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Abstract. This paper extends the investigation and application of Deformable
Voxel Grids (DVGs) into a unified framework for 3D shape analysis and synthe-
sis. DVGs consist in a grid that approximates a shape’s silhouette via energy-
minimization. This provides an improved embedding space over a regular voxel
grid as it aligns with the geometry of the shape, and subsequently allows for the
deformation of the shape by manipulating the DVG’s control points. We demon-
strate how DVGs directly and naturally serve for an array of applications: cor-
respondences, style transfer, shape retrieval, and PCA deformations. We further
address the challenge of morphing non-parametric shapes, an ill-posed problem
because of the trade-off between plausibility and smoothness, particularly under
large topology changes. Thanks to DVGs, we extract a shape content descriptor,
and propose a similarity metric adapted to the extracted content and a formulation
of morphings as minimal paths in a graph. Our approach leverages the strengths
and interpretability of DVGs while achieving morphing capabilities comparable
to those provided by neural networks. Throughout the course of our study, we con-
ducted qualitative and quantitative analyses on the robustness and quality of our
proposed methods, and we provide valuable insights into the effective manual
intervention that can enhance quality, given the interpretability of each compo-
nent in our method. In conclusion, this work elucidates the wide-ranging implica-
tions and potential of DVGs in 3D shape comparison, processing, and morphing,
paving the way for future research and applications in the field.
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1 Introduction

Three-dimensional shapes present a unique challenge when it comes to comparison due
to their lack of a standardized basis of representation.

On the one hand are surfacic representations: pointclouds and meshes. Pointclouds
are unordered sets, so comparing two requires a registration step which essentially de-
termines point-to-point correspondences. This matching can operate under different as-
sumptions: for instance, ICP [4] for rigid affine transformations, or Earth Mover’s Dis-
tance [8] for minimal transport-cost one-to-one matching. The same holds for meshes,
but the explicit connectivity also allows for spectral methods, whose local descriptors
derive from eigenvalues of operators such as the Laplacian [39,32].
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On the other hand are volumetric representations: voxel grids and signed distance
fields (SDF). Being scalar signals in the unit cube of R3, they indeed have a canonical
embedding space. However, a big part of voxel space is non discriminative: the center
(resp. the border) of the cube is mostly always occupied (resp. empty). To capture rich
geometric details, they also require a sufficient grid resolution, leading to high dimen-
sional spaces where distances are not meaningful. As for SDFs, they generally serve as
a proxy to either render the shape via ray marching [21] or generate a mesh via march-
ing cubes [29]. This is why, in the context of shape editing, both these representations
are mainly useful for boolean operations – intersection and union.

Instead of relying solely on their geometry, shapes can be compared using param-
eters which translate to meaningful properties, such as length, height, etc. In the mod-
eling phase, this can be achieved by parametric surface or volume elements, such as
splines and nurbs. But in the analysis phase, these parameters are generally not accessi-
ble. This is where shape priors come to play, either in the form of statistical distribution
estimation [9], or with methods relying on deformations from a template [27] or be-
tween pairs of shapes [19]. These are controlled by the Free Form Deformation (FFD,
[37]) which, although having volume-preserving properties, offers unintuitive controls.

Another approach comes with neural networks, and more especially generative mod-
els such as GANs [12] and VAEs [25] They offer a so-called latent space which serves
as a canonical, Euclidean parameter space, with a typical dimensionality lower than that
of the geometric shape space, amenable to meaningful distances between points. Sev-
eral works demonstrated how latent arithmetics allows for similarity clustering [35,36],
shape analogies [1], and recombinations [13,7]. However, they rely on heavy computa-
tions on large datasets, which not only requires powerful hardware and a long training,
but also depends on the reconstruction capacity of the chosen generator architecture.

This paper shows how the Deformable Voxel Grid [16,14,15] (DVG) geometric
representation serves as a unified analysis and synthesis framework, with various appli-
cations, including: dataset exploration, similarity search, deformations, approximation
with quadrilaterals, correspondences, and morphing. The fact that it works surprisingly
well, given the simplicity of the methods, is a strong clue that DVGs encode relevant
information about shapes, and demonstrates the versatility of this representation. It also
experimentally highlights the strengths and weaknesses of a generic DVG optimization
procedures.

The optimization of a DVG to a shape, and its subsequent registration, allows to
write S = pV (C) where S is a given shape, V the positions of its control points, C the
cubified version of S, and pV a cube-to-grid projector (see Section 3 for more details).
This corresponds to a separation in a canonical space of S into a low-level description of
its appearance (V ), and a high-level description of its surface details (C). This separation
is what enables the array of applications we present.

What is furthermore remarkable is that the DVG model was designed in a very
generic way, without focus on any of these applications. This is why we do not resort
to more complex methods, except for the very last one, morphing. In the other cases,
improving the performances of each application to reach state-of-the-art is out of the
scope of the present work.
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2 Related Work

Deep learning and shape latent spaces In this area, use cases typically include one
of the following tasks: shape processing and data augmentation [33,9,23,18,28], shape
prediction from 2D data [38,18,43,42,8], shape completion [2,17,34], and latent space
exploration [41,43,28,1,13,7].

Over the past years, generative models, using architectures inspired by Variational
Auto Encoders [25] and GANs [12], have been used for shape morphing, via linear
interpolations in the latent space. Works can represent shapes in various formats, such
as pointclouds [35,36,8,1,13], voxels [43,28,7], octrees [40], or 4D particle dynamics
[31].

Other works, focusing on the prediction of a 3D shape from a given image, used
more specific representations such as surface patches [17] or deformed ellipsoids [42],
but they do not appear to offer a direct way of producing shape morphings. More re-
cently, networks predicting implicit functions [34,20] appeared to allow smooth, arbitrary-
topology meshes, while being compatible with latent space interpolations.

Deep learning approaches are based on the assumption that learned descriptors, as
opposed to handcrafted ones, are better suited to capture the variability of natural sig-
nals. Moreover, generative models offer a latent space amenable to the generation of
new shapes. However, neural networks come with known limitations: their lack of inter-
pretability and their constraints to converge to visually-pleasing results. As a matter of
fact, they typically require rich databases, powerful GPUs, and suffer from long train-
ing times and difficult parameters tuning. All this makes reproducing the results of deep
learning based methods hard, even when a portion of the code is public.

Our work takes quite an opposite view, exploring the possibility of achieving similar
results without any neural network. We show in fact that we can obtain the same capa-
bilities offered by generative networks’ latent spaces, by carefully handcrafting and
designing every component. As a result, we already generate satisfying results even
with modest datasets (around 500 shapes), and because every component has a clear
meaning, one can easily improve the desired outcome by manual intervention.

In a way, this work ultimately consists in investigating what remains once those
applications are stripped from neural networks, in order to better understand the speci-
ficities they bring.

Morphing based on deformations The problem of realistic shape morphing was tack-
led by [10] for human and animal bodies, interpreting a collection of shapes as a de-
formation space. By establishing shape correspondences, they obtain a shape distance
allowing them to express morphings as a minimal path among clusters of similar body
poses. We adopt a framework similar to theirs, while focusing on shapes which have
varied topologies and no natural parameterization, such as chairs and sofas, such that
a morphing cannot be interpreted as a mere deformation. Our work can be seen as a
derivation of the same ideas, but adapted to different modalities, typically addressed by
deep learning methods.

As far as they are concerned, instead of relying on geometric generative models,
shape deformation is another popular choice to generate realistic shapes at a small cost,
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leveraging the similarity between objects belonging to the same class. To parameter-
ize these deformations, most approaches [19,27] use the Free Form Deformation [37],
which arranges control points on a regular volumetric grid, and then uses cubic interpo-
lation to distort the object as the points move. The key differences with our model are
the following. First, they tackle different problems, such as partial shape alignment [19]
or shape reconstruction by deforming a template [27]. Second, and most importantly,
their shape deformations are pair-specific, trained to predict deformations between pairs
((A,B) where A is deformed into B). On the contrary, our model provides a consistent
shape cubifiction, without any learning, allowing to compare all shapes (in terms of sim-
ilarity measure); and we use this representation to estimate minimal-energy morphings.

More recently, [44] showed how to reconstruct shapes by deforming an implicit
template, predicted by a neural network, giving shape correspondences and deforma-
tions. In our method, we can see the cubifiction step as a template deformation, where
the template is the unit cube, and where the deformation is not learned but computed.
We try to achieve similar results, in surface quality and interpolation smoothness, but
without the constraints and limitations of deep learning as explained above.

Parametric and statistical shapes descriptors Describing a shape class by a given set
of parameters (also referred to as a dictionary) is a fundamental operation for applica-
tions such as classification, model retrieval, or similarity search. Some approaches [23,18]
learn probabilistic distributions of shapes from the properties of their semantical parts,
or even from the relations between parts simplified into simpler geometric primitives
[41]. Others learn explicit parameterizations, typically possible on shapes representing
body poses [2].

Our method relies on shape cubifiction, serving as a shape descriptor which, while
being class-independent, is more adapted to shapes having strong reflection symmetries.
The key difference with these other methods is twofold. First, we show how traversing
the space of plausible shapes does not require statistical inference but can be expressed
as a minimal-path problem in a graph, whose structure captures the geometric relations
between existing shapes. Second, our descriptor is invertible, which allows us to gener-
ate new shapes (for the intermediate states of morphings), without any neural network.

Deformable Voxel Grids Our cubifiction relies on Deformable Voxel Grids [16,14,15],
a model inspired by the Topological Active Volume (TAV) from [3], which is a volu-
metric extension of active contours [24,6]. The unfamiliar reader can think of active
contours as parametric curves which minimize a given energy, typically used for seg-
menting objects in images [22]. In the case of DVGs, the energy ensures that after an
initialization as a regular voxel grid around the input shape, the grid is optimized until
it tightly and smoothly embraces the shape (see Figure 1).

3 Shape cubifiction via Deformable Voxel Grids

Fitting DVGs around shapes offers a consistent representation basis within the same
class (e.g. chair or car): the same semantical parts of different objects tend to occupy
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Fig. 1. Optimization of DVGs at progressive resolutions r (constant number of steps per r).

the same region of the cube, allowing for easier shape comparisons. As a matter of
fact, an optimized DVG can be interpreted as a smooth deformation of the unit cube R3

adapted to a given shape S, and we can apply the inverse deformation to S. We call this
“shape registration”, and it provides us with an invertible shape cubification.

Forward DVG projection For a given DVG cell c, a point q inside can be expressed
by its local coordinates, a triplet in [0,1]3:

ũ, ṽ, w̃ ∈ [0,1]3 s.t. fc(ũ, ṽ, w̃) = q (1)

where p1, p2, . . . , p8 are the positions of the eight vertices of c. The interpolator fc
can be linear or smooth (we use, respectively, a trilinear pV

tri and a Thin Plate Spline
pV

t ps interpolators). Both can be defined by matching the control points V 0 of a regular
cube to V , those of a given DVG.

Then, an affine transformation maps the cell to its correct location within the whole
DVG grid system (see Figure 2b).

Backward DVG projection We suppose the signed distance field (SDF) of shape S
is given. Each cell of V is subdivided into smaller subcells, and the value of the SDF
is queried at the locations of each subcell centroid, which naturally have (u,v,w) co-
ordinates, coming from the indexing of V : vertex index (i, j,k) has local coordinates
(u,v,w) = ( i

r−1 ,
j

r−1 ,
k

r−1 ). The cubified SDF can be used in two ways.
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(a) Bilinear interpolation (b) DVG-voxel correspondence

Fig. 2. A natural way of setting grid coordinates on a quadrilateral is via bilinear interpolation,
which maps regular subdivisons of [0,1]2 onto the quad cell (left to right). Determining the local
coordinates of a given point within the cell corresponds to inverting this interpolation (right to
left). The same is done for registering a point inside a DVG, but in 3D, with the inversion of a
trilinear interpolation.

Content descriptor A downsampling of the cubified SDF provides a useful descriptor
to group models by similarity. From this, we build the shape graph used for morphings.
See more details in Section 5.

Shape cubifiction and reconstruction From the cubified SDF, we obtain C, the mesh of
the cubified shape, using marching cubes [29]. The precision of the geometry is limited
by the grid resolution of the DVG and the number of cell subdivisions. The original
shape can be recovered by projecting C into V using the spline projector pV

t ps. This
operation is important because it gives the baseline shape representation capacity for
the morphings we generate: as a matter of fact, our morphings are done in V -space
and C-space separately, and use the pV

t ps projector to effectively create the intermediate
shapes. The intuition is that the DVG separates style and configuration, respectively
into C and V . This way, we find morphings that minimize the amount of displaced mass
to transfer style (C), while the deformation abilities of the grid allow to interpolate the
configurations V .

Figure 3 shows examples of such cubifictions and reconstructions using both pV
tri

and pV
t ps.

4 Analysis and Synthesis on cubified shapes

4.1 Overview of applications

All applications were tested on shapes from various categories of ShapeNet [5]; the
models distribution is summarized in Table 1. Let us briefly provide intuitions for why,
and how, V and/or C are used for each application.

Analysis
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Fig. 3. (Zoom in to see details) Qualitative results for shape reconstruction via DVGs: estimating
V for each shape allows to cubify it (C), and this can be reprojected into V by a trilinear pV

tri
or a spline pV

tps projector (see 3), the latter yielding smoother surfaces. The cubified shapes are
color-coded by assigning a value in [0,1]3 to an RGB color.

Table 1. Distribution of shapes used in this work, taken from the ShapeNet [5] dataset.

Category Car Chair Airplane Sofa Rifle Lamp Bench Speaker Total

Size 1500 1500 1100 800 1000 850 1500 750 9000

♠ Correspondences: Cubified shapes tend to have similar parts in similar locations,
which suggests a potential for estimating shape correspondences, using a naive
closest-point matching.

♠ Similarity search: Relying solely on V , which approximates the outer surface of S,
gives a topological-invariant shape descriptor which can be used to retrieve similar
models.

Synthesis

♦ Approximation with quads: Surfaces given as triangle meshes can be approximated
by quadrilateral meshes, thanks to the grid system of V .

♦ Style transfer: Projecting C1 into V2, which conforms a shape S1 into the same outer
shape as another shape S2. This is reminiscent of style transfer.

♦ Semantical editing: A generalization of the previous application, learning a param-
eterization of V across a full dataset, in order to deform a given shape.

♦ Morphing: Interpolating continuously between values of V and C.
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4.2 Applications relying solely on V

V as a shape descriptor: mode exploration and similarity search We test the in-
tuition that the low-level representation encoded by V contains enough information
about a shape. In order to do so, a shape descriptor can be computed by flattening V , a
9× 9× 9× 3 array, into a vector of R2187. First, because this high dimensional space
is not displayable, we visualize its t-SNE [30] embedding. An embedding according
to just three dimensions already reveals that categories are regrouped into distinct clus-
ters (Figure 4). We also did the same operation, but only considering the points of V
located at the surface of the grid (total of 386 points, hence dimensionality d = 1158).
This yielded a virtually indistinguishable t-SNE embedding. These two observations
confirm two points:

1. V is an acceptable low-resolution shape descriptor;
2. Most of the signature information of the shape is located at the surface of V .

X

Z

Y

Y

Z

X

Car Chair Airplane Sofa Rifle Lamp Bench Speaker

Fig. 4. Three-dimensional t-SNE embedding of values of V across several shape categories
(viewed from different angles for better appreciation of the 3D). Notice how each category is
largely localized in its own cluster.

Just like with the latent space of generative models, clusters are not entirely imper-
vious to models from other categories. For instance, some airplanes look like cars, etc.
Then, we also propose to use DVGs in order to search a dataset for models similar to a
given query shape. To do so, we use as a shape descriptor the full 9× 9× 9× 3 array.
By construction, its parameterization is shared across all models, such that a simple Eu-
clidean distance translates to a point-to-point distance (no point matching required, they
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are already matched). In Figure 5 we show the first three nearest-neighbors of several
models, randomly selected from our dataset. We have seen that the different categories
belong to different clusters, and here again, when taken from the whole dataset (without
any supervision), the nearest-neighbors are in most cases consistent with the category of
the query model. Moreover, the found models appear to be structurally similar objects,
that is to say, to belong to the same semantical sub-cluster. In Figure 5 we can indeed
find examples of armchairs, fighter jets, airline planes, etc.

Query 1 2 3 Query 1 2 3

Fig. 5. Examples of similarity search using V as a descriptor (Euclidean distance): for each Query
model, we find the three nearest-neighbors in the whole dataset. Models are colored according
to their respective categories (same colors as in Figure 4). In the majority of cases, they not only
belong to the same category, but are also functionally similar. The last example, on the bottom-
right corner, shows a case of confusion, where an uncommon bench is similar to sofas.

Deformation-based applications: style transfer and semantical editing These two
applications consist in the manipulation of V in order to deform its underlying shape S.
Given two shapes S1 = pV1(C1) and S2 = pV2(C2), we can transfer the style of S1 into
the grid system of S2 by switching V1 for V2:
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S1 in 2 = pV2(C1) and S2 in 1 = pV1(C2) (2)

This formulation emphasizes the separability of V and C, which we argue can be
interpreted as a notion of “container” (V ) and “content” (C), in a paradigm similar to
style and content in style transfer1. We show in Figure 6a an array of different V and C
values combined together.

From our experiments, we confirmed that this kind of style transfer works well
for shape types satisfying our underlying assumptions, which we summarize here: 1.
volumic shapes, with no near-degenerate dimension; 2. shapes which remain realistic
under mild volume distortion; 3. (Vi,Ci) pairs with matching semantics2. Note that the
surface quality of the generated shapes, when using shapes cubified via our implicit
registration depends on the accuracy of the SDF estimation. We used the Mesh to SDF
tool from [34], which tends to generate a lot of artifacts when used in conjunction
with Marching Cubes [29] to reconstruct the 0 level-set. To keep satisfying shapes, we
reconstruct an ε level-set (ε ≈ 0.01), which explains the apparent “thickness” of the
generated shapes.

As for statistical deformations, we show, as a minimal working example, that they
can be performed by a simple PCA in V -space. More specifically, for a given shape’s V ,
we explore in its vicinity the subspace generated by the first two principal components.
The shape is reprojected into the corresponding V values (see Figure 6c). The first
principal components of V translate into high-level furniture properties, such as length,
height, slant, etc. Built into an editor with sliders, this provides an interactive tool to
quickly deform a shape and explore its possible variations. Notice that the plausibility
of the shape decreases as the magnitude of the displacement increases – that is to say,
as we get further away from the center of the image.

4.3 Applications requiring C

Approximation with quads Instead of relying on Marching Cubes to implicitly regis-
ter the shape, it can actually be directly voxelized within the DVG grid system: instead
of reconstructing a mesh, we simply “light on” the DVG cells which intersect the object,
and extract the outer surface of the resulting object. This can be done at any arbitrary
subdivision level of the DVG3. While this does not serve a reconstruction accuracy
purpose, it offers a quad-mesh surface approximation with the following properties:

1. Consistency across a dataset, which can be useful for building coherent scenes out
of multiple objects;

2. Control of the approximation resolution.

1Note however that our application is different from the typical style transfer found in the
literature.

2As for the consistent alignment of shapes, this could be performed as a pre-processing step.
3Say we optimized V up to its fourth resolution level, r = 3, into an 8 × 8 × 8 grid. All

subsequent subdivisions will not be optimized, but can still be used to refine the resolution of the
voxelization.
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(a) Content and style separation (b) Quad approximation

(c) Semantical editing

Fig. 6. (a) Container (V , rows) and content (C, columns) separation. This generates interesting
and controllable shape variations, mostly useful for furniture.
(b) Extracting a quad mesh from optimized DVGs, with increasing resolutions. The odd rows
correspond to a rendering of the corresponding mesh: first, each quad is split into two triangles;
then, normals are computed for each face via edges cross-product; finally, normals are averaged
for each vertex and then interpolated across faces (method known as smooth normals).
(c) Having encoded k = 1500 chairs with DVGs, a PCA on {Vk}k yields principal modes of
deformations, applied to deform any shape. For example in this chair dataset, they correspond
to vertical and horizontal elongations (original shape on central column; ui is the i-th principal
component, the color gradient corresponds to the deviation from the shape’s DVG).
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Some examples are shown in Figure 6b. While producing far from ideal meshes,
it works well for a surprising variety of shapes, across all categories of our dataset.
Notably, rendering the resulting meshes produces much more satisfying surfaces than
regular voxel grids of similar resolutions. We propose two ways of improving the re-
sults. First, one could re-fit the obtained quad mesh to the surface (similarly to Mesh-
RCNN [11]). Or, after the convergence of V , the elastic energy could be dropped on
useless internal nodes, similarly to the original Topological Active Volumes [3]. Sec-
ond, the staircase effect, typical of voxel grids and still present here, to a lesser extent,
could be mitigated with the development of a “diagonal tracing” strategy, which would
adaptively add a “ramp” (a diagonal quad between cells) where needed. This could be
done with an adaptation of the Marching Cube algorithm, but requires a careful study
of its ambiguity lookup table.

Correspondences One last way of investigating the usefulness of cubifiction is shape
correspondences. This intuition emerged from the style transfer application (Section 4.2):
if a pair of shapes is compatible with style transfer, their cubified versions should display
similar parts in similar locations of the cube. Thus, we tried to make correspondences
between cubified shapes by identifying points by their position – more precisely, to their
nearest neighbor in the other shape. Reprojecting the cubes C1 and C2 to their respective
grids V1 and V2 transfers these correspondences back to the original shapes.

This very naive approach, while obviously limited, produces satisfying results for
varied shapes. We show such examples in Figure 7, where identified points have the
same color (we also draw colored lines to help visualize the correctness of correspon-
dences). One particularly interesting benefit is the explainability of the correspondences,
provided by the grid. A grid misalignment between two shapes, resulting from a bad
convergence of the first DVG resolution levels, can lead to wrong correspondences.

5 Graph-based shape space

5.1 Motivation

In the previous Section, the analogy with latent spaces was apparent in several places.
This led us to question whether DVGs, and their ability to separate shapes into S =
pV (C), could be used as a replacement for generative models in the application they
seem particularly powerful, namely, morphing. With style transfer, we have already
seen how we can transform (V1,C1,V2,C2) into (V2,C1), by replacing V1 by V2 in S1 =
pV1(C2). This can be done continuously, with a linear interpolation on V from V1 to V2.
Moreover, the correspondences experiment confirmed that similar shapes have similar
C content, which suggests that there is a possibility to easily interpolate between C1 and
C2. In such a case, we can then build a morphing from S1 to S2, by a simultaneous linear
interpolation from V1 to V2 and from C1 to C2.

What about shapes that are too dissimilar? We precisely developed a method around
this idea, leveraging a whole dataset to find a good sequence of intermediate states.

Once all shapes of a dataset are consistently cubified, we propose to discretize the
global shape space in the form of a weighted graph, whose edges derive from a similar-
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Fig. 7. Correspondences computed by matching closest points in cubified shapes, and transferred
back to the original shapes.

ity measure between cubified shapes. This graph formalizes the notion of shape morph-
ing, as a morphing from shape A to B will correspond to a minimal path from node NA
to NB. This choice is motivated by the fact that for a large enough shape dataset, most
intermediate steps of a morphing are close to existing shapes.

This is why we explore the possibility of discrete morphings, restricted to known
shapes, effectively bypassing the necessity to learn how to sample new shapes; while
imposing them a minimal energy criteria.

We first present a general framework for shape morphings as minimal paths in a
shape graph, for any arbitrary shape embedding. Then, we show how it can be used with
cubified shapes and how our invertible cubifiction actually allows to easily extrapolate
the discrete morphings to continuous ones.

5.2 Morphings as minimal paths

In this part, we consider the problem of morphings with shape priors, that is to say,
morphings such that intermediate states are plausible. We operate under the minimal
assumption that the shape prior is given by a finite set of exemplars, S = {S1, · · · ,SN},
where the shapes are given in an arbitrary embedding. A morphing corresponds to a
sequence of shapes from S , but we want a metric to evaluate the quality of a morphing.
In order to do so, we impose a cost (or an energy) to a morphing:

E(M = (S1, · · · ,Sk))≜
k−1

∑
i=1

E(Si,Si+1) (3)
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Where E(Si,S j) is the energy of the transition Si → S j. Such energies can be evaluated
as paths length in a weighted graph G defined by:

– nodes {N1, · · · ,NN}, corresponding to the shapes in S ;
– positive weighted edges {wi, j} where wi j can be interpreted as a similarity between

shapes Si and S j. By convention, an absent edge (i, j) is equivalent to wi j = ∞.

We call a morphing A → B minimal if it is achieved by a shortest path in G from
NA to NB. In order to consider symmetric morphings (i.e. equal to the time-reversed
morphing), we assume G in an undirected graph, i.e, ∀i, j,wi, j = w j,i.

5.3 Graph of cubified shapes

We can apply the previous formalism to the space of cubified shapes. We propose a
metric between shapes cubified via a DVG, which interprets as an approximate transport
cost.

We extract the volume indicator function 1S by thresholding the SDF: its average
value is binned within each DVG cell, in order to obtain an r3 voxel image which
serves as a shape content descriptor. Each cell value, between 0 and 1, represents the
proportion of the cell which intersects the shape.

This provides a voxel image of a cubified shape. With a DVG resolution r = 8,
this leads to a representation space with 83 = 512 dimensions, enough for the curse of
dimensionality to prevent Euclidian distances from being meaningful. This naive ap-
proach does not leverage the proximity of the cells, which is why we propose a method
based on the morphological dilation operator.

Atypical models detection and removal A preliminary step is to exclude models
for which the aforementioned volumetric descriptor is inadequate, that is to say, when
the density of presence inside the cells is not homogeneous. To detect such models,
we simply compute and sum all the inner-cell standard deviations of the discrete 1S
obtained in Section 3. Figure 8 shows the most adequate and inadequate models for the
chair dataset: unsurprisingly, sofas and armchairs, which admit blocky cubifictions, are
the most adequate models; while chairs with many intricate details are the least. Because
our descriptor, and the subsequent similarity metric, are blind to these errors, removing
these inadequate shapes from the graph shape space prevents them from appearing in
shape morphings.

Similarity metric Using the cross structuring element, real-valued dilation allows to
add a one-voxel margin to a shape. Thus, the added voxels all correspond to cells whose
L1 distance to the shape is 1/r. We can define a forward similarity metric DAB from
descriptor A to B, which penalizes the mass of B located outside the dilation of A:

DAB = min(dilation(A)−B,0)

DBA = min(dilation(B)−A,0)

d(A,B)≜ ‖DAB‖1 +‖DBA‖1

(4)
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Adequate models Inadequate models

Fig. 8. Examples of adequate and inadequate models, with respect to our volumetric descriptor
which averages density of presence within 8×8×8 DVG cells.

Note that for all locations outside of dilation(A), the penalty imposed by ‖DAB‖1
is the same as the L1 voxel distance. Thus, for dissimilar models (e.g., if B is mostly
located outside of dilation(A)), this metric d becomes less interpretable, because of the
curse of dimensionality. We use this metric to build a shape graph G , after all pairwise
distances are evaluated. In general, each shape is connected to its k-nearest neighbors.
However, the linking rules can vary for several reasons:

– Certain shapes may be particularly different from the rest of the dataset. In order to
prevent them from being considered in morphings, we trim off links whose weights
are above a threshold τw.

– To ensure that the final graph G is made of only one connected component, we can
also decide to keep at least kmin connections for every node, even if their weights
are above τw.

The impact of such trade-offs is discussed in Section 7.3.

5.4 Continuous morphings

To find a minimal path in G , we use Dijkstra’s algorithm. The returned length corre-
sponds to the energy of the minimal morphing, while the sequence of nodes provides
a discrete morphing. Thanks to our invertible cubifiction, this shape sequence can be
prolonged to a continuous morphing, by interpolating separately the style and content
(V,C) of each shape. For the control points positions V , the interpolation is trivial and
can just be linear; as for the interpolation of content values, we also propose linear inter-
polation. More precisely, we interpolate the cubified SDFs, and generate the geometry
with marching cubes.

Because each edge in the path has a known length, the continuous path can be
parameterized by arc length (see Discussion 7.6). For an arbitrary number of frames,
whose positions are equally spaced along the path, this grants more interpolation frames
in between less similar shapes, which are the most likely to have topology changes.

For a given sequence of style-content separated shapes ((V1,C1), ..., (Vk,Ck)), and
their corresponding edge lengths L=(l2

1 , ..., lk
k−1) in G , we can formalize the continuous

morphing using a time parameter t ∈ [0,1]:
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i, i+1, t̃ = sL(t)

Ṽ = (1− t) ·V1 + t ·Vk

y(t) = pṼ
tps ((1− t̃) ·Ci + t̃ ·Ci+1)

(5)

Where sL(t) is the discrete arc lenth parameterization function, returning the indices
(i, i+1) of the edge nodes and the local time parameter t̃. Note that the interpolation on
V is straight from V1 to Vk: the graph G is only used for interpolating the content C.

The same framework can be used to morph between new, unknown shapes, by em-
bedding them into graph G , following all the steps: DVG optimization, shape cubific-
tion, links creation to connect these new shapes to the already-existing graph.

6 Shape morphing results

We conducted our experiments using shapes from the ShapeNet [5] dataset; more specif-
ically using 500 from the chair category and 200 from the car category. Because the
continuous morphings require all shapes to be closed manifolds, and for fair compar-
isons against [26] which preprocesses shapes the same way, we first converted them
into manifolds using the same method as [34]. We then sampled l = 4096 points to be
used as the DVG input pointclouds.

6.1 Shape morphings

To produce shape morphings, we randomly picked pairs of nodes in G , and applied
the method explained in Section 5.4. Following Equation (5), each morphing consists
in a sequence of triplets (Ṽ ,C̃,y). While we are typically only interested in the final
geometry y, observing Ṽ and C̃ provides, along with the found minimal path in G , an
explanation for the generated geometries. We show such triplets in Figure 9.

6.2 Robustness to misalignment

We assume all our shapes are consistently aligned, as standard among generative mod-
els. However, being a deformable model, we tested the ability of the DVG to converge
to the correct configuration when the input shape has been rotated. Given the hierar-
chical subdivisions and the centrality of the first levels (see discussion in Section 7),
we compared the determined first level for two conditions: ground truth alignment, and
noisy alignment (rotation with random Euler angles, according to N (0,σ = 0.2rad ≈
12◦)). For fairness, we kept a constant number of gradient descent steps. The error is
then measured as the Euclidean distance between the control points of the two grids,
‖GT−pred‖2. Figure 10b shows an example of a misaligned grid

We also estimated, for any given τθ, Eθmax≤τθ(‖GT − pred‖2), the empirical ex-
pectancy on datasets where the maximum angular error is smaller than a threshold τθ
(see plot in Figure 10a). We observe that it increases at a reasonably low pace, confirm-
ing the advantages of a deformable model. As for high angular errors (more than 30◦),
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1a 2a

1b 2b

1c 2c

3a 4a

3b 4b

3c 4c

t 0 3 6 9 12 15 t 0 3 6 9 12 15

Fig. 9. (Zoom in to see details) Examples of morphings generated with our method. Rows (a),
(b), and (c) respectively correspond to the interpolation of cubes C, final shapes, and DVG grids
V .

the predicted grid can be flipped: a control point which should be at the top is now lo-
cated on the side. For a single shape, this is not a problem. However, on a whole dataset,
this would break the consistent cubifiction we require to build our similarity measure.

6.3 Qualitative analysis: comparison with deep learning

In our work, one of the main objectives was to produce results comparable in quality
to those obtained via deep learning. We chose to compare our results to the adversarial
neural network developed by [26], as it also relies on an SDF representation, and has
published the weights of a pre-trained network, allowing us to produce new morphings.

For fair comparisons, we adopted the following methodology:

– We kept our graph G untouched, built from the same 500 chair examples as in the
previous experiments;

– We first generated baseline morphings as latent space interpolations between ran-
dom codes corresponding to chairs (about 4k examples);

– For each of these morphings, we extracted the first and last states: these provided
query shapes that we embedded in G (as explained in Section 5.4) in order to gen-
erate our morphings;
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(a) Prediction error against shape misalignment (b) Misaligned v0

Fig. 10. (a) Mean error against maximum rotation angle θmax, grey area is the standard deviation;
(b) Ground truth in black, misaligned prediction in red, where θmax ≈ 20◦, error = 0.078. Refer
to Section 6.2 for a discussion on these figures.

– To match the surface quality of [26], we decreased the resolution of our SDFs
before the mesh reconstruction via marching cubes.

Figure 11 presents some comparative results, selected for their representativity. Here
are our observations for each of the five shown examples:

1. These shapes happened to have a direct link when embedded in G : the morphing
entirely comes from the DVG.

2. While the morphing of the seat is visually pleasing, the SDF interpolation is respon-
sible for a hole in the leg (frames 4–10).

3. The armrests removal looks less pleasing, but on the flip side, the progressive round-
ing of the back is more natural.

4. Most of the artifacts (frames 7–12) come from the short-circuit effect, discussed in
7.5.

5. Apart from similar surface artifacts, it exemplifies the impact of our minimal paths
for chair-to-armchair morphings. Indeed, they appear to favor transitions which add
thin armrests halfway through.

When watched as videos, our morphings also appear generally less smooth. This
is due to our SDF interpolations: when new mass appears within the 1-voxel margin,
it can look sudden, and then less pleasant to the eye. Despite these imperfections, we
found it pretty remarkable to achieve such results while only relying on a much smaller
dataset. It would indeed seem hard, if not impossible, to train a neural network with
such limited data.
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7 Discussion on shape morphings

Our overall method comprises many components, each requiring design choices which
influence the quality of the results. Because the systematic analysis of general shape
morphing (for non-parametric shapes) is still uncharted territory, we presented quantita-
tive and qualitative results where each component is designed in the minimally-viable
way. However, our system admits many local improvements. Hence the following ob-
servations and suggestions, noted from our experiments.

7.1 Importance of the first hierarchical levels

While [14] establishes the importance of the progressive refinement of DVGs, our exper-
iments further emphasize the greater importance of the first levels. If the second level
is unfrozen before the first level has correctly converged, the misalignment of the cube
edge with the dominant features of the shape will remain. This problem can arise when
optimizing a batch of DVGs on many shapes, with a constant number of epochs per
level. To prevent this from happening, one has to make sure the first level has enough
time to converge on all the training shapes, or resort to an adaptive gradient descent
scheme.

7.2 Manual edition of a DVG

In a real use case scenario, a determined DVG can be manually corrected. For instance,
it can easily be symmetrized – by averaging with its symmetric. This could be useful
for shape reconstructions and morphings, to ensure that the generated geometries are
indeed symmetric. All the results we show did not resort to any manual correction, in
order to exhibit the bare abilities of our model. Yet it would be interesting, for future
work, to investigate the usefulness of ad-hoc post-processing.

7.3 Graph connectivity

The quality of the morphings generated by our method depends on the graph building
procedure, and more specifically, the node linking rule. Ordinarily, these graphs can be
built obeying either a k-nearest neighbor condition, or a distance threshold condition.
By design, our metric becomes less interpretable as the estimated distance increases.
This is why we need to impose a distance threshold criteria. Doing so, the graph can
however have several connected components, limiting the ability to interpolate between
shapes of distinct modes (say, between an office chair and a sofa).

In practice, finding threshold values can be hard, given the non-uniform distribution
of pairwise distances (for instance, we observed that the distances between many sofas
are disproportionately small). To mitigate the potential mistakes, we build the k-nearest
neighbor graph with three constraints, in decreasing priority: for node i,

1. ki ≥ kmin
2. ki ≤ kmax
3. ∀ j ↔ i,d(Si,S j)≤ τw
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7.4 Volumetric descriptor sensitivity and specificity

In order to preserve fine information in the volumetric descriptor, we decided to average
the indicator function 1S within each DVG cell, instead of keeping all cells where it is
non null (which would correspond to a classical voxelization). However, the values can
be small, and have a negligible influence on the similarity measure, even where there
is non-negligible mass. Take the example of a half cube within a DVG cell, its average
presence density is 1/2

3 = 1/8 = 0.125. This is why we propose to apply the cubic root as
a contrast function to increase sensitivity to low values – before feeding the descriptors
to the similarity metric d(A,B).

We also performed experiments where the resolution of the volumetric descriptor
is r = 16, effectively halving the one-voxel margin tolerance. With this increased speci-
ficity, neighbors are more similar than before; but dissimilar models are further away
than before. This led to discrete morphings which all contain many intermediate steps.
Overall, the generated morphings were unpleasantly convoluted. We then settled for
r = 8 as it appeared to be the best compromise, on our chair dataset.

7.5 Misleadingly low similarity and short circuits

Models whose topology is not adequately represented by our metric are, as explained
in Section 5.3, not included in the graph. More precisely, we exclude the 20% most
inadequate models.

But some models, not excluded from previous considerations, can badly influence
the quality of morphings: those which display sharp surface features, not captured by
our descriptor. They are typically not amongst the most adequate models, but still passed
the aforementioned 20% threshold. Such a situation is depicted in Figure 12, rows (a).

Another interesting phenomenon appears when a pair of unwanted models hijacks
many morphings. If they are each connected to distinct regions of G , they provide a
short circuit to many minimal paths.

This is the case for models at locations (1a,11) and (1a,12). They indeed appeared
in many of our randomly generated morphings, creating unwanted surface artifacts. We
show, in rows (b), that manually discarding these undesired models and short circuits
can enhance the quality of the outputs. However, we kept all the other morphings we
show in this paper untouched, in order to exhibit the results without any manual inter-
vention.

7.6 Metric and arc-length parameterization

Because our similarity measure d(A,B) only penalizes difference in shapes beyond a
one-voxel margin, many pairs of shapes have a low distance, sometimes even null. This
is due to the fact that the dataset contains many redundant shapes, with similar content
C (for instance, many chairs resembling the model on Figure 11 at (1a,0). Contrary
to the previous discussion 7.5 (on misleadingly low similarity), this is the case where
similarities ought to be low. Conversely, for dissimilar shapes, the edge length can be
disproportionately large, accounting for most of the total path length.

Since the discrete paths make continuous morphings by arc-length parameterization,
this issue can lead to unpleasing morphings. It could have ben addressed in two ways:
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Fig. 11. (Zoom in to see details) Qualitative comparison of morphings obtained with our method
((a) rows) and with the Adversarial neural network of [26], based on implicit functions ((b)
rows), time t ∈ [0,16]. No manual correction was involved, and the grid resolution of the SDF
was adapted to match surface precision.

1a

1b

2a

2b

t 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fig. 12. (Zoom in to see details) Manual intervention on morphings: some generated morphings
can display unsightly intermediate shapes because of the found minimal path (see (a) rows, at
times 10 through 12). Manually discarding the unwanted models from the graph allows to rede-
termine an alternative, more pleasing, morphing ((b) rows).
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1. Regrouping, like [10], cliques of interconnected shapes; and allowing at most one
representative of a clique within a morphing;

2. Applying a non-linear transformation on the path length, before the generation of
the continuous morphing.

We opted for the second option as it is the simplest and provides the baseline we are
aiming for. We apply the function x 7→ 1+

√
x, where the square root rebalances low

and high values, and the constant 1 corrects for the almost-null edge lengths.

8 Conclusion

In all the applications we presented using DVGs, the biggest limitation lies in the con-
sistency of the grid alignment across models. In the present work, we only relied on the
generic optimization procedure from [14]. One way to improve the performance of all
applications is to improve this grid alignment, and we suggest two directions for future
investigation. First, including a term based on semantical parts segmentations to the
DVG energy. Second, performing adaptative grid subdivisions during the optimization
of V , in order to handle degenerate dimensions better (like with flat or elongated shapes)
and to bring finer details where they are needed.

As for shape morphings, our basic intuition is to connect shapes similar in content,
so that morphing between them is “simple”: the DVG cubifiction trick makes such a
simple formulation of morphings possible. As we have shown, performing a simple lin-
ear interpolation on cubified SDFs already generates qualitatively pleasing morphings,
therefore establishing a strong baseline. More complex approaches, based for instance
on optimal-transport, could probably yield better results. Yet, we produced results qual-
itatively similar to the state-of-the-art deep learning methods, while relying on limited
data.

Even if our DVG shape parameterization is not specific to any class, we restricted
our shape morphings to chairs, because of the challenges posed by their varied topolo-
gies, and their strong reflection symmetries are compatible with cubifiction.

For future work, we would like to investigate the use of this model on shape cate-
gories displaying less symmetries. It would also be interesting to reproduce these results
at a larger scale, say with the complete chair subset of ShapeNet, or even when adding
other categories to the same graph: would we find different shape types separated in
different clusters?

Finally, we could bridge the gap between our method and neural networks. Indeed,
the SDFs interpolations are inherently limited and may not be able to fully capture
shape priors, even in a large scale application. In this case, a generative model, trained
only on cubified shapes for instance, could provide an interesting solution.
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