongywang3@student.cityu.edu.hk

Joachim Weickert
Faculty of Mathematics and Computer Science,
Campus, Building E1.1
66041 Saarbruecken
Germany
weickert@mia.uni-saarland.de

Andreas Weinmann
Kopernikusgasse 24
A-8010 Graz
Austria
andreas.weinmann@tugraz.at

Pawel Wozny
ul. Joliot-Curie 15
50-383 Wroc?aw
Poland
Pawel.Wozny@ii.uni.wroc.pl

Daohong Xiang
Department of Mathematics, City University of
Hong Kong
Kowloon Tong
0000 Hong Kong
China
50009727@student.cityu.edu.hk

Dianna Xu
101 North Merion Ave.
Computer Science Department, Bryn Mawr
College
19010 Bryn Mawr
United States
diannaxu@yahoo.com

Norimasa Yoshida
1-2-1 Izumi-cho
275-8575 Narashino-shi, Tokyo
Japan
norimasa@acm.org

Thomas Yu
3141 Chestnut Street, Korman 269
PA 19103 Philadelphia
United States
yut@drexel.edu

23



Emil Zagar
Jadranska 19
SI-1000 Ljubljana
Slovenia
emil.zagar@fmf.uni-lj.si

Wolfgang zu Castell
Ingolstaedter Landstrasse 1
85764 Neuherberg
Germany
castell@helmholtz-muenchen.de

Avi Zulti
Ha’melacha 16
Rosh ha’ayin
Israel
z-avr@zahav.net.il

24



Abstracts

Planar rational quadratics and cubics:
parametrization and shape control

Gudrun Albrecht
University of Valenciennes

Monday 9.50, I

This talk is concerned with planar rational curves of degreetwo and three, and addresses the follow-
ing two issues:

In the case ofrational quadraticsa simple analytical solution to the problem of determining the
optimal parametrization is given. Optimality is measured with respect to arc length by means of the
L2–norm. The presented result is based on a method of Farouki [1] and J [2], who solve the optimal
parametrization problem analytically in the case ofpolynomialcurves, but suggest a numerical pro-
cedure forrational curves. This is joint work with I. Cattiaux-Huillard and V. Hernandez-Mederos.

In the case of planarrational cubicsthe issue of determining inflection points and singularities
is dealt with. Given a planar cubic in standard Bézier form based on the work of Sakai [3], the
distribution of its characteristic points (inflection points, cusps, loops) is determined, depending not
only on the position of the control points, but also on the variable two inner weights. This is joint
work with J.P. Bécar and X. Xiang.

[1] R. T. Farouki, Optimal parameterizations, Computer Aided Geometric Design, 14, 153-168,
1997.

[2] B. J, A vegetarian approach to optimal parameterizations, Computer Aided Geometric De-
sign, 14, 887-890, 1997.

[3] M. Sakai, Inflection points and singularities on planar rational cubic curve segments, Com-
puter Aided Geometric Design, 16, 149-156, 1999.
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Local Shape of Classical and Generalized Offsets to
Plane Algebraic Curves

Juan Gerardo Alcazar
Universidad de Alcala de Henares, Madrid (Spain)

Saturday 10.50, I

In order to determine the situations where the offsetting process introduces local changes (like for
example cusps arising from regular points), Differential Geometry can be directly applied whenever
the starting curve has no singularities. When the initial curve has singularities, the alternative notion
of local shapecan be used in order to study the effect of the offsetting process on them. This notion
basically corresponds to a description of the local behavior of a curve around a real point. Here we
will review this notion, and we will compare the main properties concerning the shape ofclassical
offsets(i.e. the usual notion of offset curve considered in the literature) and ofgeneralized offsets,
introduced by Arrondo, Sendra and Sendra, for the case of algebraic curves. Essentially, fixed a
distanced and an angleθ, the generalized offset of a curveC is the geometrical object obtained
by applying the following construction toC: for each pointP ∈ C, take the normal line toC at
P , rotate itθ degrees, and mark the points in this line lying at a distanced of P . In this sense, by
using classical elements of Differential Geometry we will show that while classical offsets of regular
curves tend to have real cusps, generalized offsets do not, but may have inflections instead. Also, by
using the notion of local shape, we will see that a more intricate behavior at singularities is observed
in the generalized case compared with the classical one.

Transfinite interpolation along parallel lines, based on
splines in tension

Ziv Ayalon , Nira Dyn and David Levin
Tel Aviv University

Friday 9.50, I

In this talk we discuss the problem of interpolating data, sampled from a bivariate function, along
the parallel lines{xi} × [−π, π], i = 0, 1, ..., N , x0 < x1 < · · · < xN . This problem has a unique
solution in the rectangle[x0, xN ]× [−π, π] if the interpolant is required to satisfy certain partial dif-
ferential equations in the rectangular domains between theinterpolation lines. A known such method
is that of the polyharmonic polysplines. We suggest a new choice of partial differential equations
that results in better interpolants, with satisfactory smoothness and reproduction properties.

The interpolating function is constructed from sets of Fourier coefficients defined for eachx ∈
[x0, xN ], which are the interpolants by splines in tension to the corresponding Fourier coefficients
of the data. The novelty in our method is that the resulting interpolant inherits the flexibility of the
splines in tension, in the sense that its tightness in each rectangular domain[xi, xi+1] × [−π, π] can
be controlled.

Our interpolation method is shown to produce interpolants that minimize a certain energy func-
tional. We also deriveL2 error bounds for our method, based on newL2 error bounds for splines
in tension. We illustrate the theoretical results by numerical examples. Our interpolation method is
compared with two known methods, and its superiority is demonstrated.
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Partial Differential Equations for Interpolation and
Compression of Surfaces

Egil Bae
Department of Mathematics, University of Bergen

Monday 10.10, I

In this talk we present geometric partial differential equations (PDEs) for interpolation and approx-
imation of surfaces from scattered point sets. Triangulated surfaces are used as discrete representa-
tion, and the PDEs are discretized by the finite element method directly on the triangular meshes.

As a main application, a new PDE based method for lossy compression of triangulated surfaces
is presented. The coding step selects a suitable small subset of the vertices (geometry) to be stored,
while the decoding step uses PDE based interpolation to reconstruct the surface from the stored
vertex set.

This work is inspired from promising image interpolation and compression methods, recently
proposed by Irena Galic and Joachim Weickert et. al.

Computing multivariate intersections on the GPU.
Børre Bang, Lubomir T. Dechevsky, Joakim Gundersen, Arnt

R. Kristoffersen and Arne Lakså
Narvik University College

Tuesday 10.10, II

In [1],[2] was proposed a method for isometric immersion of smooth m-variate n-dimesional vector
fields, m=1,2,3,4,... n 1,2,3,4,... onto fractal curves andsurfaces, thereby creating an opportunity to
process high-dimensional geometric data on the GPU. For this construction, the structure of mul-
tivariate tensor-product orthonormal wavelet bases was ofkey importance. In [1] and [2] we also
discussed the spatial localization of points in high dimensional space and their images on the plane
(resp., pixel in image, processed by the GPU). In the presentwork we show how to compute approx-
imately on the GPU multivariate intersection manifolds, using the above wavelet based construction
and mapping algorithm. We discuss the following stages of the computation.

(A) Computing intersection points in the plane (as pixels inthe image) and finding the point
cloud in high dimensional space which corresponds to this pixel (both the position and the value of
the pixel are used in the mapping algorithm).

(B) Given the intersecting manifolds (assumed compact), wefind a a volume of minimal dimen-
sion containing the manifolds. We establish isometric mapping between this volume and the planar
image on the GPU. This mapping uniquely defines also the images of the co-ordinates lines in the
volume onto the plane. This enables us to define a topology in the planar image of the scattered
point cloud found in item (A).

(C) Using the inverse (adjoint) orthogonal mapping, we introduce a "wire-frame" ordering in
the point cloud of the solution, thus, obtaining the numerical approximation to the solution manifold.

(D) The precision of the result obtained can be verified by direct computation of the intersection
conditions.

Reference:
[1] L.T.Dechevsky, J. Gundersen. Isometric Conversion Between Dimension and Resolution.

Mathematical Methods for Curves and Surfaces: Tromsø 2004 Editors M. Dæhlen, K. Mørken and
L. Schumaker

[2] L.T.Dechevsky, J. Gundersen, A. Kristoffersen. Wavelet-based Isometric Conversion be-
tween Dimension and Resolution and Some of Its Applications. Wavelet Application in Industrial
Processing V, edited by Frédéric Truchetet, Olivier Laligant, Proc. of PSIE Vol. 6763, 67630Q,
(2007)
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New Quasi-interpolants Based on Near-Best Discrete
Spline Quasi-interpolants on Uniform Triangulations

D. Barrera , A. Guessab, M. J. Ibáñez and O. Nouisser
ETS de Ingenieros de Caminos, Canales y Puertos, Universidad de Granada, Spain

Laboratoire de Mathématiques Appliqués, Université de Pauet des Pays de l’Adour,
France

Facultad de Ciencias, Universidad de Granada, Spain
Département de Mathématiques et Informatique, Faculté Polydisciplinaire de Safi,

Maroc

Monday 11.20, I

We propose new schemes based onC1 andC2-splines on uniform triangulations for approximating
functions defined on the real planeR

2.
From a near best discrete quasi-interpolantQd based on a B-spline and exact on the spacePk

of polynomials of maximal total degreek included in the space spanned by the integer translates of
the B-spline, we construct new differential quasi-interpolantsQD exact onPk+1, by considering the
derivatives of the function to be approximated. The new quasi-interpolants differ from the existing
in the literature. They are defined by a simple modification ofthe original operator.

When the derivatives are not available, we can approximate them by using finite differences,
and then new discrete quasi-interpolantsQ̃d result.

We estimate the quasi-interpolation errorsf −QDf andf − Q̃df in the infinity norm.

Computing envelope approximations using MOS
surfaces

Bohumír Bastl, Bert Jüttler, Jǐrí Kosinka and Miroslav Lávǐcka
University of West Bohemia, Pilsen, Czech Republic

Johannes Kepler University, Institute of Applied Geometry, Linz, Austria
University of Oslo,Centre of Mathematics for Applications, Oslo, Norway

Thursday 11.20, I

The talk will present an algorithm for computation of rational envelope approximations of two-
parameter families of spheres of quadratic MOS surfaces (quadratic triangular Bézier patches in
R

3,1). Generally, MOS surfaces are rational surfaces inR
3,1 which provide rational envelopes of the

associated two-parameter family of spheres (see Kosinka, Jüttler: MOS surfaces: Medial Surfaces
Transforms with Rational Domain Boundaries. Mathematics of Surfaces 2007: 245-262). Recently,
it has been proved that quadratic triangular Bézier patchesin R

3,1 possess this property, i.e., they be-
long into the class of MOS surfaces (see Peternell, Odehnal,Sampoli:On quadratic two-parameter
families of spheres and their envelopes. Computer Aided Geometric Design, to appear). In this talk
we give a direct proof of this fact and formulate an algorithmfor computing the parametrization of a
quadratic triangular Bézier patches inR

3,1 fulfilling the MOS condition. Since these patches are ca-
pable of producingC1 smooth approximations of medial surface transforms of spatial domains, we
use this algorithm to generate rational approximations of envelopes of general medial surface trans-
forms. The algorithm contains three main steps: 1. determination of points with parallel isotropic
normal vectors on patches and subdivision along their preimages, 2. finding a rational quadratic
triangular Bézier patch on the sphere circumscribing the locus of all isotropic normal vectors of the
patch, 3. finding the rational parametrization of the envelope and the exact parametric domains. The
algorithm will be demonstrated on several examples.
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Uniform convergence of discrete curvatures on nets of
curvature lines

Ulrich Bauer , Konrad Polthier and Max Wardetzky
FU Berlin

Saturday 9.50, I

For the discretization of a smooth surface by a discrete net of curvature lines, we prove uniform
pointwiseconvergence of a broad class of well-known edge-based discrete curvatures to smooth
principal curvatures. Our proofs use explicit error bounds, with constants depending only on the
maximum curvature, the derivative of curvature of the smooth surface, and the form regularity of the
discrete net.

One important aspect of our result is that the error bound is independent of the geodesic curva-
ture of the curvature lines, and therefore is also applicable in the vicinity of umbilical points. This
is the first pointwise convergence result for discrete curvatures that is applicable to general discrete
surfaces.

N-widths, sup-infs, and optimality ratios for the
k-version of the isogeometric finite element method

Ivo Babuska,Yuri Bazilevs, John Evans and Thomas Hughes
ICES, UT Austin

Thursday 16.30, I

We begin the mathematical study of the k-method utilizing the theory of Kolmogorov n-widths. The
k-method is a finite element technique where spline basis functions of higher-order continuity are
employed. It is a fundamental feature of the new field of isogeometric analysis. In previous works,
it has been shown that using the k-method has many advantagesover the classical finite element
method. In application areas such as structural dynamics, wave propagation, and turbulence.

The Kolmogorov n-width and sup-inf were introduced as toolsto assess the effectiveness of
approximating functions. In this work, we investigate the approximation properties of the k-method
with these tools. Following a review of theoretical results, we conduct a numerical study in which
we compute the n-width and sup-inf for a number of one-dimensional cases. This study sheds further
light on the approximation properties of the k-method. Comparison study of the k-method and the
classical finite element method and an analysis of the robustness of polynomial approximation are
also performed.
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Computational issues in RBF fitting
Rick Beatson

University of Canterbury

Monday 16.30, I

The RBF ansatz has application to a wide number of related problems, including interpolating point
values, Hermite interpolation, fitting divergence free vector fields, fitting correlated attributes, etc.
There are a number of issues that arise repeatedly when trying to apply these methods to large noisy
datasets. In this talk some of these computational issues will be identified and techniques which at
least partially overcome them discussed.

One example is the choice of heuristic for a greedy linear least squares fit. In such a problem
one wants to fit with as few active centres as possible, such a parsimonious fit having much less
chance of following the noise. In an application involving divergence free polyharmonic RBFs the
heuristic of maximum2-norm residual performed very poorly. A simple replacementwhich can be
implemented in many other adaptive linear least squares contexts will be discussed.

Approximating implicitly defined curves by fat arcs
Szilvia Bélaand Bert Jüttler

Johann Radon Institute for Computational and Applied Mathematics, Linz, Austria
Institute of Applied Geometry, Johannes Kepler University, Linz, Austria

Friday 10.10, II

In the case of planar parametric curves, fat arcs were used bySederberg (CAGD, 1989) as bounding
primitives. They are defined by an approximating circular arc with a certain thickness. Instead
of parametric curves, we consider algebraic curves, which are given as the zero set of a bivariate
polynomial in Bernstein-Bézier representation. For this class of curves, we present an algorithm for
bounding them by a collection of fat arcs.

The algorithm combines a local approximation step for an algebraic curve segment in a box
with an adaptive subdivision strategy. Depending on the user-specified tolerance, it creates more
or less fat arcs that enclose the curve. We experimentally analyze the convergence rate of the fat
arcs and compare them with enclosing boxes. In addition we discuss potential applications, such as
polynomial system solving and certified tracing of surface-surface intersections.

A practical approach for optimal Multi-Degree
Reduction of Bezier offsets curves

Idir Belaidi and Kamal Mohammedi
UMB Boumerdes, algiers

The developed approach for an optimal multi-degre reduction of Bezier offsets curves proposed
here is based on the inverse principle of the degree elevation algorithm and the minimization of the
standard mean square in the Bernstein polynomials base . Thestrategy of resolution of the problem
by variable separation introduced here allows a multi-reduction of degree of Bzier offsets curves in
a single step, by ensuring a minimal approximation error anda maximum continuity at the extreme
control points, by avoiding the use of nonlinear numerical methods. The flexible conversion in the
other models (rational Bzier abd B-spline curves and surfaces) without sophisticated calculation is
in fact another practical advantage of this approach.
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From a single point to a surface patch by growing
minimal paths

Fethallah Benmansourand Laurent D. Cohen
Universit Paris-Dauphine, Ceremade, CNRS, UMR7534, F-75016 Paris, France

Saturday 11.20, II

We introduce a novel implicit approach for surface patch segmentation in 3D images starting from
a single point. Since the boundary surface of an object is locally homeomorphic to a disc, we know
that the boundary of a small neighboring domain intersects the surface of interest on a single closed
curve. Similarly to active surfaces, we use a cost potentialwhich penalizes image regions of low
interest. First, Using a front propagation approach from the source point chosen by the user, one can
see that the closed curve corresponds to valley lines of the arrival time from the source point. Next,
we use a recently introduced implicit 3D segmentation method. It assumes that the object boundary
contains two known constraining curves. In our case, the first curve is reduced to a point and the
other one is automatically detected by our approach. A partial differential equation is introduced
and its solution is used for segmentation. The zero level setof this solution contains valley lines and
the source point as well as the set of minimal paths joining them. We present a fast implementation
which has been successfully applied to 3D medical and synthetic images.

First applications of a formula for the error of finite
sinc interpolation

Jean-Paul Berrut
Monday 9.50, II

We consider the interpolation of a functionf ∈ C2m+2(R) between the equidistant abscissae
xn = nh, h > 0, n ∈ Z. Sinc–interpolation is based on a dilation and a series of shifts of the
sinus–cardinalis functionsinc(x) := sin(x)/x. It often converges very rapidly, so for example for
functions analytic in an open strip containing the real lineand which decay fast enough at infin-
ity. This decay does not need to be very rapid, however, as in Runge’s function1/(1 + x2). Then
one must truncate the series, and this truncation error is much larger than the discretisation error (it
decreases algebraically as opposed to exponentially for the latter).

In 2003 we have discovered a formula for the errorCN (f, h) − f of the truncated series

CN (f, h)(x) :=

N∑

n=−N

′′

sinc [πh(x − xn)] fn, h =
X

N
,

for an approximation on the interval[−X,X ], where the double prime means that the first and last
terms are halved. The formula reads

CN (f, h)(x) = f(x) +
(−1)N

2π
sin(

π

h
x)

m∑

k=1

a2k(x)(2h)2k + O(h2m+2),

with

a2k(x) := 2(1 − 2−2k)
B2k

(2k)!

[(
f(y)

x− y

)(2k−1)

(X) −
(
f(y)

x− y

)(2k−1)

(−X)

]

and where theBk denote the Bernoulli numbers.
In our talk we shall give first applications of the formula, such as its
use for correctingCN (f, h) with derivatives and finite differences, the barycentric formula,

extrapolation to the limit and an error formula for one-sided sinc-interpolation.
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Natural Neighbor Extrapolation
Tom Bobach, Gerald Farin, Dianne Hansford and Georg Umlauf

University of Kaiserslautern
Arizona State University

Monday 14.50, I

Extrapolating a function usually amounts to educated guessing outside the convex hull of known
data. Where global scattered data interpolation and approximation such as radial basis functions or
tensor product spline fitting naturally allows extrapolation to some extent, local methods do not.

We focus on natural neighbor concepts to define a framework for smooth local extrapolation
of data defined over point sets that seamlessly blends with classical natural neighbor interpolation
schemes. Each application dictates its own notion of feasible behaviour outside the convex hull:
shall the function stay constant or follow the last observedtrend linearly? Our framework provides
such control over the extrapolant away from the convex hull.

Delaunay refinement for manifold approximation
Jean-Daniel Boissonnat

Inria Sophia Antipolis Mediterranee

Saturday 15.20

Delaunay refinement is a greedy technique for constructing provably good approximations of man-
ifolds of small dimensions. The talk will cover some recent results in surface and volume mesh
generation, anisotropic mesh generation and manifold reconstruction. The algorithms rely on the
concept of Delaunay triangulation restricted to a manifoldand on the related concept of witness
complex introduced by de Silva.
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Quadrangular Parameterization for Reverse
Engineering

David Bommes, Leif Kobbelt and Tobias Vossemer
RWTH Aachen University

Saturday 11.20, I

For complex geometric objects, a parametrization is usually computed in a piecewise manner, i.e.
the given surface is decomposed into disjoint patches and a local parametrization is computed for
each of them. Since for technical objects, a segmentation into rectangular patches is preferred, a
natural choice for the local parameter domains is the unit square.

The difficulty of the piecewise parametrization problem emerges from the smoothness condi-
tions between neighboring patches which turns the local parametrization task into a global problem.

Another challenge is the prevention of non-injectivities (foldovers) which tend to appear in
regions where the geometric shape of a patch deviates significantly from the shape of the domain or
when neighboring patches have very incompatible shapes. Hence, globally smooth parametrization
schemes often include a relaxation step where the patch layout is adapted such that local foldovers
are effectively prevented. However, the obvious drawback of the relaxation procedure is that patch
boundaries are changed. This is critical if the boundaries represent certain geometric features of the
input (or should be aligned to them). Moreover, geometric shapes may not allow a decomposition
into almost rectangular patches.

In our paper we therefore use an alternative approach. Instead of changing the patch layout, we
change the parameter domains. We generalize the square domains to arbitrary quadrilaterals. This
is obtained by using more general transition functions between neighboring patches. The optimal
domains, i.e. the domains that cause a minimum distortion, are found in an efficient non-linear
optimization scheme. To provide full control over the resulting parametrization we additionally
enable user-selected alignment and tangential continuityconstrains.

Non-regular surface approximation
Mira Bozzini , Licia Lenarduzzi and Milvia Rossini

Dipartimento di Matematica e Applicazioni, Università di Milano-Bicocca, via
Cozzi 53, 20125 Milano, Italy

IMATI-CNR , via Bassini 15, 20133 Milano, Italy

Monday 17.00, I

One of the relevant problems in the geospatial information system is the cartographic reconstruction
of surfaces presenting particular features that can be described as discontinuities in the function or
in its derivatives.

The aim of the talk is to discuss this problem considering some computational examples
achieved by strategies based on TPS for the recovering, and suitable procedures for the detection
and reconstruction of the discontinuity curves.
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Approximation and Grid Generation using Subdivision
Schemes

Karl-Heinz Brakhage
Institut für Geometrie und Praktische Mathematik, RWTH Aachen

Saturday 9.50, II

Subdivision surfaces are normally used for modeling in CAGDand in Computer Graphics. Our
aim is to solve interpolation and approximation problems with this methods. Thus we do not only
need values at certain points but also need the coefficients of the involved mesh points to end up
with a sparse linear system for an initial mesh. In case of theCatmull-Clark scheme we give a
detailed analysis to set up the system needed for solving theleast squares problem, which can be
solved efficiently by iterative methods. Furthermore we will demonstrate how this concept is used
for the generation of numerical grids for realistic wing-fuselage configurations in the Collaborative
Research Center SFB401Flow Modulation and Fluid Structure Interaction at Airplane Wingsat the
RWTH Aachen.

A Comparison of Three Commodity-Level Parallel
Architectures: Multi-core CPU, the Cell BE and the

GPU
André Rigland Brodtkorb and Trond Runar Hagen

SINTEF ICT, Department of Applied Mathematics
SINTEF ICT, Department of Applied Mathematics and Centre ofMathematics for

Applications, University of Oslo

Monday 17.30, II

We explore three widespread parallel architectures: multi-core CPUs, the Cell BE processor, the
graphics processing units. We have implemented four algorithms on these three architectures: the
heat equation, inpainting using the heat equation, computing the Mandelbrot set, and MJPEG movie
compression. We use these four algorithms to exemplify the benefits and drawbacks of each parallel
architecture.

Hermite Mean Value Interpolation in R
n

Solveig Bruvoll
Institute of Informatics, University of Oslo

Thursday 9.50, I

In this talk we explain the concept of hermite mean value interpolation inRn. By deriving the
normal derivative of the lagrange mean value interpolant and of a mean value weight function we
construct a transfinite hermite interpolant, under some conditions on the boundary of our domain.

Finally, we study an application of hermite mean value interpolation inR3. When modelling
the blood flow in the human body, some PDEs are solved. To avoidhaving to solve these PDEs on
every individually shaped part of the blood vessels, we wantto solve the PDEs on some standard
shapes. These shapes are in turn deformed and combined to form the complete blood vessels. For
this deformation, the hermite mean value interpolation is used.
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Gradient Learning in a Classification Setting by
Gradient Descent

Jia Cai, Hongyan Wang and Dingxuan Zhou
Monday 10.50, II

Learning gradients is one approach for variable selection and feature covariation estimation when
dealing with large data of many variables or coordinates. Ina classification setting involving a
convex loss function, a possible algorithm for gradient learning is implemented by solving convex
quadratic programming optimization problems induced by regularization schemes in reproducing
kernel Hilbert spaces. The complexity for such an algorithmmight be very high when the number
of variables or samples is huge. In this paper we introduce a gradient descent algorithm for gradient
learning in a classification setting. The implementation ofthis algorithm is simple and its conver-
gence is elegantly studied. Explicit rates for learning a classification function and its gradient are
presented in terms of the regularization parameter and the step size. Deep analysis for approxima-
tion by reproducing kernel Hilbert spaces under some mild conditions on the probability measure
for sampling allows us to deal with a general class of convex loss functions.

Mean distance from a curve to its control polygon
Jesús M. Carnicerand Jorge Delgado

University of Zaragoza, Spain
University of Oviedo, Spain

Monday 10.30, I

In Computer-Aided Geometric Design, parametric curves

γ(t) =

n∑

i=0

Pi, ui(t), t ∈ [a, b],

are generated byblending systemsof functions(u0, . . . , un),

ui : [a, b] → R, ui(t)0 i = 0, . . . , n,

n∑

i=0

ui(t) = 1, t ∈ [a, b].

The polygonP0 · · ·Pn is called thecontrol polygonof the curveγ.
We are interested in providing a measure of the degree of approximation of a parametric curve

by its control polygon. This problem has been previously studied in [1], [2] and [3]. We will obtain
bounds for the mean distance between two parametric curves and, in particular we will bound the
mean distance between a parametric curve and its control polygon. We shall study the important
case of Bézier curves and provide an estimation of the signedarea between a Bézier curve and its
control polygon.
References
[1] Carnicer, J. M., Floater, M. S., and Peña, J. M., The distance of a curve to its control polygon.
Numerical methods of approximation theory and computer aided geometric design. RACSAM Rev.
R. Acad. Cienc. Exactas F´s. Nat. Ser. A Mat.96, 175–183 (2002).
[2] Nairn, D., Peters, J., and Lutterkort, D., Sharp, quantitative bounds on the distance between a
polynomial piece and its Bézier control polygon. Computer Aided Geometric Design16, 613–631
(1999).
[3] Reif, U., Best bound on the approximation of polynomialsand splines by their control structure.
Computer Aided Geometric Design17, 579–589 (2000).
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Visualizing the Unknown
Min Chen

Swansea University

Friday 16.30, I

In this talk, the speaker will consider several scenarios where the data to be visualized is incomplete,
of a lower quality or even largely unknown. It is arguable that such scenarios are in fact present
in most visualization tasks, and many visualization techniques have been developed to deal with
incomplete data and low quality data.

A data-driven approach is a possible solution to address theproblem of visualizing the un-
known. In particular, the speaker will examine two scientific problems, and will present a line of
reasoning that data modeling is part of a solution to such a visualization problem. The discussion
can lead to a generalization of similar problems and methodologies in visualization, and encourage
the broadening of the scope of visualization research.

Generalization of Midpoint Subdivision
Qi Chen and Hartmut Prautzsch
Universität Karlsruhe (TH), Germany

Monday 11.20, II

It has been shown by the authors by a geometric method in 2007,that the limiting surfaces of
midpoint subdivision areC1-continuous. This method is used to show that certain generalizations of
the midpoint subdivision scheme generateC1-continuous limiting surfaces. In particular, this covers
the Catmull-Clark algorithm.

“Model Quality”: The Mesh Quality Analogy for
Isogeometric Analysis

Elaine Cohen, Robert M. Kirby, Tom Lyche, Tobias Martin and
Richard Riesenfeld

Schoolf of Computing, University of Utah
School of Computing, University of Utah

CMA and Institut for Informatics, University of Oslo

Thursday 17.30, I

Isogeometric analysis has been proposed as a methodology for bridging the gap between Computer
Aided Design (CAD) and Finite Element Analysis (FEA). Although both the traditional and isogeo-
metric pipelines rely upon the same conceptualization to solid model steps, they drastically differ in
how they bring the solid model both to and through the analysis process. The isogeometric analysis
process circumvents many of the meshing pitfalls experienced by the traditional pipeline by working
directly within the approximation spaces used by the model representation. In this talk we discuss
issues relating to understanding the differences.
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Blending Based Corner Cutting Subdivision Scheme
for Nets of Curves

Costanza Contiand Nira Dyn
Dipartimento di Energetica “Sergio Stecco”, Universita’ di Firenze, Italy

School of Mathematical Sciences, Tel Aviv University, Israel

Saturday 17.00, I

In this talk we present a new subdivision procedure which repeatedly refines nets of curves inR3 and
generates a limit surface. The scheme is an improvement of the BC-algorithm (Blending-Chaikin
algorithm) proposed by us in the Tromso meeting. While the BC-algorithm generatesC0 limit sur-
faces, by adding a step at each refinement level, which "cuts the corners" of the curves generated by
the refinement step of the BC-algorithm, we obtain a scheme which converges toC1 limit surfaces.
The performance of the new scheme on some examples will be demonstrated.

Error bounds for anisotropic RBF interpolation
Oleg Davydov

University of Strathclyde

Thursday 11.20, II

We prove local error bounds for the interpolation with anisotropically scaled radial basis functions
of finite smoothness, such as thin plate splines or compactlysupported RBFs. The bounds are in
terms of scaled directional derivatives and are useful for the estimation of the accuracy of two stage
scattered data fitting methods, where different anisotropies occur in different parts of the domain.
This is a joint work with Rick Beatson and Jeremy Levesley.

Hyperinterpolation in the cube
Stefano De Marchi, Marco Vianello and Yuan Xu

Department of Computer Science, University of Verona, Verona (Italy)
Department of Pure and Applied Mathematics, University of Padova, Padova (Italy)

Department of Mathematics, University of Oregon, Eugene (USA)

Saturday 18.00, II

We construct an hyperinterpolation formula of degreen in the three-dimensional cube, by using a
new cubature formula for the product Chebyshev measure. Theunderlying function is sampled at
N ∼ n3/4 points, whereas the hyperinterpolation polynomial is determined by its(n + 1)(n +
2)(n+ 3)/6 ∼ n3/6 coefficients in the trivariate Chebyshev orthogonal basis.The effectiveness of
the method is shown by several numerical test s and an application to the surface compression.
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Generalized expo-rational B-splines
Lubomir T. Dechevsky
Narvik University College

Friday 14.10, I

This is a concise overview of the latest progress in the theory of expo-rational B-splines (ERBS) (for
an overview of earlier results, see [1]). Topically, the presentation is organized into 4 consecutive
parts, as follows.

1. Definition and basic properties. ERBS can be defined, e. g.,as uniformly bounded (stable)
families of projections acting on a Banach space with Schauder bases, with an operator form of
the basic properties considered in [1], and reducing certain compact operators to canonical Jordan
(normal) form.

2. Applications to CAGD. Four, different but interrelated,constructions of ERBS-basedC∞-
smooth Hermite interpolants of arbitrary, total or partial, order are considered for scattered point
sets on domainsΩ ⊂ Rn with uniformly continuous boundary∂Ω and arbitrary topology ofΩ. The
first construction does not require tessellations or triangulations; the second one is for star-shaped
tessellations; the third and fourth ones are for triangulations. In all cases, and for any topology of
Ω, the generalized Vandermonde matrix is in Jordan normal form. The relevance of these construc-
tions to Riemann normal (geodesic) coordinates ensure thatall 4 constructions can be extended to
manifolds.

3. Multilevel B-splines. The constructions in item 2 lead tominimally supported biorthonor-
mal multi-resolution analysis generating unconditional bases inC∞(Ω) and simultaneously in all
topological vector spaces continuously embedded in the distribution spaceD′(Ω).

4. Applications to finite element and finite volume methods. Stability issues are completely
eliminated. For initial-value problems, the stiffness matrix is triangular (explicit methods). For
boundary-value problems the stiffness matrix is bounded with minimal bandwidth.

Reference: [1] L.T.Dechevsky, A.Lakså, B.Bang. Expo-rational B-splines. Int. J. Pure Appl.
Math., 27(3), (2006), 319-367.
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Progressive iteration approximation property
Jorge Delgadoand Juan Manuel Pena

Departamento de Matemticas, Universidad de Oviedo
Departamento de Matemtica Aplicada, Universidad de Zaragoza

Thursday 9.50, II

Let us consider a sequence of parameters(ti)
n
i=0 and a sequence of points(Pi)

n
i=0 in R

2 or R
3

such that the pointPi is assigned to the parameterti for all i = 0, 1, . . . , n. So, given a blending
basis(u0, . . . , un), we generate a starting curve asγ0(t) =

∑n
i=0 P

0
i , ui(t) whereP 0

i = Pi for
i = 0, 1, . . . , n. Then, by calculating the adjusting vector for each controlpoint∆0

i = P 0
i − γ0(ti),

and takingP 1
i = P 0

i + ∆0
i for i = 0, 1, . . . , n we get the curveγ1(t) =

∑n
i=0 P

1
i , ui(t). Iterating

this process we can get a sequence of curves(γk)∞k=0. Then, when the curve sequence converges
to a curve interpolating the given initial sequence of points, the initial curve is said to have the
progressive iteration approximation property (PIA from now on).

Qi et al. as well as de Boor showed (see [6] and [1]) that the uniform cubic B-spline basis
satisfied the PIA. In [4] Lin et al. showed that the nonuniformcubic B-spline basis also satisfied
the PIA and extended the property for surfaces, showing thatthe nonuniform cubic B-spline tensor
product surface satisfied such property. It is well know thatnormalized totally positive bases are
associated to shape preserving representations and that the normalized B-basis presents optimal
shape preserving properties. In [5] Lin et al. proved that curves and tensor product surfaces generated
by normalized totally positive bases satisfy the PIA. Finally, in [3] Delgado and Peña showed that
the normalized B-bases provide the fastest convergence rates of the PIA for both curves and surfaces
generated by normalized totally positive bases.

Here we will make a survey of the known results on the PIA. In addition, we will discuss the
PIA property with other different representations like theWang-Ball basis (see for example [2]),
which is not totally positive, and with rational surfaces.

References
[1] C. de Boor (1979), How does Agee’s method work?, Proceedings of the 1979 Army Nu-

merical Analysis and Computers Conference, ARO Report 79-3, Army Research Office, 299-302.
[2] J. Delgado and J. M. Peña (2006), On the generalized Ball bases, Advances in Computa-

tional Mathematics 24, 263-280.
[3] J. Delgado and J. M. Peña (2007), Progressive iterative approximation and bases with the

fastest convergence rates, Computer Aided Geometric Design 24, 10-18.
[4] H. Lin, G. Wang and C. Dong (2003), Constructing iterative non-uniform B-spline curve

and surface to fit data points (in Chinese), Science in China (Series E) 33, 912-923.
[5] H. Lin, H. Bao and G. Wang (2005), Totally positive bases and progressive iteration approx-

imation, Computer and Mathematics with Applications 50, 575-586.
[6] D. Qi, Z. Tian, Y. Zhang and J. B. Zheng (1975), The method of numeric polish in curve

fitting (in Chinese), Acta Mathematica Sinica 18, 173-184.
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Contextual Image Compression and Delaunay
Triangulations
Laurent Demaret

Helmholtz Zentrum Mnchen

Saturday 14.10, II

We present new advances in image compression based on adaptive triangulations. Classical com-
pression standards (JPEG,JPEG2000), based on spectral methods (Fourier, wavelets) do not provide
optimal approximation rates for functions containing essential singularities supported on regular
curves, corresponding to geometrical shapes of objects in natural images. Therefore fully non-linear
geometric methods have become an increasingly important research topic in the field of image ap-
proximation. Among them adaptive thinning methods are based on continuous, piecewise affine
functions on Delaunay triangulations [1] and provide very flexible and reduced approximations of
functions. This work is concerned with the design and implementation of a new efficient com-
pression scheme of the corresponding information, which makes use of local redundancies in the
triangulation. In particular, suitable contextual encoding of the positions of the vertices and of the
greyscale values is proposed, which takes into account the specific local geometrical structure of
the triangulation and combines it with appropriate combinatorial encoding. Finally some results are
shown where our method significantly outperforms both our prototype method [1] and JPEG2000
for some classical images, at low bitrates.

This is joint work with Armin Iske (University of Hamburg) and Wahid Khachabi.
Reference
[1] L. Demaret, N. Dyn, A. Iske Image Compression by Linear Splines over Adaptive Trian-

gulations, Signal Processing Journal 86 (7), July 2006, 1604-1616

Online Triangulation of Laserscan Data
Klaus Denker, Burkhard Lehner and Georg Umlauf

TU Kaiserslautern

Tuesday 10.50, I

Hand-guided laser scanners are used in industry for reverseengineering
and quality measurements. It is difficult for the operator tocover the scanned object completely

and uniformly. Therefore, an interactive display of the surface scanned so far can assist the operator
in this task.

Our implementation creates a triangulation from the streamof scanned surface points online,
i.e., the data points are added to the triangulation as they arrive. Areas scanned multiple times or
with a higher point density result in a

finer mesh and a higher accuracy. Furthermore, the vertex density adapts to the estimated
curvature, and

a level-of-detail feature can reduce the mesh density for fast rendering even on low-cost graph-
ics hardware.
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Numerical Solutions of the Kawahara and Modified
Kawahara Equations Using Radial Basis Functions

İdris Dăg andYilmaz Dereli
Eskişehir Osmangazi University, Eskişehir , Turkey

Anadolu University, Eskişehir , Turkey

Saturday 10.50, II

This study is carried out to investigate the numerical solutions of the Kawahara and Modified Kawa-
hara equations by using the meshless method based on collocation with radial basis functions. The
scheme is exhibited by studying travelling wave solution for both equations. Results of the meshless
method with different radial basis functions are presented. The figures of error and wave motions
for both equations are shown. It is seen that the radial basisfunction method can be used to obtain
the numerical solutions of the Kawahara and Modified Kawahara equations.

A Topological Lattice Refinement Descriptor for
Subdivision Scheme

François Destelle, Cédric Gérot and Annick Montanvert
Gipsa-lab

Friday 14.10, II

A subdivision process consists in a topological subdivision step followed by a geometric smoothing
of the mesh vertices. The topological step can be described as a refinement on regular tiling lattices
[ID04] or more generally as some local transformation descriptors [MR03]. The former classifies
all the regular lattice topological transformations via a compact encoding; it defines the mapping
between two unbounded regular lattices. The regular lattice descriptor is limited by the control mesh
face type, the subdivided mesh must be composed of the same kind of faces. The latter describes
some local topological transformations as the insertion ofvertices in each face; their formalism
defines a meta-scheme of subdivision surfaces. But these meta-schemes cannot describe a large
number of regular schemes, as well as most of the rotative lattice descriptors.
In our work we generalize these meta-schemes. Our descriptor is locally defined by an integer triple
which describes the number of inserted vertices relativelyto the components of each face : vertices,
edges and center. Our topological meta-scheme is coupled with a flexible connectivity descriptor,
enhancing the modelization capabilities. It describes theschemes commonly used and it can build a
variety of others, including some of the rotative schemes. The subdivision operators described here
can be concatenated, leading to more complex topological descriptions.

[ID04] I. Ivrissimtzis, N. A. Dodgson, and M. A. Sabin. “A generative classification of mesh
refinement rules with lattice transformations”. Computer Aided Geometric Design, 21(1):99-109,
2004.

[MR03] Heinrich Mller and Markus Rips. “Another metaschemeof subdivision surfaces”. Visual-
ization and Mathematics III, pages 201-220, 2003.
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Geometry Processing and Hetrogeneous Computing
Tor Dokken

SINTEF

Monday 16.30, II

As parallel computing resources have been too expensive formost of the CAGD community, effi-
cient implementation of algorithms outside of High Performance Computing (HPC) has until a few
years ago been following the sequential programming paradigm. Floating point operations in earlier
processors lasted multiple clock cycles. Thus traditionalimplementations of, e.g., the Cox-de Boor
algorithm are tailored to minimizing the amount of floating point operations. Current CPU chips
have multiple processors cores (2, 4, 8, 12) each performingmultiple floating point operations in a
clock cycle. In addition graphical processor units (GPUs) have become programmable data stream
processors having up to 480 processors. As most traditionalalgorithms have been developed with
sequential computing in mind, the sequential nature is hard-coded into the algorithm. Accordingly
systems for automatic parallelization of such algorithms can not be expected to be readily available.
Therefore we should readdress the algorithmic approach to CAGD challenges to find approaches that
are better suited for multi-core and data stream processors. The talk will look at some experiments
performed using GPUs as computational resources, and look into other CAGD challenges that could
benefit from parallel algorithms.

Bézier approximation to Surfaces of Constant Mean
Curvature

Rubén Doradoand Javier Sánchez-Reyes
University of Jaén (Spain)

University of Castilla-la Mancha (Spain)

Saturday 14.10, I

Constant mean curvature surfaces are defined as the solutionof partial differential equations with
boundary conditions. Such surfaces minimize a certain objective function, for instance the area
in the case of minimal surfaces, hence finding application inphysics and engineering. Numerical
techniques are usually preferred, yet they do not furnishedthe Bézier representation demanded by
commercial CAD programs. As an alternative, we advocate a polynomial approximation, based on
a Hermite interpolation over a triangular domain, thus expressible as a triangular Bézier patch.

Subdivision Schemes and Seminormed Spaces
Serge Dubuc

Saturday 16.30, I

We compare three criteria of convergence of subdivision schemes for curves. The first one has
been found by Gregory, Dyn and Levin in the uniform case, and by Buhmann and Micchelli in the
general case. The second one is proposed by the author. The last one, by Daubechies and Lagarias,
covers only the uniform case. We relate these three criteriatogether by using specific seminorms for
subdivision operators, seminorms that make them equivalent. In particular, the last two criteria are
linked through the duality theory.
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Rational spline developable surfaces
Leonardo Fernandez-Jambrina

Universidad Politecnica de Madrid, Spain

Saturday 14.30, I

In this talk construction of developable surfaces is reviewed within the NURBS framework. Previous
results by Aumann and the author for Bézier and B-spline developable surfaces respectively are
extended to the rational and rational B-spline cases.

The null total curvature requirement for developable surfaces translates into non-linear con-
ditions for control points if one uses the standard NURBS formalism. Only cylinders and cones
can be constructed in a straightforward way, but not the generic case. However, the publication of
[Aumann(2003)] showed that it is possible to

solve the developability constraint for all degrees with a simple linear algorithm relating the
control points of neighbouring cells in the net of the surface. Besides the extension to spline de-
velopable surfaces the formalism can be completed by assigning weights to the control points and
therefore obtain NURBS developable surfaces.

The construction is grounded on the blossom of rational B-spline curves and is therefore com-
patible with related algorithms such as knot insertion.

However, the construction does not commute with degree elevation of the limiting curves of the
developable surfaces. This fact can be used for further extending the use of the formalism.

Other geometric features such as the striction line of the developable surface can be easily
calculates with this construction.

References
[Aumann(2003)] Aumann, G., 2003. A simple algorithm for designing developable Bézier surfaces.
Computer Aided Geometric Design 20, 601-619.

[Aumann(2004)] Aumann, G., 2004. Degree elevation and developable Bézier surfaces.
Computer Aided Geometric Design 21, 667-670.

[Fernández(2007)] Fernández-Jambrina, L., 2007. B-spline control nets for developable sur-
faces. Computer Aided

Geometric Design 24, 189-199.

Computing the intersection with ringed surfaces
Mario Fioravanti and Laureano Gonzalez–Vega

Universidad de Cantabria

Saturday 11.40, I

A method for computing the intersection curve between a rational surface and a rational ringed
surface is analyzed. A ringed surface obeys two polynomial equations of the formf(x, y, z, u) = 0
andg(x, y, z, u) = 0, beingu the parameter of the directrix curve. This parameter can be easily
eliminated by computing the resultant off and g, with respect tou by using, for example, the
Bézout matrix. This gives the implicit equation of the ringed surface. Substituting with the

components of the other surface parametrization, one obtains the implicit equation of a real
algebraic plane curve, which is a projection of the intersection curve between both surfaces into the
real affine plane. Next, the topology of this algebraic curveis determined by using the algorithms
in [Gonzalez–Vega, L., Necula, I.,Efficient topology determination of implicitly defined algebraic
plane curves,Computer Aided Geometric Design19 (2002), 719–743] or [Eigenwillig, A., Kerber,
M., Wolpert, N.,Fast and Exact Geometric Analysis of Real Algebraic Plane Curves, ISSAC’07,
151–158, ACM Press], which are based on the using of the Sturm–Habitch sequence. Once the
topology of the curve is known and the geometric extraneous components arising are discarded, a
suitable number of well chosen points in each component of the searched intersection curve may be
computed by using standard numerical methods.
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Variational principles and compressive algorithms
Massimo Fornasier

Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Linz, Austria

Monday 8.30

Solutions of certain PDEs and variational problems may be characterized by "a few significant de-
grees of freedom", and one may want to take advantage of this feature in order to design efficient
numerical solutions. Examples of such situations are ubiquitous: digital signal coding/decoding,
compressed sensing, singular PDEs for image processing, crack modelling and free-discontinuity
problems, viscosity solutions of Hamilton-Jacobi

equations. In the first part of the talk, we revise the role of variational principles, in partic-
ular L1-minimization, as a method for sparsifying solutions in several contexts. Then we address
particular applications and numerical methods. We presentthe analysis of a superlinear convergent
algorithm for L1-minimization based on iterative reweighted least squares. We show its improved
performances in compressed sensing. A similar algorithm isthen applied for the efficient solution
of a system of singular PDEs for image recolorization in a relevant real-life

problem of art restoration. We conclude by presenting initial promising results in domain de-
composition methods for singular PDEs, for which solutionsmay be discontinuous. The discon-
tinuities may cross the interfaces of the domain decomposition patches. The crucial difficulty is
the correct treatment of interfaces, with the preservationof crossing discontinuities and the correct
matching where the solution is continuous instead. We discuss the convergence properties of the
proposed method and several numerical examples both in 1D and 2D.

A Zoo of Special Features for ternary Catmull-Clark
Subdivision Surfaces

Christoph Fuenfzig, Hans Hagen, Kerstin Mueller and Lars Reusche
TU Kaiserslautern

Friday 14.30, II

In general when dealing with subdivision surfaces, we want to obtain a smooth surface with a given
set of subdivision rules. To jazz up the smooth model by stylistic elements, Hoppe et al introduced
special features. Their kind of special features use the refinement rules of cubic B-Spline curves
at tagged edges as well as vertices and produce, e.g., sharp edges, conicals, and darts in this way.
We push the boundaries of the existing special features and give an artist new choices to deform the
model and to reduce continuity in well-defined areas. Rational subdivision surfaces as well as the
known rules with restricted masks are part of our set of special features rules. Also, a blend between
the old and new rules is possible. We compare the various special features and give an overview of
their capabilities.
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Antagonism between Extraordinary Vertex and its
Neighbourhood for Defining Nested Box-Splines

François Destelle,Cédric Gérot and Annick Montanvert
GIPSA-Lab, Grenoble University

Friday 14.50, II

A Box-Spline based subdivision scheme generates a smooth Box-Spline surface with ann-sided
patch around each extraordinary vertex (EV) of the initial mesh. Every patch is made up with nested
Box-Spline rings. More precisely, at each subdivision step, extraordinary rules define the control
polyhedron of a new Box-Spline which extends continuously the regular part of the surface within
then-sided hole. These rings are also expected to converge smoothly onto the EV. Necessary and
sufficient conditions for achievingCn-continuity at the EV cannot be used in practice for defining
the extraordinary rules. But some studies investigate shape properties at the limit or the convergence
behaviour at the EV and provide useful conditions on the eigenvalues and the eigenvectors of the
subdivision matrix.

In this work, we highlight the fact that if these conditions may produce appropriate behaviour
at the EV, they can also damage the shape of the Box-Spline rings around it. More precisely we
design extraordinary rules for Loop’s scheme which fulfil all these conditions and produce rings
with unsatisfactory shape. This work demonstrates that, ifextraordinary rules are defined for the
rings composed of vertices around an EV, a compromise must bereached between the behaviour
of the Box-Spline rings expected for the EV and the one expected for the regular surrounding area.
As future work we study how to design such a compromise which would take into account new
evaluation of produced distortions.

Spatial polynomial curves with different Pythagorean
structures and associated frames

Rida T. Farouki,Carlotta Giannelli , Carla Manni and
Alessandra Sestini

Department of Mechanical and Aeronautical Engineering, University of California,
Davis, USA.

Dipartimento di Sistemi e Informatica, Università degli Studi di Firenze, ITALY.
Dipartimento di Matematica, Università di Roma “Tor Vergata,” ITALY.

Dipartimento di Matematica “Ulisse Dini,” Università degli Studi di Firenze, ITALY.

Thursday 11.40, I

In order to construct spatial polynomial curves endowed with useful algebraic structures, the
Pythagorean condition for polynomials has been largely investigated. For this reason, the scien-
tific research has dedicated a very broad activity in the study and analysis of PH curves and their
applications. Recently, by adding a second Pythagorean condition, a particular subset of the spatial
PH curves – called “double” Pythagorean-hodograph (DPH) curves – has been studied and identi-
fied. DPH curves encompass all polynomial helices which are characterized by further geometric
features. Since the existence of a rational Frenet frame is equivalent to the double Pythagorean-
hodograph structure, the introduction of DPH curves has allowed to characterize the conditions un-
der which the Frenet frame has a rational dependence on the curve parameter. Nevertheless, an open
research area is devoted to identify PH curves for which the rotation–minimizing frame is rational.
In this talk, we present some recent results concerning the above mentioned topics.
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Two Computational Advantages of Mu-Bases for the
Analysis of Rational Planar Curves

Ron Goldmanand Xiaohong Jia
Rice University

Friday 10.30, II

A µ-basis for a rational planar curve is a basis of lowest degreefor the moving curve module –
i.e. the syzygy module – of a rational parametrization for the curve. Over a dozen years ago, Tom
Sederberg first observed that due to their low degreeµ-bases provide a computational advantage
over classical techniques for the implicitization of rational planar curves. Here we shall show that
µ-bases also provide a more efficient approach than classicalmethods for the computation of the
singularities of rational planar curves.

Automated Generation of Finite Element Meshes
Suitable for Floodplain Modelling

Andrew Goodwin
Umwelt (Australia) Pty Limited

Saturday 10.10, II

Modern techniques such as Airborne Laser Scanning (ALS) provide dense point clouds that can be
used to describe a topographical surface. A recent application of ALS is to flood modelling. One
of the challenges faced when modelling flooding is generating a mesh that contains enough detail to
accurately represent important surface features whilst remaining computationally viable. In order to
meet these challenges, a number of methods have been developed that facilitate the generation and
validation of finite element meshes suitable for floodplain modelling.

This paper describes a case study focusing on a longwall mining operation in the Hunter Valley
of New South Wales, Australia. In the associated program of work, finite element meshes repre-
senting floodplains were developed by simplifying airbornelaser data point clouds. The required
level of detail present in the finite element mesh was achieved by manipulating a surface generated
using quadric error metrics. Further steps were taken to ensure that the hydrodynamically significant
features of the landform were retained. Several versions ofthe mesh were developed to represent
various subsidence scenarios, allowing different stages of the longwall mining process to be inves-
tigated. In the overall project, particular emphasis was placed on linking visualisation techniques to
the underlying model and the hydrodynamic solutions.

The general methodology described in the paper has applications in many other areas of envi-
ronmental modelling including noise, dust, drainage and archaeology.
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Computing n-variate orthogonal discrete wavelet
transforms on the GPU

Lubomir T. Dechevsky andJoakim Gundersen
Narvik University College

Tuesday 9.50, II

In [1,2] we studied an algorithm for isometric mapping between smoothn-variatem-dimensional
vector fields and fractal curves and surfaces, by using orthonormal wavelet bases. This algorithm
matched only the orthonormal bases scaling functions (the "V-spaces" of multiresolution analysis).
In the present communication we shall consider a new algorithm which matches the orthonormal
bases of (mother) wavelets (the "W-spaces" of multiresolution analysis). In combination with the
algorithm for "the V-spaces" from [1], [2], the new algorithm provides the opportunity to com-
pute multidimensional orthogonal discrete wavelet transform in two ways – the "classical" way for
computing multidimensional wavelet transforms, and by using a commutative diagram of mappings
of the bases, resulting in an equivalent computation on the GPU. The orthonormality of the wavelet
bases ensures that the direct and inverse transformations of the basis are mutually adjoint (transposed
in the case of real entries) orthogonal matrices, which eases the computations of matrix inverses in
the algorithm.

REFERENCES:
[1] L. T. Dechevsky and J. Gundersen, Isometric Conversion Between Dimension and Resolution,
Mathematical methods for Curves and Surfaces, ed. M. Dæ hlenand K. Mørken and L. Schumaker,
Nashboro Press, Tromsø 2004, Norway, 6th International Conference on Mathematical Methods for
Curves and Surfaces, pp. 103–114, 2005

[2] L. T. Dechevsky, J. Gundersen and A. R. Kristoffersen. Wavelet-based isometric conversion
between dimension and resolution and some of its applications. In: Proceedings of SPIE: Wavelet
applications in industrial processing V, 2007, Boston, Massachusetts, USA, vol. 6763, 2007

Generalized Voronoi Diagrams in Urban Planning
Hans Hagenand Inga Scheler

TU Kaiserslautern

Friday 17.00, I

Nowadays, every application area (like biomedical visualization or soil science) has to deal with
large amount of data which needs to be managed. In the application area of urban planning, several
specialized systems exist. These commonly used systems areonly suitable to explain and illustrate
the planning process. There is a lack of goal oriented tools for interpretation and visual presentation
of the mostly unstructured data. Here we present our clustering method using generalized area
Voronoi diagrams realized in our tool IKone, tailor made to support the process of redevelopment
of military conversion areas. First, we identify and describe the determining indicators as well as
multiple actors. Additionally, based on the specific character of the parameters we have to extract
the influence of the indicator to the entire area. Subsequently we arrange the parameters according
to the different views given by the actors. We define the different views by an individual weighting
of location factors for the predefined usage. Thereon we identify our own specified metric which
is able to handle the variety of indicators as well as the actors. Combining a clustering-process
with a selective visualization technique provides a powerful tool for interpretation. Our goal is to
superpose the clustering and visualization process with the geographic position of the conversion
area. The restructured data gives the basis for the simplification and structuring of the planning
process for the conversion of land formerly utilized by the military. Based on the tessellation we
present the results of the analysis with the help of an overlay-technique. To allow a deeper insight of
the result, the fundamental input data is represented by a multidimensional visualization technique.
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Convergence of Subdivision Schemes with Hoelder
Continuous Masks and its Applications

Bin Han
Saturday 18.00, I

Many masks in applications are not2π-periodic trigonometric polynomials. For example, the masks
for rational splines are2−m(1 + e−iξ)m with a positive real numberm. Masks for Butterworth
filters in engineering take the formp(ξ)/q(ξ) with 2π-periodic trigonometric polynomialsp and
q. Hölder continuous masks also unavoidably appear in the study of compactly supported Riesz
wavelet bases which are of interest in wavelet-based numerical algorithms for PDEs. In this talk,
we shall completely characterize the convergence of subdivision schemes and cascade algorithms
in weightedL2 spaces with Hölder continuous masks. Based on this result, we are able to settle
several important problems in wavelet analysis. For example, we show that if a refinable function
φ in L2 has an exponentially decaying mask, thenφ must have exponential decay too. This settles
a conjecture by Daubechies. Our result also leads to a complete characterization of Riesz wavelet
bases with Hölder continuous masks. This talk is based on [B.Han, Refinable functions and cascade
algorithms in weighted spaces with Holder continuous masks, SIAM J. Math. Anal. 40 (2008),
Issue 1, 70–102.]

Biharmonic Spline Approximation from Simple Layer
Potentials

Thomas Hangelbroek
Texas A and M University

Thursday 11.40, II

This talk deals with two important mathematical problems arising in radial basis function (RBF)
approximation. The first concerns finding optimal error estimates for correct classes of functions.
Existing error estimates for RBF approximation are very effective when the error is measured inL2.
However, when the error is measured in other norms, the best error estimates often give suboptimal
convergence rates, or provide optimal rates for excessively small classes of functions. The second
problem concerns the search for approximations that effectively treat the boundary of a domain: it
is well known that the error in RBF approximation is non-uniform over the underlying domain and
is particularly larger in a small neighborhood of the domain’s boundary.

Focusing on approximations generated by translates of the fundamental solution of the 2D bi-
harmonic equation, we introduce a new type of approximationscheme - an extension of one recently
developed for the unit disk - to treat functions defined on very general domains inR2. We show that
theLp-approximation order for such a scheme is2 + 1/p, which matches a known upper bound and
consequently is the best possible order. Moreover, this rate holds for smoothness classes that are
roughly as large as the theory allows. We also show that the (much better) boundary-free approxi-
mation order can be obtained for sets of centers with an appropriate density near the boundary, and
that, by supplementing a given set of centers, this increased convergence rate can be achieved with
little extra computational cost.
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Interactive Texture Based Flow Visualization
Charles Hansenand Guo-Shi Li

Scientific Computing and Imaging Institute, University of Utah

Friday 18.00, I

Flow fields play an important role in a wide range of scientific, engineering, and medical disciplines.
Due to the advancements in computing technologies and computational fluid dynamics (CFD), re-
cently

we have seen a large number of flow datasets with ever increasing size and complexity from
numerical fluid simulations. In order to obtain valuable information from these data, it is essential
to devise effective computational flow visualization methods. Flow visualization methods can be
highly useful to comprehend and analyze these data.The computational cost to generate such an
image should not be overly expensive to increase the usefulness of a flow visualization method in a
wide range of applications.

In the past few years, the texture advection approach has been the de facto solution for flow
visualization in the research community. This approach canbe used to realize dense texture visu-
alization and dye advection, where the former is designed todepict instantaneous local features in
the entire domain, and the later focuses on highlighting thespatial-temporal relationship between
the injection site of the dye material and the rest of the domain. Presented as textures, the resulting
visualization from these approaches is considered easy to understand at the cost of elevated com-
putation cost. Since both approaches can be realized as a texture generation process, tremendous
performance gains can be obtained by utilizing graphics hardware originally designed for rendering
purposes. Due to the difference in design paradigm and hardware constraints, however, many meth-
ods proposed by previous research have been focused on performance issues while sacrificing the
faithfulness of the resulting visualization.

To tackle this problem, in this talk I will present several accuracy-oriented texture-based flow
visualization methods for two-dimensional unsteady flows,unsteady flows on surfaces, and dye ad-
vection. Issues regarding the accuracy and faithfulness ofthe visualization are rigorously treated
with algorithmically and physically correct solutions. These schemes are also designed to lever-
age parallelism that can be accelerated by the current generation of graphics hardware to achieve
interactive performance.
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Interactive Visual Analysis of Timedependent
Multivariate Data

Helwig Hauser
University of Bergen

Friday 17.30, I

The context of time-dependent multivariate data creates special challenges for interactive visual
analysis, especially when large amounts of time series are given. We investigate and compare
different approaches to realize analytical procedures forsuch datasets from different application
fields (including sensor data analysis, automotive simulation, and medical perfusion analysis). One
opportunity is to enable the interaction with large amount of curve representations [1]. Another
approach is based no differential information [2] and a third approach integrates shape parameters
and statistical analysis [3]. The individual strengths of the discussed approaches are documented by
selected analysis examples.

[1] Zoltán Konyha, Krešimir Matkovíc, Denis Grǎcanin, Mario Jelovíc, and Helwig Hauser: Interac-
tive Visual Analysis of Families of Function Graphs. In IEEETransactions on Computer Graphics
and Visualization 12(6), pp. 1373-1385, 2006
[2] Helwig Hauser: Interactive Visual Analysis – an Opportunity for Industrial Simulation. Invited
paper in the Proc. of the 17th Conf. on Simulation and Visualization (SimVis), March 2-3, 2006
[3] Steffen Oeltze, Helmut Doleisch, Helwig Hauser, Philipp Muigg, and Bernhard Preim: Interac-
tive Visual Analysis of Perfusion Data. In IEEE Transactions on Computer Graphics and Visualiza-
tion 13(6), pp. 1392-1399, 2007

Numerical Integration over Spherical Caps
Kerstin Hesse

University of Sussex, United Kingdom

Saturday 17.00, II

In this talk, we discuss numerical integration over spherical caps.
We explicitly construct tensor product rules for numericalintegration over a spherical cap on

S2 that have positive weights and integrate polynomials up to ahigh degreen exactly. The rules have
been implemented and tested and we show illustrations of thegeometric distribution of the nodes as
well as the performance of the rules for some test functions.The construction also works forSd and
the orderO(nd) of the number of nodes is optimal. A slight modification of theconstruction yields
also equal weight rules withO(n3) nodes with polynomial exactness of degreen for numerical
integration over spherical caps onS2.

Finally we discuss error estimates for such rules in a Sobolev space setting: The worst-case
error of positive weight rules with polynomial degree of exactnessn for numerical integration over
spherical caps onSd is of the ordern−s for functions in unit ball of the Sobolev spaceHs, where
s > d/2.

The construction of the rules and the analysis of their properties is joint work in progress with
Rob Womersley. Local integration over subsets of the spherewith high polynomial degree of exact-
ness has only recently attracted attention, and the presentwork is motivated by such recent attempts
and by analogous results for numerical integration over the(whole) sphere.
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Detecting and Preserving Sharp Features in
Anisotropic Smoothing for Noised Mesh

Masatake Higashi, Masakazu Kobayashi and Tetsuo Oya
Toyota Technological Institute

Tuesday 9.50, I

We propose a smoothing method for noised meshes. We calculate fairness factors from first and
second order discrete Laplacians at mesh points and obtain sharp features in the mesh by connecting
edges which have large values of the factors at both the ends and by refining the edges as a graph.
Then, we use these results for anisotropic smoothing and obtain a smoothed shape which preserves
the sharp features included in the mesh. We demonstrate someexamples which show effectiveness
of the proposed method compared to other fairing methods such as diffusion of curvature flow and
bilateral denoising.

CSG operations of arbitrary primitives with inclusion
arithmetic and real-time ray tracing

Hans Hagen, Charles Hansen,Younis Hijazi , Andrew Kensler and
Aaron Knoll

University of Kaiserslautern, IRTG 1131
SCI Institute, University of Utah

University of Kaiserslautern, IRTG 1131, Speaker
SCI Institute, University of Utah, IRTG 1131

Thursday 10.30, I

We present a new method for interactively ray tracing Constructive Solid Geometry (CSG) objects
of arbitrary primitives represented as implicit functions. Whereas modeling globally with implicit
surfaces suffers from a lack of control, implicits are well-suited for arbitrary primitives and can be
combined through various operations. The conventional wayto represent union and intersection
with inclusion arithmetic is simply using min and max but other operations such as the product of
two forms can be useful in modeling joints between multiple objects.

Typical primitives are objects of simple shape, e.g. cubes,cylinders, spheres, etc. Our method
handles arbitrary primitives, e.g. superquadrics or non-algebraic implicits. We use subdivision and
inclusion arithmetic (interval arithmetic and reduced affine arithmetic) to guarantee robustness and
GPU ray tracing for fast and aesthetic rendering. Indeed, ray tracing parallelizes efficiently and triv-
ially and thus takes advantage of the continuous increasingcomputational power of hardware (CPUs
and GPUs); moreover it lends itself to multi-bounce effects, such as shadows and transparency,
which help for the visualization of complicated objects. With our system, we are able to render
multi-material CSG trees of implicits robustly, in interactive time and with good visual quality.
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Simplification of FEM-models on multi-core processors
and the Cell BE

Jon Hjelmervik and Jean-Claude Léon
Sintef

ENSHMG-INPG Laboratory G-SCOP

Monday 18.00, II

Preparing a CAD model for finite element analysis can be a time-consuming task, where mesh sim-
plification plays an important role. It is important that thesimplified model has the same mechanical
properties as the original model, and that it is within a given error tolerance.

Most mesh simplification algorithms are either fully or partially sequential, and are therefore
not suitable for architectures with high levels of parallelism. Furthermore, the use of processors such
as GPUs of IBMs Cell BE requires algorithms to be adapted to benefit from their computational
advantages. Here, we present an algorithm written for parallel processors, and its implementation
for the Cell BE and multi-core CPUs.

The parametric four point scheme
Nira Dyn, Michael Floater andKai Hormann

Tel Aviv University
University of Oslo

Clausthal University of Technology

Monday 14.10, II

Dubuc’s interpolatory four-point scheme inserts a new point by fitting a cubic polynomial to neigh-
bouring points over uniformly spaced parameter values. Butit is well-known from cubic spline
interpolation, that centripetal or chordal parameter values can give much better results than uniform
ones for non-uniformly spaced data points. Therefore, we modify the four-point scheme and locally
fit cubic polynomials with respect to centripetal or chordalparameterization of the data points to
compute new data points. The resulting scheme is non-linearand data-dependent. We prove con-
vergence of the two schemes and bound the distance between the limit curve and the initial control
polygon. Numerical examples indicate that like for the classical four-point scheme the limit curves
areC1-continuous and that using centripetal parameter values usually gives the best curves.
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Isogeometric Analysis: Progress and Challenges
Thomas J.R. Hughes

ICES, The University of Texas at Austin

Thursday 15.20

Geometry is the foundation of analysis yet modern methods ofcomputational geometry have until
recently had very little impact on computational mechanics. The reason may be that the Finite Ele-
ment Method (FEM), as we know it today, was developed in the 1950s and 1960s, before the advent
and widespread use of Computer Aided Design (CAD) programs,which occurred in the 1970s and
1980s. Many difficulties encountered with FEM emanate from its approximate, polynomial based
geometry, such as, for example, mesh generation, mesh refinement, sliding contact, flows about aero-
dynamic shapes, buckling of thin shells, etc. It would seem that it is time to look at more powerful
descriptions of geometry to provide a new basis for computational mechanics.

The purpose of this talk is to explore the new generation of computational mechanics proce-
dures based on modern developments in computational geometry. The emphasis will be on Isogeo-
metric Analysis in which basis functions generated from NURBS (Non-Uniform Rational B-Splines)
and T-Splines are employed to construct an exact geometric model. For purposes of analysis, the
basis is refined and/or its order elevated without changing the geometry or its parameterization.
Analogues of finite elementh- andp-refinement schemes are presented and a new, more efficient,
higher-order concept,k-refinement, is described. Refinements are easily implemented and exact ge-
ometry is maintained at all levels without the necessity of subsequent communication with a CAD
(Computer Aided Design) description.

In the context of structural mechanics, it is established that the basis functions are complete
with respect to affine transformations, meaning that all rigid body motions and constant strain states
are exactly represented. Standard patch tests are likewisesatisfied. Numerical examples exhibit
optimal rates of convergence for linear elasticity problems and convergence to thin elastic shell solu-
tions. Extraordinary accuracy is noted fork-refinement in structural vibrations and wave propagation
calculations. Surprising robustness is also noted in fluid mechanics problems. It is argued that Iso-
geometric Analysis is a viable alternative to standard, polynomial-based, finite element analysis and
possesses many advantages. In particular,k-refinement seems to offer a unique combination of at-
tributes, that is, robustness and accuracy, not possessed by classicalp-methods, and is applicable
to models requiring smoother basis functions, such as, thinbending elements, and strain-gradient
and phase-field theories. A new modeling paradigm for patient-specific simulation of cardiovascular
fluid-structure interaction is described, and a prcis of thestatus of current mathematical understand-
ing is presented.

Stochastic resonance in quantized triangle meshes
Ioannis Ivrissimtzis

Durham University

Tuesday 10.10, I

We experiment with the effect of noise in the performance of amesh compression algorithm which
uses predictive encoding on quantized vertex coordinates.We notice that a small amount of added
noise, even though it is expected to increase the entropy of the model, may lead to slightly smaller
filesizes. We interpret this phenomenon with the signal theoretic concept of stochastic resonance. A
small amount of added noise can slightly enhance regular patterns of the model’s low frequencies,
push them above the quantization threshold, and reduce the entropy of the model.
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Interpolation by Planar Cubic G2

Pythagorean-hodograph Spline Curves
Gašper Jaklič, Jernej Kozak, Marjeta Krajnc, Vito Vitrih and

Emil Žagar
FMF, University of Ljubljana and PINT, University of Primorska, Slovenia

FMF and IMFM, University of Ljubljana, Slovenia
IMFM, University of Ljubljana, Slovenia
PINT, University of Primorska, Slovenia

Thursday 14.10, I

In this talk, the geometric interpolation of planar data points and two boundary tangent directions by
a cubicG2 Pythagorean-hodograph (PH) spline curve will be considered. It is well known that any
cubic PH curve is a segment of a Tschirnhausen curve, which does not have any inflection points.
Thus it is expected that such a curve can not be used to interpolate arbitrary chosen planar data
points. But it will be shown that under some restrictions on data points such an interpolant exists.
An algorithm for the construction of the spline will be presented and numerical examples given
which indicate that the resulting spline curve

has nice shape properties. At the end some heuristic preprocessing methods for data points
which do not guarantee the existence of the spline curve willbe described.

Constrained T-spline Level Set Evolution
Bert Jüttler

Johannes Kepler University Linz

Friday 17.00, II

We study implicitly defined surfaces which are described as zero sets of T-spline functions. The use
of T-splines leads to piecewise algebraic surfaces with local refinability. In order to reconstruct such
surfaces from given data (e.g., unorganized point clouds),a dynamic framework has been developed,
which combines ideas from image processing with classical techniques of surface fitting techniques.

In this talk we will mainly focus on the use of constraints. The constraints represent a priori
knowledge about the shape of the object which is to be reconstructed. Several types of constraints
will be discussed, such as range constraints, convexity andvolume constraints. In addition, the
elastic deformation energy will be used as a soft constrainton the evolution process. It leads to more
realistic deformations of free-form objects.

The constraints can be be used to regularize the solutions, by avoiding problems with noisy and
uncertain data. In addition, the effect of noise in the data can also be dealt with by adapting the
evolution law which is used by the dynamic framework.

The talk is based on joint work with Martin Aigner, Robert Feichtinger, Matthias Fuchs, Otmar
Scherzer and Huaiping Yang.
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Adaptive isogeometric analysis by local h-refinement
with T-Splines

Michael Dörfel,Bert Jüttler and Bernd Simeon
Technische Universität München

Johannes Kepler University, Linz, Austria

Thursday 17.00, I

Isogeometric analysis based on NURBS (Non-Uniform Rational B-Splines) as basis functions pre-
serves the exact geometry but suffers from the drawback of a rectangular grid of control points in
the parameter space, which renders a purely local refinementimpossible. This paper demonstrates
how this difficulty can be overcome by using T-splines instead. T-splines allow the introduction
of so-called T-junctions, which are related to hanging nodes in the standard FEM. Obeying a few
straightforward rules, rectangular patches in the parameter space of the T-splines can be subdivided
and thus a local refinement becomes feasible while still preserving the exact geometry. Furthermore,
it is shown how state-of-the-art a posteriori error estimation techniques can be combined with re-
finement by T-Splines. Numerical examples underline the potential of isogeometric analysis with
T-splines and give hints for further developments.
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Sharp Estimates of the Constants of Equivalence
between Integral Moduli of Smoothness and

K-Functionals in the Multivariate Case
Lubomir T. Dechevsky andIlya V. Kachkovskiy

Narvik University College, Norway
Narvik University College, Norway; Departament of Physica, Saint-Petersburg State

University, Russia

Thursday 14.30, II

This communication addresses the estimation of the equivalence constants between the PeetreK-
functionalK2(t

k, f ;L2(R
n), Ẇ k

2 (Rn)) and the integral modulus of smoothnessωk(t, f)L2(Rn).
The constantsCk,p,n andDk,p,n, k ∈ N, 1 ≤ p ≤ ∞, are the minimal positive numbers, such
that for everyf ∈ Lp(R

n) + Ẇ k
p (Rn) holds

D−1
k,p,nωk(t, f)Lp(Rn) ≤ Kp(t

k, f ;Lp(R
n), Ẇ k

p (Rn)) ≤ Ck,p,nωk(t, f)Lp(Rn).

The previous known results about these constants (see [1]) are
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)
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In the present work we derive the following sharp estimates for p = 2:
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This generalizes the result of the first author for the casen = 1 (see [2]).
References
1. H. Johnen, K. Scherer,On the equivalence of the K-functional and moduli of continuity and

some applications, Constructive Theory of Functions of Several Variables, Lecture Notes in Math.,
No 571, Springer, 1977, pp. 119-140.

2. L. T. Dechevsky,The sharp constants of equivalence between integral moduliof smoothness
and K-functionals, Int. J. Pure Appl. Math., 2006, Vol. 33, No 2, pp. 157-186.
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An algorithm for computing the curvature-sign
domain of influence of Bezier control points

Panagiotis Kaklis
National Technical University of Athens

Friday 16.30, II

The below cited papers investigate the analytic structure of the domain, where a control point is free
to move so that curvature (torsion) of a planar (spatial) parametric curve maintains constant sign
over a user-specified subinterval of its parametric domain of definition. This

study resulted in a generic methodology for computing the domain of influence, assuming sim-
ply that the curve in question adopts the control-point paradigm with weight functions adequately
differentiable.

In the proposed paper we develop an algorithm that materializes the afore-mentioned methodol-
ogy for the curvature-sign of planar Bezier curves of degreen. The algorithm consists in evaluating
the intersection of two finite families of convex sets, namely a family of cones and a family of
rounded-vertex cones. The cardinality and characteris- tics of these sets can be derived from de-
composing the envelope of a one-parameter family of lines into convex segments, which results in
isolating the roots of a polynomial equation of degree at most 3(n− 2).

The paper includes a combinatorial-, time- and volume-complexity analysis of the proposed
algorithm and concludes with discussing its performance for a variety of artificial and industrial
data.

References
1. E.I. Karousos, A.I. Ginnis and P.D. Kaklis, Quantifying the Effect of a Control Point on the

Sign of Curvature, Computing 79, 249-259, (2007).
2. A.I. Ginnis, E.I. Karousos and P.D. Kaklis, Curve Fairingunder Curvature and Tolerance

Constraints, in Proceedings of the 6th AFA Conference on Curves and Surfaces, June 29 - July 5,
2006, Avignon, France, A. Cohen, T. Lyche, J.-L. Merrien, M.-L. Mazure and L.L. Schumaker (eds.)

3. E.I. Karousos, A.I. Ginnis, and P.D. Kaklis, ControllingTorsion Sign, accepted for presen-
tation in the 5th Geometric Modeling and Processing Conference (GMP 2008), April 23-25, 2008,
Hangzhou, China.

Weighted semiorthogonal spline wavelets and
applications

Bert Jüttler andMario Kapl
Institute of Applied Geometry, Johannes Kepler UniversityLinz, Austria

Johann Radon Institute for Computational and Applied Mathematics (RICAM),
Austria

Monday 14.10, I

We describe a non-standard tensor-product spline wavelet construction which is based on the one-
dimensional wavelet transform. For this we construct weighted semiorthogonal spline wavelets.
These are univariate spline wavelets which are semiorthogonal with respect to a weighted inner
product. In our method the weighted inner product is automatically adapted to the given data and
problem. That means, we design spline wavelets such that analysis provides an exact or approximate
best approximation with respect to the norm induced by the weighted inner product. Finally, we
consider different applications of this tensor-product spline wavelet construction and compare it
with standard uniform spline wavelets. On the one hand we construct a multiresolution analysis of
planar domains, on the other hand we use this tensor-productspline wavelet construction for optimal
design, especially for structure recognition.
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Finite multisided surface fillings
Kȩstutis Karčiauskas

Vilnius University

Saturday 12.00, I

Existing first or second order smooth multisided surface constructions have high bidegree or shape
problems. In the talk a method is presented based on:
(i) guide surfaces which represent designers intent;
(ii) G1 andG2 continuity.

The method produces fairG2 fillings even of bidegree5 × 5. More simple fairG1 fillings of
bidegrees3 × 3, 4 × 4 are also described.

Subdivision Matrices of Normals and Jacobians for
Surface and Volume Subdivision Schemes

Kiwamu Kase andHiroshi Kawaharada
RIKEN

Friday 11.20, II

In this talk, we introduce subdivision matrices of normals and Jacobians for surface and volume
subdivision schemes. These matrices give us normals or Jacobians at next step of subdivision.

In [KS06], we introduced the subdivision matrix of normals for stationary linear surface subdi-
vision schemes. Using the matrix we can check theG1-continuity of the subdivision scheme.

For stationary linear volume subdivision schemes, we introduce the subdivision matrices of
normals and Jacobians similarly. Using these matrices we can derive an necessary and sufficient
condition forG1-continuity of the volume subdivision scheme.

As above, these matrices are powerful tools for volume subdivision analysis because of their
existences for any stationary linear subdivision.
[KS06] Hiroshi Kawaharada and Kokichi Sugihara: Computation of Normals for Stationary Subdi-
vision Surfaces, in the fourth International Conference onGeometric Modeling and Processing, pp.
585–594, Pittsburgh, 2006.

Vertex blending via surfaces with rational offsets
Rimvydas Krasauskas

Vilnius University

Thursday 17.30, II

A vertex blending is a surface that fills a hole surrounded by faces and edge blendings around the
given vertex. We proposeG1 vertex blending surfaces with rational offsets of ann-sided angle with
planar faces when edges are blended using right circular cylinders which might have different radii.
We describe various kinds of such constructions in most details whenn = 3:

- triangular patch - Bezier triangular or degenerated quadrangular surface;
- setback type solutions that combine canal surface and spherical patches;
- setback construction - a hexagonal toric patch.
Extensions of these methods forn > 3 cases and more general edge blendings will be dis-

cussed.
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Generalized expo-rational B-splines for curves,
surfaces, volume deformations andn-dimensional

geometric modelling
B Bang, Lubomir T. Dechevsky,A. R. Kristoffersen and A. Lakså

Narvik University College

Friday 14.30, I

Abstract For the constructions consideres in items 1-4 of [1] we provide several model examples
of expo-rational B-splines (true or generalized) in the case of curves (see item 1 in [1]). Next, we
provide firstexplicit examples of the four constructions ofERBS for scattered sets on domains inR

n,
considered in item 2 of [1]. We then proceed to give first modelexamples of true and generalized
ERBS biorthonormal multiwavlet bases, as discussed in item3 of [1]. Finally, in connection with
the ERBS-based finite element and finite volume methods (FEM and FVM), we study first examples
of FEM and FVM for scattered interpolation,based on ERBS with defects. These ERBS-based
constructions are simpler and more easy then the ones considered in item 2 of [1], but due to the
high (possibly, transfinite) order of super convergence in all vertices, and special points on the edges,
of a triangulation, they are excellent new tool for numerical analysis of boundry-value problems for
PDEs over general domains inRn.
Reference
[1] L.T.Dechevsky. Generalized expo-rational B-splines. Communication at the 7-th Int. Conf. on
Mathematical Methods for Curves and Surfaces, Tœnsberg ’2008, Norway. (To appear.)

Adaptive Directional Subdivision Schemes
Gitta Kutyniok and Tomas Sauer

Stanford University
University Giessen

Anisotropic structures play a fundamental role in a varietyof areas such as image processing and
hyperbolic PDE. Hence nowadays there is a pressing need to develop more flexible subdivision
schemes which take directionality into account. In this talk, we will introduce subdivision schemes
which provide a means to incorporate directionality into the data and thus the limit function. More
precisely, we will develop a new type of non-stationary bivariate subdivision schemes, which allow
to adapt the subdivision process depending on directionality constraints during its performance, and
a complete characterization of those masks for which these adaptive directional subdivision schemes
converge will be shown. We will then apply the introduced adaptive directional subdivision schemes
to derive a fast decomposition associated with a sparse directional representation system for two
dimensional data, where we focus on the recently introducedshearlet system. In fact, we will show
that we obtain a flexible framework for deriving a shearlet multiresolution analysis with finitely
supported filters, thereby leading to a fast shearlet decomposition.
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A generalized B-spline matrix form of spline
Arne Lakså

Narvik University College

Thursday 10.10, II

Matrix forms of B-spline curves and surfaces have been considered in the work of several authors.
Here we propose a new, more general matrix formulation and respective upgraded notation. In this
matrix formulation it is possible to obtain the generation of the B-spline basis and the algorithms of
deCasteljau and Cox-deBoor in a very lucid unified form, based on a single matrix formula. This ma-
trix formula also provides an intuitively clear and straightforward unified approach to corner cutting,
degree elevation, knot insertion, computing derivatives and integrals in matrix form, interpolation,
and so on.

Interpolation of a bidirectional curve network by
B-spline surfaces on criss-cross triangulations

Catterina Dagnino andPaola Lamberti
Department of Mathematics, University of Torino - Italy

Friday 10.10, I

This talk is concerned with the construction of quadraticC1 B-spline surfaces on criss-cross trian-
gulations, interpolating a network of B-spline curves satisfying assigned compatibility conditions.
The main problem consists in finding a suitable surface representation such that the given curves
are isoparametric curves. In case of arbitrary curves, we propose a scheme for their interpolation by
B-spline curves, within a given tolerance.

Computing with implicit support function
representation of hypersurfaces

Bohumír Bastl,Miroslav Lávi čka and Zbyňek Šír
University of West Bohemia, Pilsen, Czech Republic

Thursday 12.00, I

Recently, the support function representation of hypersurfaces has been applied on some chosen
problems of CAGD. The support functionh(n) is a function defined on the sphere (or its suitable
subset) and it is a certain kind of a dual representation. It was shown that this representation is,
among others, very suitable for describing convolutions and offsets of hypersurfaces as these oper-
ations correspond to simple algebraic operations of the associated support functions. Nevertheless,
given a parametric or implicit representation of a hypersurface it is not always possible to represent
it via the support function (this is mainly due to the fact, that for each vector only one value ofh is
possible). We introduce a hypersurface representation which removes this main drawback of the sup-
port function representation; it is available for all algebraic hypersurfaces (given either implicitly, or
parameterically). Moreover, it gives us the possibility tobring the theory of support functions to the
method of classification of parameterized rational hypersurfaces with respect to their RC (Rational
Convolutions) properties and their convolution degrees. We show how the implicit support function
representation can be used for finding suitable reparameterizations of two given hypersurfaces to
obtain a rational parameterization of their convolution hypersurface, if it exists. This algorithm is
then applied on identification of PH curves/PN surfaces and computation appropriate PH/PN param-
eterizations (also of higher convolution degree).
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Parallel Example-based Texture Synthesis for Surfaces
Sylvain Lefebvre

INRIA

Monday 17.00, II

Example based texture synthesis algorithms automaticallygenerate a large image resembling a small
input example. These approaches, first limited to flat piecesof texture material- wood, stones, bricks,
cloth - have been extended to synthesize a given appearance directly on an object surface. This is
an important tool in answering the growing demand for variedand detailed content in Computer
Graphics applications.

Unfortunately, most of the existing approaches are considerably slow since they either require
running a sequential algorithm or solving a global optimization problem. This prevents efficient
implementation on massively parallel architectures, suchas GPUs. As a consequence, surface ap-
pearances have to be pre-computed and stored for later display, generating a large amount of data.

This talk will first introduce the basic principles enablingfast, parallel texture synthesis on the
GPU. We will then introduce our latest work on solid texture synthesis. Our algorithm removes the
need for a 2D

parameterization by directly generating colors in a volume, but only around the surface. Our
GPU implementation is fast enough to provide on-demand synthesis for appearing surfaces when
interactively breaking or cutting objects.

The Adaptive Delaunay Triangulation - Properties and
Proofs

Tom Bobach,Burkhard Lehner and Georg Umlauf
University of Kaiserslautern

TU Kaiserslautern

Saturday 10.30, II

Lately, a novel tessellation technique, called Adaptive Delaunay Tessellation (ADT), was introduced
in the context of computational mechanics. The method starts out with the Delaunay triangulation
of a domain and transforms it into a unique polygonal tessellation with certain desirable properties
when used as the support for nodal integration schemes in theFinite Element Method.

So far, the thus defined tessellation has not received any in-depth investigation and its prop-
erties as claimed have not been proved. We give the outstanding proofs for the three main claims,
uniqueness, connectedness, and coverage of the Voronoï tiles by adjacent ADT tiles.
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Approximation on two-point homogeneous manifolds
Jeremy Levesley

University of Leicester

Monday 17.30, I

In this talk we will describe a realisation of two-point homogeneous manifolds. We will show how
to compute the volume element on such spaces and produce the Jacobi polynomials which are the
reproducing kernels for polynomial spaces on these manifolds. Such results are not new, but the
proofs require some in depth understanding of Lie algebras and their homogeneous spaces. We will
also give a covering result on such manifolds generalising the results of Reimer [1] for spheres. Such
results can be used to bound the norms of hyperinterpolationoperators on spheres, as given by Sloan
and Wommersley [3], and Reimer[2]. We generalise such bounds for more general two-point spaces.

[1] M. Reimer, Spherical polynomial approximation: A survey, in Advances in Multivariate
Approximation (W. Haussman, K. Jetter and M. Reimer eds.), 255-268.

[2] M. Reimer, Hyperinterpolation on the unit sphere at the minimal projection order, Journal
of Approximation Theory 104, (2000) 272-286.

[3] I. H. Sloan and R. S. Womersley, Constructive polynomialapproximation on the sphere, J.
Approx. Theory 103 (2000), 91–98.

Curvature Continuity at Extraordinary Vertices
Charles Loopand Scott Schaefer

Microsoft Research
Department of Computer Science, Texas AM University

Monday 11.40, II

We present a second order smooth filling of ann-valent Catmull-Clark spline ring withn biseptic
patches. We first derive correspondence maps that are used todefine sets of constraints among the
coefficients of adjacent patches. These constraints only depend on the valencen of the extraordinary
vertex, enabling us to solve for data independent basis functions. Since our system of constraints
is underdetermined, we find the solution that minimizes a quadratic energy functional. Our energy
functional has the property that an absolute minimum of zerois achieved for a bicubic surface;
meaning that whenn = 4 we reproduce the regular bicubic B-spline case. In other cases, the
resulting surfaces are curvature continuous and visual pleasing.

An Improved Error Bound for Gaussian Interpolation
Lin-Tian Luh

Monday 10.30, II

It’s well known that there is a so-called exponential-type error bound for Gaussian interpolation
which is the most powerful error bound hithertoo. It’s of theform |f(x) − s(x)| ≤ c1(c2d)

c3
d ‖f‖h

wheref ands are the interpolated and interpolating functions respectively, c1, c2, c3 are positive
constants,d is the fill-distance which roughly speaking measures the spacing of the data points,
and‖f‖h is theh-norm of f whereh is the Gaussian function. The error bound is suitable for
x ∈ Rn, n ≥ 1, and gets small rapidly asd → 0. The drawback is that the crucial constantsc2 and
c3 get worse rapidly asn increases in the sensec2 → ∞ andc3 → 0 asn → ∞. In this paper we

raise an error bound of the form|f(x)−s(x)| ≤ c′1(c
′
2d)

c′
3

d

√
d‖f‖h, wherec′2 andc′3 are independent

of the dimensionn. Moreover,c′2 << c2, c3 << c′3, andc′1 is only slightly different fromc1. What’s
important is that all constantsc′1, c

′
2 andc′3 can be computed without slight difficulty.
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A closed formulae for the separation of two ellipsoids
involving only six polynomials

Laureano Gonzalez–Vega andEsmeralda Mainar
Universidad de Cantabria

Friday 9.50, II

By using several tools from Real Algebraic Geometry and Computer Algebra (mainly Sturm–
Habicht sequences), a new characterization for the separation of two ellipsoids in three–dimensional
Euclidean space is introduced. This condition is characterized by a set of equalities and inequalities
involving only six polynomials and depending polynomiallyon the entrees of the matrices defin-
ing the two considered ellipsoids. This formula does not require in advance the computation (or
knowledge) of the intersection points between them.

From the computational point of view this characterizationis very well adapted for treating the
case where the two ellipsoids depend on one or several parameters (what includes the important case
of analyzing the interference between two moving ellipsoids).

Extracting a Shape Descriptor for 3D Models by means
of a Rotation Variant Similarity Measure

Michael Martinek , Roberto Grosso and Günther Greiner
Universität Erlangen

Friday 12.00, I

The ability to extract spatial features from 3D objects is essential for tasks like shape matching and
object classification. However, designing a feature vectorto be invariant with respect to rotation,
translation and scaling is a challenging task and is often solved by normalization techniques such
as PCA, which can give rise to poor object alignment. On the other hand, a similarity measure for
3D objects which is variant under rotation is much easier to obtain but not useful for the majority
of shape analyzing processes. In this paper, we introduce a novel method to extract a robust fea-
ture vector on the basis of a rotation-dependent similaritymeasure. Such a measure provides the
correlation between two objects with respect to the space ofrotations SO(3). The core idea of our
algorithm is to apply this measure to the object itself in order to obtain a rotational autocorrelation.
We determine significant points in the SO(3) which are descriptive for the underlying geometry and
sample the similarity function along the axes formed by these points and the origin. The feature vec-
tor, defined to be the respective function plots, is invariant with respect to rigid-body transformations
and discriminating for different object classes. It can notonly be used to characterize an object with
respect to rotational symmetry but also to define a distance between 3D models. Since the features
can be entirely pre-computed, our method is also perfectly suitable to perform similarity searches in
large 3D databases.
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A greedy algorithm for adaptive hierarchical
anisotropic triangulations

Albert Cohen andJean-Marie Mirebeau
University Paris 6

Tuesday 10.50, II

A simple greedy algorithm for the generation of data-adapted triangulations is proposed and stud-
ied. Given a functionf of two variables, the algorithm produces a hierarchy of triangulationsN and
approximationsfN which are piecewise affine onN . The refinement procedure consists in bisecting
a triangle in a direction which is chosen so to minimize the approximation error in some prescribed
norm betweenf andfN . We study the approximation error in theLp norm when the algorithm is
applied toC2 functions. In particular, it is proved that the triangles tend to adopt an optimal aspect
ratio (which is dictated by the local Hessian off ) as the algorithm progresses. Numerical tests per-
formed on functions with analytic expressions or on numerical images illustrate the approximation
properties of the algorithm.

Fractal approximation of functions almost everywhere
and in spacesLp (0 < p < 1)

Dmytro Mitin and Mykola Nazarenko
Department of Mathematical Analysis, Faculty of Mechanicsand Mathematics,

Kyiv Taras Shevchenko National University

Sufficient conditions are found for fractal transform operator to be eventually contractive [1] in a
subspace of weak metric spaceLp, 0 < p < 1. For this correspondent metric fixed point theorem [2]
generalizing Banach contraction principle is used. Also limit behavior of fractal operator iteration
sequence [3] in the sense of pointwise and almost everywhereconvergences is considered. Some
estimates for fractal approximation error are proved.

Applications to fractal image compression are proposed.
References
[1] D. Mitin, M. Nazarenko,Fractal approximation of functions in some metric spaces and

lossy image compression problem, 6th International conference ”Curves and Surfaces“ (Avignon,
France, June 29 – July 5, 2006): Résumés, p. 45.

[2] J. Jachymski, J. Matkowski, T.́Swia̧tkowski,Nonlinear contactions on semimetric spaces,
J. of applied analysis, 1995, vol. 1, no. 2, p. 125–134.

[3] B. Bielefeld, Y. Fisher,A convergence model, Fractal image compression: Theory and
application, ed. by Y. Fisher, New York, Springer, 1995, p. 215–228.
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Multiresolution analysis for minimal Cr-surfaces on
Powell-Sabin type meshes

M.A. Fortes, P. Gonzalez,M.J. Moncayo and M. Pasadas
Departamento de Matematica Aplicada, Universidad de Granada

Departamento de Matematica Aplicada y Estadistica. Universidad Politecnica de
Cartagena (UPCT)

Saturday 17.30, I

Multiresolution and subdivision schemes are successfullyapplied in a variety of engineering fields.
Subdivision schemes are based on refinement rules which are applied on a starting set of discrete data
to generate a new “denser” set. This work is intended to provide a multiresolution analysis scheme
to obtain a sequence ofCr-surfaces on a polygonal domain. The surfaces approximate aLagrangian
data set and minimize a certain “energy functional” relatedto the fairness control of the surface.
The corresponding decomposition and reconstruction formulas are given in the framework of lifting
schemes. To this aim, a class of non separable scaling and wavelet functions in bidimensional
domains are defined. Two applications of the developed theory are also analyzed. The first one
concerns noise reduction while the second one deals with thelocalization of the domains where
the energy of a given surface is maximally concentrated. Thespatial localization of the energy
is performed by the use of the detail coefficients associatedto the multi-scale representation of
the minimal energy surfaces. Finally, some numerical and graphical examples, for different test
functions and resolution levels, are presented.

Implicit shape reconstruction using a variational
approach

Elena Franchini,Serena Morigi and Fiorella Sgallari
Dept.of Math., University of Bologna
Dept. of Math., University of Bologna

Saturday 11.40, II

In this work we consider the problem of shape reconstructionfrom an unorganized data set which
has many important applications in medical imaging, scientific computing, reverse engineering and
geometric modelling. The reconstructed surface is obtained by continuously deforming an initial
surface following the Partial Differential Equation (PDE)-based diffusion model derived by a mini-
mal surface like variational formulation. The evolution isdriven both by the distance from the data
set and by the curvature analytically computed by it. The distance function is computed by implicit
local interpolants defined in terms of radial basis functions. Space discretization of the PDE model
is obtained by finite co-volume schemes and semi-implicit approach is used in time/scale. The use
of a level set method for the numerical computation of the surface reconstruction allows us to handle
complex geometry and even changing topology, without the need of user-interaction. Numerical
examples demonstrate the ability of the proposed method to produce high quality reconstructions.
Moreover, we show the effectiveness of the new approach to solve hole filling problems and Boolean
operations between different data sets.
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Computing the topology of algebraic curves and
surfaces

Bernard Mourrain
GALAAD, INRIA

Thursday 18.00, II

Computing the topology of algebraic curves and surfaces appears in many geometric modeling prob-
lems, such as surface-surface intersection, self-intersection, arrangement computation problems ...
It is a critical step in the analysis and approximation of (semi-)algebraic curves or surfaces, encoun-
tered in these geometric operations.

The classical approach for algebraic curves in the plane projects the problem onto a line, detects
the value which are critical for this projection and lift points back on the curve at these critical
values and in between. Information on the number of branchesat these critical values or genericity
condition tests on the number of critical points above a value of the projection have to be computed,
in order to be able to perform correctly the combinatorial connection step of these algorithms. This
approach has also been extended to curves and surfaces in 3D.

One difficulty of this type of methods appears when the input description of the geometric
objects is given with some errors. Another difficulty is the treatement of singularities through the
analysis of fibers at critical values of a projection in a fixeddirection.

In the presentation, we will compare this approach with subdivision methods that exploit in-
formation on the boundary of regions instead of informationat critical points. We will describe
new methods for computing the topology of planar implicit curves, which only requires the isola-
tion of extremal points. We will show how topological degreecomputation can help analysing the
number of branches at singular points. Combining regularity criterion with subdivision strategies
yields a complete algorithm for computing the topology of (singular) algebraic curves. Extension
of this approach to curves and surfaces in 3D will be described. We will also mention how this
approach extends naturraly to curves and surfaces arrangement computation. Experimentation with
the algebraic-geometric modeler AXEL will shortly be demonstrated.

Hexagonal meshes as discrete minimal surfaces
Christian Mueller

Institut of Geometry, Graz University of Technology

Saturday 10.10, I

We give a report on our recent work on hexagonal meshes as objects of discrete differential geome-
try. Based on a recent theory of curvatures for parallel meshpairs, we consider a discrete Christof-
fel transformation which maps meshes covering the unit sphere to discrete minimal surfaces. We
express this transformation in terms of oriented mixed areas of parallel polygons, which leads to
incidence-geometric characterizations of discrete minimal surfaces.
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Continuity analysis of double insertion, non-uniform,
stationary Subdivision Surfaces

Gerald Farin, Christoph Fuenfzig, Dianne Hansford,Kerstin Mueller
and Georg Umlauf

Arizona State University
TU Kaiserslautern

Monday 12.00, II

Double insertion, non-uniform, stationary Subdivision Surfaces are developed from the refinement
rules of bicubic NURBS surfaces. They can deal with arbitrary two-manifold topology, arbitrary
knot intervals on the edges and incorporate Catmull-Clark and bicubic NURBS surfaces. Their set
of rules includes refinement and limit point, limit normal rules, as well as special feature rules. We
analyze the continuity of this new subdivision surface and explain in detail where the surface isC2

or onlyC1. The study is accompanied by a variety of surface examples made with our Autodesk
Maya plugin.

A Newton Basis for Kernel Spaces
Stefan Mueller and Robert Schaback

Universitaet Goettingen, Germany

Thursday 14.10, II

This talk presents a strategy for overcoming the ill–conditioning of linear systems arising from radial
basis function or kernel techniques.

To come up with a more useful basis, the strategy known from Newton’s interpolation formula
is adopted, using generalized divided differences and a recursively computable set of basis functions
vanishing at increasingly many data points.

The resulting basis turns out to be orthogonal in the Hilbertspace in which the kernel is repro-
ducing, and under certain assumptions it is complete and allows convergent expansions of functions
into series of interpolants. Some numerical examples show that the Newton basis is much more
stable than the standard basis.
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Subdivision schemes for ruled surfaces and canal
surfaces

Boris Odehnal
Vienna University of Technology, Institute of Discrete Mathematics and Geometry

Friday 11.40, II

Subdivision schemes for curves and surfaces are well studied. Interpolatory schemes and approxi-
mating schemes are investigated and convergence analysis is done so far. Recently subdivision for
data in arbitrary manifolds is defined in two different ways:The constructions which are originally
done in affine spaces for vector space data can be generalizedto so called geodesic subdivision. On
the other hand subdivision in model spaces applied to vectorspace data can be combined with a
projection to an embedded manifold.

Both types of modified subdivision can be used for geometric modeling. Their applications are
not restricted to curve and surface design. They can also be used for the design of smooth rigid body
motions interpolating or approximating given positions.

In the following we will focus mainly on the design of ruled surfaces and canal surfaces. Both
ruled surfaces and canal surfaces appear as curves in appropriate model spaces. Therefore it is
sufficient to apply subdivision schemes for curves. The caseof ruled surfaces will be treated more
intensively and at least three different approaches for subdividing ruled surfaces will be presented.
The first method is a combination of subdvision and projection to a manifold being a point model
for the set of lines in Euclidean three-space. The second method combines an ordinary subdivision
scheme for curves with geodesic subdivision in the Euclidean unit sphere. Finally we show that
geodesic subdivision within the group of Euclidean motionscan also be used to refine ruled surfaces.

The case of canal surfaces is much easier to handle since we can use the so called cyclographic
model space for the set of spheres in Euclidean three-space.The points in this affine model space
represent spheres and we can apply

interpolatory and approximating schemes as well. There is no need for projection or geodesic
subdivision.

All these techniques are justified by the fact that sufficiently fine models of ruled surfaces and
canal surfaces are good enough for scientific visualization.
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C1 Blending of Wachspress Rational Patches
Hanuman Prasad Dikshit andAparajita Ojha

School of Good Governance and Policy Analysis, Bhopal, India 462 011
PDPM Indian Institute of Information Technology Jabalpur,India 482 011

Friday 18.00, II

Wachspress basis functions over convex quadrilateral elements have been studied in [1] from the
point of view of applications to problems in CAGD. Interesting mathematical properties such as non-
negativity of higher degree basis functions, asymptotic convergence of resulting rational patches to
tensor product patches, convex hull property, projective invariance have been presented in the paper.
Nice iterative algorithms have also been provided for computational convenience. In subsequent
papers [2]-[3], composite Wachspress surfaces withC1- continuity and formula for subdivision have
also been studied. In addition, conditions for generalCk continuity have been derived in [2].

Keeping in view the importance of pentagonal hole filling problems, recently we have defined
a set of quadratic Wachspress basis functions over pentagonal domains [4]. These patches are po-
tentially good candidates for boundary color interpolation and other surface modelling applications
in CAGD. The present talk concerns with conditions forC1 smoothness of composite patches made
up of pentagonal patches and triangular/ rectangular patches.

References

[1] W. Dahmen, H. P. Dikshit and A.Ojha, CAGD 17, 879–890 (2000).

[2] H.P. Dikshit and A.Ojha, CAGD 19, 207–224 (2002).

[3] H. P. Dikshit and A.Ojha, CAGD 20, 395-399 (2003).

[4] N. Choubey, H.P. Dikshit and A. Ojha, Submitted for Proceedings of ICIAM07, Zurich,
Switzerland, July 16-20, 2007.

Shape preserving Hermite interpolation by rational
biquadratic splines

Sablonnière Paul
INSA de Rennes, France

Monday 12.00, I

We study Hermite interpolation by aC1 biquadratic rational splineS on a non-uniform grid of a
rectangular domainR. The restrictionSi,j of S to each rectangular cellRi,j of the grid is aC1

biquadratic rational spline composed of four biquadratic rational patches. The local rational spline
Si,j depends on16 parameters and on some positive weights which can be chosen for preserv-
ing shape properties of the data, such as bimonotonicity andbiconvexity, i.e. monotonicity and
convexity in the directions of coordinate axes. Given arbitrary data(zi,j , pi,j , qi,j) at gridpoints
(xi, yj), we show that it is always possible to construct a biquadratic rational splineS satisfying
S(xi, yj) = zi,j , , ∂xS(xi, yj) = pi,j , , ∂yS(xi, yj) = qi,j . Moreover, if the given partial deriva-
tives are of one sign at the vertices of a cell, those of the interpolant will have the same sign in the
cell (bimonotonicity). Similarly, if the univariate data on the edges of the cell are convex (i.e. come
from a convex function), then the local interpolant will be biconvex in the cell. Of course, such an
interpolant has the classical drawbacks of tensor-productschemes, in particular the fact that shape
parameters depend on data along grid lines, not only on localdata on cells. However, it has the
advantage of being rather simple to define and to construct thanks to the good shape properties of its
control polygon which reflect rather faithfully those of theunderlying surface.
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Compactly Supported Splines with Tension Properties
on a Regular Triangulation

Paolo Costantini,Francesca Pelosiand Maria Lucia Sampoli
Dipartimento di Scienze Matematiche ed Informatiche, University of Siena

Friday 17.30, II

Piecewise continuous functions with tension properties are nowadays very popular and are used
in several practical problems, ranging from free form design to shape preserving interpolation or
approximation. The univariate cases and their tensor product counterparts are relatively simple and,
in particular, B-spline like basis with tension propertieshave been obtained. The construction of
piecewise bivariate functions on a triangulation is by far more complicate; however, some triangular
macro-elements and triangular elements ([1]) with tensionproperties have been recently proposed
and used in the construction of compositeC1 functions. The missing point is the construction of
suitable compactly supported spline functions.
In this talk we present a first result in this direction. First, we define a class of variable degree
polynomial triangular elements, where the independent degrees associated to each vertex of the
triangular domain play the role of tension parameters. These elements are a simplified version of
those described in [1] and tend to affine functions for large degrees. Then we show that for a regular
(i.e. based on equilateral triangles) triangulation it is possible to construct composite triangularC1

functions which are non-negative and compactly supported on an hexagonal domain. Moreover,
they form a partition of unity and reproduce first degree polynomials.

[1] P. Costantini, F. Pelosi, M. L. Sampoli:Triangular Surface Patches with Shape Constraints.in
“Curve and Surface Design: Avignon 2006”, 123–132, Nashboro Press, Brentwood, TN, USA.

Rational envelopes of two-parameter families of
spheres

Martin Peternell
University of Technology Vienna, Austria

Thursday 17.00, II

Two-dimensional surfaces inR4 and their corresponding two-parameter families of spheresinR3 are
investigated. We prove that a rational surface inR4 corresponds to a family of spheres inR3 whose
envelope surface admits rational parameterizations if andonly if it is a two-dimensional subvariety
of a rational isotropic hypersurface.

This construction enlightens the relation between these surfaces and so-called PN-surfaces in
R3, which denote those rational surfaces inR3 whose offset surfaces admit rational parameteriza-
tions. This approach allows to provide explicit parameterizations of all such surfaces.

Rational ruled surfaces, quadratically parameterized surfaces, isotropic hypersurfaces passing
through rational curves inR4 and isotropic hypersurfaces passing through quadrics inR3 are exam-
ples of such surfaces.

Finally we show that there exists a class of surfaces inR4 generalizing surfaces with linear
normal vector fields inR3. These surfaces also generalize quadratically parameterized surfaces in
R4 and possess a variety of remarkable properties.
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Recent Techniques and Algorithms for
High(er)-Quality Shape Design and Surface

Representation
Jorg Peters
Friday 15.20

The talk will explain and discuss spline-compatible approaches developed to improve surface shape
where multiple primary surfaces meet; for example switching to polar layout and constructions using
guide surfaces. The work is in parts joint with K. Karciauskas, U. Reif and A. Myles.

Generalized expo-rational B-splines and finite element
methods for ODEs

Lubomir T. Dechevsky andOlga L. Pichkaleva
Narvik University College, Norway

Narvik University College and Faculty of Physics at the Saint-Petersburg State
University, Russia

Friday 14.50, I

Our purpose is to consider first application of the approach proposed in item 4 of [1] for initial-value
and boundary-value problems for linear ordinary differential equations with variable coefficients
and right-hand side. The approximate solution is an Hermiteinterpolant based on expo-rational B-
splines (ERBS) or their generalized version (Euler Beta-function B-splines, see [2]) over a possibly
non-uniform knot-vector. The Hermite interpolation, together with the minimal support of the ERBS
basis functions, lead to the following remarkable properties of the numerical solution:

(a) The issue of stability of the numerical solution is completely eliminated. The numerical
solution is always stable for any knot-vector.

(b) The ERBS-based Hermite interpolant has transfinite order of accuracy.
(c) For an initial-value problems the stiffness matrix is triangular; for a boundary-value prob-

lems it is band-limited with the minimal possible width of the band. It can be shown that this
bandwidth is smaller than in the case of polynomial B-splines, and this difference increases with the
increase of the order of the differential equation.

(d) Modification and refining of a mesh lead to a very easy recomputation of the solution. Thus,
multigrid methods with such approach are easy in implementation, cheap in computations, and very
fast in convergence.

(e) The method works without any modifications also when the ODE degenerates (has variable
order).

References:
[1] L. T. Dechevsky. Generalized expo-rational B-splines.Communication at the 7-th Int. Conf.

of Mathematical Methods for Curves and Surfaces, Tnsberg2008, Norway. (To appear.)
[2] L. T. Dechevsky, A. Lakså, B. Bang. Introduction to generalized expo-rational B-splines.

Applied Mathematics. Preprint 8470 No. 5/2007 ISSN 1504-4653, Narvik University College,
Norway, 2007.
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Polar varieties of real algebraic curves and surfaces
Ragni Piene

CMA/Department of Mathematics, University of Oslo

Friday 8.30

The theory of polars and polar varieties of a complex projective algebraic variety has played an
important role in the quest for understanding and classifying projective

varieties. Their use in the definition of projective invariants is the very basis for the geometric
approach to the theory of characteristic classes, such as Todd classes and Chern classes. Further-
more, the geometric nature of the polar varieties has lead toapplications in various other directions:
singularity theory, the determination of the geometry and topology of real affine varieties, algorithms
for finding real solutions of polynomial equations, and to complexity questions.

In this talk, I will briefly survey the classical theory of polar varieties and explain various
extensions and generalizations. I will give examples of some recent applications, due to work of
Bank, Heintz, Mbakop, and Pardo, of Safey El Din and Schost, and of Bürgisser and Lotz. Finally, I
will present joint work with H. Mork on polar varieties of real singular curves and surfaces.

An iterative algorithm with joint sparsity constraints
for magnetic tomography

Gabriella Bretti andFrancesca Pitolli
Dept. Me.Mo.Mat. - Università di Roma ”La Sapienza”

Thursday 12.00, II

Magnetic tomography aimed to spatially resolve vector-valued current distribution from its magnetic
field measured in the outer space. Magnetic tomography has applications in several fields, such as
medical imaging and nondestructive testing. However, the localization of current distribution is
usually a highly ill-posed inverse problem which requires special regularization techniques.

We provide a fast and accurate adaptive algorithm for the resolution of current density under
the assumption that its vector components possess a sparse expansion with respect to a preassigned
refinable basis. Additionally, different components may also exhibit common sparsity patterns.

We model magnetic tomography as an inverse problem with joint sparsity constraints, promot-
ing coupling of non-vanishing components. The solutions ofthe inverse problem is obtained by
iterative thresholded Landweber schemes. The resulting adaptive scheme is fast and robust. Some
numerical tests are also included.
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Scattered Data Fitting using extended B-Splines
Oleg Davydov,Jennifer Prasiswaand Ulrich Reif

University of Strathclyde
TU Darmstadt

Friday 10.30, I

Given scattered data(ξi, fi) on a domainΩ ⊂ R
d, standard splines fitting techniques either yield

shape artifacts near the boundary or require a delicate choice of weights for fairness functionals. In
this talk, we present new methods based on extended B-splines which combine good shape properties
with optimal error estimates, and avoid the use of artificialsmoothing terms.

For problems of modest size a global least squares fit is suitable, while for large problems a
two-stage method combining local approximations is favorable in order to reduce the computational
expense. Furthermore locality allows data dependent coupling of splines, a concept that is in line
with the usage of the extended B-spline space, where coupling is boundary dependent.

If the datafi = f(ξi) are sampled from a smooth function and are sufficiently dense, then the
use of extended B-splines of degreen yields the following bound on the approximation error∆ and
its derivatives:

‖Dα∆‖∞ ≤ chn+1−|α| max
|β|=n+1

‖Dβf‖∞, |α| ≤ n.

Numerical experiments illustrate the potential of these methods and validate the error estimate.

A point-based Clenshaw-Curtis type algorithm for
computing curve length

Michael Floater, Hans Z. Munthe-Kaas andAtgeirr F. Rasmussen
University of Oslo

University of Bergen
Sintef Applied Mathematics

Monday 10.50, I

We describe a high-precision point-based algorithm for computing the arc-length of a parametric
curve. The method is based on Chebyshev polynomial expansion and using the FFT, and is similar
to Clenshaw-Curtis quadrature.

Ray Casting Algebraic Surfaces using the Frustum
Form

Martin Reimers and Johan Seland
CMA

SINTEF ICT

Thursday 10.50, I

We present methods for efficient ray-casting of algebraic surfaces of high degree. A key point of our
approach is a polynomial form adapted to the view frustum which can be computed efficiently using
interpolation or blossoming. This so called frustum form yields simple expressions for the the ray
polynomials, allowing robust and efficient root-finding using Bézier and B-spline techniques. The
algorithms can be implemented efficiently on graphics hardware, yielding interactive visualization
for degrees up to 20.
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Constructing good coefficient functionals for bivariate
C1 quadratic spline quasi-interpolants

Sara Remogna
Dipartimento di Matematica, Università di Torino

Friday 11.20, I

This talk deals with discrete quasi-interpolants based onC1 quadratic box-splines on uniform criss-
cross triangulations of a rectangular domain. The main problem consists in finding good (if not best)
coefficient functionals, associated with boundary box-splines, giving both an optimal approximation
order and a small infinity norm of the operator. Moreover, we want that these functionals only
involve data points inside the domain. They are obtained either by minimizing an upper bound of
their infinity norm w.r.t. a finite number of free parameters,or by inducing superconvergence of the
operator at some specific points laying near or on the boundary.

Sampling Inequalities and Applications
Christian Rieger

University of Goettingen

Saturday 17.30, II

Sampling inequalities formalize the observation that a differentiable function cannot attain large val-
ues if its derivatives are bounded and if it is small on a sufficiently dense discrete set. Sampling
inequalities can be applied to the difference of a function and its reconstruction to obtain conver-
gence orders for very general recovery processes. In my talk, the case of infinitely smooth functions
is investigated, in order to derive error estimates with exponential convergence rates. I show a pos-
sibility to overcome the boundary effect, i.e., better estimates can be achieved by using more data
points near the boundary. As an application of sampling inequalities, I present explicit determin-
istic results concerning the worst case behaviour of support vector regression problems in Sobolev
spaces. I show how to adjust regularization parameters to get best possible approximation orders.
The results are illustrated by some numerical examples. This talk is based on joint work with Barbara
Zwicknagl.

Non-uniform interpolatory subdivision designed from
splines

Carolina Beccari, Giulio Casciola andLucia Romani
Dept. of Mathematics, University of Bologna, Italy

Dept. of Mathematics and Applications, University of Milano-Bicocca, Italy

Monday 14.30, II

Non-uniform subdivision schemes are currently emerging asone of the most highlighted trends in
modelling curves and surfaces.
They represent a fundamental step to make subdivision comparable to NURBS, and, especially in
the context of interpolation, they are regarded as a promising solution to improve the quality of the
limit shape.

In this work we show how a set of linear refinement rules handling unequal knot intervals can
be naturally designed by upsampling from a class of non-uniform, interpolating, polynomial spline
functions. As a consequence, spline-like quality interpolants are easily obtained, whenever a proper
non-uniform parameterization is associated to the edges ofthe initial polyline.

The proposed non-uniform subdivision algorithm constitutes a key ingredient towards the defi-
nition of spline-like quality interpolatory surfaces overmeshes of arbitrary topology.
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Multivariate Chebyshev Polynomials and Applications
Brett Ryland

Universitetet i Bergen

Friday 10.50, II

We generalise univariate Chebyshev polynomials to multivariate Chebyshev polynomials and use
them to rapidly approximate the gradient and integral of a multivariate function on a triangular
surface patch. This is joint work with Hans Munthe–Kaas.

Support Function Representation of Surfaces for
Geometric Computing

Bert Jüttler andMaria Lucia Sampoli
Johannes Kepler University at Linz, Austria

University of Siena, Italy

Saturday 14.50, I

The support function (SF) representation of surfaces is a classical tool in the field of convex ge-
ometry. Recently, its application to problems from Computer Aided Design has been studied. For
instance, it can be shown that SF representation of surfacesis useful for analyzing curvatures and for
computing convolution surfaces (including offset surfaces). Moreover it has been shown that odd
rational support functions correspond to those rational surfaces which can be equipped with a linear
field of normal vectors. These surfaces, called LN surfaces (Linear Normals) have the remarkable
property of possessing rational offsets and convolutions.As shown recently, this class of surfaces
includes non–developable quadratic triangular Bézier surface patches.

In this talk we present a method for approximating a given free-form surface by a quadratic
triangular spline surface. This leads not only to an approximating surface, but at the same time to
an approximate SF representation by a piecewise rational (possibly multi-valued) function on the
sphere, which is defined over a partition consisting of curved spherical triangles. As an application,
we show how to generate a curvature–dependent triangulation of the original surface. In addition,
the computation of convolutions will be addressed. Anotherpotential application is the direct com-
putation of isophotes on the surface.
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Tensor Product B-Spline Mesh Generation for
Accurate Surface Visualizations in the NIST Digital

Library of Mathematical Functions
Bonita Saundersand Qiming Wang

National Institute of Standards and Technology, Gaithersburg, MD, USA

Tuesday 10.30, I

The National Institute of Standards and Technology (NIST) is developing a web-based digital library
of high level mathematical functions to replace the widely used National Bureau of Standards Hand-
book of Mathematical Functions. The NIST Digital Library ofMathematical Functions (DLMF)
will include formulas, computation methods, references, and software links for over forty functions.
Access will be free and the library will feature a state of theart mathematical equation search and
dynamic interactive 3D visualizations.

We will discuss our current work on a tensor product B-splinemesh generation technique we
developed to facilitate the visualization of function surfaces in the NIST DLMF. Using our algo-
rithm, we have been able to design boundary/contour fitted grids that capture key function features
such as zeros, poles, branch cuts and other singularities onirregular, discontinuous, and multiply
connected function domains. Thus, our algorithm has allowed us to resolve many of the problems
that often appear with commercial packages where standard plots are usually over rectangular Carte-
sian domains.

In addition to our mesh generation algorithm, we have created translators that convert our 3D
data into formats, such as VRML (Virtual Reality Modeling Language) and X3D (Extensible 3D
Graphics), which can be read by plugins designed for interactive web viewing. We have completed
over two hundred visualizations for the NIST DLMF. See http://dlmf.nist.gov/Contents for a mockup
version of the website with a sample chapter on the gamma function. Others will be added in the
coming months.
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Sampling and Stability
Christian Rieger andRobert Schaback

University of Göttingen

Thursday 8.45

The first part of this survey will be rather general and deal with linear discretization processes in
Numerical Analysis. Two useful tools are described:

• Sampling Inequalitiesfor analyzing errors,

• Stability Inequalitiesfor analyzing stability.

To apply the former to the latter, a third tool is necessary:

• Inverse Inequalities.

These are introduced in general terms first, together with their use for proving convergence of certain
numerical methods. Then their recent variations are surveyed, including special forms for work with
kernel–based trial spaces and “weak” data. Applications cover

• Machine Learning,

• Meshless Methods for PDEs,

• Lebesgue constants

and are presented as far as time permits. This survey will be based on work of Stefano DeMarchi,
Wally Madych, Stefan Müller, Fran Narcowich, Christian Rieger, Robert Schaback, Joe Ward, Hol-
ger Wendland, and Barbara Zwicknagl.

http://www.num.math.uni-goettingen.de/schaback/research/group.html

Scattered data approximation onSO(3)

Dominik Schmid
Helmholtz Zentrum München

Tuesday 10.30, II

The problem of approximating functions defined on the rotation groupSO(3) is of great importance
in various applications. In most of these problems we have todeal with non-equispaced sampling
points onSO(3). In this talk, we briefly introduce two methods for recovering functions from the
given scattered data on the rotation group. Firstly, the interpolation of the given data by trans-
lates of a positive definite basis function, and, secondly the approximation by finite expansions into
Wigner-D functions, which constitute an orthogonal basis ofL2(SO(3)). Then we focus on the
latter approach. A central role is played by the construction of a sequence of new convolution type
operators for polynomial approximation onSO(3). We present some nice approximation properties
of these operators and show how they can be used in order to derive Lp-Marcinkiewicz-Zygmund
inequalities,1 ≤ p ≤ ∞, for Wigner-D functions. The inequalities are based on scattered sites on
SO(3). Finally, we point out how these Marcinkiewicz-Zygmund inequalities can be used in order
to answer various scattered data approximation problems onthe rotation group.
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Conformal Equivalence of Triangle Meshes
Ulrich Pinkall,Peter Schroederand Boris Springborn

TU Berlin
California Institute of Technology

Tuesday 8.30

We present a new algorithm for conformal mesh parameterization. It is based on a precise no-
tion of discrete conformal equivalencefor triangle meshes which mimics the notion of conformal
equivalence for smooth surfaces. The problem of finding a flatmesh that is discretely conformally
equivalent to a given mesh can be solved efficiently by minimizing a convex energy function, whose
Hessian turns out to be the well knowncot-Laplace operator. This method can also be used to map a
surface mesh to a parameter domain which is flat except for isolated cone singularities, and we show
how these can be placed automatically in order to reduce the distortion of the parameterization. We
present the salient features of the theory and elaborate thealgorithms with a number of examples.

Pointwise radial minimization: Hermite interpolation
on arbitrary domains

Michael Floater andChristian Schulz
CMA / IFI, University of Oslo

Thursday 10.10, I

In this talk we propose a new kind of Hermite interpolation onarbitrary domains, matching derivative
data of arbitrary order on the boundary. The basic idea stemsfrom an interpretation of mean value
interpolation as the pointwise minimization of a radial energy function involving first derivatives of
linear polynomials. We generalize this and minimize over derivatives of polynomials of arbitrary odd
degree. We have a closer look at the cubic case, which assumesfirst derivative boundary data and
has a unique solution with cubic precision. Numerical examples strongly indicate that the solution
interpolates the data for a wide variety of domain shapes andbehaves nicely.
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A Non–Uniform Hermite Spline Quasi–Interpolation
Scheme

Francesca Mazzia andAlessandra Sestini
Dip. di Matematica, Universitá di Bari

Dip. di Matematica, Universitá di Firenze

Friday 11.40, I

Quasi–Interpolation (QI) based on spline functions is a well–known approach for efficiently produc-
ing accurate approximations. Its effectiveness is due to the local definition of the spline coefficients
in the B–spline basis. Recently, several interesting discrete QI schemes have been proposed in the
literature, all assuming that the input data are of Lagrangetype. As an alternative, here we propose
a discrete/differential spline QI scheme which uses the function values at the spline knots together
with the corresponding derivative values. An important feature of this scheme is that it doesn’t
require a uniform knot distribution.

The numerical results show that the use of the derivative values allows us to obtain very ac-
curate approximations, even when “difficult” functions areapproximated. Furthermore, it is clear
that the possibility to choose a non–uniform knot distribution can be very useful to improve the
approximation and it becomes a need when no a priori assumption on the data distribution can be
made. For example, this is the case when a numerical approximation to the solution of a differential
problem is automatically produced by a code implementing anadaptive mesh selection strategy. The
application of this scheme to numerical quadrature will be also presented.
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Practical methods of the geometry design and grid
generation

Yuriy D. Shevelev
The Institute for Computer Aided Design of RAS

One of the basic problems of numerical modeling is creation of the most full model of geometry. In
this paper the various methods of geometry design of the complete real configuration (/1- 4/) will be
considered. Geometry design process involves defining an accurate numerical description by using
the initial information. a) For fluid dynamics problems are convenient to set the surface analytically
by algebraic methods. It is especially important to construct the model that is taking into account the
main design parameters- baseline approximation. The geometries are presented as set of elements of
geometry (for example, a fuselage, wings, etc.). Each element of a surface consists on compartments.
A compartment may be expressed through geometrical parameters of cross section, for example, a
wing: thickness, chord of section, curvature, etc. If the two-dimensional cross-section cuts of 3-D
geometry select sections are known then a surface can obtainby stretching and extending the sheets
of simplest surfaces (linear, spline, elliptical or minimal surface) between cross-sections. Thus ana-
lytical form of presentation gives an opportunity to define asurface by finite number of parameters.
This approach is useful for optimization problems. Advantages of such techniques consist in that
it can be used at all design levels. b) If the information is given by data then it is usual problem
of interpolation. The traditional techniques of geometry design used: global and local interpolation
methods, the splines interpolation, NURBS. The splines interpolation techniques are more univer-
sal. Surface representations used the cubic splines and supported a data structure to represent all
geometric primitives with desirable properties as local control, convex shape preserving forms, etc.
The splines interpolation techniques give us a minimum error for a special class of functions and
interpolate derivatives. The interpolation is insensitive to the disturbances of the initial dates. The
main ideas are implemented in the ACAD system (design systemfor aerodynamic purposes). An
interactive design system ACAD is a complex of the programs and information facilities for a design
and support of a geometric model of objects. c) In our practice we had been used algebraic, differ-
ential, conform mapping techniques of grid generation. Specific of studied problems dictates to use
the different methods. The physical region is divided into sub-regions and within each sub-region
a structured grid is generated. Structured block grid formed by a network of curvilinear coordinate
lines such that a one-to-one mapping can be established between the physical and computational do-
mains. The curvilinear grid points conform to the boundaries, surfaces, or both and therefore provide
the most accurate way of specifying the boundary condition.The accuracy of computations depends
on the mesh size of grid spacing in real space and the ability to control a physical mesh point’s
distribution. The grid adaptation is achieved by moving thegrid points and refinement. The redistri-
bution has been the favored approach with block-structuredgrids. The grid must takes into account
geometrical and physical features of the flow field. A mesh must highly specialize for the partic-
ular problems (resolving the boundary and shear layers, shocks, wakes and so on). Size of mesh
spacing near wall depends on Reynolds number. Just body fitted coordinate system can correctly
resolved the viscous effect. d) A conformal mapping permitsthe sufficient preferences for solution
of some concrete problems. It is well known that the 2-D conformal mapping does not generalize
to 3-D case. From point of view of grid generation we dont needthe fulfillment of all advantages
of 2-D conformal mapping in 3-D case. We can consider a mapping that forms a subclass of the
class of quasi-regular mappings. Then we studied a concept of quasi-potential 3-D transformations
as an analogy of 2-D conformal transformations. The system of coordinate is forming by families of
velocity potential surface and two streamline functions. The common solution is formally obtained.
Perspective of using quasi-conformal mapping in common case will be considered. Finally some of
the results applications will be displayed ([1-4]), particularly to prototypes of real configurations.

REFERENCES [1] Shevelev Yu.D. 3-D Computational Fluid Dynamics Problems //Nauka, M.,
1986, 367 pp. [2] Shevelev Yu. D. Mathematical Basis of Computer Aided Design, 2005, 1052;.,
Sputnik+, 198pp [3] Shevelev Yu.D., Kazeikin S.N., Semushkina E.V. Some Methods of Design
and Visualization of Real Form Geometry, Preprint of the Institute for Problems in Mechanics, N
286,1987, pp.1-44 [4] Shevelev Yu. D., Maximov F.A., Mihalin V.A., Syzranova N.G. Numerical
modeling of External 3-D Problems on the Parallel Computersand Aerodynamic Shape Optimiza-
tion// Parallel Computational Fluid Dynamics, 2004, Proceedings of Parallel CFD, Moscow, pp.521-
528 [4] Machover C. The CAD/CAM Handbook, McGraw-Hill, New York, 1996 [6] Thompson J.
F, Soni B. K., Weatherill N. P. (eds.) Handbook of Grid Generation, CRC Press, Boca Raton, FL,
1998
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Tetrahedral Meshes with Good Dihedral Angles
Bryan Klingner, Francois Labelle andJonathan Shewchuk

University of California at Berkeley
Google

Monday 15.20

A central tool in scientific computing and computer animation is the finite element method, whose
success depends on the quality of the meshes used to model thecomplicated underlying geometries.
We develop two new methods for creating high-quality tetrahedral meshes: one with guaranteed
good dihedral angles, and one that in practice produces far better dihedral angles than any prior
method. The isosurface stuffing algorithm fills an isosurface with a uniformly sized tetrahedral mesh
whose dihedral angles are bounded between10.7◦ and165◦. The algorithm is whip fast, numerically
robust, and easy to implement because, like Marching Cubes,it generates tetrahedra from a small set
of precomputed stencils. Our angle bounds are guaranteed bya computer-assisted proof. Our second
contribution is a mesh improvement method that uses optimization-based smoothing, topological
transformations, and vertex insertions and deletions to achieve extremely high quality tetrahedra.

Adaptive Fitting of C∞ Surfaces to Dense Triangle
Meshes

J. Gallier, D. Martínez, L. G. Nonato,M. Siqueira, L. Velho and
D. Xu

Department of Computer and Information Science, Univ. of Pennsylvania, USA
Instituto de Ciências Matemáticas e de Computação, USP, Brazil

Departamento de Computação e Estatística, UFMS, Brazil
Instituto de Matemática Pura e Aplicada (IMPA), Brazil

Department of Computer Science, Bryn Mawr College, USA

Friday 10.50, I

A fundamental problem in Geometric Modeling is the one of constructing a smooth surface that
interpolates or closely approximates the vertices of a given triangle mesh. Here, we introduce a new
solution to this problem, which is catered to dealing with very dense triangle meshes, i.e., meshes
with hundreds of thousands or even millions of vertices. Oursolution has four main steps. First,
a mesh simplification algorithm is applied to the dense inputmesh, sayM , to obtain a meshM ′

whose vertices are a subset of the vertices ofM . Second, we define a triangulation,T , onM . The
vertices ofT are the vertices ofM ′, and the edges ofT are geodesic curves onM . Each geodesic
curve connects a pair of vertices ofT that define a straight edge ofM ′. Third, we associate three
Bézier patches with each “curved” triangle ofT . The control points of each patch are determined by
a least-squares based fitting using the vertices ofM inside and around the associated patch. If the
approximation error is greater than a pre-defined threshold, thenT is locally refined and the fitting
is carried out again for the new triangles. Fourth, we define aC∞-continuous surface,S, by using
a recently developed manifold-based surface construction. This construction combines the Bézier
patches associated with the triangles ofT using affine combinations. The size complexity ofS is
proportional to the total number of Bézier patches, which isthree times the number of triangles ofT .
Thus, by carefully and adaptively simplifying the dense input meshM , we can obtain a significantly
more compact and yet accurate approximation toM . Furthermore, the resulting surface,S, isC∞

everywhere, has fixed-sized local support for basis functions, is guaranteed to be in the convex hull
of all control points, and its geometry can be locally controlled. All these features together make our
solution more attractive than previous ones.

81



Hermite and Lagrangue Interpolation by Pythagorean
Hodograph Curves

Zbyněk Šír
Charles University in Prague

Thursday 14.30, I

In our contribution we revisit some classical themes related to effective constructions of tool paths
composed of segments of Pythagorean Hodograph (PH) curves.Using methods of algebraic geome-
try we extend the known classification of PH cubics to the caseof PH quintics. We also present new
interpolation results for PH cubics and quintics.

CAD and iso-geometric analysis
Tor Dokken andVibeke Skytt

SINTEF

Thursday 18.00, I

If, in a finite elements computation, the solution space of the dependent variables is the same as the
space describing the geometry, the mapping is said to be iso-parametric. In iso-geometric analysis
the solution space used are spline spaces. The acceptance ofiso-geometric analysis in industry will
to a great extent be dependent on the ease of use and proper integration into product development
processes. In STEP-type CAD-models volume objects are described by the outer shell and possible
inner shells. A shell is described by a patchwork of surface pieces with boundaries matching within
defined tolerances. The surface patches allowed are trimmedpieces of low degree algebraic surfaces
and NonUniform Rational B-splines surfaces (NURBS). Iso-geometric volumes are represented by
watertight structures of tri-variate parametric spline volumes, i.e., NURBS or T-splines based. Al-
though the shells of STEP-type CAD-models and iso-geometric models at a first glance seem similar,
a closer look shows that the iso-geometric shell is water tight, while the STEP-type shells allow small
gaps. While the internal of a STEP-type volume is implicitlydefined by the shells, the internal of
the iso-geometric model is explicitly described by the trivariate splines. Consequently converting
CAD-models to an iso-geometric description will both incorporate upgrading the CAD-model to
be watertight, and impose an explicit internal structure aimed at the analysis at hand by building a
tri-variate spline description. An important topic here isto handle trimmed surfaces. The talk will
address this challenge and other geometric challenges related to the introduction of iso-geometric
models in industrial product development
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Circular spline approximation
Martin Aigner, Bert Jüttler andXinghua Song

Johannes Kepler University, Inistitute of Applied Geometry, Linz, Austria
Johann Radon Institute for Computational and Applied Mathematics

Thursday 10.30, II

We consider piecewise circular curves in three–dimensional space. Compared to standard spline
curves, circular spline curves have many advantages: the arc length can be computed exactly, and
the offset surfaces (piecewise toroidal surface) can be represented by rational biquadratic surfaces.
Moreover, the closest point of a given point in space can be found by solving quadratic equations,
without any need for using iterative methods.

We propose a new method to approximate a given set of organized data points by space circular
spline curve. An initial circular spline curve is generatedat first. Then an evolution process is
applied to the

curve. During the evolution process, the given points attract the corresponding closest points
on the curve, and the circular spline curve converges to a stable limit shape. Our method does not
need any tangent information and the evolution process ensures that the final curve contains as few
the arc segments as possible. We proved the evolution process corresponds to

a Gauss-Newton-type method.
As a novel application of circular splines, we will show how to use them
to define edge detectors for implicitly defined surfaces.

Linear precision for parametric patches
Frank Sottile

Texas A & M University

Thursday 16.30, II

Linear precision is the ability of a patch to replicate affinefunctions. While classical patches possess
linear precision, it is not clear which exotic patches (e.g.toric patches) have this property. In
fact, every patch has a unique reparametrization having linear precision—but the resulting blending
functions are not necessarily rational functions.

In this talk, I will give background and discuss work towardsa classification of toric patches
for which this reparametrization is given by rational functions. I will also explain how linear preci-
sion is related to maximum likelihood estimation in in algebraic statistics, and how to use iterative
proportional fitting from statistics to compute patches. This is joint work with Luis Garcia, Kristian
Ranestad, and Hans-Christian Graf von Bothmer.

83



From PS splines to QHPS splines
Paul Dierckx,Hendrik Speleersand Stefan Vandewalle

Katholieke Universiteit Leuven, Belgium

Monday 11.40, I

Powell-Sabin (PS) splines areC1-continuous quadratic macro-elements defined on conforming tri-
angulations. They can be represented in a compact normalized spline basis with a geometrically in-
tuitive interpretation involving control triangles. These triangles can be used to interactively change
the shape of a PS spline in a predictable way. QHPS splines area hierarchical extension of PS
splines. They are defined on a hierarchical triangulation obtained through (local) triadic refinement.
For this spline space a compact normalized quasi-hierarchical basis can be constructed. Such a
basis retains the advantages of the PS spline basis: the basis functions have a local support, they
form a convex partition of unity, and control triangles can be defined. In addition, they admit local
subdivision in a very natural way.

Anisotropic methods for restoring rotated and sheared
rectangular shapes

Tanja Teuber
University of Mannheim

Monday 14.30, I

Methods for image restoration which recover edges and otherimportant features are of fundamental
importance in digital image processing. The aim of this talkis to present a novel technique for the
restoration of images containing rotated and sheared rectangular shapes, which avoids round-off ef-
fects at vertices produced by known edge-preserving denoising techniques. The presented methods
are based on anisotropic diffusion with special adaptations of the diffusion tensors and are numer-
ically solved by finite difference methods. Moreover, some of these diffusion tensors can also be
applied to model variational problems with anisotropic regularization terms. The corresponding
functionals can be efficiently minimized by SOCP and their vertex-preserving properties are the-
oretically supported by the theory of Wulff shapes. In addition, numerical examples illustrate the
good performance of our algorithms.
This is joint work with S. Setzer and G. Steidl (University ofMannheim).
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Normal multilevel triangulations for geometric image
compression

Adhemar Bultheel, Maarten Jansen andWard Van Aerschot
Katholieke Universiteit Leuven, Belgium

Saturday 14.30, II

It is well known that image compression methods based on wavelet or fourier transforms have poor
performance when it comes to dealing with ‘geometrical’ content. By geometrical content, we mean
one-dimensional smooth manifolds, such as boundaries, contours, and ridges,embeddedin a higher
dimensional space (2D image) which define the location where the image is discontinuous.

Recursive partition methods, such as binary space partition (BSP) methods and wedgelets, cap-
ture geometrical content far more efficient than subband based methods. These methods partition
images into several smaller segments such that the contours, present in the image, are approximated
by the segment

boundaries.
In this talk, we present a novel approach, driven by surface regularity, called Normal Multilevel

Triangulation (NMT), that performs segmentation and approximation simultaneously. The technique
is strongly related to normal mesh methods originally developed for the compression ofsmoothtwo
dimensional manifolds. All vertices of a normal mesh can be expressed by a single scalar value
denoting the offset of the vertex in the direction normal to acoarser mesh.

While BSP and wedgelet methods are computational intensivein their pursuit for local optimal
partitions, the proposed method does not exhaustively iterate through possible segment splits, but
relies on the inherent property of vertex-to-contour attraction to align triangle edges tangential to the
contour. In this way, only one set of parameters fixes both theimage partition (geometrical content)
and the piecewise linear approximation of the original image.

Newton-Cotes cubature rules over(d + 1)-pencil
lattices

Jernej Kozak andVito Vitrih
FMF and IMFM, University of Ljubljana, Slovenia

PINT, University of Primorska, Slovenia

Saturday 16.30, II

In this talk,(d + 1)-pencil lattices, which are well-known from the multivariate interpolation, will
be used to extend the Newton-Cotes cubature rules to(d+1)-pencil lattices over simplices and sim-
plicial partitions. The closed form of the cubature rules aswell as the error term will be determined.
Further, it will be shown that the additional freedom provided by(d + 1)-pencil lattices, gives rise
to an adaptive algorithm over simplicial partitions. The key point of the algorithm is the subdivision
step that refines a(d+ 1)-pencil lattice over a simplex to its subsimplices.
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Interpolation using scaled Gaussian Radial Basis
functions

Marshall Walker
Department of Mathematics and Statistics, York University, Toronto, Canada

Saturday 14.50, II

A method for interpolating suitably triangulated data using scaled Gaussian radial basis functions is
investigated. Generated surfaces areC∞, possess local control, and implementation techniques are
computationally trivial when compared with most radial basis methods.

In more detail, given a triangulation of a local region of theplane with verticesxi together with
data points(xi, fi) lying over the plane and given radial disksDi centered at the verticesxi, then
assuming that

⋂
i Di 6=, scaled Gaussian functionsφi are constructed with support confined to the

disksDi. An associated partition of unityψi is constructed in the usual manner. For each diskDi

should verticesxij
lie in Di a local functionLi is chosen to interpolate the data points(xij

, fij
).

The desired interpolating function is thenS(x) =
∑

i Li(x)ψi(x).
An implementation is presented for data lying over a rectangular grid with the local interpolat-

ing functions chosen to be bivariate Lagrange surfaces. Fora specific application, given a parametric
surfaceS described byg : D → R

m, aCn normal vector fieldng(x), and data points(g(xi, fi))
wherezi−g(xi) is normal toS, the described method is used to construct aCn surfacef : D → R

m

which interpolates given data and respects the geometry of the underlying surfaceS.

Learning Rates of Moving Least-square Regression in
a Finite Dimensional Hilbert Space

Hongyan Wang, Daohong Xiang and Dingxuan Zhou
Monday 10.10, II

The Moving Least-square is one approximation method for interpolation and the numerical solution
of differential equations. This paper applies the Moving Least-square method in learning theory
for the regression problem by using the weight function. Here we provide an learning algorithm
associated with the Moving Least-square loss and a finite dimensional Hilbert space of real valued
functions on an "input" spaceX . The error analysis is the goal of this paper. As a consequence,
we obtain the optimal rates for dealing with the general regression functions, comparing with the
classical least-square method in learning theory. Of course the rates depend on the weight parameter
and the capacity of the finite Hilbert space measured by covering numbers.
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Interpolation and Compression of Image Data with
Partial Differential Equations

Joachim Weickert
Faculty of Mathematics and Computer Science, Saarland University, Saarbruecken,

Germany

Saturday 8.30

Interpolation of regularly sampled or scattered data is a frequent problem in many image processing
and computer vision tasks. We present a PDE-based frameworkthat generalises interpolation by
splines and radial basis functions, and links them to approximation methods such as variational
regularisation and anisotropic diffusion filtering.

For randomly chosen sparse data, experiments show the usefulness of an anisotropic nonlinear
diffusion operator which originates from edge-preservingdenoising. It leads to rotationally invari-
ant interpolants that satisfy a maximum-minimum principleand outperform classical interpolation
techniques such as thin plate splines. On the other hand, if one can select the data points freely, we
observe that even a linear diffusion operator may perform well.

These findings are exploited for lossy image compression where only a few “useful” pixels
are stored, and the missing data are reconstructed by diffusion-based interpolation. For the linear
diffusion operator, results on optimal point selection arepresented. In the anisotropic diffusion
setting, a tree-based subdivision method is used to encode relevant pixels in a compact way. Our
experiments demonstrate that PDE-based image compressionmay give better results than the JPEG
standard, in particular if high compression rates are required.

Extensions to surface data will be presented in a later companion talk by Egil Bae.

Convergence and Smoothness Analysis of Nonlinear
Stationary Subdivision Schemes in the Presence of

Extaordinary Points
Andreas Weinmann

Institute of Geometry, Graz University of Technology

Monday 14.50, II

We report on our recent work on convergence and smoothness analysis of nonlinear subdivision
schemes in the presence of extraordinary points. For a certain class of convergent stationary linear
subdivision schemes we can show that the ‘nonlinear analogue’ converges for dense enough input
data, if a proximity condition similar to that of Dyn and Wallner (2005) holds true. Furthermore, we
obtainC1 smoothness of the nonlinear limit function in the vincinityof an extraordinary point over
Reif’s characteristic parametrisation.
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Application of the dual Bernstein basis polynomials to
the multi-degree reduction of Bézier curves with

constraints
Stanislaw Lewanowicz andPawel Wozny

Institute of Computer Science, University of Wroclaw, ul. Joliot-Curie 15, 50-383
Wroclaw, Poland

Thursday 10.50, II

We present a novel approach to the problem of multi-degree reduction of Bézier curves with con-
straints, using the dual constrained Bernstein basis polynomials, associated with the Jacobi scalar
product. We give properties of these polynomials, including the recurrence relation, explicit or-
thogonal and Bézier representations, and the degree elevation formula. We introduce dual discrete
Bernstein polynomials and show that they play an important role in the degree elevation process for
the classical dual constrained Bernstein polynomials. This result plays a crucial role in the presented
algorithm for multi-degree reduction of Bézier curves withconstraints. An example is given.

Classification with Gaussians and Convex Loss
Daohong Xiangand Dingxuan Zhou

Saturday 12.00, II

This paper considers binary classification algorithms generated from Tikhonov regularization
schemes associated with general convex loss functions and varying Gaussian kernels. Our main
goal is to provide satisfactory estimates for the excess misclassification error. Allowing varying
Gaussian kernels in the algorithms improves learning ratesof the algorithm measured by the sample
error and regularization error. The sample error is estimated by using a projection operator and a
tight bound for the covering numbers of reproducing kernel Hilbert spaces generated by Gaussian
kernels. We show how a Fourier analysis technique can be applied to get polynomial decays of
the regularization error under a Sobolev smoothness condition. The convexity of the general loss
function plays an very important role in our analysis.

Convergence of Increasingly Flat Radial Basis
Interpolants to Polynomial Interpolants
Yeon Ju Lee, Gang Joon Yoon andJungho Yoon

Department of Computer Sciences, University of Wisconsin,Madison
School of Mathematics, KIAS

Department of Mathematics, Ewha W. University

Thursday 14.50, II

In this paper, we study the convergence behavior of interpolants by smooth radial basis functions to
polynomial interpolants inRd, as the radial basis functions are scaled to be increasinglyflat. Larson
and Fornberg conjectured a sufficient property for this convergence, and they also conjectured that
Bessel radial functions do not satisfy this property. First, in the case of positive definite radial
functions, we prove both conjectures by Larsson and Fornberg for the convergence of increasingly
flat radial function interpolants. Next, we extend the results to the case of conditionally positive
definite radial functions of orderm > 0.
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On the Logarithmic Curvature and Torsion Graphs
Ryo Fukuda, Takafumi Saito andNorimasa Yoshida

Nihon University
Tokyo University of Agriculture and Technology

Saturday 10.30, I

Many of aesthetic curves in the natural and artificial objects have been shown, by Harada et.al[1], to
be curves whose logarithmic curvature graphs are approximated by straight lines. Based on the gen-
eral formula[2] of log-aesthetic curves (formerly called aesthetic curves) derived by Miura, Yoshida
and Saito identified the overall shapes of log-aesthetic curves and provided a method for generating
a curve segment by three points like a quadratic Bézier curves[3].

This paper proposes to use logarithmic curvature graphs andlogarithmic torsion graphs for
analyzing the characteristics of (space) curve segments. First, logarithmic curvature graphs and
logarithmic torsion graphs are defined to be drawn from free-from curves, such as Bézier or NURBS
curves. We then present several characteristics of these graphs and point out that if logarithmic
curvature (or torsion) graph is almost linear, the curvature (or torsion) is nearly represented by a
simple function of arc length. Several examples of logarithmic curvature graphs and logarithmic
torsion graphs drawn from planer and space Bézier curves arealso shown.

References
[1] T. Harada, et al.: An aesthetic curves in the field of industrial design, Inn Proc. of IEEE
Symposium on Visual Languages, pp.38-47, 1999.
[2] K. T. Miura, A general equation of aesthetic curves and its self-affinity, Computer-Adied Design
and Applications, Vol.3, Nos.1-4, pp.457-464, 2006.
[3] N. Yoshida and T. Saito, Interactive Aesthetic Curve Segment, The Visual Computer (Proc. of
Pacific Graphics), Vol. 22, No.9-11, pp.896-905, 2006.

Vector Field Subdivision
Thomas P. Y. Yu

Drexel University, Philadelphia, USA

Friday 12.00, II

In this talk I will describe a algorithm for modeling vector fields on (Loop or Catmull-Clark, say)
subdivision surfaces, again using subdivision. The methodis linear, is intrinsic, but is in a sense
non-stationary. Being intrinsic, the scheme is also affine invariant. Using perturbation results from
subdivision, we can show that the vector fields created by ourscheme isC2 away from extraordinary
vertices. We also explore how to model vector field singularities of various types (sources, sinks,
cycles, etc.) based on the proposed method.

If time allows, we wish to discuss the fundamental difference of our scheme with an interesting
1-form subdivision scheme developed at the Caltech Multiresolutuon Modeling group.

This is joint work with Tom Duchamp and Gang Xie.
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Geometric Lagrange Interpolation by Planar Cubic
Pythagorean-hodograph Curves

Gašper Jaklǐc, Marjeta Karjnc, Jernej Kozak, Vito Vitrih and
Emil Žagar

FMF, University of Ljubljana and PINT, University of Primorska, Slovenia
IMFM, University of Ljubljana, Slovenia

FMF and IMFM, University of Ljubljana, Slovenia
PINT, University of Primorska, Slovenia

Thursday 14.50, I

Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph (PH) curves will be con-
sidered. It will be shown that such an interpolatory curve can interpolate4 data points provided that
a data polygon, formed by the interpolation points, is convex, and satisfies an additional restriction
on its angles. This gives rise to a conjecture that a PH curve of degreen can, under some natural
restrictions on data points, interpolate up ton+ 1 points.

Scattered Data Reconstruction of Radon Data for
Computer Tomography

Rick Beatson andWolfgang zu Castell
University of Canterbury, New Zealand
Helmholtz Zentrum München, Germany

Monday 18.00, I

Kernel based methods have long shown to provide powerful interpolation and approximation
schemes for scattered data. The classical approach uses radial basis functions to define interpo-
lation schemes inRd. Analog constructions have been given for the sphere, whilemethods based on
positive definite kernels for further domains have just beencoming up lately.

We use the framework of abstract harmonic analysis to define suitable basis functions on the
projective spacePd. Since this is the natural space data for computer tomography is living in, we can
apply the resulting schemes to solve missing data problems for scattered Radon data. The resulting
reconstructions of CT images turn out to avoid artifacts resulting from other interpolation methods
being used so far.

90



Abstract Index

Planar rational quadratics and cubics: parametrization and shape control
Gudrun Albrecht∗

25

Local Shape of Classical and Generalized Offsets to Plane Algebraic Curves
Juan Gerardo Alcazar∗

26

Transfinite interpolation along parallel lines, based on splines in tension
Ziv Ayalon∗, Nira Dyn and David Levin

26

Partial Differential Equations for Interpolation and Comp ression of Surfaces
Egil Bae∗

27

Computing multivariate intersections on the GPU.
Børre Bang∗, Lubomir T. Dechevsky, Joakim Gundersen, Arnt R. Kristoffersen and
Arne Lakså

27

New Quasi-interpolants Based on Near-Best Discrete SplineQuasi-interpolants on
Uniform Triangulations
D. Barrera∗, A. Guessab, M. J. Ibáñez and O. Nouisser

28

Computing envelope approximations using MOS surfaces
Bohumír Bastl∗, Bert Jüttler, Jǐrí Kosinka and Miroslav Lávǐcka
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