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Grouping Boundary Proposals for Fast Interactive
Image Segmentation
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Abstract—Geodesic models are known as an efficient tool for
solving various image segmentation problems. Most of existing
approaches only exploit local pointwise image features to track
geodesic paths for delineating the objective boundaries. However,
such a segmentation strategy cannot take into account the connec-
tivity of the image edge features, increasing the risk of shortcut
problem, especially in the case of complicated scenario. In this
work, we introduce a new image segmentation model based on
the minimal geodesic framework in conjunction with an adaptive
cut-based circular optimal path computation scheme and a
graph-based boundary proposals grouping scheme. Specifically,
the adaptive cut can disconnect the image domain such that
the target contours are imposed to pass through this cut only
once. The boundary proposals are comprised of precomputed
image edge segments, providing the connectivity information for
our segmentation model. These boundary proposals are then
incorporated into the proposed image segmentation model, such
that the target segmentation contours are made up of a set
of selected boundary proposals and the corresponding geodesic
paths linking them. Experimental results show that the proposed
model indeed outperforms state-of-the-art minimal paths-based
image segmentation approaches.

Index Terms—Interactive image segmentation, circular paths,
boundary proposal grouping, fast marching method, Eikonal
equation.

I. INTRODUCTION

Image segmentation is a fundamental and challenging issue
in image analysis, whose main goal is to extract the boundary
of target regions. Energy minimization models have been
widely applied to a broad variety of segmentation problems.
Among them, the interactive segmentation strategy allows
to incorporate user interaction into the optimization process,
yielding promising results. The interactions are applied either
to provide necessary initialization for the segmentation models
or to generate efficient constraints in the course of the image
segmentation procedures.

Scribbles are very often considered as manual interaction
in image segmentation models. A common way is to require
the user to tag some pixels respectively as either foreground or
background labels. Many graph-based models use such type of
input, such as the graph cut-based models [1]–[3], the random
walk-based models [4]–[6], lazy snapping algorithm [7] and
the distance-based models [8]–[11]. The regions of interest
are extracted by minimizing the energy functional defined on
the weighted graph. In addition to providing initial location of
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target regions, the scribbles associated to different image re-
gions are also applied to extract necessary features, which are
regarded as statistical priors to define a data-driven term [12]–
[14]. Besides, the scribbles can also be exploited to refine
the segmentation results. An interesting example is the deep
learning-based interactive segmentation method [15]. The user
interactions indicate the mis-segmentation regions, which are
regarded as hard constraints to correct the segmentation. An-
other simple interaction paradigm is constructed by dragging a
rectangle box around the desirable object [16], [17] aiming to
indicate the background region. Final results detected by these
models also depend on the discrete graph-based optimiza-
tion scheme. However, scribble-based corrections are usually
needed to refine the segmentation in many cases, where the
interaction does not provide sufficient prior information.

In contrast to using scribbles which carry regional in-
formation to create initialization or constraints, boundary-
based interactions are also taken into account in many seg-
mentation algorithms. Placing an initial contour close to the
target boundary is a widely considered way for initializing
active contours, especially for models implemented with a
parametric curve evolution scheme or a level set scheme [18]–
[22]. The segmentation can be achieved by evolving initial
contours through the forces derived from the image data
and adequate geometric properties. An alternative way is to
take a set of landmark points as boundary-based interactions
in many segmentation models. Specifically, for the active
contour approaches such as [23], [24], the landmark points
are supposed to be exactly placed at the target boundary, and
serve as attractors which encourage the evolutional contours
to move towards these points. Windheuser et al. [25] proposed
a graph-based interactive segmentation model, for which the
initialization is a set of ordered imprecise landmark points. In
this model, all the landmark points allow to distribute along a
shifted contour to the target boundary.

Shortest paths-based segmentation models exploit a series
of optimal curves associated to adequate energy functionals,
tracked in either a discrete domain [26]–[28] or a continuous
one [29], to delineate the target boundaries. The landmark
points define the source point as well as the end point for
each optimal curve. Among these models, the minimal path
model based on the Eikonal partial differential equation (PDE)
has shown their ability in extracting structures of interest in
different complex scenarios, benefiting from the fast numerical
solution schemes and the global optimal characteristic [30]. In
its basic formulation, the geodesic path is an open curve that
globally minimizing the weighted length function between two
user-provided endpoints. In practical application, the original
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framework needs to be modified to extract closed curves
composing the boundary of the target region. Different variants
of minimal path algorithms have been devised to extract target
regions with a priori knowledge. In the remaining of this
section, we briefly introduce the existing minimal paths-based
segmentation models and give the motivation of our work.

A. Segmentation Models based on Geodesic Paths

In image analysis, it is a fundamental task to detect closed
contours to delineate the target boundaries. Many segmentation
approaches have been devoted to address the problem of
building simple closed contours using a family of piecewise
geodesic paths [30]. Models relying on saddle points [29] or
keypoints [31] can detect a simple closed contour starting
from a single source point. In [32]–[35], a set of prescribed
points exactly placed at the target boundary are leveraged for
model initialization, allowing the user to incorporate more
flexible intervention into the segmentation processing. The
classical circular geodesic method [36] is an alternative way
for closed contour detection, which treats each contour as
a simple closed minimal path. In its basic setting, only a
single point inside the target region is required to initialize
the algorithm. However, the classical circular geodesic model
applied an axis cut such that a particular domain is taken as the
search space to handle shapes which violate a cut-convexity
assumption [36], increasing the computational time. Chen et
al. [37] proposed to combine two geodesic paths as a closed
contour, in which the region-based homogeneity features are
also taken into account for image segmentation.

Unfortunately, existing segmentation models based on
geodesic paths do not take the advantages of edge connectivity
enhancement. In order to solve this issue, we propose a
new geodesic segmentation model relying on an adaptive cut,
which feature edge connectivity derived from precomputed
boundary proposals. It is designed for fast image segmentation
by providing an arbitrary landmark point within the target
object region. The entire segmentation model is made up of
two steps: (i) discrete graph construction and (ii) Interactive
segmentation, as summarized in Algorithm 1. Furthermore,
the step of discrete graph construction does not require user
interaction, thus can be categorized as an offline step. This step
prepares the necessary data which will be submitted to next
step for addressing the interactive segmentation task. Examples
for illustrating the advantages of the proposed model can be
seen in Fig. 1. The shortcuts problems occur in the minimal
path growing model [31] and the combination of piecewise-
geodesic paths model [32] as indicated in Figs. 1d and 1g.
Our model enables to blend the benefits of geodesic paths
and the precomputed boundary proposals. In our model a
simple closed contour is constructed via a perceptual grouping
scheme, implemented through the Dijkstra’s algorithm [28]
over a graph. In the existing perceptual grouping method [38],
the prescribed trajectories representing tubular centerlines are
introduced to use for tubular structure tracking, by grouping
the trajectories those belonging to the same structure as the
shortest path. They build the graph by exploiting a straight
segment to connect two neighbouring trajectories and utilizing

its Euclidean length to measure the connection cost, which
may lead to approximation errors. In our previous work [39],
[40], we propose a more reasonable way to link neighbouring
trajectories by curvature-penalized geodesic paths, and the
weight for the edge is established based on geodesic curvature
instead of image features. However, those grouping works are
optimized for detecting open curve between two endpoints.
In this work, our grouping method aims at closed contour
extraction with one user-provided point. The contribution of
the paper is twofold.

• Firstly, the connectivity enhancement is incorporated into
the minimal paths-based segmentation framework. We
establish a new minimal paths-based image segmentation
method in conjunction with prescribed boundary propos-
als. With the contour closure assumption, the final seg-
mentation is achieved by selecting an ordered sequence of
boundary proposals connected by minimal paths, yielding
a simple closed contour.

• Secondly, the axis cut method used in the classical circu-
lar geodesic model [36] is extended to the case of adaptive
cut regarded as a geodesic path linking a given landmark
point and the image domain boundary. Furthermore, we
introduce a reasonable computation method encouraging
the adaptive cut to intersect with the target boundary only
once, leading to the possibility of finding circular paths
from a source point located at this adaptive cut.

The remaining of this manuscript is organized as follows.
In Section II, we briefly introduce the background on the
classical geodesic path model and on the computation of image
edge appearance features. Sections III and IV formulate the
main contributions in this work. Specifically, the construction
of the adaptive cut is presented in Section III. Section IV
present the details on the construction of the discrete graph
and the interactive segmentation procedure. The experimental
results and the conclusion are presented in Sections V and VI,
respectively.

II. BACKGROUND

A. Cohen-Kimmel Minimal Path Model

Let Ω ⊂ Rn (n = 2, 3) be an open and bounded image
domain with dimension n. To detect the target structure in the
given image, Cohen and Kimmel [29] introduced a minimal
path model which delineates target boundaries via minimizing
curves of an energy. This original model applies a scalar-
valued function ψ : Ω → R+ to define the energy of a
Lipschitz continuous curve γ : [0, 1] → Ω, which reads as

L(γ) :=
∫ 1

0

ψ(γ(u))∥γ′(u)∥du, (1)

where γ′ = dγ/du is the first-order derivative of γ, and
ψ : Ω → R+ is a function featuring lower values near desired
features, which is also referred to as potential. In the basic
formulation of the Cohen-Kimmel model [29], a boundary
proposal between two points s and x is modeled as a geodesic
path Gs,x that has minimal weighted length (1) among all
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Fig. 1. Examples for illustrating the advantages of the proposed image
segmentation model. (a) An original image sampled from the Grabcut dataset.
(b) The ground truth denoted by a blue line. (c), (d) and (g) Segmentation
results obtained via the proposed model, the growing minimal path model [31]
and the combination of piecewise-geodesic paths model [32], respectively.
(e) and (h) Close-up view of the segmentation contours of (d) and (g),
respectively. (f) and (i) Close-up view of the segmentation contour of (c).

Lipschitz paths linking from the source point s and end point
x, i.e.

Gs,x = argmin
γ∈Lip([0,1],Ω)

{L(γ) | γ(0) = s, γ(1) = x}, (2)

where Lip([0, 1],Ω) represents the set of all Lipschitz contin-
uous curves γ : [0, 1] → Ω. A crucial ingredient for tracking
a geodesic path emanating from s lies at the definition of a
geodesic distance map, or a minimal action map, Us : Ω → R+

0

such that

Us(x) = inf
γ∈Lip([0,1],Ω)

{L(γ) | γ(0) = s, γ(1) = x}. (3)

As discussed in [29], the geodesic distance map Us admits the
following Eikonal equation

∥∇Us(x)∥ = ψ(x), ∀x ∈ Ω\{s}, (4)

with boundary condition Us(s) = 0, where ∇Us denotes the
standard Euclidean gradient of Us.

The isotropic Eikonal equation can be solved effectively by
the classical Fast Marching method [41]. Once the geodesic

distance map is estimated, a parameterized curve Gx,s from a
target point x ∈ Ω to the fixed source point s can be tracked
through the solution to the following gradient descent ODE
on the distance map, i.e.

G′
x,s(u) = − ∇Us(Gx,s(u))

∥∇Us(Gx,s(u))∥
, (5)

with Gx,s(0) = s. The numerical scheme for (5) is terminated
till the source point s is reached. Then the geodesic path Gs,x

parameterized by its arc-length can be retrieved by reversing
the path Gx,s with Gs,x(0) = s and Gs,x(1) = x.

B. Edge Appearance Features

The edge appearance features of a color image I =
(I1, I2, I3) : Ω → R3 characterize the likelihood of a point
belonging to an image edge. Let J : Ω → R+

0 be a map that
defines the edge appearance features. In general, J can be
constructed using the image gradients as follows [37], [42]:

J(x) =

√√√√ n∑
k=1

(
∥(∂xGσ ∗ Ik)(x)∥2 + ∥(∂yGσ ∗ Ik)(x)∥2

)
,

(6)
where ∗ is the convolution operator, Gσ represents the Gaus-
sian kernel with standard derivation σ, ∂x and ∂y denote the
partial derivative along x- and y-axis directions, respectively.
In practice, we normalize the magnitudes J to the range [0, 1]
to generate a new appearance feature function g by

g(x) =
J(x)

∥J∥∞
, ∀x ∈ Ω. (7)

A strong value of g(x) indicates that a high possibility that
x is an edge point. In the context of image segmentation, the
construction for the potential ψ, see Eq.(1) can be naturally
built by the function g.

III. ADAPTIVE CUT FOR CIRCULAR OPTIMAL PATHS

A. Overview

The circular geodesic model [36] provides an avenue for
computing closed geodesic paths using a single point inside
the target contour. In its basic setting, the axis cut emanating
from the landmark point p to ∂Ω, is imposed to align the
direction of an axis. This model is suitable for the case that the
target regions have a cut-convexity shape, limiting its potential
applications in practice. In order to solve this problem, we
introduce a more flexible strategy for finding circular optimal
paths, relying on an adaptive cut which intersects the target
boundary exactly once. The construction of the adaptive cut
lies at the first stage of the interactive segmentation step in
the propose model, as presented in Line 3 of Algorithm 1.

B. Construction of A Set of Boundary Proposals

In our model, a boundary proposal is regarded as a contin-
uous curve Si ⊂ Ω, each of which characterizes a piece of
an image edge. As an example, we visualize in Fig 2b the
boundary proposals via with colored lines, computed from a
synthetic as depicted in Fig. 2a.
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Algorithm 1 Summary Algorithm of Our Model
Input: A landmark point p ∈ Ω inside the target region.
Output: Segmentation contour.
Discrete Graph Construction Step:

1: Detect a set of boundary proposals Si for i = 1, 2, · · · .
2: Construct a discrete graph G by computing its edge set

and edge weights.
Interactive Segmentation Step:

3: Compute a structure-aware adaptive cut Cp linking from
the landmark p to a point at the domain boundary.

4: Construct a set χp involving all admissible circular paths.
5: Find a circular path C∗ of minimum energy from the set
χp, which is taken as the final segmentation contour.

In numerical implementations, the construction of the
boundary proposals Si can be carried out through many exist-
ing edge detectors [43]–[45]. The detection of edge structures
is implemented in a discretization grid Mh = hZ2 ∩Ω where
h is the grid scale. These edge structures of one grid point
width might be non-simple with multiple branches connecting
to junction points, where each junction point is defined as
an edge point which has more than two neighbour points.
Then we remove all the junction points from the detected edge
structures to generate a series of disjoint edge segments, i.e.
the boundary proposals. We also remove small fragments1 to
reduce the computation complexity of the model.

C. Construction of A Structure-aware Adaptive Cut

In our model, an adaptive cut is regarded as a geodesic
path connecting a landmark point p inside the target region
and a detected point lying at the domain boundary ∂Ω. It is
built partially relying on the boundary proposals Si. As in
Section II, a key step for computing an appropriate adaptive
cut is the construction of the potential ψ, see Eq. (1).

The boundary proposals provide the image edge informa-
tion. Thus we utilize these boundary proposals to compute a
structure-aware potential ψ := ψstr

ψstr(x) := ϕ(x)δ(x), (8)

where ϕ : Ω → R+
0 is an edge indicator and where δ : Ω →

{1,∞} is a boundary proposal indicator. Specifically, the edge
indicator ϕ is defined as

ϕ(x) = exp
(
τg(x)

)
+ w̃, (9)

where τ and w̃ are two positive constants, and g is the
magnitude of the image gradient, see Eq. (7). The function
δ associated to the boundary proposals Si is expressed as

δ(x) =

{
+∞, if x ∈ ∪Si,

1, otherwise.
(10)

Then one can estimate a geodesic distance map Up : Ω →
R+

0 by solving the classical Eikonal PDE (4) with boundary
condition Up(p) = 0, by setting ψ(x) = ψstr(x). The

1In other words, the boundary proposals whose grid points are less than a
given threshold value are removed.

endpoint b ∈ ∂Ω of the target adaptive cut Cp can be detected
by finding a point of minimum distance value, i.e.

b := argmin
x∈∂Ω

Up(x). (11)

Finally, the adaptive cut Cp is generated using the solution to
the gradient descent ODE (5) on Up such that Cp(0) = p and
Cp(1) = b.

One can point out that the computed adaptive cut Cp will
not pass through the boundary proposals due to the use of
the indicator δ. Moreover, the potential ψstr has high values
around the image edges, and low values otherwise. Such a
setting encourages the adaptive cut Cp to pass through the
target boundary just once. In Figs. 2c and 2d, two examples are
exploited to exhibit the difference between the axis cuts [36]
(red lines) and the proposed adaptive cuts (blue lines). One
can see that the axis cut in Fig. 2c intersects with the target
boundary only once, which is also the case for the proposed
adaptive cut. In Fig. 2d, the axis cut has multiple intersection
points with the target boundary. In this case, one needs to
perform a complicated scheme to track a circular geodesic
path in junction with such an axis cut. In contrast, the proposed
adaptive cut has only one intersection point even through the
target regions have very complicated shapes.

Furthermore, the formulation of structure-aware adaptive cut
is also effective in a situation where the target edges are not
quite distinct, guaranteed by the fact that it is encouraged to
pass through a way featuring weak edge-appearance features
which are the magnitude of image gradients. Thus, an appro-
priate cut can be obtained in the case where the image gradient
magnitude values are low along the target boundary, since the
image gradient magnitude value at a boundary point is still the
local maximum along the direction proportional to the image
gradient vector at this point. We show some example in Fig. 3,
where the image edge strength are decreased. One can see that
all these adaptive cuts intersect to the target boundary just
once, as assumed.

Given a source point s located at the adaptive cut, one
can track a circular optimal path passing through the source
point s, implemented using a similar scheme to the classical
circular geodesic model [36] in the case that the axis cut
intersects with the target boundary just once, demonstrating
the advantages of using the adaptive cut. However, such a
circular optimal path tracking scheme in conjunction with
an adaptive cut cannot take into account the precomputed
boundary proposals carrying very useful information (e.g.
edge connectivity enhancement) for segmentation. In order
to avoid this issue, we propose a new method for extracting
circular optimal paths, where the procedure is enhanced by
the precomputed boundary proposals.

IV. GROUPING BOUNDARY PROPOSALS FOR FAST IMAGE
SEGMENTATION

In this section, we present a fast and reliable method for
extracting circular optimal paths for interactive segmentation
based on an adaptive cut computation scheme and a perceptual
grouping scheme using boundary proposals. The proposed
model relies on the computation of discrete optimal paths from
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(a) (b) (c) (d)

Fig. 2. An example for visualizing the difference between the axis cut and the proposed adaptive cut. (a) A synthetic image. (b) Boundary proposals
superimposed on the original synthetic image. (c) (d) The axis cut [36] and adaptive cut are represented by the red and blue lines. The yellow points are the
landmark points inside the target region. The red (resp. blue) dots are the interaction points between the target contour and the axis cuts (resp. adaptive cuts).

(a) (b) (c) (d)

Fig. 3. Examples for the adaptive cuts in for images with different contrast degrees. (a) to (d) Adaptive cuts computed from images with decreasing contrast.

a graph, depending on the geodesic distances derived from
adequately constructed geodesic metrics.

The proposed model searches for closed contours as circular
optimal paths from a graph G = (V, E), where V is a set of
N nodes, and E is a set of edges connecting two adjacent
nodes in V . As considered in [38], [39], a node ϑi ∈ V of
the graph represents a boundary proposal Si in the image
domain. Two nodes ϑi and ϑj with i ̸= j are said to be
adjacent if the corresponding boundary proposals Si and Sj

are neighbours. We denote by ei,j ∈ E the edge that links the
node ϑi to an adjacent one ϑj . Also, a scalar-valued weight
wi,j > 0 is assigned to each edge ei,j , which can be estimated
using geodesic models, see Section IV-B. In the remaining
of this section, we present main components of the proposed
model, involving the construction of the edge set E and the
computation for each edge weight, introduced in Sections IV-A
and IV-B, respectively. In Fig. 4, we illustrate the pipeline
of the proposed boundary proposal grouping model, where
Fig. 4a shows a synthetic image and where Fig. 4b visualizes
the boundary proposals using different colors. In the remaining
of this section, we introduce the details for each step.

A. Construction of the Edge Set for the Discrete Graph

In the proposed model, the discrete graph encoding image
edge features is generated using the boundary proposals Si for
i = 1, 2, · · · . The basic idea is to take each boundary proposal
Si as a node ϑi of the graph G. Along this idea, we introduce
a method to identify all the adjacent boundary proposals for

each fixed boundary proposal Si, providing that an appropriate
adaptive cut Cp is given. Note that the construction of the
graph does not rely on the user interaction, as presented in
Algorithm 1.

1) Finding Adjacent Boundary Proposals: For a fixed
boundary proposal Si, the detection of its adjacent boundary
proposals Sj relies on the construction of the tubular neigh-
bourhood Ψi ⊂ Ω that surrounds Si. A widely considered
idea for computing Ψi is to leverage the Euclidean distance
map associated to Si, as in [35], [38], [39]. However, the
Euclidean distances-based neighbourhood may involve some
boundary proposals that not belong to the target boundary, thus
usually identifying unexpected adjacent boundary proposals.
In order to handle this issue, we take into account the image
data for the construction of the tubular neighbourhood. In
other words, we propose to adopt a geodesic distance map
Ui : Ω → R+

0 (s.t. Ui(x) = 0, ∀x ∈ Si) for Ψi with respect
to an adequately designed geodesic metric. The computation
of Ui is presented in next section. The neighbourhood Ψi of
the boundary proposal Si is determined by thresholding the
distance map Ui with a value ζ ∈ R+ as

Ψi := {x ∈ Ω | Ui(x) ≤ ζ}. (12)

Note that in this work the tubular neighbourhood Ψi of a
boundary proposal Si is used to detect its adjacent boundary
proposals, such that a boundary proposal Sj for any j ̸= i
is said to be adjacent to Si if it is close enough to Si. We
define the closeness using the intersection between Sj and
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(a) (b) (c) (d) (e)

Fig. 4. Overview of the introduced boundary proposal grouping method. (a) A synthetic image. (b) The boundary proposals superimposed on the synthetic
image. (c) The construction for the neighbourhood Ψi of the boundary proposal Si indicated by a white line. The neighbourhood Ψi is done by thresholding
the geodesic distances superimposed on the synthetic image. Blue and red lines represent the neighboring boundary proposals of the chosen one. Note that
in this figure only distance values for the points which satisfy that Ui(x) ≤ η are visualized. (d) The extraction of the discrete shortest path comprised of
sequential boundary proposals. The blue dash line is the adaptive cut. The boundary proposals indicated by red and magenta represent the nodes ϑi and ϑj

whose connecting geodesic path (black solid line) intersects with the adaptive cut. (e) The red line is the final contour.

the tubular neighbourhood Ψi of Si. In other words, Sj is
adjacent to Si if Ψi ∩ Sj ̸= ∅. Nevertheless, the use of the
tubular neighbourhood aims to find a small region surrounding
Si. When the boundary proposal Si has strong concave shape,
one may obtain a ”bad” tubular neighbourhood, but it can still
determine a set of satisfactory boundary proposals which are
adjacent to Si.

2) Estimating the Geodesic Distance Map Ui: In our
model, the geodesic distance maps Ui for constructing tubular
neighbourhoods of the boundary proposals Si is computed
using the classical isotropic Riemannian metrics, involving a
potential defined by

ψSeg(x) =
1

ϕ(x) + ε
(13)

where ε ∈ R+ is a constant. As in the classical Cohen-Kimmel
model, each geodesic distance map Ui admits the following
isotropic Eikonal PDE{

∥∇Ui(x)∥ = ψSeg(x), ∀x ∈ Ω\Si

Ui(x) = 0, ∀x ∈ Si.
(14)

The computation of geodesic distances Ui w.r.t. Si are im-
plemented using the classical fast marching method [41]. The
computation procedure is terminated immediately once a point
x ∈ Ω such that Ui(x) ≥ η has been reached by the geodesic
distance front. We illustrate an example for such an estimated
geodesic distance map Ui(x) in Fig 4c. The values of Ui

increase slowly along the regions featuring high values of ϕ
which usually indicate image edges, and increase fast along
low values of ϕ corresponding to flat regions. This means that
the tubular neighbourhood shapes are partially determined by
the image edge features.

B. Computation of Connection Paths and Edge Weights

The graph to construct is denoted by G = (V, E) where V
and E are the sets of nodes and edges, respectively. In this
section, we build the edge weights for each graph edge wi,j

assigning to each edge ei,j ∈ E . In our work, we estimate the
weight wi,j as the geodesic distance between the boundary
proposals Si and Sj . For this purpose, we briefly introduce
a general metric F : M × Rn (n = 2, 3) to measure the
weighted length of a smooth curve, where M ⊂ Rn is an
open bounded and connected domain. At each point x ∈ M,
the metric F(x,u) is defined as an asymmetric norm of the
vector u over the tangent space Rn. In our model, we consider
the classical isotropic metric [29] and the curvature-penalized
metrics [33], [46], [47] as instances of F , see Appendix A for
the detailed construction of these metrics.

1) Connection Path between Two Adjacent Boundary Pro-
posals: By the metric F , the weighted curve length of a curve
γ ∈ Lip([0, 1],M) can be formulated as

LF (γ) =

∫ 1

0

F(γ(u), γ′(u))du. (15)

The goal is to compute an optimal path Gi,j which connects
the boundary proposal Si to its adjacent one Sj . It globally
minimizes the the length LF with constraint that Gi,j(0) ∈ Si

and Gi,j(1) ∈ Sj . In the remainder of this paper, We referred
to Gi,j as the connection path between a pair of adjacent
boundary proposals Si and Sj .

The geodesic distance between the boundary proposals Si

and Sj , denoted by DistF , is defined as

DistF (Si,Sj) = min
γ∈Lip([0,1],M)

LF (γ), s.t.

{
γ(0) ∈ Si

γ(1) ∈ Sj

(16)
This defines a geodesic distance map DSi

associated to a fixed
Si such that

DSi
(x) = DistF (Si,Sj).

The geodesic distance map DSi
can be efficiently solved by

the Hamilton Fast Marching method2 (HFM) [47]–[49].

2The code for the HFM method involving the computation of the
geodesic distances and the tracking of the geodesic paths can be downloaded
from https://github.com/Mirebeau/HamiltonFastMarching.

https://github.com/Mirebeau/HamiltonFastMarching
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Finally, we estimate a solution, denoted by G, to a general-
ized gradient descent ODE

G′(u) = max
∥u∥=1

⟨∇DSi
(G(u)),u⟩

F(G(u),u)
with G(0) = y∗

i,j . (17)

The connection path Gi,j can be obtained by re-parameterizing
solution G, such that{

Gi,j(0) = x∗
i,j ∈ Si

Gi,j(1) = y∗
i,j ∈ Sj .

(18)

The points x∗
i,j and y∗

i,j denote the intersections of the
path Gi,j connected to the boundary proposals Si and Sj ,
respectively. They play a crucial role in building the final
segmentation contour, as discussed in Section IV-C.

2) Computing the Edge Weights: In the context of image
segmentation, the edge weight wi,j should be low if both of
the boundary proposals Si and Sj are a part of the target
boundary. In our model, the computation of the weight wi,j

is leveraged via an energy C : Lip([0, 1],Ω) → R+ measured
along the connection path Gi,j such that wi,j = ∞ if the node
ϑi are not adjacent to ϑj , and otherwise

wi,j :=

{
C(Gi,j), ∀u ∈ [0, 1], Gi,j(u) /∈ Cp,

∞, ∃u ∈ [0, 1], Gi,j(u) ∈ Cp.
(19)

In this paper, we provide two methods to formulating the
energy C, among which the energy C(Gi,j) of the connection
path Gi,j features a common part that is the euclidean length
of Gi,j . Specifically, the first choice for C := C1 is defined as

C1(Gi,j) = µLength(Gi,j) + LF (Gi,j), (20)

where Length(Gi,j) is the euclidean length of Gi,j , and µ > 0
is a constant parameter.

The second choice for the energy C := C2 relies on the
curvature κi,j : [0, 1] → R of Gi,j , i.e.

C2(Gi,j) =

∫ 1

0

√
1 + β2κi,j(u)2∥G′

i,j(u)∥du, (21)

where β > 0 is a constant as a weighting parameter and G′
i,j

is the first-order derivative of the connection path Gi,j .
By the definition (19), we set the weight ωi,j = +∞ if the

connection paths Gi,j or Gj,i intersect with the adaptive cut.
This leads to the fact that the nodes ϑi and ϑj corresponding to
the boundary proposals Si and Sj are not adjacent in the graph.
As a result, the use of the adaptive cut imposes disconnection
on the graph, providing the possibility of finding circular paths
from this graph. Furthermore, we take into account a direct
graph for computing shortest paths, i.e. we allow the weights
obeying Gi,j ̸= Gj,i.

C. Tracking Circular Optimal Paths

A discrete path Γ in the discrete graph G = (V, E) is made
up of a series of nodes. The length of a path Γ is defined as

L(Γ) =
∑
i,j

wi,j , (22)

where wi,j is the weight for the edge ei,j ∈ E such that its
corresponding nodes ϑi and ϑj are successive points in the

discrete path Γ. The Dijkstra’s algorithm [28] is known as an
efficient way to extract an open shortest path from a discrete
graph G. Given two nodes ϑi, ϑj ∈ V , one can extract a
discrete shortest path P̃i,j via Dijkstra’s algorithm that links
from ϑi to ϑj . In principle, the nodes ϑi and ϑj are not
connected in the sense of the discrete path P̃i,j . In order to
obtain a closed continuous contour for segmentation, the nodes
ϑi and ϑj should be connected in an appropriate way. In this
section, we use the adaptive cut Cp to achieve this purpose.

We build a set Λ involving all the pairs of ordered nodes
(ϑi, ϑj) whose connection path intersects with the adaptive cut
Cp, see Fig. 5a for a typical example of such a pair of nodes.
For each pair of nodes (ϑi, ϑj) ∈ Λ, we can extract a discrete
shortest path Pi→j by Dijkstra’s algorithm, which links from
the source node ϑi to the target node ϑj .

Each node ϑi in the discrete shortest path P corresponds
to a boundary proposal Si in the image domain. In other
words, P determines a set of successive boundary proposals,
as illustrated in Fig. 5b. Each boundary proposal Si involved in
some Pi→j has two connection paths, and each path intersects
with Si at two points, see Eq. (18). We denote by S̃i ⊂ Si

the truncated segment of Si between those intersection points.
Eventually, one can simply identify a circular optimal path
Ci→j , as the concatenation of the truncated boundary proposals
involved in Pi→j and the corresponding connection paths. As
a result, using all pairs of nodes in the set Λ, we can generate
a set of circular optimal paths, each of which encloses the
landmark point p and intersects with the adaptive cut Cp only
once. All circular optimal paths form an admissible set

χp := {Ci→j | ∀(ϑi, ϑj) ∈ Λ}. (23)

We now search for an optimal contour from the set χp by
minimizing the following energy functional

C∗ = argmin
C∈χp

{
µ1L(P) + µ2 Length(C)−1

}
, (24)

where the parameters µ1, µ2 are positive constants. The term
Length(C) is the euclidean curve length of the circular path
C ∈ χp. The term L(P) is the summation of the edge weights,
as formulated in Eq. (22). By Eq. (24), the optimal contour is
expected to have high euclidean curve length to avoid small
contours enclosing the point p and low connection cost to
encourage C∗ to admit the target boundary.

D. Discussion on the Computation Complexity

In the proposed method, the computation cost mainly
contains two parts. The first part is the construction of
the discrete graph, involving the detection of the adjacent
boundary proposals, the computation of connection paths, and
the estimation of the graph edge weights. Indeed, this step
is very time-consuming especially for the estimation of the
edge weights. However, the computation of this step can be
greatly speeded up by a parallel computing implementation.
In addition, the graph construction does not rely on user
intervention, thus can be carried offline. The second part is
the interactive segmentation step, involving the computation
of the adaptive cut and the construction of the optimal circular
paths. Specifically, the computation of the adaptive cut is
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(a) (b)
,

(c)

Fig. 5. An example for building the truncated boundary proposals. (a) The black lines indicate the detected disjoint boundary proposals. The red dot is the
landmark point. The blue dashed line denotes the adaptive cut. The cyan and magenta lines are the connection paths. Note that the magenta line intersects
with the adaptive cut. The blue dots represent the intersecting points between the boundary proposals and the connection paths. (b) The boundary proposals
and the connection paths (cyan lines). (c) The truncated boundary proposals and the corresponding connection paths which form a simple closed contour.

implemented by the classical fast marching method, with a
complexity O(N logN), where N represents the number of
grid points in the discrete domain hZ2 ∩ Ω with h being the
grid scale. The complexity of the establishment of the set χp

is O(mM logM), where m is the number of elements in the
set Λ and M is the number of the boundary proposals. As a
result, the interactive segmentation step of the proposed model
can achieve a real-time manner, thanks to the sparsity of the
boundary proposals.

V. EXPERIMENTAL RESULTS

In this section, the numerical experiments are conducted
to compare the proposed model (referred to as GroupPrps)
with the growing minimal paths (GrowPaths) model [31],
the combination of piecewise-geodesic paths (ComPaths)
model [32], the user-steered optimum boundary tracking
model (Riverbed) [26] and the dual-cut model [37] with a spa-
tial asymmetric quadratic metric (AsyMetric) or a reeds-shepp
forward metric (FSRMetric). The Dice index D is adopted
for the quantitative comparisons to evaluate the segmentation
results defined as follows:

D(S,GT ) =
2|S ∩GT |
|S|+ |GT |

, (25)

where S stands for the segmented region, GT presents the
ground truth, and |S| denotes the area of S. The Dice index
D has range in [0,1], when D = 1 means that completely
overlaps its corresponding ground truth region.

A. Parameter Configuration

In the following experiments, the edge indicator ϕ defined
in Eq. (9) is computed by setting the parameters τ = 1
and w = 0.1. In the graph construction step, the width of
tubular neighbourhood of the boundary proposal is set as 12
grid points, see Eq. (12). For recovering the circular optimal
path, the parameters µ1 and µ2 are used to control the relative
importance of the path cost and path length, respectively in
Eq. (24). We set µ1 = 1 and µ2 = 0.1 in the experiments.
The input of the proposed model is a landmark point inside
the target region. The GrowPaths model computes a set of
geodesic paths in conjunction with a sequentially keypoints

detection scheme during the front propagation. Thus this
model is able to achieve a fast object segmentation from
a single input along the target boundary. In the following
experiments, we set up the GrowPaths model such that the
scale of two keypoints is fixed as 10 grid points. The ComPaths
model extracts a closed contour by connecting a set of user-
provided points using piecewise-geodesic paths. The maximal
number of admissible paths for each pair of successive vertices
is chosen as 5 for all the tests. For the Riverbed, AsyMetric
and GroupPrps models, we take advantages of the strategy
of providing the landmark point within the target region to
start the segmentation procedure. The non-negative x-axis cut
or the proposed adaptive is computed from the landmark
point to select the initial point of the closed target boundary.
In the Riverbed model, the initial point is the intersection
point of the cut with the object boundary generated from its
ground truth. The Riverbed models with the x-axis cut and the
adaptive cut are regarded as Riverbed-axis and Riverbed-adpt
models, respectively. For the AsyMetric model, the initial point
is detected automatically by finding the point with maximal
image gradient magnitude value along the cut. The AsyMetric
models with the x-axis cut and the adaptive cut are regarded
as AsyMetric-axis and AsyMetric-adpt models, respectively.
In the experiments, we take into account the Euclidean path
length-based energy to estimate weight for the edge to con-
nect adjacent nodes in the graph construction. The energy is
computed simultaneously during the fast propagation based
on the isotropic Riemannian metric. The proposed GroupPrps
models with the x-axis cut and the adaptive cut are regarded
as GroupPrps-axis and GroupPrps-adpt models, respectively.

Finally, all the experiments are performed on a standard
8-core Intel Core i7 of 3.8GHz architecture with 64Gb RAM.

B. Quantitative and Qualitative Comparison Results

We conduct experiments on synthetic images, CT im-
ages [13] and some nature images from the GrabCut
dataset [16] to compare the segmentation models quantitatively
and qualitatively in this section. The synthetic images are
constructed based on the ground truth from the dataset [16].
The intensity values of all pixels corresponding to the target
structures and the background region on the ground truth are
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Original Images GrowPaths ComPaths Riverbed-axis Riverbed-adpt AsyMetric-axis AsyMetric-adpt GroupPrps-axis GroupPrps-adpt

Fig. 6. Segmentation results on synthetic images degraded by additive Gaussian noise with normalized standard derivation σn = 0.125. The red lines
represent the segmentation contours and the landmark points are denoted by yellow dots. The blue dash lines stand for the cuts. Column 1: The original
synthetic images and 20 landmark points indicated by blue dots. Columns 2-9: The closed contours extracted from the GrowPaths model [31], the ComPaths
model [32], the Riverbed-axis model, the Riverbed-adapt model, the AsyMetric-axis model, the AsyMetric-adpt model, the GroupPrps-axis model and the
GroupPrps-adapt model, respectively

TABLE I
THE QUANTITATIVE COMPARISON RESULTS OF THE GROWPATHS, COMPATHS, RIVERBED-AXIS, RIVERBED-ADAPT, ASYMETRIC-AXIS,

ASYMETRIC-ADPT, GROUPPRPS-AXIS AND GROUPPRPS-ADAPT MODELS ON SYNTHETIC IMAGES.

Noise Level
GrowPaths ComPaths Riverbed-axis Riverbed-adpt AsyMetric-axis AsyMetric-adpt GroupPrps-axis GroupPrps-adpt

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.025 0.9137 0.2105 0.9480 0.0544 0.9156 0.1835 0.9709 0.0112 0.9424 0.1551 0.9619 0.1191 0.8949 0.2537 0.9793 0.0084

0.050 0.8832 0.2480 0.9394 0.0582 0.9273 0.1700 0.9722 0.0108 0.9225 0.1906 0.9432 0.1588 0.8916 0.2557 0.9792 0.0084

0.075 0.9257 0.1764 0.9253 0.0716 0.9200 0.1634 0.9728 0.0106 0.9132 0.1987 0.9334 0.1771 0.8770 0.2571 0.9790 0.0083

0.100 0.8759 0.2379 0.9254 0.0597 0.9235 0.1743 0.9731 0.0108 0.9011 0.2141 0.9081 0.2219 0.8770 0.2418 0.9782 0.0084

0.125 0.8114 0.2597 0.9045 0.0702 0.9152 0.1776 0.9541 0.1046 0.8852 0.2352 0.9252 0.1785 0.8766 0.2329 0.9754 0.0120

fixed as 1 and 0.5, respectively. Each image is degraded by
additive Gaussian noise whose normalized standard derivation
values are set as 5 levels (from σn = 0.025 to 0.125), yielding
30 synthetic images for the following experiments. The used
6 synthetic images with noise level σn = 0.025 are shown in
column 1 of Fig. 6.

We firstly conduct the experiment on the synthetic images
to compare the robustness of different models with respect
to different initializations. For the Riverbed, AsyMetric and
GroupPrps models, we choose 20 landmark points inside
the target region of each synthetic image as the inputs. The
selected 20 landmark points are evenly distributed inside the
target region, as illustrated by blue points in column 1 of

Fig. 6. Then we compute an adaptive cut from each landmark
point. Furthermore, the axis cut along the non-negative x-
axis is also computed. Therefore the effectiveness of the
proposed adaptive cut is analyzed in the experiments. For
the GrowPaths model, 20 seed points are sampled along the
boundary of the target regions for initializing the model.
For the ComPaths model, we build 20 groups of sampled
points for initialization, each of which involves three points
extracted in a clockwise order along the boundary of the target
structure. With these initializations, 20 runs per image are
performed for all the considered models. The average of the
Dice segmentation accuracy index over the 20 runs for each
image is computed from different models. As in Fig. 7, we
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TABLE II
THE QUANTITATIVE COMPARISON RESULTS OF THE GROWPATHS, COMPATHS, RIVERBED-AXIS, RIVERBED-ADAPT, ASYMETRIC-AXIS,

ASYMETRIC-ADPT, GROUPPRPS-AXIS AND GROUPPRPS-ADAPT MODELS ON CT IMAGES.

GrowPaths ComPaths Riverbed-axis Riverbed-adpt AsyMetric-axis AsyMetric-adpt GroupPrps-axis GroupPrps-adpt

Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std Mean Std

0.8184 0.1971 0.8529 0.1277 0.8859 0.1335 0.9037 0.0850 0.8733 0.1488 0.8683 0.1527 0.9063 0.1081 0.9241 0.0718

TABLE III
THE EXECUTION TIME OF THE GROWPATHS, COMPATHS, RIVERBED-ADAPT, ASYMETRIC-ADPT,

AND GROUPPRPS-ADAPT MODELS ON SYNTHETIC AND REAL IMAGES.

GrowPaths ComPaths Riverbed-adpt AsyMetric-adpt GroupPrps-adapt

0.8184 0.1971 0.8529 0.1277 0.0718

Fig. 7. Box plots of the average Dice scores D of 20 runs per image over
all synthetic images for different methods.

Fig. 8. Box plots of the average Dice scores D of 10 runs per image over
CT dataset for different methods.

observe that similar segmentation results are obtained with
respect to different landmark points, while the other compared
models are sensitive to the positions of the landmark points.

The experiment on synthetic images degraded by noise

of different levels is conducted to further demonstrate the
robustness of the proposed method to noise. 20 runs per
image are performed for all the considered models with respect
to each initialization. The average and standard deviation
values of the Dice index under different levels of noises are
illustrated in Table I. It shows that the Dice index values
derived from the proposed model are slightly affected by
different kinds of noise with different levels, and have the
best performance among all the compared models. We can
see that the proposed GroupPrps-adpt model achieves the best
robustness performance against noise, benefitting from the
boundary proposal prior and the global optimality of the graph-
based path searching scheme. In addition, the effectiveness of
the adaptive cut can be demonstrated as well. Comparing the
Dice index values from the axis cut-based models with those
from the adaptive cut-based models, the use of the adaptive
cut can improve the segmentation accuracy significantly.

In Fig. 6, we present the qualitative performance of the
compared models on the synthetic images degraded by ad-
ditive Gaussian noise with normalized standard derivation
σn = 0.125 . The segmented results from the Grow-
Paths, ComPaths, Riverbed-axis, Riverbed-adapt, AsyMetric-
axis, AsyMetric-adpt, GroupPrps-axis and GroupPrps-adapt
models are depicted in Columns 2 and 9 of Fig. 6. The cut
from the internal point is depicted as the blue dashed line.
The extraction contours are described by red lines and the
landmark points are depicted as yellow dots. One can get
that the GrowPaths model is prone to missing small parts
of the target structure and the ComPaths model might be
stuck in unexpected positions. In the top three rows, the axis
cut has more than one intersection points with the object
boundary. The Riverbed-axis, AsyMetric-axis and GroupPrps-
axis models fail to extract the correct boundaries due to that
the detected contour can pass through the cut only one time.
In the AsyMetric model [37], a complex dual-cut strategy
is utilized to solve this problem. In the proposed model,
the adaptive cut has exactly one intersection point with the
boundary. Therefore, the adaptive cut scheme improves the
segmentation accuracy effectively. In rows 4 to 6, the axis
cut and the adaptive cut both cross with the boundary one
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Groundtruth GrowPaths ComPaths Riverbed-axis Riverbed-adpt AsyMetric-axis AsyMetric-adpt GroupPrps-axis GroupPrps-adpt

Fig. 9. Qualitative comparison results from different models on CT images. The yellow dots denote the user-provided landmark points and the red lines
indicate the obtained closed paths. The cuts are denoted by blue dash lines. Column 1: Ground Truth. Columns 2-9 : Results from the GrowPaths model,
the ComPaths model, the Riverbed-axis model, the Riverbed-adapt model, the AsyMetric-axis model, the AsyMetric-adpt model the GroupPrps-axis model
and the GroupPrps-adapt model, respectively

Appearance GrowPaths ComPaths Riverbed-axis Riverbed-adpt AsyMetric-axis AsyMetric-adpt GroupPrps-axis GroupPrps-adpt

Fig. 10. Qualitative comparison results from different models on nature images. The yellow dots indicate the user-provided landmark points and the red lines
represent the obtained closed paths. The axis cuts and adaptive cuts are denoted by blue dash lines Column 1: Visualization for the edge-based appearance
features. Columns 2-9: Results from the GrowPaths model, the ComPaths model, the Riverbed-axis model, the Riverbed-adapt model, the AsyMetric-axis
model, the AsyMetric-adpt model, the GroupPrps-axis model and the GroupPrps-adapt model, respectively

time. They have similar detected results. Finally, we get that
the region of interest is successfully extracted as the closed
contour tracked from the adaptive cut by the proposed model.

Furthermore, we perform the compared experiments quanti-
tatively and qualitatively of different models on 86 CT images.
Each image is artificially degraded by additive Gaussian noise
of normalized standard derivation σn = 0.025. We also test
the robustness of different models to initializations on CT
images. We apply the same way of providing initializations
with different positions for each model as described above.
More specifically, for each model, 10 landmark points are

generated inside the target region per image. Each landmark
point is regarded as the initial point that the cut emanated
from. In addition, 10 seed points along the target boundary of
each image are specified to set up the GrowPaths model. In
this case, we detect 10 groups of four landmark points in a
clockwise order along the boundary of the target region per
image for the ComPaths model.

The quantitative comparison results for 10 runs per image
over a set of 86 CT images are carried out by means of
Dice index. The average Dice accuracy index of 10 runs
for each image over the CT set is illustrated in Fig. 8.
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Original Images Appearance GrowPaths ComPaths Riverbed-adpt FSRMetric-adpt GroupPrps-adpt

Fig. 11. Qualitative comparison results from different models. The yellow dots indicate the user-provided landmark points and the red lines represent the
obtained closed paths. The cuts are denoted by blue dash lines. Column 1: Original images. Column 2: Visualization for the edge-based appearance features.
Columns 2-6: Results from the GrowPaths, ComPaths, Riverbed-adpt, FSRMetric-adpt and the proposed GroupPrps-adpt models, respectively

Fig. 12. Examples for multiple object detection by the proposed GroupPrps model. Column 1: Visualization for the edge-based appearance features. Columns
2 and 3: Results from the GroupPrps model. Cyan or red lines indicate different object structures. The blue dash lines depicts the adaptive cuts. The yellow
dots represent the initial points

The experiments on CT images also show that the proposed
model is robust to the initialization positions. Besides, the
average and standard deviation values of the Dice index of
all comparable models are listed in Table II. We get that
the proposed GroupPrps-adapt model achieve best accuracy
performance among all the comparable models. The qualitative
comparison results of the considered models are illustrated
in Fig. 9. The target structures in the presence of intensity
inhomogeneity are surrounded by complicated background.
There also exist parts of blurred boundaries with low gray
levels. In Fig. 9, we represent the detected closed contours by
red lines on CT images. Columns 2 and 3 illustrate the results
from the GrowPaths and ComPaths models, respectively. One
can observe that segmentation problems may occur along
the blurred edges. From columns 4 to 9, we get that the
adaptive cut pass through the object boundary only once which
guarantees the target contour is a simple closed contour along

the landmark point. The boundary proposal grouping scheme
can track the boundary of the target structure successfully from
the adaptive cut.

In Fig. 10, we qualitatively compare different models men-
tioned above on nature images. Our goal is to delineate the
target boundary by detecting the closed contour with user-
provided points. The target structures with varied shapes are
located in complicated background or have blurred edges with
the background. The segmented results are depicted as red
lines and the generated cut is shown as blue dash line. The
landmark points are illustrated as yellow dots. In column 1,
we exhibit the edge-based appearance features, by which the
isotropic geodesic metric is constructed. The detected results
of the GrowPaths model are depicted in column 2. We can
observe that it is not able to track the correct boundary where
the edge-based appearance features are weak. The extracted
results by the ComPaths model with randomly-located initial
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seed points are demonstrated in column 3. The ComPaths
model initialized with unevenly spaced seed points might
cause undesirable shortcut problem. The final combination
paths fail to describe the target boundaries correctly. From
columns 4 to 9, we illustrate the axis cut, the adaptive cut and
the detected results of Riverbed, AsyMetric and GroupPrps
models. The proposed model can extract the target structures
correctly.

We compare the execution times of the GrowPaths, Com-
Paths, Riverbed-adapt, AsyMetric-adpt, and GroupPrps-adapt
models on synthetic and real images illustrated in the first col-
umn of Fig. 11. The mean size of the three images is 435×470
grid points. In the proposed model, only the execution time
of interactive segmentation step including the adaptive cut
computation and the optimal circular path construction is
considering, since the graph construction step can be carried
offline. The resulting execution times are shown in Table III.
One can get that the proposed method has lower execution
time. The target contour can be extracted immediately after
the landmark point is given in the interactive segmentation
step.

All the above experiments exploit the Euclidean path length-
based energy to compute the weight for the edge. This simple
and intuitive way only considers the Euclidean length of the
geodesic path in the graph construction. In this part, we
utilize the geodesic distance map derived from the curvature-
penalized metric [33] to estimate the cost weight, such that
the image data and curvature information are introduced into
the weight estimation. The FSRMetric model considering the
curvature information combined with the adaptive contour
scheme (FSRMetric-adpt) is utilized in the comparative exper-
iment. The qualitatively comparing results from the considered
models on synthetic image, CT image and nature image are
shown in Fig. 11. It can be observed that the proposed model
can detect the target boundary correctly by utilizing the energy
based on geodetic distances from image data.

Finally, we present examples for multiple object detection
by the GroupPrps model in Fig. 12. The proposed method is
a novel minimal path-based algorithm which works on simple
closed contour with minimal interaction. The required internal
point provides the priori knowledge about which of the object
is to be detected. For multiple object detection, each of the
target objects need a single user-provided point inside the
target region. As shown in Fig. 12, the yellow dots represent
the landmark points, to which the adaptive cuts associated are
denoted as blue dash lines. The obtained closed contours for
different objects are demonstrated with different color lines,
illustrated in column 2.

VI. CONCLUSIONS

In this paper, we propose a new interactive image segmenta-
tion model partially relying on a set of precomputed boundary
proposals. A crucial point for the proposed model concentrates
on computing the adaptive cut from the landmark point,
yielding a disconnection constraint on the image domain. The
final segmentation contour is regarded as an optimal circular
path chosen from an admissible set, where each circular path

is the concatenation of truncated boundary proposals and the
corresponding connection paths. Accordingly, the proposed
interactive segmentation model enables to blend the benefits
from the prior information of the boundary proposals and
the efficiency of the graph-based optimization scheme. The
experimental results prove that the proposed models indeed
outperform state-of-the-art minimal path-based interactive seg-
mentation models.

Future work will be devoted to developing algorithms for
automatic extraction of closed target boundaries based on
the proposed model and the deep learning techniques. For
instance, the proposed model requires a landmark point inside
the target region to perform the model initialization. This
landmark point can be either given by user, thus leading to
an interactive segmentation method, or predicted by a deep
learning-based model, for instance the PolarMask model [50].
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APPENDIX

A. Instances of Geodesic Metrics for Connection Paths and
Edge Weights

In this appendix, we present two instances of the geodesic
metrics for the computation of the connection paths between
two adjacent boundary proposals as well as their connection
cost (i.e. edge weights).

1) Isotropic Riemannian Metric: The classical isotropic
Riemannian metric has a simple form, which can be con-
structed using the potential ψSeg (see Eq. (13)). In this case,
the isotropic metric F := FIR is defined over the space Ω×R2

by setting M = Ω such that

F IR(x,u) = ψSeg(x)∥u∥. (26)

2) Curvature-penalized Metric: The curvature regulariza-
tion is able to impose rigid property to the segmentation
contours, thus alleviating the unexpected influence from the
image noise and spurious edges. For this purpose, we consider
two curvature-penalized geodesic metrics, the Euler-Mumford
elastica metric [33] or the Reeds-Shepp forward metric [46].

Let S1 = [0, 2π) be an interval with periodic boundary
condition and let M := Ω× S1 ⊂ R3 be an orientation-lifted
space. Both Euler-Mumford elastica and Reeds-Shepp forward
metrics are established over the space M × R3 → [0,∞].
We respectively denote by FEM and FRS the Euler-Mumford
elastica and Reeds-Shepp forward metrics, which can be
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defined for any point x̃ = (x, θ) ∈ M and any vector
ũ = (u, ν) ∈ R3 such that

FEM(x̃, ũ) =

{
∥u∥+ β2ν2

∥u∥ , if u = ∥u∥nθ

∞, otherwise
(27)

and

FRS(x̃, ũ) =

{√
∥u∥2 + β2ν2, if u = ∥u∥nθ

∞, otherwise
(28)

where β > 0 is weighting parameter and where nθ =
(cos θ, sin θ) is a uint vector associated to the angle θ ∈ S1.

In the framework of the curvature-penalized models [33],
[46], a smooth curve γ : [0, 1] → Ω is lifted to an orientation-
lifted curve γ̃ := (γ, η) : [0, 1] → Ω× S1 s.t.

γ′(u) = ∥γ′(u)∥nη(u), ∀u ∈ [0, 1]. (29)

Note that an orientation-lifted curve γ̃ = (γ, η) satisfying
Eq. (29) is comprised of two components, where γ is its
physical projection and η : [0, 1] → S1 characterizes the angles
associated to the tangents γ′.

Equation (29) also yields a new representation for the
curvature κ : [0, 1] → R of the smooth curve γ

κ(u) =
η′(u)

∥γ′(u)∥
. (30)

Thus the minimization of LEM(γ) =
∫ 1

0
(1 + β2κ2)∥γ′∥du

and LRS(γ) =
∫ 1

0

√
1 + β2κ2∥γ′∥du can be implemented by

respectively minimizing the following energy functionals

LFEM(γ̃) =

∫ 1

0

FEM(γ̃, γ̃′)du (31)

LFRS(γ̃) =

∫ 1

0

FRS(γ̃, γ̃′)du. (32)

As introduced in [33], [46], [47] and analogous to the clas-
sical Cohen-Kimmel model, the minimization of the energy
functionals LFEM and LFRS can be achieved by computing
a geodesic distance map D̃, as the solution to the following
PDE with F := FEM or F := FRS, reading

max
ṽ ̸=0

⟨∇D̃(x̃), ṽ⟩
F(x̃, ṽ)

= 1 (33)

with boundary condition D̃(x̃) = 0, ∀x̃ ∈ S̃, where S̃ ⊂ M
is a connected subset.
Application to Our Problem. In Section IV-B, a boundary
proposal Si is a subset of the physical space Ω. In order
to apply the curvature-penalized metrics for estimating the
connection paths and the edge weights, we should map each
boundary Si to the orientation-lifted space M. For this pur-
pose, let Γi : [0, 1] → Si be the parameterization of of
Si and let ηi : [0, 1] → S1 be a parametric function such
that Γ′

i(u) = ∥Γ′
i(u)∥nηi(u). In this case, we obtain a series

of orientation-lifted boundary proposals Γ̃i = (Γi, ηi). As
a result, the geodesic distance map D̃Γ̃i

associated with Γ̃i

can be obtained by solving the PDE (33) with boundary
condition D̃Γ̃i

(x̃) = 0, if ∃u ∈ [0, 1] such that x̃ = Γ̃i(u).
The connection path G̃i,j : [0, 1] → M that links Γ̃i to Γ̃j

can be obtained using the gradient descent ODE (17) and the
distance map D̃Γ̃i

. By the definition of the orientation lifting,
G̃i,j can be rewritten as G̃i,j = (Gi,j , ηi,j), where Gi,j is the
physical projection used for building the final segmentation
contours.

In addition, the cost C2 in Eq. (21) for edge weights can be
reformulated as

C2(Gi,j) =

∫ 1

0

√
1 + β2κi,j(u)2∥G′

i,j(u)∥du

=

∫ 1

0

√
∥G′

i,j(u)∥2 + η′i,j(u)
2du, (34)

which can be simultaneously computed during the estimation
of the geodesic distances using the HFM, as adopted in [51].
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