Décomposition de Fourier d'une courbe fermée dans $R^2$

Description

Après le visionnage des superbes vidéos de 3Blue1Brown sur les séries de Fourier, j'ai pensé que LuaTeX couplé à MetaPost (et la librairie mplib) pourrait être un bon outil pour réaliser de telles animations de décomposition.

C'est donc ce que j'ai fait. Je n'ai pas pris le temps (encore) de commenter le code. Désolé.

L'animation

animation1
Images en cours de chargement...

Les codes

Le fichier LaTeX


\documentclass{article}

\usepackage{luapackageloader}
\usepackage{luamplib}

\directlua{dofile("Fourier.lua")}


\pagestyle{empty}

\begin{document}


\directlua{
  plotDecompAnim("f",300,50,0.26,360)
}



\end{document}


Les fonctions Lua : Fourier.lua


complex = require "complex"
local mpkpse = kpse.new('luatex', 'mpost')

local function finder(name, mode, ftype)
   if mode == "w" then
  return name
   else
       if ftype == 'pfb' then ftype='type1 fonts' end
       return  mpkpse:find_file(name,ftype)
   end
end


function getpathfrommp(s,nbrPoints,scale)
   local mp = mplib.new({
         find_file = finder,})
   mp:execute('input metafun ;')
   local rettable
   rettable = mp:execute('fontmapfile "=lm-ec.map"; picture lettre; path contourLettre; lettre := glyph "' .. s .. '" of "ec-lmri10"; path p; beginfig(1); for item within lettre: contourLettre := pathpart item; for i:=1 upto'.. nbrPoints ..': if i=1: p := point i/'..nbrPoints..' along contourLettre; else: p:= p--(point i/'..nbrPoints..' along contourLettre);fi; endfor; draw p scaled '..scale..'; endfor; endfig;end;')
   output = {}
   if rettable.status == 0 then
      figures = rettable.fig
      figure = figures[1]
      local objects = figure:objects()
      local segment = objects[1]
      for point =1, #segment.path do
         output[point] = {}
         output[point].x = segment.path[point].x_coord
         output[point].y = segment.path[point].y_coord
      end
   else
      print("error")
   end
   return output
end



function pathToComplex(path)
   local complexPath
   complexPath = {}
   for i=1,#path do
      complexPath[i] = complex.new(path[i].x,path[i].y)
   end
   return complexPath
end

function listComplexToPolar(cplxList)
   local output = {}
   for i=1,#cplxList do
      output[i] = {}
      output[i].abs,output[i].arg = complex.polar(cplxList[i])
   end
   return output
end

function cn(f,n)
   local CN
   CN = complex.new(0.0,0.0)
   local N = #f
   for i=0,N-1 do
      exposant = complex.new(0.0,-2.0*math.pi*n*i/N)
      Exp = complex.exp(exposant)
      CN = complex.add(CN,complex.mulnum(complex.mul(f[i+1],Exp),1.0/N))
   end
   return CN
end

function cnList(f)
   local CNlist = {}
   local N = #f
   for i=0,N do
      --print(math.floor(i-N/2))
      CNlist[i] = cn(f,math.floor(i-N/2))
   end
   return CNlist
end



function drawPath(path)
   local str
   str = "\\begin{mplibcode}\n beginfig(1);\n"
   str = str.."path p;\n"
   str = str.." p:="
   for i=1,#path do
      str = str.."("..string.format("%f",path[i].x)..","..string.format("%f",path[i].y)..")--"
   end
   str = str.."cycle;\n"
   str = str.."draw p scaled 0.1;\n endfig;\n"
   str = str.."\\end{mplibcode}\n"
   --print(str)
   tex.sprint(str)
end

function mpCodePath(path)
   local str
   str = ""
   str = str.."path p;\n"
   str = str.." p:="
   for i=1,#path do
      str = str.."("..string.format("%f",path[i].x)..","..string.format("%f",path[i].y)..")--"
   end
   str = str.."cycle;\n"
   str = str.."draw p;\n"
   str = str.. "pair ll, lr, ur, ul; ll := llcorner p; ur := urcorner p; lr := lrcorner p; ul := ulcorner p;\n"
   str = str.. "Wdth := abs(xpart lr - xpart ll); Hght := abs(ypart ul - ypart ll); prcW := 0.8;prcH := 0.3;\n"
   str = str.. "draw (ll+(-prcW*Wdth,-prcH*Hght))--(lr+(+prcW*Wdth,-prcH*Hght))--(ur+(+prcW*Wdth,+prcH*Hght))--(ul+(-prcW*Wdth,+prcH*Hght))--cycle;\n"
   return str
end

function mpCodeCircle(cn,shift)
   local str
   local abs,arg
   abs,arg= complex.polar(cn)
   str = "draw fullcircle scaled "..string.format("%f",2*abs).." shifted ("..string.format("%f",shift[1])..","..string.format("%f",shift[2])..") withcolor (0.7,0.7,0.7);\n"
   str = str.."drawarrow ((0,0)--("..string.format("%f",cn[1])..","..string.format("%f",cn[2])..") )  shifted ("..string.format("%f",shift[1])..","..string.format("%f",shift[2])..") withpen pencircle scaled 1pt withcolor (0.7,0.3,0.3);"
   return str
end

function coreDecomp(path, complexPath, cnList,nbrFourier,t)
   local str
   local cnListRotated = {}
   local zero = math.floor(#cnList/2)
   local NFourier = math.floor(nbrFourier/2)
   cnListRotated[zero] = cnList[zero]
   for i=1, zero do
      cnListRotated[zero+i] = complex.mul(cnList[zero+i],complex.exp(complex.new(0.0, i*2*math.pi*t)))
      cnListRotated[zero-i] = complex.mul(cnList[zero-i],complex.exp(complex.new(0.0, -i*2*math.pi*t)))
   end
   --local listAbsArg = listComplexToPolar(cnList)
   local str = "\\begin{mplibcode}\nverbatimtex \\leavevmode etex;beginfig(1);"
   local mpCodeLetter = mpCodePath(path)
   str = str..mpCodeLetter
   --for i=1,#cnList do

   local currentC = complex.new(0,0)
   str = str .. mpCodeCircle(cnListRotated[zero],currentC)
   currentC = complex.add(currentC,cnListRotated[zero])
   for i=1,NFourier do
      str = str .. mpCodeCircle(cnListRotated[zero+i],currentC)
      currentC = complex.add(currentC,cnListRotated[zero+i])
      str = str .. mpCodeCircle(cnListRotated[zero-i],currentC)
      currentC = complex.add(currentC,cnListRotated[zero-i])
   end
   --end
   str = str .. "endfig;\n\\end{mplibcode}\n\\newpage"
   --print(str)
   return str
end


function plotDecomp(letter,nbrPoints,nbrFourier,t,scale)
   local str
   local path = getpathfrommp(letter,nbrPoints,scale)
   local complexPath = pathToComplex(path)
   local cnList = cnList(complexPath)
   str = coreDecomp(path,complexPath,cnList,nbrFourier,t)
   tex.sprint(str)
end

function plotDecompAnim(letter,nbrPoints,nbrFourier,scale,nbrFrame)
   local str
   local path = getpathfrommp(letter,nbrPoints,scale)
   local complexPath = pathToComplex(path)
   local cnList = cnList(complexPath)
   local cnListRotated = {}
   local zero = math.floor(#cnList/2)
   local NFourier = math.floor(nbrFourier/2)
   for frame=0,nbrFrame-1 do
      t=frame/nbrFrame
      str = coreDecomp(path,complexPath,cnList,nbrFourier,t)
      tex.sprint(str)
   end
end


Les fonctions pour les nombres complexes

Le code est ici repris de la librairie luafft.


-- complex 0.3.0
-- Lua 5.1

-- 'complex' provides common tasks with complex numbers

-- function complex.to( arg ); complex( arg )
-- returns a complex number on success, nil on failure
-- arg := number or { number,number } or ( "(-)" and/or "(+/-)i" )
--      e.g. 5; {2,3}; "2", "2+i", "-2i", "2^2*3+1/3i"
--      note: 'i' is always in the numerator, spaces are not allowed

-- a complex number is defined as carthesic complex number
-- complex number := { real_part, imaginary_part }
-- this gives fast access to both parts of the number for calculation
-- the access is faster than in a hash table
-- the metatable is just a add on, when it comes to speed, one is faster using a direct function call

-- http://luaforge.net/projects/LuaMatrix
-- http://lua-users.org/wiki/ComplexNumbers

-- Licensed under the same terms as Lua itself.

--/////////////--
--// complex //--
--/////////////--

-- link to complex table
local complex = {}

-- link to complex metatable
local complex_meta = {}

-- complex.to( arg )
-- return a complex number on success
-- return nil on failure
local _retone = function() return 1 end
local _retminusone = function() return -1 end
function complex.to( num )
   -- check for table type
   if type( num ) == "table" then
      -- check for a complex number
      if getmetatable( num ) == complex_meta then
         return num
      end
      local real,imag = tonumber( num[1] ),tonumber( num[2] )
      if real and imag then
         return setmetatable( { real,imag }, complex_meta )
      end
      return
   end
   -- check for number
   local isnum = tonumber( num )
   if isnum then
      return setmetatable( { isnum,0 }, complex_meta )
   end
   if type( num ) == "string" then
      -- check for real and complex
      -- number chars [%-%+%*%^%d%./Ee]
      local real,sign,imag = string.match( num, "^([%-%+%*%^%d%./Ee]*%d)([%+%-])([%-%+%*%^%d%./Ee]*)i$" )
      if real then
         if string.lower(string.sub(real,1,1)) == "e"
         or string.lower(string.sub(imag,1,1)) == "e" then
            return
         end
         if imag == "" then
            if sign == "+" then
               imag = _retone
            else
               imag = _retminusone
            end
         elseif sign == "+" then
            imag = loadstring("return tonumber("..imag..")")
         else
            imag = loadstring("return tonumber("..sign..imag..")")
         end
         real = loadstring("return tonumber("..real..")")
         if real and imag then
            return setmetatable( { real(),imag() }, complex_meta )
         end
         return
      end
      -- check for complex
      local imag = string.match( num,"^([%-%+%*%^%d%./Ee]*)i$" )
      if imag then
         if imag == "" then
            return setmetatable( { 0,1 }, complex_meta )
         elseif imag == "-" then
            return setmetatable( { 0,-1 }, complex_meta )
         end
         if string.lower(string.sub(imag,1,1)) ~= "e" then
            imag = loadstring("return tonumber("..imag..")")
            if imag then
               return setmetatable( { 0,imag() }, complex_meta )
            end
         end
         return
      end
      -- should be real
      local real = string.match( num,"^(%-*[%d%.][%-%+%*%^%d%./Ee]*)$" )
      if real then
         real = loadstring( "return tonumber("..real..")" )
         if real then
            return setmetatable( { real(),0 }, complex_meta )
         end
      end
   end
end

-- complex( arg )
-- same as complex.to( arg )
-- set __call behaviour of complex
setmetatable( complex, { __call = function( _,num ) return complex.to( num ) end } )

-- complex.new( real, complex )
-- fast function to get a complex number, not invoking any checks
function complex.new( ... )
   return setmetatable( { ... }, complex_meta )
end

-- complex.type( arg )
-- is argument of type complex
function complex.type( arg )
   if getmetatable( arg ) == complex_meta then
      return "complex"
   end
end

-- complex.convpolar( r, phi )
-- convert polar coordinates ( r*e^(i*phi) ) to carthesic complex number
-- r (radius) is a number
-- phi (angle) must be in radians; e.g. [0 - 2pi]
function complex.convpolar( radius, phi )
   return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
end

-- complex.convpolardeg( r, phi )
-- convert polar coordinates ( r*e^(i*phi) ) to carthesic complex number
-- r (radius) is a number
-- phi must be in degrees; e.g. [0° - 360°]
function complex.convpolardeg( radius, phi )
   phi = phi/180 * math.pi
   return setmetatable( { radius * math.cos( phi ), radius * math.sin( phi ) }, complex_meta )
end

--// complex number functions only

-- complex.tostring( cx [, formatstr] )
-- to string or real number
-- takes a complex number and returns its string value or real number value
function complex.tostring( cx,formatstr )
   local real,imag = cx[1],cx[2]
   if formatstr then
      if imag == 0 then
         return string.format( formatstr, real )
      elseif real == 0 then
         return string.format( formatstr, imag ).."i"
      elseif imag > 0 then
         return string.format( formatstr, real ).."+"..string.format( formatstr, imag ).."i"
      end
      return string.format( formatstr, real )..string.format( formatstr, imag ).."i"
   end
   if imag == 0 then
      return real
   elseif real == 0 then
      return ((imag==1 and "") or (imag==-1 and "-") or imag).."i"
   elseif imag > 0 then
      return real.."+"..(imag==1 and "" or imag).."i"
   end
   return real..(imag==-1 and "-" or imag).."i"
end

-- complex.print( cx [, formatstr] )
-- print a complex number
function complex.print( ... )
   print( complex.tostring( ... ) )
end

-- complex.polar( cx )
-- from complex number to polar coordinates
-- output in radians; [-pi,+pi]
-- returns r (radius), phi (angle)
function complex.polar( cx )
   return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] )
end

-- complex.polardeg( cx )
-- from complex number to polar coordinates
-- output in degrees; [-180°,180°]
-- returns r (radius), phi (angle)
function complex.polardeg( cx )
   return math.sqrt( cx[1]^2 + cx[2]^2 ), math.atan2( cx[2], cx[1] ) / math.pi * 180
end

-- complex.mulconjugate( cx )
-- multiply with conjugate, function returning a number
function complex.mulconjugate( cx )
   return cx[1]^2 + cx[2]^2
end

-- complex.abs( cx )
-- get the absolute value of a complex number
function complex.abs( cx )
   return math.sqrt( cx[1]^2 + cx[2]^2 )
end

-- complex.get( cx )
-- returns real_part, imaginary_part
function complex.get( cx )
   return cx[1],cx[2]
end

-- complex.set( cx, real, imag )
-- sets real_part = real and imaginary_part = imag
function complex.set( cx,real,imag )
   cx[1],cx[2] = real,imag
end

-- complex.is( cx, real, imag )
-- returns true if, real_part = real and imaginary_part = imag
-- else returns false
function complex.is( cx,real,imag )
   if cx[1] == real and cx[2] == imag then
      return true
   end
   return false
end

--// functions returning a new complex number

-- complex.copy( cx )
-- copy complex number
function complex.copy( cx )
   return setmetatable( { cx[1],cx[2] }, complex_meta )
end

-- complex.add( cx1, cx2 )
-- add two numbers; cx1 + cx2
function complex.add( cx1,cx2 )
   return setmetatable( { cx1[1]+cx2[1], cx1[2]+cx2[2] }, complex_meta )
end

-- complex.sub( cx1, cx2 )
-- subtract two numbers; cx1 - cx2
function complex.sub( cx1,cx2 )
   return setmetatable( { cx1[1]-cx2[1], cx1[2]-cx2[2] }, complex_meta )
end

-- complex.mul( cx1, cx2 )
-- multiply two numbers; cx1 * cx2
function complex.mul( cx1,cx2 )
   return setmetatable( { cx1[1]*cx2[1] - cx1[2]*cx2[2],cx1[1]*cx2[2] + cx1[2]*cx2[1] }, complex_meta )
end

-- complex.mulnum( cx, num )
-- multiply complex with number; cx1 * num
function complex.mulnum( cx,num )
   return setmetatable( { cx[1]*num,cx[2]*num }, complex_meta )
end

-- complex.div( cx1, cx2 )
-- divide 2 numbers; cx1 / cx2
function complex.div( cx1,cx2 )
   -- get complex value
   local val = cx2[1]^2 + cx2[2]^2
   -- multiply cx1 with conjugate complex of cx2 and divide through val
   return setmetatable( { (cx1[1]*cx2[1]+cx1[2]*cx2[2])/val,(cx1[2]*cx2[1]-cx1[1]*cx2[2])/val }, complex_meta )
end

-- complex.divnum( cx, num )
-- divide through a number
function complex.divnum( cx,num )
   return setmetatable( { cx[1]/num,cx[2]/num }, complex_meta )
end

-- complex.pow( cx, num )
-- get the power of a complex number
function complex.pow( cx,num )
   if math.floor( num ) == num then
      if num < 0 then
         local val = cx[1]^2 + cx[2]^2
         cx = { cx[1]/val,-cx[2]/val }
         num = -num
      end
      local real,imag = cx[1],cx[2]
      for i = 2,num do
         real,imag = real*cx[1] - imag*cx[2],real*cx[2] + imag*cx[1]
      end
      return setmetatable( { real,imag }, complex_meta )
   end
   -- we calculate the polar complex number now
   -- since then we have the versatility to calc any potenz of the complex number
   -- then we convert it back to a carthesic complex number, we loose precision here
   local length,phi = math.sqrt( cx[1]^2 + cx[2]^2 )^num, math.atan2( cx[2], cx[1] )*num
   return setmetatable( { length * math.cos( phi ), length * math.sin( phi ) }, complex_meta )
end

-- complex.sqrt( cx )
-- get the first squareroot of a complex number, more accurate than cx^.5
function complex.sqrt( cx )
   local len = math.sqrt( cx[1]^2+cx[2]^2 )
   local sign = (cx[2]<0 and -1) or 1
   return setmetatable( { math.sqrt((cx[1]+len)/2), sign*math.sqrt((len-cx[1])/2) }, complex_meta )
end

-- complex.ln( cx )
-- natural logarithm of cx
function complex.ln( cx )
   return setmetatable( { math.log(math.sqrt( cx[1]^2 + cx[2]^2 )),
      math.atan2( cx[2], cx[1] ) }, complex_meta )
end

-- complex.exp( cx )
-- exponent of cx (e^cx)
function complex.exp( cx )
   local expreal = math.exp(cx[1])
   return setmetatable( { expreal*math.cos(cx[2]), expreal*math.sin(cx[2]) }, complex_meta )
end

-- complex.conjugate( cx )
-- get conjugate complex of number
function complex.conjugate( cx )
   return setmetatable( { cx[1], -cx[2] }, complex_meta )
end

-- complex.round( cx [,idp] )
-- round complex numbers, by default to 0 decimal points
function complex.round( cx,idp )
   local mult = 10^( idp or 0 )
   return setmetatable( { math.floor( cx[1] * mult + 0.5 ) / mult,
      math.floor( cx[2] * mult + 0.5 ) / mult }, complex_meta )
end

--// metatable functions

complex_meta.__add = function( cx1,cx2 )
   local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
   return complex.add( cx1,cx2 )
end
complex_meta.__sub = function( cx1,cx2 )
   local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
   return complex.sub( cx1,cx2 )
end
complex_meta.__mul = function( cx1,cx2 )
   local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
   return complex.mul( cx1,cx2 )
end
complex_meta.__div = function( cx1,cx2 )
   local cx1,cx2 = complex.to( cx1 ),complex.to( cx2 )
   return complex.div( cx1,cx2 )
end
complex_meta.__pow = function( cx,num )
   if num == "*" then
      return complex.conjugate( cx )
   end
   return complex.pow( cx,num )
end
complex_meta.__unm = function( cx )
   return setmetatable( { -cx[1], -cx[2] }, complex_meta )
end
complex_meta.__eq = function( cx1,cx2 )
   if cx1[1] == cx2[1] and cx1[2] == cx2[2] then
      return true
   end
   return false
end
complex_meta.__tostring = function( cx )
   return tostring( complex.tostring( cx ) )
end
complex_meta.__concat = function( cx,cx2 )
   return tostring(cx)..tostring(cx2)
end
-- cx( cx, formatstr )
complex_meta.__call = function( ... )
   print( complex.tostring( ... ) )
end
complex_meta.__index = {}
for k,v in pairs( complex ) do
   complex_meta.__index[k] = v
end

return complex

--///////////////--
--// chillcode //--
--///////////////--

Table des matières