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1 Introduction

These lectures notes have been prepared by A. Chambolle for the M2 course “Continuous optimization”
given between Oct. and Dec. 2016 in Paris 6, in the Master “modélisation mathématique” of Ecole Poly-
technique, Université Pierre-et-Marie Curie (Paris 6) and Ecole National des Ponts et Chaussées. Much
of the material is taken from [9], or/and inspired by famous textbooks [33, 29, 39, 15, 2]. Updated for
the 2017-2018-2019 courses. From 2020 on the courses take place in Université Paris-Dauphine PSL.

The notes gather various matherial mostly on first order optimisation and iterative algorithms for
generally convex problems, including operator splitting, acceleration, etc.

2 (First order) Descent methods, rates

Most of what we describe in this section is in finite dimension, although extension to Hilbert spaces is
in general easy. We will discuss rates of convergence, in particular, which we try to make independent
on the dimension. The complexity of the iterations, on the other hand, are usually very dimension-
dependent, and this is the reason for which high order descent methods are not practical for modern
high dimensional problems (imaging, data analysis...).
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2.1 Gradient descent

The main source for this section is the reference textbook of Polyak [33]. Consider the problem of
minimising

min
x∈X

f(x)

with X a finite dimensional vector step (or Hilbert) and f a real valued, C1 function (or at least
differentiable). We denote X∗ the dual of X (which can of course be represented by X through the
scalar product).

The differential df(x) ∈ X∗ is defined as the linear part of the closest affine function to f at (x, f(x)):

f(y) = f(x) + df(x) · (y − x) + o(|x− y|).

The function f is said to be (Fréchet) differentiable at x if such an affine approximation exists, and it is
C1 in X if

df : X → X∗

x 7→ df(x)

is defined everywhere and continuous. The local inversion theorem guarantees that in this case, near
points where df(x) ̸= 0, the level set {f = f(x)} is a C1 hypersurface with tangent space Ker df(x) =
{h : df(x) · h = 0}.

When X has a Euclidean or Hilbertian structure (a scalar product), then df(x) has the (Riesz)
representation df(x) · h = ⟨∇f(x), h⟩X (∀h), where now ∇f(x) is the gradient of f at x (which depends
on the metric structure of X). One has obviously Ker df(x) = ∇f(x)⊥ and ∇f(x) is a normal vector to
the level surface {f = f(x)} of f at x, pointing towards the larger values.

For this reason, the most simple idea to minimize the function f is to introduce the “gradient descent
algorithm” with step τ :

xk+1 = xk − τ∇f(xk) =: Tτ (xk).

As said above, −∇f(xk) is a descent direction. Near xk, indeed,

f(x) = f(xk) +
〈
∇f(xk), x− xk

〉
+ o(x− xk)

so that
f(xk+1) = f(xk) − τ |∇f(xk)|2 + o(τ) < f(xk)

if τ > 0 is small enough and ∇f(xk) ̸= 0. One can use various strategies to choose τ :

� optimal step: minτ f(xk − τ∇f(xk)) (with a “line search”, such as for instance for the “conjugate
gradient method”);

� Armijo-type rule: find i ≥ 0 such that f(xk − τρi∇f(xk)) ≤ f(xk) − cτρi|∇f(xk)|2, ρ < 1, c < 1
fixed;

� Gradient with fixed step: τ > 0 is given, and one sees that one can interpret xk+1 as the minimizer
of a quadratic approximation of f :

xk+1 = arg min
x
f(xk) +

〈
∇f(xk), x− xk

〉
+

1

2τ
|x− xk|2.
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Observe that the latter choice has the form

min
x
f(xk) + df(xk) · (x− xk) +

1

2τ
d(x, xk)2

with the distance d(x, xk) = |x−xk| given by the Euclidean metric structure of X. It can be natural, in
some cases, to consider varying the metric (inside, or sometimes even outside of the Euclidean framework).
A particular situation (which is therefore not anymore a “gradient descent” method in the above sense,
at least in general), is the

� “Frank-Wolfe”-type method1: minx∈Xk f(xk) +
〈
∇f(xk), x− xk

〉
where Xk is appropriately de-

fined.

Here we replace the metric term |x−xk|2 with a constraint on x depending on the previous iterates. For
instance: Xk := {x : |x − xk| ≤ ε}, in which case τ = ε/|∇f(xk)| (then we recover a gradient descent
method). In other instances, once the minimizer x of the above problem is found, one lets gk = xk − x
and xk+1 = xk − τgk, gk playing the role of a gradient, but with some local metric (hence the name
“conditional gradient”).

Convergence analysis: if τ is too large with respect to the Lipschitz constant of ∇f , or ∇f is not
Lipschitz, easy to build infinitely oscillating examples (ex: f(x) = ∥x∥).

xk xk − τ∇F (xk) xk+1 xk+2 = xk

etc...

Figure 1: The gradient descent may never converge if the step is too large or the function not smooth
enough

If f is C1, ∇f is L-Lipschitz, 0 < τ < 2/L, inf f > −∞ then the method converges (in RN ) in the
following sense: ∇f(xk) → 0.

Proof:

f(xk+1) = f(xk) −
∫ τ

0

〈
∇f(xk − s∇f(xk)),∇f(xk)

〉
= f(xk) − τ∥∇f(xk)∥2 +

∫ τ

0

〈
∇f(xk) −∇f(xk − s∇f(xk)),∇f(xk)

〉
≤ f(xk) − τ(1 − Lτ

2 )∥∇f(xk)∥2. (1)

(Observe that we just use here that D2f is bounded from above by LI (if f C2), or more generally,
letting x = xk and y = xk − s∇f(xk), we use

⟨∇f(x) −∇f(y), x− y⟩ ≤ L∥x− y∥2

1or “conditional gradient”.
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which is a consequence of the Lipschitz property of ∇f , but is a weaker property.)
Then letting κ = τ(1 − τL/2) > 0, one finds that

f(xn) + κ

n−1∑
k=0

∥∇f(xk)∥2 ≤ f(x0).

This shows the claim. If in addition f is “infinite at infinity” (coercive) then xk has subsequences which
converge, therefore to a stationary point.

Remark 2.1. If τ = 0, the iteration does nothing (and hence converges to the initial point...). If τ = 2/L,
the iteration might oscillate forever, as shows the example of the function f(x) := L|x|2/2.

Remark 2.2. Taking x∗ a minimizer, τ = 1/L, we deduce that

1

2L
∥∇f(xk)∥2 ≤ f(xk) − f(xk+1) ≤ f(xk) − f(x∗).

The convex case Further information on the second order behaviour of f allows to improve the
analysis of the algorithm. The gradient descent method is better analysed assuming that f is convex.
One can show (i) that the iteration is a 1-Lipschitz mapping (hence the iterates have to get closer to
fixed points, or at least can not move away, during the process), (ii) basic convergence rates (that is, a
speed of convergence of f(xk) towards its minimal value).

First, if f is convex we have the following additional property:

Theorem 2.3 (Baillon-Haddad2). If f is convex and ∇f is L-Lipschitz, then for all x, y,

⟨∇f(x) −∇f(y), x− y⟩ ≥ 1

L
∥∇f(x) −∇f(y)∥2.

(∇f is said to be “(1/L)-co-coercive”.)

We will see later a general proof of this result based on convex analysis. In finite dimension, if f is
C2, then the proof is easy: one has 0 ≤ D2f ≤ LI (because f is convex, and because ∇f is L-Lipschitz).
Then

∇f(x) −∇f(y) =

∫ 1

0

D2f(y + s(x− y))(x− y)ds =: A(x− y).

with A =
∫ 1

0
D2f(y + s(x− y))ds symmetric with 0 ≤ A ≤ LI. Hence:

∥∇f(x) −∇f(y)∥2 = ∥A(x− y)∥2 =
〈
AA1/2(x− y), A1/2(x− y)

〉
≤

L
〈
A1/2(x− y), A1/2(x− y)

〉
≤ L ⟨A(x− y), x− y⟩ = L ⟨∇f(x) −∇f(y), x− y⟩

which is the result. If f is not C2, one could smooth f by convolution with a smooth, compactly
supported kernel, derive the result and then pass to the limit.

Lemma 2.4. If f is convex with L-Lipschitz gradient, then the mapping Tτ = I − τ∇f is a weak
contraction when 0 ≤ τ ≤ 2/L (that is, Tτ is 1-Lipschitz, or “non-expansive”).

2This is a modest corollary of a much more general result, in arbitrary topological spaces, for operators which satisfy
“cyclic monotonicity” conditions, see [1].
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Proof:

∥Tτx− Tτy∥2 = ∥x− y∥2 − 2τ ⟨x− y,∇f(x) −∇f(y)⟩ + τ2∥∇f(x) −∇f(y)∥2

≤ ∥x− y∥2 − 2τ

L

(
1 − τL

2

)
∥∇f(x) −∇f(y)∥2.

Remark 2.5. Tτ is “averaged” for 0 < τ < 2/L, that is one can write

Tτ = θ(I − 2
L∇f) + (1 − θ)I

for θ = τL/2 ∈]0, 1[. The convergence of the iterates of this class of operators will be proved later on,
see Section 3.1.

Convergence rate in the convex case. Additionally, we Then, using that, for x∗ a minimizer,

f(x∗) ≥ f(xk) +
〈
∇f(xk), x∗ − xk

〉
(we will see this is a general property of convex functions), we find

f(xk) − f(x∗)

∥x∗ − xk∥
≤ ∥∇f(xk)∥ (2)

Assuming still that 0 < τL < 2, and using Lemma 2.4 which implies that ∥xk − x∗∥ ≤ ∥x0 − x∗∥, it
follows (f(xk) − f(x∗))/∥x0 − xk∥ ≤ ∥∇f(xk)∥. Hence from (1) we derive, letting ∆k = f(xk) − f(x∗),
κ = τ(1 − τL/2) ∈]0, 1/(2L)], that

∆k+1 ≤ ∆k −
κ

∥x0 − x∗∥2
∆2
k (3)

We can show the following:

Lemma 2.6. Let (ak)k be a sequence of nonnegative numbers satisfying for k ≥ 0:

ak+1 ≤ ak − c−1a2k

Then, for all k ≥ 0,

ak ≤ c

k + 1

Proof: First observe that if we replace ak with ak/c, the property becomes ak+1 ≤ ak − a2k: hence it
is enough to prove it for c = 1. Then, as ak(1 − ak) ≥ ak+1 ≥ 0, one has 0 ≤ ak ≤ 1 for all k ≥ 0. We
show the inequality by induction: for k = 0, a0 ≤ 1. If k ≥ 1 and if kak−1 ≤ 1, then we write that

(k + 1)ak ≤ (k + 1)(ak−1 − a2k−1)

= (k + 1)ak−1 − (k + 1)a2k−1 = kak−1 + ak−1(1 − (k + 1)ak−1)

≤ 1 + ak−1(1 − (k + 1)ak)

since 0 ≤ ak ≤ ak−1? Hence (1 − (k + 1)ak)(1 + ak−1) ≥ 0. It follows that (k + 1)ak ≤ 1. Applying this
Lemma to the recursion (3) we deduce:

Theorem 2.7. The gradient descent with fixed step satisfies

∆k ≤ ∥x0 − x∗∥2

κ(k + 1)
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Observe that this rate is not very good and also a bit pessimistic (it should improve if xk → x∗

because (2) improves: but without further knowledge of f it is impossible to guess how much). On the
other hand, it does not prove, a priori, anything on the sequence (xk) itself. Observe also, to conclude
that κ = τ(1 − τL/2) = (2/L)[(τL/2)(1 − τL/2)] is maximal for τL/2 = 1/2, that is, τ = 1/L. In that
case, κ = 1/(2L) and the rate is bounded by

∆k ≤ 2L
∥x0 − x∗∥2

k + 1
.

Strongly convex case. A function f is γ-strongly convex if and only if f(x) − γ∥x∥2/2 is convex: if
f is C2, it is equivalent to D2f ≥ γI. We will discuss more precisely this definition in Section 4.1. In
this, case if x∗ is the minimizer (which in this case always exists and is unique)

xk+1 − x∗ = xk − x∗ − τ(∇f(xk) −∇f(x∗)) =

∫ 1

0

(I − τD2f(x∗ + s(xk − x∗))(xk − x∗)ds

hence (using that (1 − τL)I ≤ I − τD2f ≤ (1 − τγ)I)

∥xk+1 − x∗∥ ≤ max{1 − τγ, τL− 1}∥xk − x∗∥.

If f is not C2 one can still show this by smoothing. The best constant is for τ = 2/(L + γ) and gives,
for q = (L− γ)/(L+ γ) ∈ [0, 1]

∥xk − x∗∥ ≤ qk∥x0 − x∗∥.

One can easily deduce the following (apparently) more general result:

Theorem 2.8. Let f be C2, x∗ be a strict local minimum of f where D2f is definite positive. Then if
x0 is close enough to x∗, the gradient descent method with optimal step (obtained with a line search) will
converge linearly. (Or with fixed step small enough.)

2.2 What can we achieve?

This paragraph contains a very elementary introduction to lower bounds and complexity. We follow the
description in [9], were we essentially give elementary variants of deeper results found in [26, 29].)

Idea: consider a “hard problem”, for instance, for x ∈ Rn, L > 0, γ ≥ 0, 1 ≤ p ≤ n, functions of the
form:

f(x) =
L− γ

8

(
(x1 − 1)2 +

p∑
i=2

(xi − xi−1)2

)
+
γ

2
∥x∥2, (4)

which is tackled by a “first order method”, which is such that the iterates xk are restricted to the
subspace spanned by the gradients of already computed iterates, i.e. for k ≥ 0

xk ∈ x0 +
{
∇f(x0),∇f(x1), . . . ,∇f(xk−1)

}
, (5)

where x0 is an arbitrary starting point.
Starting from an initial point x0 = 0, any first order method of the considered class can transmit the

information of the data term only at the speed of one index per iteration. This makes such problems
very hard to solve by any first order methods in the considered class of algorithms. Indeed if one starts
from x0 = 0 in the above problem (whose solution, for γ = 0, is given by x∗l = 1, k = 1, . . . , p, and 0
for l > p), then at the first iteration, only the first component x11 will be updated (since ∂if(x0) = 0 for
i ≥ 2), and by induction one can check that at iteration k, xkl = 0 for l ≥ k + 1.
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The solution satisfies ∇f = 0, therefore is characterized by

xi =
L− γ

L+ γ

xi+1 + xi−1

2
, i ≤ p− 1,

with x0 = 1 and xp = (L−γ)/(L+3γ)xp−1. The best possible point at iteration k satisfies this equation
for i ≤ k, and xk+1 = 0. In case γ = 0 we find that this point x is affine: xi = (1 − i/(k + 1))+, and
xi − xi−1 = −1/(k + 1) for i ≤ k + 1. Hence

f(x) =
L

8

k+1∑
i=1

1

(k + 1)2
=
L

8

1

k + 1

is the best possible value which can be reached at step k.
If one looks for a bound independent on the dimension with (here for homogeneity reasons) f(xk) ∼

L∥x0 − x∗∥2ak (for a sequence (ak)), using here that x∗i = 1 for i ≤ p and 0 for i > p, x0 = 0, and
f(x∗) = 0, one obtains

f(xk) − f(x∗) ≥ L

8p(k + 1)
∥x0 − x∗∥2

(k < p) (while if k = p, xk = x∗). For k = p− 1 one finds

f(xk) − f(x∗) ≥ L

8

∥x0 − xk∥2

(k + 1)2

hence no first order method can reach a bound of the considered form which is better than this. (It does
not contradict a bound of the form f(xk) − f(x∗) = o(1/k2), for instance!)

It follows a variant of the results in [29] (where a slightly different function is used), see Theorems 2.1.7
and 2.1.13.

Theorem 2.9. For any n ≥ 2, any x0 ∈ Rn, L > 0, and k < n, there exists a convex, one times
continuously differentiable function f with L-Lipschitz continuous gradient, such that for any first-order
algorithm satisfying (5), it holds that

f(xk) − f(x∗) ≥ L∥x0 − x∗∥2

8(k + 1)2
, (6)

where x∗ denotes a minimiser of f .

Observe that the above lower bound is valid only if number of iterates k is less than the problem
size. We can not improve this with a quadratic function, as the conjugate gradient method (which is a
first-order method) is then known to find the global minimiser here after at most p steps.

But practical problems are often so large that it is not possible to perform as many iterations as the
dimension of the problem, and will always fulfill similar assumptions.

If choosing γ > 0 so that the function (4) becomes γ-strongly convex, a lower bound for first order
methods is given Theorem 2.1.13 in [29]. It is hard to derive precisely for p finite, however in RN ≃ ℓ2(N),
for p = +∞, one finds that the solution is given by x = qi, q = (

√
Q − 1)/(

√
Q + 1) where Q = L/γ is

the condition number of the problem (q satisfies 2 = (L− γ)/(L+ γ)(q + 1/q)). If x0 = 0,

∥x0 − x∗∥2 =

∞∑
i=1

q2i =
q2

1 − q2
, while
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∥xk − x∗∥2 ≥
∞∑

i=k+1

q2i = q2k∥x0 − x∗∥2.

The strong convexity of f shows that

f(xk) ≥ f(x∗) +
γ

2
q2k∥x0 − x∗∥2

and it follows:

Theorem 2.10. For any x0 ∈ R∞ ≃ ℓ2(N) and γ, L > 0 there exists a γ-strongly convex, one times
continuously differentiable function f with L-Lipschitz continuous gradient, such that for any algorithm
in the class of first order algorithms defined through (5) it holds that for all k,

f(xk) − f(x∗) ≥ γ

2

(√
Q− 1√
Q+ 1

)2k

∥x0 − x∗∥2 (7)

where Q = L/γ ≥ 1 is the condition number, and x∗ a minimiser of f .

In finite dimension, a similar result will hold for k small enough (with respect to n).
The meaning of the two results above is the following: given a first order method, one will never

be able to beat in general the rates in the theorem without additional assumptions or properties of the
function f or the space (dimension, etc).

2.3 Second order methods: Newton’s method

The idea of Newton’s method relies on using second order information to improve the precision of the
approximation of the function at step k. (In practice, one solves the equation ∇f(x) = 0 using Newton’s
standard method.) We have

f(x) = f(xk) +
〈
∇f(xk), x− xk

〉
+ 1

2

〈
D2f(xk)(x− xk), x− xk

〉
+ o(∥x− xk∥2).

If we are near a minimizer, we can assume D2f(xk) > 0 (hopefully), and hence find xk+1 by solving

min
x
f(xk) +

〈
∇f(xk), x− xk

〉
+ 1

2

〈
D2f(xk)(x− xk), x− xk

〉
Compare with the Gradient descent with step τ in a metric defined by a symmetric positive definite
matrix A > 0, which would be:

min
x
f(xk) +

〈
∇f(xk), x− xk

〉
+ 1

2τ

〈
A(x− xk), x− xk

〉
hence we can see Newton’s method as a gradient descent in the metric which best approximates the
function. We find that xk+1 is given by

∇f(xk) +D2f(xk)(xk+1 − xk) = 0 ⇔ xk+1 = xk −D2f(xk)−1∇f(xk).

We have the following “quadratic” convergence rate.

Theorem 2.11. Assume f is C2, D2f is M -Lipschitz, and D2f ≥ γ (strong convexity). Let q =
M/(2γ2)∥∇f(x0)∥ and assume x0 is close enough to the minimizer x∗, so that q < 1. Then ∥xk−x∗∥ ≤
(2γ/M)q2

k

.
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This is extremely fast (the precision is doubled at each iteration, this is called a quadratic rate), but
there are strong conditions, and the algorithm can be hard to implement.

Proof: first see that

∇f(x+ h) = ∇f(x) +

∫ 1

0

D2f(x+ sh)hds

= ∇f(x) +D2f(x)h+

∫ 1

0

(D2f(x+ sh) −D2f(x))hds

so that

∥∇f(x+ h) −∇f(x) −D2f(x)h∥ ≤ M

2
∥h∥2.

Hence

∥∇f(xk+1)−

0︷ ︸︸ ︷
∇f(xk) −D2f(xk)(xk+1 − xk) ∥ ≤ M

2
∥xk+1 − xk∥2

⇒ ∥∇f(xk+1)∥ ≤ M

2
∥D2f(xk)−1∥2∥∇f(xk)∥2 ≤ M

2γ2
∥∇f(xk)∥2

Hence letting gk = ∥∇f(xk)∥, for all k one has

log gk+1 ≤ 2 log gk + log
M

2γ2
⇒ log gk ≤ 2k log g0 + (2k − 1) log

M

2γ2
= 2k log q − log

M

2γ2

so that

∥∇f(xk)∥ ≤ 2γ2

M
q2

k

.

As f is strongly convex,
〈
∇f(xk), xk − x∗

〉
≥ γ∥xk − x∗∥2, and we can conclude.

The main issue with this is that it is very important to have q < 1, otherwise the method could not
work. The (very) “good” rate of convergence is obtained only if the starting point is good enough.

There are quite a few very important variants of Newton’s method, which are designed so that
one does not have to explicitly evaluate D2f(xk)−1, usually called “Quasi-Newton” type methods: one
replaces D2f(xk) with a metric Hk which is improved at each iteration, hoping that Hk → D2f(x∗)
in the limit. The most famous (and very efficient) variant is known as the “BFGS” method (after
Broyden-Fletcher-Goldfarb-Shanno, detailed in 4 papers of 1970) and its improvements (limited memory
“L-BFGS”) [8, 25]. This topic is covered extensively for instance in [30, Chap. 6] and various toolboxes
exist which implement this method.

2.4 Multistep first order methods

2.4.1 Heavy ball method

This description follows Polyak’s book [32] where the method is introduced. The idea is to iterate:

xk+1 = xk − α∇f(xk) + β(xk − xk−1),

α, β ≥ 0. This mimicks the equation ẍ = −∇f(x) − ẋ of a heavy ball in a potential f(x) with friction,
which can be discretized as (for instance):

xk+1 − 2xk + xk−1

(δt)2
+
xk+1 − xk

δt
= −∇f(xk).
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The method requires that f is C2, γ-convex, with L-Lipschitz gradient (at least near a solution x∗),
that is:

γI ≤ D2f ≤ LI.

Then (see [33])

Theorem 2.12. Let x∗ be a (local) minimizer of f such that γI ≤ D2f(x∗) ≤ LI, and choose α, β with
0 ≤ β < 1, 0 < α < 2(1 + β)/L. There exists q < 1 such that if q < q′ < 1 and if x0, x1 are close enough
to x∗, one has

∥xk − x∗∥ ≤ c(q′)q′k.

Moreover, this is almost optimal in the sense of Theorem 7: if

α =
4

(
√
L+

√
γ)2

, β =

(√
L−√

γ
√
L+

√
γ

)2

then q =

√
L−√

γ
√
L+

√
γ
.

Proof: this is an example of a proof where one analyses the iteration of a linearized system near the
optimum. Close enough to x∗, one has

xk+1 = xk − αD2f(x∗)(xk − x∗) + o(∥xk − x∗∥) + β(xk − xk−1),

and one can write that zk = (xk − x∗, xk−1 − x∗)T satisfies, for B = D2f(x∗),

zk+1 =

(
(1 + β)I − αB −βI

I 0

)
zk + o(zk).

We study the eigenvalues of the matrix A which appears in this iteration: We have

A

(
x
y

)
=

(
(1 + β)I − αB −βI

I 0

)(
x
y

)
= ρ

(
x
y

)
if and only if

(1 + β)x− αBx− βy = ρx, x = ρy

(and x, y ̸= 0) hence if (1 + β)x− αBx− β/ρx = ρx. We find that

Bx =
1

α

(
1 + β − ρ− β

ρ

)
x

hence 1
α

(
1 + β − ρ− β

ρ

)
= µ ∈ [γ, L] is an eigenvalue of B. We derive the equation

ρ2 − (1 + β − αµ)ρ+ β = 0

which gives two eigenvalues with product β and sum 1+β−αµ. If β ∈ [0, 1) and −(1+β) < 1+β−αµ <
(1 + β) (extreme cases where ±(1, β) are solutions) then |ρ| < 1, that is, if 0 < α < (2 + β)/µ. Since
µ < L one deduces that if 0 ≤ β < 1, 0 < α < (2 + β)/L, the eigenvalues of A are all in (−1, 1)
(incidentally, it has 2n eigenvalues).

We use here the following fundamental classical lemma [21]:

Lemma 2.13. Let A be a N × N matrix and assume that all its eigenvalues (complex or real) have
modulus ≤ ρ. Then for any ρ′ > ρ, there exists a norm ∥·∥∗ in CN such that ∥A∥∗ := sup∥ξ∥∗≤1 ∥Aξ∥∗ <
ρ′.
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This is an important result of linear algebra. The proof is as follows: up to a change of a basis, A is
triangular: there exists P such that

P−1AP = T

with T = (ti,j)i,j , ti,i = λi, an eigenvalue, and ti,j = 0 if i > j. Then, if Ds = diag(s, s2, s3, . . . , sN ) =
(siδi,j)i,j , DsP

−1APD−1
s = (xsi,j) with

xsi,j =
∑
k,l

siδi,ktk,ls
−lδl,j = si−jti,j

and (since ti,j = 0 for i > j), xsi,j → λiδi,j as s→ +∞.
Hence, if s is large enough, denoting ∥ξ∥∞ = maxi |ξi| the ∞-norm,

max
∥ξ∥∞≤1

∥DsP
−1APD−1

s ξ∥∞ ≤ max
i

(|λi| + (ρ′ − ρ)) ≤ ρ′

if s is large. Hence, if ∥ξ∥∗ := ∥DsP
−1ξ∥∞, one has

∥A∥∗ = sup
∥ξ∥∗≤1

∥Aξ∥∗ ≤ ρ′.

It follows, in particular, that if ρ′ < 1, ∥Ak∥∗ ≤ ∥A∥k∗ ≤ ρ′k → 0 as k → ∞. Applying this to our
problem, we see that (choosing ρ′ < 1)

∥zk+1∥∗ = ∥Azk + o(zk)∥∗ ≤ (ρ′ + ε)∥zk∥∗

if ∥zk∥∗ is small enough. Starting from z0 such that this holds for ε with ρ′ + ε < 1, we find that it holds
for all k ≥ 0 and that ∥zk+1∥∗ ≤ (ρ′ + ε)k∥z0∥∗, showing the linear convergence.

2.4.2 The conjugate gradient method

(For this section we refer again to Polyak [33].)
The conjugate gradient is “the best” two-steps method, in the sense that it can be defined as follows:

given xk, xk−1, we let xk+1 = xk − αk∇f(xk) + βk(xk − xk−1) where αk, βk are minimizing

min
α,β

f(xk − α∇f(xk) + β(xk − xk−1)).

In particular, we deduce that〈
∇f(xk+1),∇f(xk)

〉
= 0 and

〈
∇f(xk+1), xk − xk−1

〉
= 0 (8)

and it also follows 〈
∇f(xk+1), xk+1 − xk

〉
= 0. (9)

Notice moreover that

∇f(xk+1) = ∇f(xk) − αkD
2f(xk + s(xk+1 − xk))∇f(xk)

+ βkD
2f(xk + s(xk+1 − xk))(xk − xk−1) (10)

for some s ∈ [0, 1].
However this method is in general “conceptual”, meaning that one cannot hope to efficiently evaluate

the values αk, βk and hence the new point xk, except when f is quadratic: f(x) = (1/2) ⟨Ax, x⟩−⟨b, x⟩+c
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(A symmetric). Denoting then the gradients pk = Axk − b and the residuals rk = xk − xk−1, we find
that (cf (10))

pk+1 = pk − αkAp
k + βkAr

k (11)

and using the orthogonality formulas (8),

0 = ∥pk∥2 − αk
〈
Apk, pk

〉
+ βk

〈
Ark, pk

〉
, 0 =

〈
pk, rk

〉
− αk

〈
Apk, rk

〉
+ βk

〈
Ark, rk

〉
we can compute explicitly the values of αk, βk (exercise).

Lemma 2.14. The gradients (pi) are all orthogonal.

Proof: we start from xk+1 = xk − αkp
k + βk(xk − xk−1) and deduce (since ∇f is affine, or simply

from (11))
pk+1 = pk − αkAp

k + βk(pk − pk−1).

Assume that (p0, . . . , pi) are orthogonal, and that αl, l = 0, . . . , i − 1, do not vanish (or we have found
the solution, why?). Then〈

Apk, pl
〉

=
1

αk

〈
pk − pk+1 + βk(pk − pk−1), pl

〉
= 0

if l ≤ k − 2, k ≤ i− 1 or if i ≥ l ≥ k + 2. In particular,
〈
Apk, pi

〉
= 0 if k ≤ i− 2. Hence:〈

pi+1, pk
〉

=
〈
pi, pk

〉
− αk

〈
Api, pk

〉
+ βk

〈
pi − pi−1, pk

〉
= 0 (12)

if k ≤ i − 2. It remains therefore to check that
〈
pi−1, pi+1

〉
= 0 and

〈
pi, pi+1

〉
= 0. The latter is

already known (8), hence we are left with the case k = i − 1. If k = i − 1: we use again xk+1 =
xk − αkp

k + βk(xk − xk−1) to derive (with r0 = 0)

rk+1 = −αkpk + βkr
k

so that ∀k, rk ∈ vect {p0, . . . , pk−1}. Knowing (8) that
〈
pi+1, ri

〉
= 0, one obtains from the previous (for

k = i− 1):
0 = −αi−1

〈
pi+1, pi−1

〉
+ βi−1

〈
pi+1, ri−1

〉
= −αi−1

〈
pi+1, pi−1

〉
,

where we have used that pi+1 ⊥ vect {p0, . . . , pi−2} ∋ ri−1. This shows that
〈
pi+1, pi−1

〉
= 0. Hence

(p0, . . . , pi+1) are orthogonal. This holds as long as xi+1 is not a solution (then pi+1 = 0).

Corollary 2.15. The solution is found in k = rkA iterations.

Indeed, if pk+1 ̸= 0 then pi = Axi− b, i = 0, . . . , k+ 1 are k+ 2 orthogonal vectors in ImA− b which
is an affine space of dimension k and contains at most k + 1 independent points. One remarkable point
is that also the directions ri satisfy an orthogonality conditions: they are A-orthogonal: ⟨Ari, rj⟩ = 0
for all i ̸= j, hence the name “conjugate directions”.

Variants One can show that the following rules defines the same points (for quadratic functions)
pk = ∇f(xk)

βk = ∥pk∥2

∥pk−1∥2 (β0 = 0)

rk = −pk + βkr
k−1

αk = arg minα≥0 f(xk + αpk), xk+1 = xk + αkp
k

A variant replaces the 2nd line with βk =
〈
pk, pk − pk−1

〉
/∥pk−1∥2. If f not quadratic, these variants

can be implemented.
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Optimality The conjugate gradient computes xk as the minimum of f in the space generated by
the orthogonal gradients (p0, . . . , pk). It is then possible to prove that for a strongly convex quadratic
function, that is if γI ≤ A ≤ LI, then

∥xk − x∗∥ ≤ 2
√
Qqk∥x0 − x∗∥

with q = (
√
Q− 1)/(

√
Q+ 1), Q = L/γ the condition number. This is the same rate as the Heavy-Ball.
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Figure 2: Comparison between accelerated vs non-accelerated gradient schemes. Top: Comparisons of
the solutions x of GD and AGD after 10000(!) iterations. Bottom: Rate of convergence for GD, AGD
together with their theoretical worst case rates, and the lower bound for smooth optimization. For
comparison we also provide the rate of convergence for CG. Note that CG exactly touches the lower
bound at k = 99 (problem (4) with γ = 0, p = n = 100)

2.4.3 Accelerated algorithm: Nesterov 83

We rapidly mention the “Accelerated Gradient Descent” (AGD) Algorithm by Yu. Nesterov [28].
Algorithm: x0 = x−1 given, xk+1 defined by:{

yk = xk + tk−1
tk+1

(xk − xk−1)

xk+1 = yk − τ∇f(yk)

where τ = 1/L and for instance tk = 1 + k/2. Then,

f(xk) − f(x∗) ≤ 2L

(k + 1)2
∥x0 − x∗∥2

We will prove this later in these notes. For strongly convex problems, a variant exists with again
“optimal” rate of convergence.

2.5 Nonsmooth problems?

2.5.1 Subgradient descent

The first basic approach to tackle nonsmooth problems (or more generally problems where the (local)
Lipschitz constant of the gradient is unknown and possibly rapidly varying) is called a “subgradient
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descent”. The idea, given f convex, is to iterate:

xk+1 = xk − hk
∇f(xk)

∥∇f(xk)∥
.

In practice, the gradient here can be replaced with any selection of the subgradient if f is not differentiable
at xk, see Section 4.1 for the technical details.

Then if x∗ is a solution,

∥xk+1 − x∗∥2 = ∥xk − x∗∥2 − 2
hk

∥∇f(xk)∥
〈
∇f(xk), xk − x∗

〉
+ h2k

≤ ∥xk − x∗∥2 − 2
hk

∥∇f(xk)∥
(f(xk) − f(x∗)) + h2k.

We have used here a basic property of convex functions, which is that they are above their affine
approximations, so that f(x∗) ≥ f(xk) +

〈
∇f(xk), x∗ − xk

〉
.

Hence, assuming in addition f is M -Lipschitz (near x∗ at least)

min
0≤i≤k

f(xi) − f(x∗) ≤M
∥x0 − x∗∥2 +

∑k
i=0 h

2
i

2
∑k
i=0 hi

and choosing hi = C/
√
k + 1 for k iterations, we obtain

min
0≤i≤k

f(xi) − f(x∗) ≤M
C2 + ∥x0 − x∗∥2

2C
√
k + 1

(the best choice is C ∼ ∥x0 − x∗∥ but this is of course unknown).
In general, one chooses steps such that

∑
i h

2
i < +∞,

∑
i hi = +∞, such as hi = 1/i. It results in a

very slowly converging algorithm which should be used only when there is no other obvious choice.

2.5.2 Implicit descent

Consider a gradient descent where instead of using the gradient at xk, one is able to evaluate the gradient
in xk+1:

xk+1 = xk − τ∇f(xk+1).

This is of course often “conceptual”, however we will see that in many instances it can be computed or
approximated. It says that xk+1 is a critical point of (and one can ask that it minimises)

f(x) +
1

2τ
∥x− xk∥2.

Observe that if one lets

fτ (x) := min
y
f(y) +

1

2τ
∥y − x∥2 (13)

(this defines an “inf-convolution”) which is well-defined if f is bounded from below (or ≥ −α∥x∥2 and
τ < 1/α) and lower-semicontinuous (if not, the min has to be replaced with an inf), then one can show
that fτ is semi-concave and when differentiable, ∇fτ (x) = (x− yx)/τ where yx solves (13) (and is thus,
in this case, unique).

Proof: equivalently, one may observe that:

fτ (x− h) − 2fτ (x) + fτ (x+ h)

≤ f(yx) +
1

2τ
∥x− h− yx∥2 − 2f(yx) − 1

τ
∥x− yx∥2 + f(yx) +

1

2τ
∥x+ h− yx∥2 ≤ 1

τ
∥h∥2
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showing that fτ (x) − ∥x∥2/(2τ) is concave; or more directly one observes that:

fτ (x) − 1

2τ
∥x∥2 = min

y
f(y) +

1

2τ
∥y∥2 − ⟨x, y⟩

is a concave function as an inf of linear functions (of the variable x). This shows that fτ is (1/τ)-“semi-
concave”. Hence fτ is differentiable a.e. (even twice, Aleksandrov’s theorem [16]), and if ∇fτ (x) exists,
one has

fτ (x+ h) ≤ f(yx) +
1

2τ
∥x+ h− yx∥2, hence

fτ (x+ h) − fτ (x) ≤ 1

τ
⟨x− yx, h⟩ +

∥h∥2

2τ
,

so that for all h,

∇fτ (x) · h ≤ 1

τ
⟨x− yx, h⟩

showing the claim. Then, yx = x− τ∇fτ (x).
Conversely, if yx is unique, then ∇fτ (x) exists and is (x− yx)/τ . This follows from the observation

that if xn → x and yxn is a minimizer for x, as

f(yxn
) +

1

2τ
∥xn − yxn

∥2 ≤ f(yx) +
1

2τ
∥xn − yx∥2

showing that (f being bounded from below) (yxn) is a bounded sequence. If (yxnk
) is a subsequence

which converges to some ȳ passing to the limit in

f(yxnk
) +

1

2τ
∥xnk

− yxnk
∥2 ≤ f(y) +

1

2τ
∥xnk

− y∥2

and using the semi-continuity of f , we find that ȳ is a minimizer for x, hence ȳ = yx and yxn
→ yx: the

multivalued mapping x 7→ yx is thus continuous at points where the argument is unique. Now, we can
write that

fτ (x+ h) ≤ fτ (x) +
1

τ
⟨x− yx, h⟩ +

∥h∥2

2τ

and in the same way (exchanging x and x+ h)

fτ (x) ≤ fτ (x+ h) − 1

τ
⟨x+ h− yx+h, h⟩ +

∥h∥2

2τ

= fτ (x+ h) − 1

τ
⟨x− yx+h, h⟩ −

∥h∥2

2τ

hence for t > 0, small:

1

τ
⟨x− yx+th, h⟩ ≤

fτ (x+ th) − fτ (x)

t
≤ 1

τ
⟨x− yx, h⟩ +O(t)

and in the limit t→ 0 we recover the claim.
This proof is finite-dimensional, we will however see later on for convex functions in Hilbert spaces

that the same result is true.
We find that

xk+1 = xk − τ∇f(xk+1) ⇔ xk+1 = xk − τ∇fτ (xk)

hence the implicit descent is an explicit descent on fτ ! Which has the same minimisers. It converges
to critical points of fτ (as D2fτ ≤ I/τ), as before (and under the same assumptions). These are local
minimizers of f(·) + ∥ · −x∥2/(2τ).
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Example 2.16 (Lasso problem). Consider:

min
x

∥x∥1 +
1

2
∥Ax− b∥2

If ∥x∥2M = ⟨Mx, x⟩ and M = I/τ −A∗A, τ < 1/∥A∥2, then

min
x

1

2
∥x− xk∥2M + ∥x∥1 +

1

2
∥Ax− b∥2

is solved by
xk+1 = Sτ (xk − τA∗(Axk − b))

where Sτξ is the unique minimizer of

min
x

∥x∥1 +
1

2τ
∥x− ξ∥2,

called the “shrinkage” operator. This converges with rate O(1/k) to a solution.

3 Krasnoselskii-Mann’s convergence theorem

3.1 A “general” convergence theorem

We show here a general form of a convergence theorem of Krasnoselskii and Mann for the iterates
of weak contractions (or nonexpansive operators) (it is found in all convex optimisation books, cf for
instance [4, 2]). We state first a simple form. Consider (a priori, in a Banach space X ) an operator
T : X → X which is 1-Lipschitz:

∥Tx− Ty∥ ≤ ∥x− y∥ ∀ x, y ∈ X .

If in addition it is ρ-Lipschitz with ρ < 1, then Picard’s classical fixed point theorem shows that the
iterates xk = T kx0, k ≥ 1, form a Cauchy sequence and therefore converge to a fixed point, necessarily
unique. This relies on the fact that the space is complete.

However, for ρ = 1, this does not always work (ρ = 1 does not provide much relevant information,
as when T = I). For instance, if Tx = −x, there is only one fixed point but the iterates never converge,
unless x0 = 0. The simplest statement of Krasnoselskii-Mann’s theorem shows that if T is averaged and
has fixed points, then the iterates weakly converge to a fixed point. The statement is true in Hilbert (or
finite-dimensional Euclidean) spaces, as well as in some class of reflexive Banach space. We assume in
what follows that X is Hilbert, and will mention the changes and properties needed for the property to
hold for more generality.

For θ ∈]0, 1[, we define the (θ-)averaged operator Tθ by letting

Tθx = (1 − θ)x+ θTx.

We also let T0 = I, T1 = T , and F = {x ∈ X : Tx = x}. Observe that for any θ ∈]0, 1], F is the set of
fixed point of Tθ.

Theorem 3.1. Let x ∈ X , 0 < θ < 1, and assume F ̸= ∅. Then (T kθ x)k≥1 weakly converges to some
point x∗ ∈ F .

The proof consists in four simple steps. We denote x0 = x, xk = T kx, k ≥ 1.
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Step 1 First, since Tθ is 1-Lipschitz, then for any x∗ ∈ F , ∥Tθxk − x∗∥ ≤ ∥xk − x∗∥ and the sequence
(∥xk − x∗∥)k is nonincreasing. (xk)k is said to be “Fejér-monotone” with respect to F , see [2, Chap. 5]
for details and interesting properties.

It follows that one can define m(x∗) = infk ∥xk − x∗∥ = limk ∥xk − x∗∥. If there exists x∗ ∈ F such
that m(x∗) = 0 then the theorem is proved (with strong convergence), otherwise we proceed to the next
step. We will see later on what happens if the sequence is “quasi-Fejér-monotone”, which happens for
instance if T is computed with errors. Hence we assume that m(x∗) > 0 for all x∗ ∈ F .

Step 2 We now show that xk+1 − xk → 0 strongly. The operator Tτ is said to be “asymptotically
regular”.

First, for X a Hilbert space, the proof is a straightforward application of the parallelogram identity,
to:

xk+1 − x∗ = (1 − θ)(xk − x∗) + θ(T1x
k − x∗).

We find that for all k:

∥xk+1 − x∗∥2 = (1 − θ)∥xk − x∗∥2 + θ∥T1xk − x∗∥2 − θ(1 − θ)∥T1xk − xk∥2

≤ ∥xk − x∗∥2 − 1−θ
θ ∥xk+1 − xk∥2

from which one deduces that
∑
k ∥xk+1 − xk∥2 < ∞, hence the result. In addition, one observes that

the sequence (1 − θ)/θ∥xk+1 − xk∥2 (which is nonincreasing) is controlled in the following way:

1−θ
θ (k + 1)∥xk+1 − xk∥2 ≤ 1−θ

θ

k∑
i=0

∥xi+1 − xi∥2 ≤ ∥x0 − x∗∥2 − ∥xk+1 − x∗∥2.

As xk+1 − xk = θ(T1x
k − xk) we obtain a rate for the error T1x

k − xk, in the Hilbertian setting, given
by:

∥T1xk − xk∥ ≤ ∥x0 − x∗∥√
θ(1 − θ)

√
k + 1

. (14)

Now, we have to mention that the result also holds in more general spaces. It is easy to extend in
uniformly convex spaces, meaning that the unit ball satisfies the following property:

Uniformly convex unit ball: ∀ε > 0, θ ∈ (0, 1), ∃δ > 0 such that for all x, y ∈ X with ∥x∥ ≤ 1,
∥y∥ ≤ 1 and ∥x− y∥ ≥ ε,

∥θx+ (1 − θ)y∥ ≤ (1 − δ) max{∥x∥, ∥y∥}

Of course, the following holds:

Lemma 3.2. If X is a Hilbert space then it is uniformly convex.

Indeed the parallelogram identity yields:

∥θx+ (1 − θ)y∥2 = θ2∥x∥2 + (1 − θ)2∥y∥2 + 2θ(1 − θ) ⟨x, y⟩
= θ∥x∥2 + (1 − θ)∥y∥2 − θ(1 − θ)∥x− y∥2

≤ max{∥x∥2, ∥y∥2} − θ(1 − θ)ε2 ≤ (1 − δ)2 max{∥x∥2, ∥y∥2}

for δ = 1 −
√

1 − θ(1 − θ)ε2, where we have used, of course, that ∥x∥, ∥y∥ ≤ 1.
Yet the same property also holds in many Banach spaces (such as Lp spaces, 0 < p < 1, etc). It is

well known (as “Milman-Pettis” theorem) that such a space is reflexive (while the converse is not true).
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We can prove the asymptotic regularity, that is, that xk+1 − xk → 0, only relying on this property, as
follows: We recall that we assume m(x∗) > 0 for all x∗ ∈ F . Assume that along a subsequence, one has
∥xkl+1 − xkl∥ ≥ ε > 0. Observe that

xkl+1 − x∗ = (1 − θ)(xkl − x∗) + θ(T1x
kl − x∗)

and that

(xkl − x∗) − (T1x
kl − x∗) = xkl − T1x

kl = −1

θ
(xkl+1 − xkl)

so that ∥(xkl − x∗) − (T1x
kl − x∗)∥ ≥ ε/θ > 0. Hence thanks to the uniform convexity of the ball

(remember that (xk−x∗)k is globally bounded since its norm is nonincreasing), we obtain that for some
δ > 0,

m(x∗) ≤ ∥xkl+1 − x∗∥ ≤ (1 − δ) max{∥xkl − x∗∥, ∥T1xkl − x∗∥}

but since ∥T1xkl − x∗∥ ≤ ∥xkl − x∗∥, it follows

m(x∗) ≤ (1 − δ)∥xkl − x∗∥.

As kl → ∞, we get a contradiction if m(x∗) > 0.
The result in [11] shows that asymptotic regularity holds in any normed space.

Step 3. Assume now that x̄ is the weak limit of some subsequence (xkl)l. Then, we claim it is a fixed
point. We use Opial’s lemma:

Lemma 3.3 ([31, Lem. 1]). If in a Hilbert space X the sequence (xn)n is weakly convergent to x0 then
for any x ̸= x0,

lim inf
n

∥xn − x∥ > lim inf
n

∥xn − x0∥

Proof of Opial’s lemma (obvious): one has

∥xn − x∥2 = ∥xn − x0∥2 + 2 ⟨xn − x0, x0 − x⟩ + ∥x0 − x∥2.

Since ⟨xn − x0, x0 − x⟩ → 0 by weak convergence, we deduce

lim inf
n

∥xn − x∥2 = lim inf
n

(∥xn − x0∥2 + ∥x0 − x∥2) = ∥x0 − x∥2 + lim inf
n

∥xn − x0∥2

and the claim follows.
Proof that x̄ is a fixed point: since Tθ is a contraction, we observe that for each k,

∥xk − x̄∥ ≥∥Tθxk − Tθx̄∥
= ∥xk+1 − xk + xk − Tθx̄∥ ≥ ∥xk − Tθx̄∥ − ∥xk+1 − xk∥

and we deduce (thanks to the previous Step 2):

lim inf
l

∥xkl − x̄∥ ≥ lim inf
l

∥xkl − Tθx̄∥.

Opial’s lemma implies that Tθx̄ = x̄.
One advantage of this approach is that it can be extended to Banach spaces [31] where “Opial’s

property” (the statement of the Lemma) holds (in the norm for which T is a contraction). On the
other hand, not all spaces satisfy this property (it is shown that in separable Banach spaces, there is an
equivalent norm for which the property is true [46], but this is useless if T is not nonexpansive for this
norm...)
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Remark 3.4. Another classical approach in Hilbert spaces to prove this claim is to use “Minty’s trick”
to study the limit of “monotone” operators: Since Tθ is a contraction, for each y ∈ X we have (thanks
to Cauchy-Schwarz’s inequality)

⟨(I − Tθ)xnk
− (I − Tθ)y, xnk

− y⟩ ≥ 0

and as we have just proved that (I − Tθ)xnk
→ 0 (strongly), then

⟨−(I − Tθ)y, x̄− y⟩ ≥ 0.

Choose y = x̄+ εz for z ∈ X and ε > 0: it follows after dividing by ε that

⟨(I − Tθ)(x̄+ εz), z⟩ ≥ 0.

and since Tθ is Lipschitz, sending ε→ 0 we recover ⟨(I − Tθ)x̄, z⟩ ≥ 0 for any z, which shows that x̄ ∈ F .

Step 4. To conclude, assume that a subsequence (xml)l of (xk)k converges weakly to another fixed point
ȳ. Then it must be that ȳ = x̄, otherwise Opial’s lemma 3.3 again would imply both that m(x̄) < m(ȳ)
and m(ȳ) < m(x̄):

m(ȳ) = lim inf
l

∥xml − ȳ∥ < lim inf
l

∥xml − x̄∥ = m(x̄).

It follows that the whole sequence (xk) must weakly converge to x̄.

3.2 Varying steps

One can consider more generally iterations of the form

xk+1 = xk + τk(T1x
k − xk)

with varying steps τk. Then, if 0 < τ ≤ τk ≤ τ < 1, the convergence still holds, with almost the same
proof. (This is obvious in the Hilbertian setting, cf Step. 2.

Remark 3.5. A sufficient condition is that
∑
k τk(1−τk) = ∞, see [34]. In addition, a slight improvement

to the proof in Step. 2 shows that

k∑
i=0

(1 − τi)τi∥T1xi − xi∥2 ≤ ∥x0 − x∗∥2 − ∥xk+1 − x∗∥2

so that min0≤i≤k ∥T1xi − xi∥ ≤ ∥x0 − x∗∥/
√∑k

i=0(1 − τi)τi. In fact, in a general normed space one has

the estimate

∥T1xk − xk∥ ≤ 1√
π

∥x0 − x∗∥√∑k
i=0 τi(1 − τi)

which improves (14), see [11].

3.3 A variant with errors

Assume now the sequence (xk) is an inexact iteration of Tθ:

∥xk+1 − Tθx
k∥ ≤ εk.

Then one has the following result:
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Theorem 3.6 (Variant of Thm 3.1). If
∑
k εk <∞, then xk → x̄ a fixed point of T (if one exists).

Proof: now, xk is “quasi-Fejér monotone”: denoting ek = xk+1 − Tθx
k so that ∥ek∥ ≤ εk,

∥xk+1 − x∗∥ = ∥Tθxk − Tθx
∗ + ek∥ ≤ ∥xk − x∗∥ + εk

for all k, and any x∗ ∈ F . Hence, ∥xk+1 − x∗∥ ≤ ∥x0 − x∗∥+
∑k
i=0 εi is bounded. Letting ak =

∑∞
i=k εi

which is finite and goes to 0 as k → ∞, this can be rewritten

∥xk+1 − x∗∥ + ak+1 ≤ ∥xk − x∗∥ + ak

so that once more one can define

m(x∗) := lim
k→∞

∥xk − x∗∥ = inf
k≥0

∥xk − x∗∥ + ak

Again, if m(x∗) = 0 the theorem is proved, otherwise, one can continue the proof as before: now,

xkl+1 − x∗ = (1 − θ)(xkl − x∗ + ekl) + θ(T1x
kl − x∗ + ekl)

while

(xkl − x∗ + ekl) − (T1x
kl − x∗ + ekl) = xkl − T1x

kl = −1

θ
(xkl+1 − xkl − ekl)

so that ∥(xkl − x∗) − (T1x
kl − x∗)∥ ≥ (ε − εkl)/θ > ε/(2θ) > 0 if l is large enough, and one can invoke

again Lemma 3.2 to find that

m(x∗) ≤ ∥xkl+1 − x∗∥ ≤ (1 − δ) max{∥xkl − x∗ + ekl∥, ∥T1xkl − x∗ + ekl∥}
≤ (1 − δ)

(
∥xkl − x∗∥ + εkl

)
and again sending l → ∞ we obtain that m(x∗) ≤ (1 − δ)m(x∗), a contradiction if m(x∗) > 0. The rest
of the proof (steps 3, 4) is almost identical.

Remark 3.7. In practice, what do you think about the condition
∑
k εk <∞?

3.4 Examples

3.4.1 Gradient descent

It follows the convergence for the explicit and implicit gradient descent for convex functions. Consider
indeed the iteration xk+1 = Tτ (xk) := xk − τ∇f(xk), for f convex with L-Lipschitz gradient. Then,
Lemma 2.4 claims that

T2/L(x) = x− 2

L
∇f(x)

is a weak contraction (1-Lipschitz or “nonexpansive” operator).
We observe that if 0 < τ < 2/L, one has

Tτ (x) = x− τL

2

2

L
∇f(x) =

τL

2
T2/L(x) +

(
1 − τL

2

)
x

is an averaged operator (with here θ = Lτ/2 ∈]0, 1[). Theorem 3.1 yields the convergence of the iterates.
Moreover, one still has convergence if one uses varying steps τk with 0 < infk τk ≤ supk τk < 2/L. One
can also consider (summable) errors. Eventually, thanks to 14, one has the rate

∥ 2
L∇f(xk)∥ ≤ ∥x0 − x∗∥√

(1 − Lτ/2)Lτ/2
√
k + 1

.
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(Compare this with (2), Theorem 2.7, Remark 2.2.)
For the implicit descent, we can use the fact that it is an explicit descent on the function fτ , which

has 1/τ -Lipschitz gradient, to get a similar result: Let xk+1 = xk − λ∇fτ (xk) = xk + (λ/τ)(yxk
− xk)

(where yx solves (13)) for 0 < λ < 2τ , then xk converges (weakly) to a minimizer of fτ (which is also a
minimizer of f)...

3.4.2 Composition of averaged operators

An important remark is the following: Let Tθ, Sλ be averaged operators: Tθ = (1 − θ)I + θT1, Sλ =
(1 − λ)I + λS1. Then Tθ ◦ Sλ is also averaged: letting µ = θ + λ(1 − θ) ∈]0, 1[, one has

Tθ ◦ Sλ = (1 − µ)I + µ
(1 − θ)λS1 + θT1 ◦ ((1 − λ)I + λS1)

θ + (1 − θ)λ
.

An important application is the following: consider the problem

min
x
f(x) + g(x) (15)

where f, g convex, lsc, f has L-Lipschitz gradient and g is such that one knows how to compute, for all
y and all τ > 0:

gτ (x) := min
y
g(y) +

1

2τ
∥x− y∥2. (16)

Then one can compose the averaged operators

Tτx := x− τ∇f(x),

0 < τ < 2/L, and
Sτx := yx

which solves (16) (and is (1/2)-averaged, as it is x− τ∇gτ (x) where ∇gτ is 1/τ -Lipschitz). Hence, if one
defines the iterates xk+1 := Sτ ◦Tτxk, k ≥ 0, then xk ⇀ x∗ (weakly) where x∗ is a fixed point if Sτ ◦Tτ .
As Sτx satisfies

∇g(Sτx) +
1

τ
(Sτx− x) = 0,

one has

0 = ∇g(Sτ (Tτx
∗)) +

1

τ
(Sτ (Tτx

∗) − Tτx
∗)

= ∇g(x∗) +
1

τ
(x∗ − (x∗ − τ∇f(x∗))) = ∇g(x∗) + ∇f(x∗)

so that x∗ is a minimizer of (15). We deduce the following:

Theorem 3.8. The iterates of the “forward-backward” algorithm xk+1 := Sτ ◦ Tτxk weakly converge to
a minimizer of (15).

We will see later on that one can say much more about this approach. Compare this with Exam-
ple 2.16.

Remark 3.9. What about the “explicit-explicit” (“forward-forward”) iteration

xk+1 = xk − τ∇f(xk) − τ∇g(xk − τ∇f(xk)) ,

with τ < min{2/Lf , 2/Lg} where Lf , Lg are the Lipschitz constants of the gradients of f, g, respectively?

We will see later on other useful examples of composition of averaged operators.
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4 An introduction to convex analysis and monotone operators

Most of this section is in Hilbert spaces, though many results are also valid in more general vector spaces,
but often with more involved proofs.

4.1 Convexity

See for instance: [39, 15] for a general introduction. We discuss here the following notions: Convex
function; Subgradients; Inf-convolution; Sums of subgradients; Convex Conjugate (Legendre-Fenchel);
Fenchel-Rockafellar duality; Moreau-Yosida’s regularization (inf-convolution); Moreau’s identity.

4.1.1 Convex functions

An extended-valued function f : X → [−∞,+∞] is said to be convex if and only if its epigraph

epi f := {(x, λ) ∈ X × R : λ ≥ f(x)}

is a convex set, that is, if when λ ≥ f(x), µ ≥ f(y), and t ∈ [0, 1], one has tλ+(1−t)µ ≥ f(tx+(1−t)y).3

It is proper if it is not identically +∞ and nowhere −∞: in this case, it is convex if and only if for all
x, y ∈ X and t ∈ [0, 1],

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y).

It is strictly convex if the above inequality is strict whenever x ̸= y and 0 < t < 1. It is strongly convex
(or µ-convex) if in addition, there exists µ > 0 such that for all x, y ∈ X and t ∈ [0, 1],

f(tx+ (1 − t)y) ≤ tf(x) + (1 − t)f(y) − µ
t(1 − t)

2
∥x− y∥2.

Thanks to the parallelogram identity, in the Hilbertian setting, one easily checks that this is equivalent to
require that x 7→ f(x)−µ/2∥x∥2 is still convex. The function is also said to be, in this case, “µ-convex”.
The archetypical example of a µ-convex function is a quadratic plus affine function µ∥x∥2/2 + ⟨b, x⟩+ c.

The domain of a proper convex function f is the set dom f = {x ∈ X : f(x) < +∞}. It is obviously
a convex set.

We say that f is lower semi-continuous (l.s.c.) if for all x ∈ X , if xn → x, then

f(x) ≤ lim inf
n→∞

f(xn).

It is easy to see that f is l.s.c. if and only if epi f is closed.
A trivial but important example is the characteristic function or indicator function of a set C:

δC(x) =

{
0 if x ∈ C,

+∞ else,

which is convex, l.s.c., and proper as soon as C is convex, closed and nonempty. The minimisation of
such functions will allow to easily model convex constraints in our problems.

One can show the following result:

Lemma 4.1. If there exists B ⊂ dom f an open ball where the proper convex function f is bounded from
above, then f is locally Lipschitz in the interior of dom f . In finite dimension, a proper convex function
f is locally Lipschitz in the relative interior of dom f , ri dom f .

3This definition avoids the embarrassing expression (+∞) + (−∞), see for instance [39, Sec. 4].
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In finite dimension, the relative interior is defined as the interior of dom f in the space x+vect (dom f−
x) for any x ∈ dom f ; this is never empty (but may have, in extreme cases, dimension zero).

Proof of the lemma: we assume that B = B(0, δ), δ > 0, and let M = supB f <∞. Observe also that
for x ∈ B, by convexity f(x) ≥ 2f(0)−f(−x) ≥ 2f(0)−M so that |f | ≤M+2|f(0)|. We prove that f is
Lipschitz in B(0, δ/2): indeed, if x, y ∈ B(0, δ/2), there is z ∈ B(0, δ) such that y = (1−t)x+tz for some
t ∈ [0, 1], and ∥z − x∥ ≥ δ/2. In particular by convexity, f(y) − f(x) ≤ t(f(z) − f(x)) ≤ t2(M − f(0)).
Now, t(z−x) = y−x so that t ≤ ∥y−x∥/∥z−x∥ ≤ 2∥y−x∥/δ hence: f(y)−f(x) ≤

(
4(M−f(0))/δ

)
∥y−x∥

which shows the claim (one could show in fact in the same way that f is Lipschitz in any ball contained
in B(0, δ)).

Now, let x̄ in the interior of dom f . Observe that for some λ > 1, λx̄ ∈ dom f and as a consequence
B′ = 1/λ(λx̄)+(1−1/λ)B(0, δ) = B(x̄, δ(1−1/λ)) ⊂ dom f ; moreover, if x ∈ B′, x = 1/λ(λx̄)+(1−1/λ)z
for some z with f(z) ≤M hence f(x) ≤ 1/λf(λx̄) + (1 − 1/λ)M , so that supB′ f <∞. Hence as before
f is Lipschitz in a smaller ball.

In finite dimension, assume 0 ∈ dom f and let d be the dimension of vect dom f . It means there exist
x1, . . . , xd independent points in dom f . Now, the d-dimensional set {

∑
i tixi : ti > 0,

∑
i ti ≤ 1} (the

interior of the convex envelope of {0, x1, . . . , xd}) is an open set in vect dom f , moreover if x =
∑
i tixi,

f(x) ≤
∑
i tif(xi) + (1 −

∑
i ti)f(0) ≤ M := max{f(0), f(x1), . . . , f(xd)}. Hence we can apply the first

part of the theorem, and f is locally Lipschitz in the relative interior of the domain.

Remark 4.2. Note that in infinite dimension one can possibly find noncontinuous linear forms4 hence non-
continuous convex functions. However, one can show that a convex proper lower semi-continuous func-
tion is always locally bounded in the interior of its domain, and therefore locally Lipschitz (as if 0 is an
interior point and one considers the convex closed set C = {x : f(x) ≤ 1 + f(0)}, one can check that
∪n≥1nC = X , as if x ∈ X , t 7→ f(tx) is locally Lipschitz near t = 0. Hence C̊ ̸= ∅ by Baire’s property:
it follows that there is an open ball where f is bounded, as requested), cf [15, Cor. 2.5].

4.1.2 Separation of convex sets

In this section we establish two important “separation” theorems for convex sets, which are geometric
variants of Hahn-Banach’s theorem, in the particular setting of Hilbert spaces. In this setting, unlike in
the general case, these are quite obvious results.

Theorem 4.3. Let X be a (real) Hilbert space, C ⊂ X a closed, convex set and x ̸∈ C. Then there
exists a closed hyperplane which “separates” strictly x and C: precisely, in the Hilbertian setting, one
can find v ∈ X,α ∈ R such that

⟨v, x⟩ > α ≥ ⟨v, y⟩ ∀ y ∈ C

Proof: introduce the projection z = ΠC(x) defined by ∥x−z∥ = miny∈C ∥x−y∥ (existence is classically
shown by proving that any minimizing sequence is a Cauchy sequence, thanks to the parallelogram
identity [or strong convexity of ∥x− ·∥2]). The first order optimality condition for z is found by writing
that for any y ∈ C, ∥x− z∥2 ≤ ∥x− (z + t(y − z))∥2 for t ∈ (0, 1] and then sending t→ 0. We find

⟨x− z, y − z⟩ ≤ 0 ∀ y ∈ C.

It follows that if v = x− z ̸= 0, y ∈ C,

⟨v, x⟩ = ⟨x− z, x⟩ = ∥x− z∥2 + ⟨x− z, z⟩ ≥ ∥x− z∥2 + ⟨x− z, y⟩ = ∥v∥2 + ⟨v, y⟩ .

The result follows (letting for instance α = ∥v∥2/2 + supy∈C ⟨v, y⟩). The proof can easily be extended
to the situation where {x} is replaced with a compact convex set not intersecting C.

4the typical example is a linear function defined by f(en) = n where (en)n≥1 is an independent family, which is then
completed into a basis B, then, one lets f(e) = 0 if e ∈ B \ {en : n ≥ 1}.
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Corollary 4.4. In a real Hilbert space X , a closed convex set C is weakly closed.

Indeed, if x ̸∈ C, one finds v, α with ⟨v, x⟩ > α ≥ ⟨v, y⟩ for all y ∈ C and this defines a neighborhood
{⟨v, ·⟩ > α} of x for the weak topology which does not intersect C.

Theorem 4.5. Let X be a (real) Hilbert space, C ⊂ X an open convex set and C ′ ⊂ X a convex set
with C ′ ∩ C = ∅. Then Then there exists a closed hyperplane which “separates” C and C ′: precisely, in
the Hilbertian setting, one can find v ∈ X,α ∈ R, v ̸= 0, such that

⟨v, x⟩ ≥ α ≥ ⟨v, y⟩ ∀ x ∈ C, y ∈ C ′

Proof: first assume that C ′ = {x̄} is a singleton. The difficult case is whenever x̄ ∈ C \C, otherwise
we can apply Theorem 4.3 to separate (strictly) x̄ and C. By assumption, there exists a ball B =
B(y, δ) ⊂ C. Let xn = y + (1 + 1/n)(x̄− y), which is such that xn → x̄ as n→ ∞. Since

x̄ = n
n+1xn + 1

n+1y,

one has xn ̸∈ C, otherwise by convexity one would deduce that B(x̄, δ/(n + 1)) ⊂ C̄ so that x̄ ∈ C, a
contradiction.

By Theorem 4.3 there exists vn such that for all x ∈ C,

⟨vn, xn⟩ ≤ ⟨vn, x⟩

and we can assume ∥vn∥ = 1. Up to a subsequence, we may then assume that vn ⇀ v weakly in X . In
the limit, (using that xn → x̄ strongly) we obtain ⟨v, x̄⟩ ≤ ⟨v, x⟩ ∀ x ∈ C, which is our claim if v ̸= 0.

Using again the ball B(y, δ) ⊂ C, one has for any ∥z∥ ≤ 1

⟨vn, xn⟩ ≤ ⟨vn, y − δz⟩

so that ⟨vn, y − xn⟩ ≥ δ ⟨vn, z⟩: and taking the supremum over all possible z we find ⟨vn, y − xn⟩ ≥ δ.
In the limit we deduce ⟨v, y − x̄⟩ ≥ δ which shows that v ̸= 0.

Now, to show the general case, one lets A = C ′ − C = {y − x : y ∈ C ′, x ∈ C}: this is an open
convex set and by assumption, 0 ̸∈ A. Hence by the previous part, there exists v ̸= 0 such that
⟨v, y − x⟩ ≤ ⟨v, 0⟩ = 0 for all y ∈ C ′, x ∈ C, which is the thesis of the Theorem.

These simple examples of separation theorems are geometric versions of the Hahn-Banach theorem
and are valid in fact in a much more general setting, see [7, 15].

4.1.3 Subgradient

Given a convex, extended valued, f : X →] −∞,+∞], its subgradient at a point x is defined as the set

∂f(x) := {p ∈ X : f(y) ≥ f(x) + ⟨p, y − x⟩ ∀y ∈ X}.

This is a closed, convex set.
If f is (Fréchet-)differentiable at x, then it is easy to see that ∂f(x) = {∇f(x)}: one has

f(y) = f(x) + ⟨∇f(x), y − x⟩ + o(|y − x|)

so that if p ∈ ∂f(x),
⟨∇f(x) − p, y − x⟩ + o(|y − x|) ≥ 0.

Taking y = x + th, for h ∈ X and t > 0 small, we find after dividing by t and sending t → 0 that
⟨∇f(x) − p, h⟩ ≥ 0. Hence p = ∇f(x). We leave to the reader the proof that ∇f(x) ∈ ∂f(x) (hence
∇f(x) ̸= ∅), which follows from convexity.
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A converse? Now we want to understand better the structure of the subgradient in relationship to
the behaviour of f at a point x, and in particular what can be said whenever ∂f(x) = {p} is a singleton.
First, we observe that if x ∈ dom f , v ∈ X , t > s > 0 one has

f(x+ sv) = f((s/t)(x+ tv) + (1 − s/t)x) ≤ s
t f(x+ tv) + (1 − s

t )f(x)

so that
f(x+ sv) − f(x)

s
≤ f(x+ tv) − f(x)

t
.

It follows that

f ′(x; v) := lim
t↓0+

f(x+ tv) − f(x)

t
= inf
t>0

f(x+ tv) − f(x)

t
(17)

is well defined (in [−∞,∞]), and < +∞ as soon as {x + tv : t > 0} ∩ dom f ̸= ∅. If x ∈
˚︷ ︸︸ ︷

dom f , then
f ′(x; v) < ∞ for all v, moreover as f ′(x; 0) = 0 ≤ f ′(x; v) + f ′(x;−v) it is not −∞ either. In fact,
f ′(x; ·) is a limit of convex functions, and hence convex, moreover, it is clearly positively 1-homogeneous:
f ′(x;λv) = λf ′(x; v) for all λ ≥ 0 and all v.

If this quantity is finite, then the function has a Gateaux derivative in the direction v (however, usual
definitions of Gateaux differentiability require that this derivative be a continuous linear form of v).

By definition, one easily sees that f ′(x; v) ≥ ⟨p, v⟩ if and only if p ∈ ∂f(x). (f ′(x; v) ≥ ⟨p, v⟩ ⇒
f(x+ tv) − f(x) ≥ t ⟨p, v⟩ for all t > 0, v ∈ X .) This means that

∂f ′(x; ·)(0) = ∂f(x). (18)

If in addition, f is locally bounded near x ∈
˚︷ ︸︸ ︷

dom f (for this, as we have seen in Lemma 4.1, it is
enough that f be locally bounded near one point of the domain, or that f be lsc, cf Remark 4.2), then one
can easily deduce that also f ′(x; ·) is, and in particular it is Lipschitz (globally, as it is 1-homogeneous).

(In addition, in finite dimension, the convergence in (17) is uniform for ∥v∥ ≤ 1 because of Ascoli-
Arzelà’s theorem: In fact, if t ≤ t0 small enough and ∥v∥ ≤ 2,

htx(v) :=
f(x+ tv) − f(x)

t
≤ f(x+ t0v) − f(x)

t0
≤M

for some M and the proof of Lemma 4.1 shows that the htx are uniformly Lipschitz in B(0, 1).)
We will see later on (Sections 4.2, 4.2.2) that since in these cases, f ′(x; ·) is continuous, f ′(x; v) =

supp∈∂f(x;·)(0) ⟨p, x⟩, so that f ′(x; ·) is the support function of ∂f(x) which in particular cannot be empty.
Moreover, we deduce that if ∂f(x) = {p} is a singleton, then f ′(x; v) = ⟨p, x⟩. In finite dimension (as

the convergence htx → f ′(x; ·) is uniform) we deduce that f is differentiable at x. In infinite dimension,
we deduce that f is Gateaux-differentiable. It is not necessarily Fréchet-differentiable: for instance in
ℓ2(N), the convex function

f(x) = sup
i≥0

(√
1
i+1 + x2i −

√
1
i+1

)
which is bounded near 0 (∥x∥ ≤ 1 ⇔

∑
i |xi|2 ≤ 1 ⇒ |xi| ≤ 1 ∀ i ≥ 0) satisfies ∂f(0) = {0}, however if

v = ei = (δi,j)j≥0, then

f(0 + tv) − f(0)

t
=

1

t

(√
1
i+1 + t2 −

√
1
i+1

)
=

√
2 − 1

if t = 1/
√
i+ 1, showing that the differentiability is only Gateaux. (It is, as for any v and t > 0,

f(tv) − f(0)

t
= sup

i≥0

1

t

(√
1
i+1 + t2v2i −

√
1
i+1

)
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and for each i, the quantity in the sup is less than |vi|. Given ε, one can find i0 such that |vi| ≤ ε for
i > i0, while for i = 0, . . . , i0, if t is small enough one can make the quantity below the sup less than ε.
Hence the Gateaux derivative exists and is zero.)

Using Lemma 4.1, we can deduce the following two results:

Lemma 4.6. Let f be proper, convex. Assume it is lsc, or continuous in one point. Then, in the interior
of the domain, ∂f(x) ̸= ∅. In finite dimension, f has a nonempty subdifferential everywhere in ri dom f .

Lemma 4.7. Let f be proper, convex. Then if f is Gateaux-differentiable at x, ∂f(x) = {∇f(x)}.
Conversely if x is in the interior of dom f and f is continuous at some point5, then if ∂f(x) is a
singleton, f is Gateaux-differentiable at x.

In finite dimension, ∂f is a singleton if and only if f is differentiable at x.

Minimality condition An obvious remark which stems from the definition of a subgradient is that
this notion allows to generalise the Euler-Lagrange stationary conditions (∇f(x) = 0 if x is a minimiser
of f) to nonsmooth convex functions: we have indeed

x ∈ X is a global minimiser of f if and only if 0 ∈ ∂f(x). (19)

In the same way, one has:

Lemma 4.8. if x ∈ dom f is a local minimiser of f + g, f convex, g C1 near x, then for all y ∈ X ,

f(y) ≥ f(x) − ⟨∇g(x), y − x⟩

and −∇g(x) ∈ ∂f(x).

Indeed, one just writes that for t > 0 small enough,

f(x) + g(x) ≤ f(x+ t(y − x)) + g(x+ t(y − x)) ≤ f(x) + t(f(y) − f(x)) + g(x+ t(y − x))

so that
g(x) − g(x+ t(y − x))

t
≤ f(y) − f(x)

and we recover the claim in the limit t→ 0.

Subgradient of a strongly convex function If the function f is strongly convex or “µ-convex”
and p ∈ ∂f(x), then x is by definition a minimiser of y 7→ f(y) − ⟨p, y − x⟩ which is also µ-convex. In
particular, letting h(y) = f(y)−⟨p, y − x⟩−µ∥y−x∥2/2, one has that x is a minimizer of h(y)+µ∥y−x∥2/2
and h is convex. Hence, by Lemma 4.8,

0 = −∇
(µ

2
∥ · −x∥2

)
(x) ∈ ∂h(x).

Hence, h(y) ≥ h(x) for all y ∈ X , that is

f(y) − ⟨p, y − x⟩ − µ∥y − x∥2/2 ≥ f(x).

5for instance if it is lsc, cf Rem. 4.2 and Lemma 4.1.
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We deduce that for any x, y ∈ X and p ∈ ∂f(x):

f(y) ≥ f(x) + ⟨p, y − x⟩ +
µ

2
∥y − x∥2 (20)

An equivalent (but important) remark is that if f is strongly convex and x is a minimiser, then one has
(since 0 ∈ ∂f(x))

f(y) ≥ f(x) +
µ

2
∥y − x∥2 (21)

for all y ∈ X .

Domain The domain of ∂f is the set dom ∂f = {x ∈ X : ∂f(x) ̸= ∅}. Clearly, dom ∂f ⊂ dom f , in
fact if f is convex, l.s.c. and proper, we will see later on (see Prop 4.23 or [15]) that dom ∂f is dense in
dom f (even when dom f has empty interior, as for instance when f(u) =

∫
Ω
|∇u|2dx for u ∈ L2(Ω)).

The fact it is not empty will also follow.
In finite dimension, one has seen that for a proper convex function, dom ∂f contains at least the

relative interior of dom f (that is, the interior in the vector subspace which is generated by dom f).

4.1.4 Subdifferential calculus

Theorem 4.9. Assume f, g are convex, proper. Then for all x, ∂f(x) + ∂g(x) ⊂ ∂(f + g)(x). Moreover
if there exists x̄ ∈ dom f where g is continuous, then ∂f(x) + ∂g(x) = ∂(f + g)(x). In finite dimension,
if ri dom g ∩ ri dom f ̸= ∅, this is also true.

Proof: the inclusion is obvious from the definition. For the reverse inclusion, we assume p ∈ ∂(f+g)(x)
and want to show that it can be decomposed as q + r with q ∈ ∂f(x) and r ∈ ∂g(x). By definition, we
have that f(y) + g(y) ≥ f(x) + g(x) + ⟨p, y − x⟩.

Thanks to the assumption that g is continuous at x̄, epi (g(·) − ⟨p, ·⟩) contains a ball B centered
at (x̄, g(x̄) − ⟨p, x̄⟩ + 1) and has non empty interior. Denote E this interior, and F the following
translation/flip of epi f :

F = {(y, t) : −t ≥ f(y) − [f(x) + g(x) − ⟨p, x⟩]},

which is convex. For (y, t) ∈ F , one has −t ≥ f(y) − [f(x) + g(x) − ⟨p, x⟩] ≥ −[g(y) − ⟨p, y⟩], that is
t ≤ [g(y) − ⟨p, y⟩] so that (y, t) ̸∈ E. Hence by Theorem 4.5 there exists (q, λ) ̸= (0, 0), such that for all
(y, t) ∈ E, (y′, t′) ∈ F ,

⟨q, y⟩ + λt ≥ ⟨q, y′⟩ + λt′.

As t′ can be sent to −∞ (or t to +∞), λ ≥ 0. Moreover since x̄ is in dom f , if λ = 0 one finds that
⟨q, y − x̄⟩ ≤ 0 for all y ∈ dom g which contains a ball centered in x̄, so that q = 0, which is a contradiction.
Hence λ > 0 so that without loss of generality we can assume λ = 1.

In particular choosing t′ = f(x) + g(x) − ⟨p, x⟩ − f(y′),

⟨q, y⟩ + t ≥ ⟨q, y′⟩ + f(x) + g(x) − ⟨p, x⟩ − f(y′).

for all (y, t) ∈ E. The closure of E contains epi (g(·) − ⟨p, ·⟩): indeed any (y, t) ∈ epi (g(·) − ⟨p, ·⟩) is on
the boundary of the set {ty+ (1− t)B : 0 < t < 1} ⊂ epi (g(·)− ⟨p, ·⟩). Hence it follows that for all y, y′,

⟨q, y⟩ + g(y) − ⟨p, y⟩ ≥ ⟨q, y′⟩ + f(x) + g(x) − ⟨p, x⟩ − f(y′)

⇔ f(y′) + g(y) ≥ f(x) + g(x) + ⟨p, y − x⟩ + ⟨q, y′ − y⟩
= f(x) + g(x) + ⟨p− q, y − x⟩ + ⟨q, y′ − x⟩
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showing that q ∈ ∂f(x) and r = p− q ∈ ∂g(x), as requested.

In finite dimension, the proof relies on the previous result and the fact that subgradients, for points
in the relative interior of a convex function, are the sum of a subgradient of a Lipschitz function and a
vector orthogonal to the domain, which is a consequence of the following easy fact (actually valid for X
Hilbert):

Lemma 4.10. Let f : X → R ∪ {+∞} be convex, proper and let W ⊂ X be an affine, closed subspace
with dom f ⊂W . Then for any x ∈W ,

∂f(x) = ∂(f |W )(x) +W⊥.

We denote W0 the vector space {x− y : (x, y) ∈W 2}. If p ∈ ∂f(x) and y ∈W , one has

f(y) − f(x) ≥ ⟨p, y − x⟩ = ⟨ΠW0
(p), y − x⟩

since y − x ∈ W0, so that ΠW0
(p) ∈ ∂(f |W )(x). Conversely, if p̃ ∈ W0 is an element of ∂(f |W )(x),

obviously for any y ∈ X and q ∈W⊥,

f(y) ≥ f(x) + ⟨p̃+ q, y − x⟩

since either y ̸∈W and f(y) = +∞, or y ∈W and ⟨q, y − x⟩ = 0. This shows the lemma.
In particular, one sees that for any x ∈ W , ∂δW (x) = W⊥ (where we recall δW is the indicator or

characteristic function of W ); also, in finite dimension, if one chooses W = vect dom f , we remark that
for a.e. point (for the Lebesgue measure in W ) in ri dom f , then ∂f(x) = {∇f |W (x)} +W⊥.

We now show that, when X is finite dimensional, then if ri dom f ∩ ri dom g ̸= ∅, ∂(f + g) = ∂f + ∂g.
We deduce this from the previous result (which we refer as Theorem 4.9) and from Lemma 4.10; a direct
proof is found in [39, Thm 23.8], it is actually not much simpler.

First, up to a translation, we may assume 0 ∈ ri dom g ∩ ri dom f so that ri dom g is the interior of
dom g in V = vect dom g and ri dom f is the interior of dom f in W = vect dom f .

If x ̸∈ W ∩ V , f(x) + g(x) = +∞ and ∂f(x) + ∂g(x) = ∂(f + g)(x) = ∅, so we assume x ∈ W ∩ V .
From the Lemma we have that

∂(f + g)(x) = ∂((f + g)|W )(x) +W⊥

since dom (f + g) ⊂W . Now since f |W is continuous at all points of ri dom f , and by assumption one of
such points is in dom g|W , we deduce from Theorem 4.9 that

∂((f + g)|W )(x) +W⊥ = ∂(f |W )(x) + ∂(g|W )(x) +W⊥ = ∂f(x) + ∂(g|W )(x) +W⊥

where in the last equality we have used again that ∂f = ∂(f |W ) +W⊥. On the other hand still because
of Lemma 4.10,

∂(g|W )(x) +W⊥ = ∂(g + δW )(x) = ∂((g + δW )|V )(x) + V ⊥ = ∂(g|V + δW∩V )(x) + V ⊥.

Now, using the fact that g|V is continuous at some point of W (again, from the assumption ri dom f ∩
ri dom g ̸= ∅), we can use Theorem 4.9 again to deduce that

∂(g|V + δW∩V )(x) = ∂(g|V )(x) + ∂δW∩V (x)

Since we have assumed x ∈ W ∩ V , one has6 ∂δW∩V (x) = (W ∩ V )⊥ = W⊥ + V ⊥ so that, using
Lemma 4.10 once more:

∂(g|W )(x) +W⊥ = ∂(g|V )(x) + ∂δW∩V (x) + V ⊥ = ∂g(x) +W⊥.

We deduce that ∂(f + g)(x) = ∂f(x) + ∂g(x).

6We use here that (V ∩W )⊥ = V ⊥ +W⊥ which easily follows from the obvious relationship (A+B)⊥ = A⊥ ∩B⊥ and
(V ⊥)⊥ = V — which is elementary duality.
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Theorem 4.11. Let A : X → Y be a continuous operator between two Hilbert spaces and f a proper,
convex function on Y. Let g = f(Ax), then if there is x̄ such that f is continuous at Ax̄, ∂g(x) =
A∗∂f(Ax). In finite dimension, one can just require that Ax̄ ∈ ri dom f .

Proof: A∗∂f(Ax) ⊂ ∂g(x) is easy. If p ∈ ∂g(x), one has for all z,

f(Az) ≥ f(Ax) + ⟨p, z − x⟩ . (22)

Hence
˚︷︸︸︷

epi f (which is non empty because f is continuous at some point) and

E = {(Az, f(Ax) + ⟨p, z − x⟩) : z ∈ X} ⊂ Y × R

have no common point: if (y, t) ∈ E, then by (22) t ≤ f(y). Then there exists by Theorem 4.5 (q, λ)
such that

−⟨q, y⟩ + λt ≥ −⟨q, y′⟩ + λt′

for all (y, t) ∈ epi f and (y′, t′) ∈ E. Again, λ ≥ 0, and if λ = 0 one can find a contradiction as in the
previous proof. Then, assuming λ = 1, one obtains for all z ∈ X , y ∈ Y,

−⟨q, y⟩ + f(y) ≥ −⟨q, Az⟩ + f(Ax) + ⟨p, z − x⟩ = f(Ax) + ⟨p−A∗q, z⟩ − ⟨p, x⟩ .

This is possible only if p = A∗q, otherwise one can send the right-hand side to +∞. Hence, p = A∗q,
⟨p, x⟩ = ⟨q, Ax⟩ and

f(y) ≥ f(Ax) + ⟨q, y −Ax⟩

for all y, so that q ∈ ∂f(Ax).
In finite dimension, we leave the proof to the reader (see also [39, Thm 23.9]).

4.1.5 Remark: KKT’s theorem

Theorem 4.12 (Karush-Kuhn-Tucker). Let f, gi, i = 1, . . . ,m be C1, convex and assume

∃ x̄, (gi(x̄) < 0 ∀ i = 1, . . . ,m) (Slater’s condition)

Then x∗ is a solution of
min

gi(x)≤0,i=1,...,m
f(x)

if and only if there exists (λi)
m
i=1, λi ≥ 0 such that

∇f(x∗) +

m∑
i=1

λi∇gi(x∗) = 0 (23)

and for all i = 1, . . . ,m:

λigi(x
∗) = 0 (complementary slackness condition)

Proof: first, if (23) holds together with the complementary slackness condition, then it is easy to
show that x∗, which is a minimizer of the convex function f +

∑
i λigi, is a solution of the constrained

problem: if x satisfies the constraints, then

f(x) ≥ f(x) +
∑
i

λigi(x) ≥ f(x∗) +
∑
i

λigi(x
∗) = f(x∗).
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Conversely, consider for all i the function

δi(x) =

{
0 if gi(x) ≤ 0,

+∞ else.,

then the problem is equivalent to minx f(x) +
∑
i δi(x). By Slater’s condition, we know that there exists

x̄ where all functions f, δi are continuous. Hence by Thm. 4.9,

0 ∈ ∂(f +
∑
i

δi)(x
∗) = ∇f(x∗) +

m∑
i=1

∂δi(x
∗).

It remains to characterize ∂δi(x
∗): if gi(x

∗) < 0 then it is negative in a neighborhood of x∗ and ∂δi(x
∗) =

{0}. If gi(x
∗) = 0, then we need to characterize the vectors p such that for all y with gi(y) ≤ 0,

0 ≥ ⟨p, y − x∗⟩ .

Let v ⊥ ∇gi(x∗), and consider y = x∗ − t(∇gi(x∗) + v): then

gi(y) = −t ⟨∇gi(x∗),∇gi(x∗) + v⟩ + o(t) = −t∥∇gi(x∗)∥2 + o(t) < 0

if t > 0 is small enough, hence
0 ≤ ⟨p,∇gi(x∗) + v⟩ .

We easily deduce that we must have p = λi∇gi(x∗), for some λi ≥ 0 (in other words, ∂δi(x
∗) =

R+∇gi(x∗)). The theorem follows.

Remark 4.13. The standard KKT theorem suggests also the possibility of some affine equality constraints
hi(x) = 0, i = 1, . . . ,m′, and the Slater condition just assumes hi(x̄) = 0. The proof above needs to be
tuned a little to address this case. In practice, one can observe that when solving, for some i ∈ 1, . . . ,m′

the problem with either the constraint +hi ≤ 0 or −hi ≤ 0, one finds two solutions x± with value m±

and: either m+ < m−, in which case one easily shows that −hi(x−) = 0 (otherwise one could find a
better value for m− in the interval [x+, x−]), or m+ > m− and hi(x

+) = 0, or m+ = m− and the problem
is equivalent when removing the constraint hi = 0. As a result, the initial problem is shown to be
equivalent to

min
x

{f(x) : gi(x) ≤ 0, i = 1, . . . ,m ; ϵihi(x) ≤ 0, i = 1, . . . ,m′}

where ϵi ∈ {−1, 0, 1}, and the standard KKT conditions follow by applying the Theorem to this new
problem, observing that one can perturb slightly x̄ to find a new point x̄′ with ϵihi(x̄

′) < 0 for all i with
ϵi ̸= 0.

4.2 Convex duality

4.2.1 Legendre-Fenchel conjugate

Given a function f : X → R ∪ {+∞}, we introduce the Legendre-Fenchel conjugate

f∗(y) := sup
x∈X

⟨y, x⟩ − f(x)

which is defined for all p ∈ X , as a supremum of continuous linear forms: in particular, it is obviously a
convex, lsc function. Observe that here we rely on the Riesz theorem to define the conjugate, in a more
general vector space E, the proper definition should be as a function defined in a dual space E′, see for
instance [15].
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Obviously for all x, y,
f∗(y) + f(x) ≥ ⟨y, x⟩

and in particular f(x) ≥ ⟨y, x⟩−f∗(y). Thus, the biconjugate f∗∗, defined as f∗ by f∗∗(y) = supx∈X ⟨y, x⟩−
f∗(y), clearly satisfies

f∗∗ ≤ f.

The following is the most important result about the Legendre-Fenchel conjugate (it is also elementary
in our Hilbertian setting):

Theorem 4.14. If f has no affine minorant, f∗ ≡ +∞ and f∗∗ ≡ −∞. Otherwise, f∗∗ is the largest
convex lsc function below f , called the convex lsc envelope of f (sometimes also the Γ-regularization, or
the convex relaxation). In this case then either f ≡ +∞, or f∗, f∗∗ are proper.

This is a consequence of the separation theorem. Observe that the convex lsc envelope of a function f
is always well defined as the sup of all the convex lsc functions below f , or −∞ if there is none. Observe
also that it is the function whose epigraph is the closed convex envelope of epi f . The special case of a
function with no affine minorant is very specific: for instance, a function f equal to −∞ in B(0, 1) and
+∞ else, despite being convex lsc, is such that f∗ ≡ +∞ and f∗∗ ≡ −∞.

Proof: if f ≡ +∞ then f∗ ≡ −∞ and f∗∗ ≡ +∞: the theorem is trivial. So we assume there exists
x with f(x) < +∞. As we have seen, f∗∗ ≤ f is a convex lsc below f . Either it is −∞ everywhere, or
it is proper and there exists an affine function a such that f ≥ f∗∗ ≥ a. Indeed, choosing (x, t) with
t < f∗∗(x) ≤ f(x) < +∞, the separation Theorem 4.3 applied to the closed convex set epi f∗∗ and
(x, t) ̸∈ epi f∗∗ shows the existence of (p, λ, α) with

−⟨p, x⟩ + λt < α ≤ −⟨p, y⟩ + λs

for any (y, s) ∈ epi f∗∗. As usual λ ≥ 0 (sending s→ ∞), moreover λ ̸= 0 otherwise choosing y = x yields
a contradiction. Hence one may assume λ = 1 and one obtains f(y) ≥ f∗∗(y) ≥ t + ⟨p, y − x⟩ =: a(y),
which shows the claim. By definition, one has of course in this case that f∗(p) ≤ ⟨p, x⟩ − t < ∞ and
f∗∗(y) ≥ ⟨p, y⟩ − f∗(p) ∀ y.

One sees that if f has no affine minorant, then f∗ ≡ +∞ and f∗∗ ≡ −∞; while in the other case f∗

and f∗∗ are proper as soon as f ̸≡ +∞.
Assuming that we are in the latter case, let g be convex, lsc with g ≤ f . To show that f∗∗ is maximal

among such functions, we must show that g ≤ f∗∗. Since g ≤ f , then f∗ ≤ g∗, so that g∗∗ ≤ f∗∗. Hence
it is enough to show that g∗∗ = g. As before, considering p with f∗(p) < +∞ one has f∗∗ ≥ ⟨p, · ⟩−f∗(p),
so that it is enough to consider only functions g with g(x) ≥ ⟨p, x⟩ − f∗(p) ∀x (otherwise replace g with
x 7→ max{g(x), ⟨p, x⟩ − f∗(p)}).

The next (not essential) simplification consists in replacing f with f ′(x) = f(x)− ⟨p, x⟩+ f∗(p) ≥ 0.
Indeed,

(f ′)∗(y) = sup
x

⟨y, x⟩ − f(x) + ⟨p, x⟩ − f∗(p)

= −f∗(p) + sup
y

⟨y + p, x⟩ − f(x) = f∗(y + p) − f∗(p),

so that

(f ′)∗∗(x) = sup
y

⟨y, x⟩ − f∗(y + p) + f∗(p)

= f∗(p) − ⟨p, x⟩ + sup
y

⟨y + p, x⟩ − f∗(y + p) = f∗∗(x) − ⟨p, x⟩ + f∗(p).
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Hence f = f∗∗ ⇔ f ′ = (f ′)∗∗ and it is enough to show the result for nonnegative functions.

Assume therefore that f is convex, lsc, with 0 ≤ f ̸≡ +∞. If f∗∗ ̸= f , then there exists x with
f∗∗(x) < f(x). That is, (x, f∗∗(x)) ̸∈ epi f and from Theorem 4.3, there exists p, λ, α with

⟨p, x⟩ − λf∗∗(x) > α ≥ ⟨p, y⟩ − λs

for all y ∈ dom f and s ≥ f(y). In particular, as dom f ̸= ∅, letting s→ +∞ we see that λ ≥ 0.
Case 1: λ > 0: then we can divide the inequality and assume that λ = 1. It follows that f∗∗(x) <
−α + ⟨p, x⟩, while α ≥ ⟨p, y⟩ − f(y) for all y, hence taking the sup over y, α ≥ f∗(p). Hence, f∗∗(x) <
⟨p, x⟩ − f∗(p), a contradiction.
Case 2: λ = 0: then ⟨p, x⟩ > α ≥ ⟨p, y⟩ for all y ∈ dom f . Observe then that for t > 0, using that f ≥ 0
in dom f and f = +∞ outside,

f∗(tp) = sup
y
t ⟨p, y⟩ − f(y) ≤ t sup

y∈dom f
⟨p, y⟩ ≤ tα,

so that
f∗∗(x) = sup

q
⟨q, x⟩ − f∗(q) ≥ sup

t>0
⟨tp, x⟩ − f∗(tp) ≥ sup

t>0
t(⟨p, x⟩ − α) = +∞

which is again a contradiction.

Remark 4.15 (Legendre-Fenchel Identity). If x realizes the sup in f∗(y) = supx ⟨y, x⟩ − f(x) then for all
z,

⟨y, x⟩ − f(x) ≥ ⟨y, z⟩ − f(z) ⇔ f(z) ≥ f(x) + ⟨y, z − x⟩

which means that y ∈ ∂f(x). Conversely if y ∈ ∂f(x), by definition one easily deduces that f∗(y) ≤
⟨y, x⟩ − f(x), and moreover that f∗∗(x) = f(x), y ∈ ∂f∗∗(x), and f is lsc at x. In particular we see that
∂f∗∗(x) ⊇ ∂f(x) for all x.

One derives the celebrated Legendre-Fenchel identity :

y ∈ ∂f(x) ⇔ ⟨x, y⟩ = f(x) + f∗(y) ⇒ x ∈ ∂f∗(y), (24)

the latter being also an equivalence if f is lsc, convex (if f = f∗∗).
One also can check that conversely, if the convex function f is lsc at x, then f∗∗(x) = f(x).

This is true because f∗∗ is the lsc envelope of f (since it is convex), which can be defined by z 7→
infzn→z lim infn f(zn).

One can derive as a corollary the following variant of Theorem 4.14, which may be useful (see
Sec. 4.3.2).

Corollary 4.16. Let f : X → R ∪ {+∞} be convex, proper and assume that f is lower-semicontinuous
at x ∈ X . Then f∗∗(x) = f(x).

To prove this, observe that the lower semicontinuity assumption implies that for any t < f(x), there
exists δ > 0 such that f(y) ≥ t for all y ∈ B(x, δ), the open ball of center x and radius δ. In other words,

epi f ∩B(x, δ)×(−∞, t) = ∅

Since the second set is open, also epi f does not intersect it. Since f is convex, epi f = epi f∗∗ (thanks
to Theorem 4.14) and one deduces that t ≤ f∗∗(x), which proves the claim.
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4.2.2 Examples

1. f(x) = ∥x∥2/(2α), α > 0: f∗(y) = α∥y∥2/2;

2. f(x) = |x|p/p: f∗(y) = |y|p′/p′, 1/p+ 1/p′ = 1;

3. F (f) = ∥f∥pLp/p: F ∗(g) = ∥g∥p
′

Lp′/p
′ (the duality is in L2, however this is also true in the (Lp, Lp

′
)

duality, see [15]);

4. f(x) = δB(0,1)(x) = 0 if x ∈ B(0, 1), +∞ else: f∗(p) = |p|.

The last example is a particular case of the following situation: if f is convex, 1-homogeneous, then

f∗(y) = sup
x

⟨y, x⟩ − f(x) = sup
t>0

sup
x

⟨y, tx⟩ − f(tx) = sup
t>0

tf∗(y) ∈ {0,+∞}

and precisely

f∗(y) =

{
0 if ⟨y, x⟩ ≤ f(x) ∀x ∈ X ,
+∞ if ∃x ∈ X , ⟨y, x⟩ > f(x).

Letting C = {y : ⟨y, x⟩ ≤ f(x) ∀x ∈ X} = ∂f(0), one has f∗ = δC (C is clearly closed and convex, and
f∗ convex lsc). Eventually, observe that if f is lsc, then f∗∗ = f which shows that in this case

f(x) = sup
y∈∂f(0)

⟨y, x⟩ .

Observe in particular that ∂f(x) = {y ∈ ∂f(0) : ⟨y, x⟩ = f(x)}.
This example, in turn, is a particular case of the following: if f is β-homogeneous, β > 1, then

f∗(ty) = sup
x

⟨ty, x⟩ − f(x) = tα sup
x

〈
y, t1−αx

〉
− f(t−α/βx) = tαf∗(y)

if 1 − α = −α/β, hence if 1/α+ 1/β = 1.

4.2.3 Relationship between the growth of f and f∗

Lemma 4.17. If f is finite everywhere, then f∗(tp)/t → +∞ as t → +∞ for all p ∈ X (f∗ is
superlinear). The converse is true in finite dimension if f is convex, lsc.

Proof: if f∗ is not superlinear, there exists p, c < ∞, such that f∗(tp) ≤ ct for all t > 0: hence
f∗∗(x) ≥ supt≥0 t ⟨p, x⟩ − f∗(tp) ≥ supt≥0 t(⟨p, x⟩ − c) = +∞ as soon as x is such that ⟨p, x⟩ > c. Of
course then, f(x) ≥ f∗∗(x) = +∞.

Conversely, in finite dimension, let f be convex, lsc and assume that there is x with f(x) = +∞. We
can assume without loss of generality that f ≥ 0 (cf proof of Thm 4.14).

Then, since dom f ̸= X (in finite dimension only, in infinite dimension dom f could be dense, for
instance think of f(u) =

∫
|∇u|2dx for u ∈ L2) one can consider x ̸∈ dom f . Then, there exists by

Theorem 4.3 p, α with ⟨p, x⟩ > α ≥ ⟨p, y⟩ ∀y ∈ dom f . We have

f∗(tp) = sup
y

⟨tp, y⟩ − f∗(y) ≤ sup
y∈dom f

t ⟨p, y⟩ ≤ tα

for t > 0, so that f∗(tp)/t ≤ α and f∗ is not superlinear.

Remark 4.18. In infinite dimension, one needs to strengthen a bit the assumption, for instance if f ≥
g(|p|) with g superlinear then f∗ is finite everywhere.
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Proposition 4.19. Let f a convex, lsc function: then f is µ-convex if and only if f∗ has (1/µ)-Lipschitz
gradient.

Proof: observe that if f is µ-convex one has in particular, given x ∈ dom ∂f , for p ∈ ∂f(x), that (20)
holds:

f(y) ≥ f(x) + ⟨p, y − x⟩ +
µ

2
∥y − x∥2 (20)

for all y, hence taking the conjugate (cf Example 1 in the previous Section), we find for all q:

f∗(q) ≤ sup
y

⟨q, y⟩ − f(x) − ⟨p, y − x⟩ − µ

2
∥y − x∥2

= ⟨q, x⟩ − f(x) + sup
y

⟨q − p, y − x⟩ − µ

2
∥y − x∥2 = ⟨q, x⟩ − f(x) +

1

2µ
∥q − p∥2

= ⟨p, x⟩ − f(x) + ⟨q − p, x⟩ +
1

2µ
∥q − p∥2 = f∗(p) + ⟨q − p, x⟩ +

1

2µ
∥q − p∥2. (25)

We have used that ⟨p, x⟩ − f(x) = f∗(p) which follows from (24). In particular we see that f∗ has at
most a quadratic growth, and we deduce that it is locally Lipschitz (Lemma 4.1), and its subgradient is
not empty everywhere. Moreover, we deduce from (25) that when x ∈ ∂f∗(p) ⇔ p ∈ ∂f(x) (cf (24)),

f∗(p) + ⟨q − p, x⟩ ≤ f∗(q) ≤ f∗(p) + ⟨q − p, x⟩ +
1

2µ
∥q − p∥2,

in other words, f∗(q) = f∗(p) + ⟨q − p, x⟩ + o(q − p) which shows that f∗ is (Fréchet)-differentiable and
x = ∇f∗(p).

Eventually, given p, q ∈ X and x = ∇f∗(p), y = ∇f∗(q), one has by (24) that p ∈ ∂f(x), q ∈ ∂f(y)
and by strong convexity, using (20) and the same with x, y switched and p replaced with q, and summing,
we find

⟨q − p, y − x⟩ ≥ µ∥y − x∥2

so that in particular, ∥∇f∗(q) −∇f∗(p)∥ ≤ (1/µ)∥q − p∥: ∇f∗ is (1/µ)-Lipschitz. In fact, we see that

⟨q − p,∇f∗(q) −∇f∗(p)⟩ ≥ µ∥∇f∗(q) −∇f∗(p)∥2,

which expresses that ∇f∗ is “µ-co-coercive”, a property which is stronger than being (1/µ)-Lipschitz.
Conversely, if f∗ has (1/µ)-Lipschitz gradient, let us show that f is µ-convex. Observe that

f∗(q) = f∗(p) +

∫ 1

0

⟨∇f∗(p+ s(q − p)), q − p⟩ ds

= f∗(p) + ⟨∇f∗(p), q − p⟩ +

∫ 1

0

⟨∇f∗(p+ s(q − p)) −∇f∗(p), q − p⟩ ds

≤ f∗(p) + ⟨∇f∗(p), q − p⟩ + 1
µ∥q − p∥2

∫ 1

0

sds.

If p ∈ ∂f(x), so that x = ∇f∗(p), we deduce

f∗(q) ≤ f∗(p) + ⟨q − p, x⟩ +
1

2µ
∥q − p∥2.

Hence taking the conjugate:

f(y) = f∗∗(y) ≥ sup
q

⟨q, y⟩ −
(
f∗(p) + ⟨q − p, x⟩ +

1

2µ
∥q − p∥2

)
= ⟨p, x⟩ − f∗(p) + sup

q
⟨p− q, x− y⟩ − 1

2µ
∥q − p∥2 = ⟨p, y⟩ − f∗(p) +

µ

2
∥x− y∥2.
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By (24), ⟨p, x⟩ − f∗(p) = f(x) (as f is convex lsc), and we find

f(y) ≥ f(x) + ⟨p, y − x⟩ +
µ

2
∥x− y∥2,

showing that f is strongly convex. Notice in particular that we have found another proof of Theorem 2.3,
valid also in Hilbert spaces for convex lsc functions.

4.2.4 The conjugate of a sum: Inf-convolutions

A natural question, given two convex functions f and g, is whether one can derive an expression for
the conjugate (f + g)∗. The answer is given by a particular “convolution” formula, called the “inf-
convolution”. Letting f, g be convex, lsc functions it is defined as follows:

f□g(x) = inf
y
f(x− y) + g(y). (26)

It is easy to show that this defines a convex function (more generally, given G(x, y) convex in (x, y), we
let the reader show that x 7→ infy G(x, y) is also convex. One can show in addition the following result:

Lemma 4.20. We assume f, g are convex, lsc. If there is p ∈ X where f∗ is continuous and g∗ is
finite, then the inf is reached in (26) and f□g is convex, lsc. In finite dimension, it is enough to have
p ∈ ri dom f∗ ∩ ri dom g∗.

Proof. Consider indeed xn → x and yn such that

f□g(xn) ≥ f(xn − yn) + g(yn) − 1

n
.

Consider a subsequence with

lim
k
f(xnk

− ynk
) + g(ynk

) = lim inf
n

f(xn − yn) + g(yn) ≤ lim inf
n

f□g(xn)

Observe that if f∗ is continuous at p, then it means that there is a constant c such that

f∗(q) ≤ c+ δB(0,ε)(q − p)

(where δC is the characteristic function of C which is zero in C and +∞ elsewhere) while g∗(p) < +∞:
so that for all z

f(z) = f∗∗(z) ≥ ⟨p, z⟩ − c+ ε∥z∥, g(z) ≥ ⟨p, z⟩ − g∗(p).

Hence,

f(xnk
− ynk

) + g(ynk
) ≥ ⟨p, xnk

− ynk
⟩ − c+ ε∥xnk

− ynk
∥ + ⟨p, ynk

⟩ − g∗(p)

= ⟨p, xnk
⟩ + ε∥xnk

− ynk
∥ − (c+ g∗(p))

so that (xnk
− ynk

)k is a bounded sequence, hence there exists y and a subsequence of (ynk
) (not

relabelled) with ynk
⇀ y. In the limit (as, f, g are weakly lsc),

f□g(x) ≤ lim inf
k

f(xnk
− ynk

) + g(ynk
) ≤ lim inf

n
f□g(xn).

Eventually, we observe that if the sequence xn ≡ x, then this proves that there is a minimizer y
in (26).

We can derive a second, more precise variant of Theorem 4.9:
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Corollary 4.21. Let f, g be convex, lsc: if there exists x ∈ dom f ∩ dom g such that f is continuous at
x (in finite dimension, x ∈ ri dom f ∩ ri dom g), then

� (f + g)∗ = f∗□g∗,

� ∂(f + g) = ∂f + ∂g.

The first point is clear: as by our assumption, f∗□g∗ is lsc, and:

(f∗□g∗)∗(x) = sup
p,q

⟨x, p⟩ − f∗(q) − g∗(p− q)

= sup
p,q

⟨x, q⟩ − f∗(q) + ⟨x, p− q⟩ − g∗(p− q) = f(x) + g(x).

The second point is because if p ∈ ∂(f + g)(x), using that x ∈ ∂(f∗□g∗)(p) and

f∗□g∗(p) = f∗(q) + g∗(p− q)

for some q, one obtains letting p− q = r:

f∗(s) + g∗(t) ≥ f∗□g∗(s+ t) ≥ f∗□g∗(p) + ⟨x, s+ t− p⟩
≥ f∗(q) + ⟨x, s− q⟩ + g∗(r) + ⟨x, t− r⟩

for all s, t. Hence x ∈ ∂f∗(q) ∩ ∂g∗(r), which shows that p = q + r ∈ ∂f(x) + ∂g(x).

Remark 4.22. We leave as an exercise the proof of the following property: given f, g two functions, then

epi f + epi g ⊆ epi f□g ⊆ epi f + epi g

where here, the sum is the Minkowski sum: A+B = {a+ b : a ∈ A, b ∈ B}. In particular, the conditions
in Lemma 4.20 are conditions for epi f + epi g to be closed.

4.3 Example: the proximity operator

(Also known as Proximal map.) Given f convex lsc, proper, observe that for any τ > 0, x ∈ X ,
y 7→ f(y) + ∥y − x∥2/(2τ) is strongly convex and hence has a unique minimizer. We define

fτ (x) := min
y∈X

f(y) +
1

2τ
∥y − x∥2 (27)

as the inf-convolution of f and ∥ · ∥2/(2τ). It is clearly a convex, lsc function thanks to Lemma 4.20
(and the “min” is reached, but this is also because we are minimizing a strongly convex, lsc function in
a Hilbert or Euclidean space). As we have seen before (Lemma 4.8), one has at the minimizer yx

∂f(yx) +
1

τ
(yx − x) ∋ 0. (28)

This characterizes the unique minimizer of (27) and in particular it means that the following operator
is uniquely defined:

yx = (I + τ∂f)−1(x) =: proxτf (x).
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As already shown, (x − yx)/τ = ∇fτ (x). Actually, in the convex case, there is a direct proof: one
has, letting η = proxτf (y) and ξ = proxτf (x),

fτ (y) = f(η) +
∥η−y∥2

2τ = f(η) +
∥(η−x)+(x−y)∥2

2τ

= f(η) +
∥η−x∥2

2τ +
〈
x−η
τ , y − x

〉
+

∥x−y∥2

2τ

≥ f(ξ) +
∥ξ−x∥2

2τ +
∥η−ξ∥2

2τ +
〈
x−ξ
τ , y − x

〉
+
〈
ξ−η
τ , y − x

〉
+

∥x−y∥2

2τ

= fτ (x) +
〈
x−ξ
τ , y − x

〉
+ τ

2∥
y−η
τ − x−ξ

τ ∥2.

In the third line, we have used the fact that ξ is the minimiser of a (1/τ)-strongly convex problem,
so that f(η) + ∥η − x∥2/(2τ) ≥ f(ξ) + ∥η − x∥2/(2τ) + ∥η − ξ∥2/(2τ) for all η. We deduce from the
inequality

fτ (y) ≥ fτ (x) +
〈
x−ξ
τ , y − x

〉
+ τ

2∥
y−η
τ − x−ξ

τ ∥2

both that (x−ξ)/τ is a subgradient of fτ at x, and that the map x 7→ (x−proxτf (x))/τ is τ -co-coercive,
hence (1/τ)-Lipschitz: indeed, writing the same inequality after having swapped x and y, and summing
the two inequalities, we obtain 〈

y−η
τ − x−ξ

τ , y − x
〉
≥ τ∥y−ητ − x−ξ

τ ∥2.

In particular, fτ is C1. Also, we find that

proxτf (x) = x− τ∇fτ (x)

is a (1/2)-averaged operator (it is (1/2)I + (1/2)(x− 2τ∇fτ (x)), see Lemma 2.4).

Moreau’s identity Thanks to (24), (28) yields

yx ∈ ∂f∗(x−yxτ ) ⇔ x−yx
τ + 1

τ ∂f
∗(x−yxτ ) ∋ x

τ ⇔ x−yx
τ = (I + 1

τ ∂f
∗)−1(xτ ).

We deduce Moreau’s Identity, valid for any convex, lsc, proper function f :

x = proxτf (x) + τprox 1
τ f

∗(xτ ) (29)

One also can show the following:

Proposition 4.23. Let f be proper, convex, lsc: then dom ∂f is dense in domF .

Indeed, let x ∈ dom f : then fτ (x) ≤ f(x). In particular, denoting xτ = proxτf (x),

fτ (x) = f(xτ ) +
1

2τ
∥x− xτ∥2 ≤ f(x).

We use again that f , being proper, is larger than some affine function: hence there is p, c such that
⟨p, xτ ⟩ + c+ 1

2τ ∥x− xτ∥2 ≤ f(x) from which it follows that ∥xτ − x∥ ≤ c′
√
τ for some constant c′ > 0.

Hence xτ → x. Now, ∂f(xτ ) ∋ (x − xτ )/τ ̸= ∅ hence xτ ∈ dom f , which shows the proposition. As a
by-product of the proof, one sees that:

Proposition 4.24. Let f be proper, lsc, convex and fτ defined by (27). Then for all x, fτ (x) → f(x)
as τ → 0.

(We leave to the reader the proof that if f(x) = +∞, fτ (x) → +∞, which is easy using that f is lsc.)
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Examples: f(x) = ∥x∥1 =
∑
i |xi|, x ∈ Rd:

proxτf (x) = ((|xi| − τ)+sign (xi))
d
i=1.

If f(x) = δ|xi|≤1, proxτf (x) = (max{−1,min{1, xi}})di=1.
If f(x) = ∥x∥2/2, proxτf (x) = x/(1 + τ).

4.3.1 A useful variant of inf-convolutions

Consider now the modified inf-convolution problem

h(x) = inf
y∈Y

f(x−Ky) + g(y)

where K : Y → X is a continuous operator and f, g are convex, lsc, proper. Then one can show similarly
that if there exists p such that f∗(p) < +∞ and g∗ is continuous at K∗p, h is lsc and since

h∗(q) = sup
x∈X ,y∈Y

⟨q, x⟩ − f(x−Ky) − g(y)

= sup
x∈X ,y∈Y

⟨q, x−Ky⟩ + ⟨K∗q, y⟩ − f(x−Ky) − g(y) = f∗(q) + g∗(K∗q)

it follows that h = [f∗(·) + g∗(K∗·)]∗.
The proof is exactly as the proof of Lemma 4.20, but now one uses that g∗ ≤ a+ δB(K∗p,ε) for some

a ∈ R and ε > 0, so that g(y) ≥ −a+ ⟨p,Ky⟩ + ε∥y∥ and f∗(p) ∈ R so that f(x) ≥ ⟨p, x⟩ − f∗(p).
Then, if xn → x and yn is such that f(xn−Kyn)+g(yn) ≤ h(xn)+1/n, and if lim infn h(xn) < +∞,

one find that along a subsequence ∥yn∥ is bounded, hence we may assume it converges weakly to some
y (and as a consequence Kyn converges weakly to Ky). Hence

h(x) ≤ f(x−Ky) + g(y) ≤ lim inf
n

f(xn −Kyn) + g(yn) ≤ lim inf
n

h(xn)

and the semicontinuity follows. In addition, we deduce that the “inf” is in fact a “min”.
A useful application is the following: let g be convex, lsc and proper and K a continuous operator,

and define
gK(x) := inf

y:Ky=x
g(y).

Then, if there exists p where g∗ is continuous at K∗p, gK is lsc and gK = [g∗(K∗·)]∗. It is enough to
apply the previous result with f = δ{0}, so that f∗ ≡ 0 and p ∈ dom f∗.

4.3.2 Fenchel-Rockafellar duality

Consider now a minimization problem of the form

min
x∈X

f(Kx) + g(x) (30)

where K : X → Y is a continuous linear map and f, g are convex, lsc. Then, clearly

(P) = min
x
f(Kx) + g(x) = min

x
sup
y

⟨y,Kx⟩ − f∗(y) + g(x)

≥ sup
y

inf
x

⟨K∗y, x⟩ + g(x) − f∗(y) = sup
y

− (g∗(−K∗y) + f∗(y)) = (D)

A natural question is when there is equality: this is true under various criteria: we will give a simple
example below.
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The problem “(P)” is usually called the primal problem and “(D)” the dual problem (observe though
that there is a symmetry between these problems...) Notice that the primal-dual gap

G(x, y) = f(Kx) + g(x) + g∗(−K∗y) + f∗(y)

is a measure of optimality. If it vanishes at (x∗, y∗), then (P) = (D), and (x∗, y∗) is a saddle point of
the Lagrangian

L(x, y) = ⟨y,Kx⟩ − f∗(y) + g(x), (31)

as one has
L(x∗, y) ≤ L(x∗, y∗) ≤ L(x, y∗) (32)

for all x ∈ X , y ∈ Y. [Indeed, for all y, x, L(x∗, y) ≤ f(Kx∗)+g(x∗) = −f∗(y∗)−g∗(−K∗y∗) ≤ L(x, y∗).]

Theorem 4.25. If there exists x̄ ∈ dom g with f continuous at Kx̄, then (P) = (D). Moreover under
these assumptions, (D) has a solution.

We show the result following a classical approach, see [15, (4.21)] for more general variants. In
finite dimension, it is shown in [39, Cor 31.2.1] that equality holds if there exists x ∈ ri dom g with
Kx ∈ ri dom f , or even more generally that 0 ∈ ri (dom f −Kdom g) (the proof works as below).

Proof: the method is called the “perturbation method”: We introduce, for z ∈ Y,

Φ(z) := inf
x∈X

f(Kx+ z) + g(x).

Assume Φ(0) > −∞ (otherwise there is nothing to prove), then by assumption, one can find M and ε
such that for |z| < ε, Φ(z) ≤ f(Kx̄+ z) + g(x̄) ≤M < +∞. Being Φ convex, we deduce that it is locally
Lipschitz near 0 and in particular thanks to Corollary 4.16, Φ(0) = Φ∗∗(0) = supy −Φ∗(y). We compute:

Φ∗(y) = sup
z∈Y

⟨y, z⟩ − inf
x∈X

(f(Kx+ z) + g(x))

= sup
x,z

⟨y, z +Kx⟩ − ⟨K∗y, x⟩ − f(Kx+ z) − g(x) = f∗(y) + g∗(−K∗y).

The claim follows. Moreover, since Φ is Lipschitz near 0 it is also subdifferentiable: there exists y ∈ ∂Φ(0).
This subdifferential provides a solution to the “dual” problem maxy −Φ∗(y).
Exercise: show the result in finite dimension if 0 ∈ ri (dom f −Kdom g) (one needs to show again that
Φ is lsc at 0).

Observe that one has by optimality in (32) that Kx∗ − ∂f∗(y∗) ∋ 0, K∗y∗ + ∂g(x∗) ∋ 0, which may
be written

0 ∈
(
∂g(x)
∂f∗(y)

)
+

(
0 K∗

−K 0

)(
x
y

)
(33)

meaning the solution is found by finding the “zero” of the sum of two monotone operators (see Sec-
tion 4.4).

Example Consider the problem

min
x
λ∥Dx∥1 +

1

2
∥x− x0∥2

where D : Rn → Rm is a continuous operator, x0 ∈ Rn, ∥·∥1 is the ℓ1-norm. One has

f = λ∥·∥1, K = D, g =
1

2
∥· − x0∥2.
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Then the Lagrangian is
L(x, y) = ⟨y,Dx⟩ − f∗(y) + g(x)

where f∗(y) = 0 if |yi| ≤ λ for i = 1, . . . , n, and +∞ else. To find the dual problem, we compute
g∗(z) =

〈
z, x0

〉
+ ∥z∥2/2, and we obtain

max

{〈
D∗y, x0

〉
− 1

2
∥D∗y∥2 : |yi| ≤ λ, i = 1, . . . , n

}
.

This can be rewritten as a projection problem:

min
|yi|≤λ

∥D∗y − x0∥2.

4.4 Generalization: Elements of monotone operators theory

For more results, see [6]. We mostly mention the main properties, which extend the properties shown so
far for subgradients.

Observe that if f is convex, one has for all x, y, p ∈ ∂f(x), q ∈ ∂f(y)

f(y) ≥ f(x) + ⟨p, y − x⟩ , f(x) ≥ f(y) + ⟨q, x− y⟩

so that, summing,
⟨p− q, x− y⟩ ≥ 0.

This leads to introduce the class of operators which satisfy such an inequality, which share many prop-
erties with subgradients. Consider in the Hilbert space X a multi-valued operator A : X → P(X ). By a
slight abuse of notation, we will also denote A the graph {(x, y) : x ∈ X , y ∈ Ax}.

We introduce the following definitions:

Definition 1. The operator A is said monotone if for all x, y ∈ X , p ∈ Ax, q ∈ Ay,

⟨p− q, x− y⟩ ≥ 0.

It is (µ-)strongly monotone if
⟨p− q, x− y⟩ ≥ µ∥x− y∥2.

It is (µ-)co-coercive if
⟨p− q, x− y⟩ ≥ µ∥p− q∥2.

It is maximal if the graph {(x, p) : p ∈ Ax} ⊂ X × X is maximal with respect to inclusion, among all
the graphs of monotone operators.

In dimension 1, monotone graphs are graphs of nondecreasing functions. Obviously then, they also
coincide with (sub)gradients of convex functions. In higher dimension, this is not true anymore (example:
an antisymmetric linear mapping in Rd, d ≥ 2).

One sees that the subgradient of a convex function f is monotone, strongly monotone if f is strongly
convex, co-coercive if ∇f is Lipschitz (cf Theorem 2.3).

A subgradient is maximal if and only it is the subgradient of a lower-semicontinuous function. A
simple proof is due to Rockafellar: if f is lsc, to show that ∂f is maximal we must show that if x ∈ X
and p ̸∈ ∂f(x) then one can find y and q ∈ ∂f(y) with ⟨p− q, x− y⟩ < 0. Replacing f with f(x)−⟨p, x⟩
we can assume that p = 0. Saying that 0 ̸∈ ∂f(x) is precisely saying that x is not a minimizer, that is,
there exists y ∈ X with f(y) < f(x).
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Consider now y = proxf (x), the minimizer of f(y)+∥y − x∥2/2. As we have seen, q = x−y ∈ ∂f(y).
One has

⟨p− q, x− y⟩ = ⟨−q, x− y⟩ = −∥x− y∥2 < 0,

unless y = x. But y = x would imply that q = 0 ∈ ∂f(x), a contradiction. Hence ∂f is maximal. (The
proof can be extended to non-Hilbert spaces, see [40].)

Conversely if ∂f is maximal, since ∂f∗∗ ⊃ ∂f , then this operator is also the subgradient of the
convex, lsc function f∗∗. We are not proving here that f = f∗∗, only that ∂f is also the subgradient of
the convex, lsc function f∗∗.

A monotone operator is not necessarily a subgradient: for instance, in R2, the linear operator

A =

(
0 1
−1 0

)
is monotone but not the subgradient of a convex function. In order for a monotone operator to be
(included in) the subgradient of a convex function, it needs to be cyclically monotone [38, 1]: for any
x0, x1 . . . , xn = x0 and pi ∈ Axi, p0 = pn,

n−1∑
i=0

⟨pi, xi+1 − xi⟩ ≤ 0.

An important case of monotone operator is obtained from nonexpansive (1-Lipschitz mappings) T ,
as in Section 3. Indeed, it is obvious to check that I − T is maximal monotone:

⟨(x− Tx) − (x− Ty), x− y⟩ = ∥x− y∥2 − ⟨Tx− Ty, x− y⟩ ≥ 0

thanks to Cauchy-Schwartz inequality and the fact T is 1-Lipschitz.
Given A a monotone operator, its inverse is simply A−1 : p 7→ {x : Ax ∋ p}, with graph {(p, x) :

p ∈ Ax}. It is therefore maximal if A is maximal, co-coercive if A is strongly monotone (cf Prop. 4.19).
Clearly, (∂f)−1 = ∂f∗ (see (24)).

Theorem 4.26 (Minty [24]). The resolvent of a maximal-monotone operator A, defined by

x 7→ y = (I +A)−1x =: JAx⇔ y +Ay ∋ x

is a well (everywhere) defined single-valued nonexpansive mapping. (Conversely, for a monotone operator
A if (I +A) is surjective then A is maximal.)

One will see that the resolvent is also a (1/2)-averaged operator (and any (1/2)-averaged operator
has this form).

Proof: Let us introduce the graph G = {(y + x, y − x) : x ∈ X , y ∈ Ax}. If (a, b), (a′, b′) ∈ G, with
a = y + x, b = y − x and a′ = y′ + x′, b = y′ − x′, then

∥b− b′∥2 = ∥y − y′∥2 − 2 ⟨y − y′, x− x′⟩ + ∥y + y′∥2

= ∥a− a′∥2 − 4 ⟨y − y′, x− x′⟩ ≤ ∥a− a′∥2

showing that G is the graph of a 1-Lipschitz function. Moreover, if G′ ⊇ G is also the graph of a
1-Lipschitz function, then defining A′ = {((a − b)/2, (a + b)/2) : (a, b) ∈ G′} the same computation
shows that A′ ⊇ A is the graph of a monotone operator, hence A′ = A if A is maximal. (Conversely, if
G is defined for all a then clearly G and therefore A are maximal, as being 1-Lipschitz G is necessarily
single-valued.)

So the theorem is equivalent to the question whether a 1-Lipschitz function which is not defined
in the whole of X can be extended. This result (which is true only in Hilbert spaces) is known as
Kirszbraun-Valentine’s theorem (1935). [The proof we give is derived from [17, 2.10.43].]

The basic brick is the following extension from n to n+ 1 points:
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Lemma 4.27. If (xi)
n
i=1, (yi)

n
i=1 are points in Hilbert spaces respectively X ,Y such that ∀i, j , ∥yi − yj∥ ≤

∥xi − xj∥, then for any x ∈ X there exists y ∈ Y with ∥yi − y∥ ≤ ∥xi − x∥ for all i = 1, . . . , n.

It is enough to prove this for x = 0: we need to find a common point to B̄(yi, ∥xi∥). There is nothing
to prove if x = xi for some i, so we assume xi ̸= 0, i = 1, . . . , n. We define

c̄ = min

{
c ≥ 0 :

n⋂
i=1

B̄(yi, c∥xi∥) ̸= ∅

}
> 0

(if the yi are distinct, which we may also assume). This is a min because the closed balls are weakly
compact, and we can consider y such that ∥y − yi∥ ≤ c̄∥xi∥, i = 1, . . . , n. Then we observe that y
must be a convex combination of the points (yi)i∈I such that ∥y − yi∥ = c̄∥xi∥. Indeed, if not, let y′

be the projection of y onto co {yi : i ∈ I}. As for any i ∈ I, ⟨yi − y′, y − y′⟩ ≤ 0 one has, letting
yt = (1 − t)y + ty′, that for any i ∈ I:

∥yi − yt∥2 = ∥yi − y + t(y − y′)∥2 = ∥yi − y∥2 + 2t ⟨yi − y, y − y′⟩ + t2∥y − y′∥2

= ∥yi − y∥2 + 2t ⟨yi − y′, y − y′⟩ − 2t∥y − y′∥2 + t2∥y − y′∥2

≤ ∥yi − y∥2 − t(2 − t)∥y − y′∥2 < ∥yi − y∥2

if t ∈ (0, 2). Hence if t > 0 is small enough, one sees that ∥yi − yt∥ < ∥yi − y∥ = c̄∥xi∥ for i ∈ I,
while since for i ̸∈ I, ∥yi − y∥ < c̄∥xi∥, one can still guarantee the same strict inequality for yt if t is
small enough. But this contradicts the definition of c̄, since then there would exists c < c̄ such that
yt ∈

⋂n
i=1 B̄(yi, c∥xi∥).

We therefore can write y =
∑
i∈I θiyi as a convex combination (θi ∈ [0, 1],

∑
i∈I θi = 1). Then since

2 ⟨a, b⟩ = ∥a∥2 + ∥b∥2 − ∥a− b∥2,

0 = ∥
∑
i∈I

θiyi − y∥2 =
∑
i,j∈I

θiθj ⟨yi − y, yj − y⟩

=
1

2

∑
i,j∈I

θiθj
(
∥yi − y∥2 + ∥yj − y∥2 − ∥yi − yj∥2

)
≥ 1

2

∑
i,j∈I

θiθj
(
c̄2∥xi∥2 + c̄2∥xj∥2 − ∥xi − xj∥2

)
= c̄2

∑
i,j∈I

θiθj ⟨xi, xj⟩ −
1 − c̄2

2
∥xi − xj∥2

which shows that
(1 − c̄2)

∑
i,j∈I

θiθj∥xi − xj∥2 ≥ 2c̄2∥
∑
i∈I

θixi∥2

so that c̄ ≤ 1. Hence, y satisfies ∥y − yi∥ ≤ ∥xi∥, as requested, which shows Lemma 4.27.
We can conclude the proof of Theorem 4.26: if there exists x ∈ X such that {x}×X ∩G = ∅, consider

the set
K =

⋂
(a,b)∈G

B̄(b, ∥x− a∥)

which is an intersection of weakly compact sets.
We show that because the compact sets defining K have the “finite intersection property”, K can

not be empty: Choosing (a0, b0) ∈ G, if B̄0 = B̄(b0, ∥x− b0∥), we see that

K = B̄0 ∩

 ⋂
(a,b)∈G

B̄(b, ∥x− a∥)
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hence B̄0 \ K = B̄0 ∩
⋃

(a,b)∈G B̄(b, ∥x− a∥)c. If this is B̄0, by compactness one can extract a finite

covering
⋃n
i=1 B̄(bi, ∥x− ai∥)c for (ai, bi) ∈ G, i = 1, . . . , n. We find that

B̄0 ∩
n⋃
i=1

B̄(bi, ∥x− ai∥)c = B̄0

or equivalently that

B̄0 ∩
n⋂
i=1

B̄(bi, ∥x− ai∥) = ∅

which contradicts Lemma 4.27. Hence, B̄0 \K ̸= B̄0 which means that K ̸= ∅. Choosing y ∈ K, we find
that G ∪ {(x, y)} is the graph of a 1-Lipschitz function and is strictly larger than G, which contradicts
the maximality of A.

The non-expansiveness of (I + A)−1 follows from, if y + Ay ∋ x, y′ + Ay′ ∋ x′, p = x − y ∈ Ay,
p′ = x′ − y′ ∈ Ay′:

∥x− x′∥2 = ∥y − y′∥2 + 2 ⟨p− p′, y − y′⟩ + ∥p− p′∥2 ≥ ∥y − y′∥2 + ∥p− p′∥2,

that is, for T = (I +A)−1:

∥Tx− Tx′∥2 + ∥(I − T )x− (I − T )x′∥2 ≤ ∥x− x′∥2. (34)

An operator which satisfies (34) is firmly non-expansive.

Let us now consider the “reflexion operator”

RA = 2JA − I = 2(I +A)−1 − I (35)

Lemma 4.28. RA is nonexpansive, and in particular, JA = I/2 +RA/2 is (1/2)-averaged.

More generally we prove the following: An operator T is firmly non-expansive if and only if it is
1/2-averaged, that is, R = 2T − I is non-expansive (so that indeed T = I/2 +R/2 is 1/2-averaged).

It follows in an obvious way from the parallelogram identity, since for any x, x′,

∥Rx−Rx′∥2 = ∥(Tx− x) − (Tx′ − x′) + Tx− Tx′∥2

= 2∥(I − T )x− (I − T )x′∥2 + 2∥Tx− Tx′∥2 − ∥x− x′∥2 ≤ ∥x− x′∥2

⇔ ∥(I − T )(x) − (I − T )(x′)∥2 + ∥Tx− Tx′∥2 ≤ ∥x− x′∥2.

We have shown that if A is maximal monotone, then JA = (I+A)−1 is defined everywhere and single-
valued, then that it is firmly non-expansive, and eventually that an operator is firmly non-expansive if and
only if it is (1/2)-averaged. We conclude by showing that if an operator T = I/2+R/2 is (1/2)-averaged
(R is non-expansive), then there exists a maximal monotone operator A such that T = JA.

The proof follows by the same (or reverse) construction as in the beginning of the proof of Minty’s
theorem: we consider the graph

G = {((x+ y)/2, (x− y)/2) : x ∈ X , y = Rx} = {(Tx, (I − T )x) : x ∈ X}

and denote by A the corresponding operator (y ∈ Ax ⇔ (x, y) ∈ G). Then A is monotone: if
(ξ, η), (ξ′, η′) ∈ G, then for some x, x′ ∈ X , ξ = (x+Rx)/2, η = (x−Rx)/2, etc., and we find:

⟨ξ − ξ′, η − η′⟩ =
1

4
⟨x+Rx− x′ −Rx′, x−Rx− x′ +Rx′⟩

=
1

4

(
∥x− x′∥2 − ∥Rx−Rx′∥2

)
≥ 0.
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Moreover, A is maximal, if not, one could build as before from A′ ⊃ A a non-expansive graph {(ξ +
η, ξ − η) : η ∈ A′ξ} strictly larger than the graph {(x,Rx) : x ∈ X}, which is of course impossible. By
construction, ATx ∋ (I − T )x for all x, hence (I +A)Tx ∋ x⇔ Tx = (I +A)−1x.

To sum up, we have shown the following result:

Theorem 4.29. Let T be an operator, then the following are equivalent:

� T = (I +A)−1 for some maximal operator A;

� T is firmly non-expansive;

� T is (1/2)-averaged (2T − I is nonexpansive).

A consequence is that if x0 ∈ X and xk+1 = (I + A)−1xk, k ≥ 0, then xk ⇀ x where x is a fixed
point of (I + A)−1, that is, Ax = 0, if such a point exists (Theorem 3.1). We will return soon to these
iterations.

Another way to interpret Theorem 4.26 is to observe that it says that a strongly monotone maximal
operator has a well-defined single-valued inverse everywhere. Indeed, if A is maximal µ-monotone, then
A′ = A/µ − I is maximal monotone hence I + A′ is surjective with single-valued inverse, and so is A.
From

⟨p− q, x− y⟩ ≥ µ∥x− y∥2, p ∈ Ax, q ∈ Ay

we deduce if B = A−1 that
⟨p− q,Bp−Bq⟩ ≥ µ∥Bp−Bq∥2,

showing that B is co-coercive and (1/µ)-Lipschitz.
The maximal monotone operator Aτ = [x − (I + τA)−1x]/τ is called a Yosida approximation of A:

it is a (1/τ)-Lipschitz-continuous mapping, with full domain (in case A = ∂f , Aτ = ∇fτ ). τAτ is firmly
non-expansive, since I − τAτ is. It has very important properties, see in particular Brézis’ book [6]. We
mention in particular Theorems 2.2, Prop. 2.5, and Cor. 2.7 in that book: the first two say that for a
maximal monotone operator A, C = domA is convex and limτ→0 JτAx is the orthogonal projection of
x onto C, in addition if x ∈ domA, Aτx → A0x, the element of Ax with minimal norm, while if not,

|Aτx| → ∞. The last shows that if for A,B two maximal monotone operators
˚︷ ︸︸ ︷

domA ∩ domB ̸= ∅,
then also A+B is maximal monotone. The Yosida approximation is used in [6] to show the existence of
solutions to ẋ+Ax ∋ 0 for A maximal-monotone, by showing it is obtained as the limit of the solutions
of ẋ + Aτx ∋ 0 (which trivially exist because of Cauchy-Lipschitz’s theorem). This allows to define
properly the “gradient flow” of a convex lsc function, which is the time-continuous equivalent of the
gradient descent algorithms. An exhaustive study of maximal monotone operators in Hilbert spaces is
found in [2].

We will use the generalization of Moreau’s identity (29):

x = (I + τA)−1(x) + τ(I + 1
τA

−1)−1(xτ ). (36)

which is proved exactly in the same way as (29).

5 Algorithms. Operator splitting

We introduce here the “Forward-Backward splitting” technique. We discuss convergence rates and
introduce acceleration, in particular the famous “FISTA / Nesterov acceleration”.

We also introduce other splitting: Douglas-Rachford (DR), Alternating directions method of multi-
pliers (ADMM), Primal-Dual.
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5.1 Abstract algorithms for monotone operators

In this section, we describe rapidly general algorithms for solving the equations

0 ∈ Ax or 0 ∈ Ax+Bx

where A,B are maximal monotone operators (sometimes subgradients, sometimes not). The idea is to
generalise algorithms already seen, and then to have at hand general results which will be useful for
studying more concrete algorithms.

5.1.1 Explicit algorithm

Let us first consider the equivalent of the “gradient descent”:

xk+1 = xk − τpk , pk ∈ Axk.

Even if A is single-valued and continuous, then this might not converge. For instance, if A =

(
0 −1
1 0

)
then

xk =

(
1 −τ
τ 1

)k
x0.

But the eigenvalues of this matrix are 1 + ±τi and have modulus
√

1 + τ2, so that the iteration always
diverges.

So one needs to require a further condition on A. We recall (Baillon-Haddad) that the gradient
descent works for convex functions with Lipschitz gradient, whose gradient is a co-coercive monotone
operator. We can show here the same:

Theorem 5.1. Let A maximal monotone be µ-co-coercive (in particular, single-valued):

⟨Ax−Ay, x− y⟩ ≥ µ∥Ax−Ay∥2.

Assume there exists a solution to Ax = 0. Then the iteration xk+1 = xk − τAxk converges to x∗ with
Ax∗ = 0 if 0 < τ < 2µ.

For the proof we just show that I − τA is an averaged operator. Let us compute

∥(I − τA)x− (I − τA)y∥2 + ∥τAx− τAy∥2

= ∥x− y∥2 − 2τ ⟨x− y,Ax−Ay⟩ + 2τ2∥Ax−Ay∥2

≤ ∥x− y∥2 − 2τ(µ− τ)∥Ax−Ay∥2.

This shows that if 0 ≤ τ ≤ µ, τA and (I− τA) are firmly non-expansive hence (1/2)-averaged. It follows
that for 0 ≤ τ < 2µ, (I − τA) is averaged. Hence by Theorem 3.1 the iterates weakly converge, as
k → ∞, to a fixed point of (I − τA) (if it exists). If τ = 0 this is not interesting, if 0 < τ < 2µ, then it
is a zero of A, which exists by assumption.

5.1.2 Proximal point algorithm

Then we consider the “implicit descent” xk+1 ∈ xk − τAxk+1. This is precisely which is solved by
xk+1 = (I + τA)−1xk, which is well-posed if A is maximal monotone (Th. 4.26). The corresponding
iteration

xk+1 = (I + τA)−1xk
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is known as the proximal point algorithm. It obviously converges to a fixed point as the operator is
(1/2)-averaged (if the fixed point, that is a point with Ax = 0, exists). Moreover, as we have seen, one
can consider more generally, if RτA = 2(I + τA)−1 − I,

xk+1 = (1 − θk)xk + θkRτAx
k = xk + 2θk

(
(I + τA)−1xk − xk

)
= xk − 2θkτAτx

k,

for 0 < θ ≤ θk ≤ θ < 1 and still get convergence. More generally, we prove:

Theorem 5.2 (PPA Algorithm). Let x0 ∈ X , τk ≥ τ > 0, 0 ≤ λ ≤ λk ≤ λ ≤ 2, and let

xk+1 = xk + λk((I + τkA)−1xk − xk). (37)

If there exists x with Ax ∋ 0, then xk weakly converges to a zero of A.

Proof. The proof follows the lines of the proof of Thm 3.1.
A first remark is that one obviously has ∥xk+1 − x∥2 ≤ ∥xk − x∥2 for each x with Ax ∋ 0, which is a

fixed point of JτA for any τ , as in that case (37) is iterating an averaged operator with same fixed point.
But we can be more precise. We have:

∥xk+1 − x∥2 = ∥xk − x∥2 + λ2k∥JτkAxk − xk∥2 + 2λk
〈
xk − x, JτkAx

k − xk
〉

= ∥xk − x∥2 + λ2k∥JτkAxk − xk∥2

+ λk
(
∥JτkAxk − x∥2 − ∥xk − x∥2 − ∥JτkAxk − xk∥2

)
.

Now, as JτkA is firmly non-expansive,

∥JτkAxk − x∥2 + ∥(I − JτkA)xk − (I − JτkA)x∥2 ≤ ∥xk − x∥2

where in addition (I − JτkA)x = 0. Hence:

∥xk+1 − x∥2 ≤ ∥xk − x∥2 + λ2k∥JτkAxk − xk∥2 − 2λk∥JτkAxk − xk∥2

= ∥xk − x∥2 − λk(2 − λk)∥JτkAxk − xk∥2.

Letting c = λ(2− λ) > 0, we deduce that (xk)k is Fejér-monotone with respect to {x : Ax ∋ 0} and that

c
n∑
k=0

∥JτkAxk − xk∥2 + ∥xn+1 − x∥2 ≤ ∥x0 − x∥2

for all n ≥ 0, in particular ∥JτkAxk − xk∥ → 0, as well as, by the scheme, xk+1 − xk. We want to
conclude as in the proof of Theorem 3.1. However with varying τk, it is not obvious that a limit point
x̄ of a subsequence xkl is such that Ax ∋ 0. To see this one can use the maximal-monotonicity of A. If
x′ ∋ X , y′ ∈ Ax′, denoting ek := JτkAx

k − xk → 0 we have:

A(xk + ek) ∋ ek
τk
,

so that 〈
y′ − ek

τk
, x′ − xk − ek

〉
≥ 0.

In the limit along the subsequence xkl , we find ⟨y′, x′ − x̄⟩ ≥ 0, so that Ax̄ ∋ 0. The rest of the proof
relies on Opial’s lemma and is as in the proof of Theorem 3.1.

We could also consider (summable) errors. See [2] for variants, [14] for a similar proof with errors.
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5.1.3 Forward-Backward splitting

We now consider a mixture of the two previous, namely the “forward-backward” splitting

xk+1 = (I + τA)−1(I − τB)xk (38)

where A is maximal monotone and B µ-co-coercive. Then, as before, if 0 < τ < 2µ, the algorithm is the
composition of two averaged operator and converges weakly to a fixed point if it exists. We see that

(I + τA)−1(I − τB)x = x⇔ x− τBx ∈ x+ τAx⇔ Ax+Bx ∋ 0.

As B is continuous, this is equivalent to (A + B)x ∋ 0. Hence, if A + B has a zero, this algorithm
converges to a zero of A+B.

5.1.4 Douglas-Rachford splitting

This method was introduced under the following form in a paper of Lions and Mercier (79):

xk+1 = JτA(2JτB − I)xk + (I − JτB)xk (39)

Theorem 5.3. Let x0 ∈ X . Then if xk defined by (39), xk ⇀ x such that w = JτBx is a solution of
Aw +Bw ∋ 0 (if it exists).

Proof: we use
JτA = 1

2I + 1
2RτA, JτB = 1

2I + 1
2RτB .

Hence the operator in the algorithm is

1
2RτB + 1

2RτA ◦RτB + ( 1
2I −

1
2RτB) = 1

2I + 1
2RτA ◦RτB

so that it is (1/2)-averaged (and hence a resolvent). We deduce from Thm 3.1 that the iterations converge
to a fixed point, if it exists, of RτA ◦RτB . One has

RτA ◦RτBx = x⇔ 2JτA(2JτBx− x) − (2JτBx− x) = x⇔ JτA(2JτBx− x) = JτBx

⇔ 2JτBx− x ∈ JτBx+ τA(JτBx) ⇔ JτBx ∈ x+ τA(JτBx).

Letting w = JτBx, we see that w satisfies

w ∈ w + τBw + τAw

hence Aw + Bw = 0. Conversely, if w satisfies this equation and x = w + Bw = w − Aw, we see that
x is a fixed point. We know, then, by Theorem 3.1, that xk ⇀ x. Then w = JτBx is a solution of
Aw+Bw ∋ 0. Further conditions on A,B ensuring that JτBx

k converges to a solution are found in [23],
variants with errors in [14].

The iterations xk+1 = RτARτBx
k are known as the Peaceman-Rachford splitting algorithm and

converge under some conditions to the same point.

5.1.5 Three-operators splitting

This approach, introduced in [12], generalizes the two previous methods. Given A,B,C three maximal-
monotone operators with C co-coercive: for all x, y ∈ X :

⟨Cx− Cy, x− y⟩ ≥ γ∥x− y∥2,
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one wants to find ξ ∈ X such that Aξ + Bξ + Cξ ∋ 0, and we assume there is at least a solution. One
introduces for τ > 0:

Tτ := I − JτB + JτA ◦ (2JτB − I − τC ◦ JτB).

We observe that if A or B is 0, Tτ is similar to a forward-backward algorithm, while if C = 0, it
reduces to the previous Douglas-Rachford operator.

The following is easy:

Lemma 5.4. A point x is a fixed point of Tτ if and only if ξ = JτBx satisfies Aξ +Bξ + Cξ ∋ 0.

Hence, given ξ which solves A+B + C ∋ 0, any point x ∈ ξ + τBξ is a fixed point of Tτ . The main
result in [12] is then the following:

Theorem 5.5. For 0 < τ < 2γ, Tτ is averaged.

As a consequence, for such values of τ , the algorithm given by x0 ∈ X , xk+1 = Tτx
k, k ≥ 0, produces

a sequence which weakly converges to a fixed point x, such that Jτx solves the problem.
Proof of the theorem: First, we have seen already that if τ < 2γ, (I−γC) is averaged, and more precisely
there exists S nonexpansive such that

I − γC = (1 − θ)I + θS =: Sθ

for θ = τ/(2γ). In addition, one can write JτB = (I +RτB)/2 and JτA = (I +RτA)/2. Hence,

Tτ = I − JτB + JτA ◦ (JτB − I + Sθ ◦ JτB )

=
1

2
(I − JτB + SθJτB) +

1

2
RτA ◦ (JτB − I + SθJτB) .

This can be written:

Tτ = 1−θ
2 I + θ

2 (I − JτB + SJτB) + 1
2RτA ((1 − θ)RτB + θ(JτB − I + SJτB))

= (1 − 1+θ
2 )I + 1+θ

2 T̃

with
T̃ = θ

1+θ (I − JτB + SJτB) + 1
1+θRτA ((1 − θ)RτB + θ(JτB − I + SJτB)) .

Then, for x, y ∈ X we have:

∥T̃ x− T̃ y∥2 ≤ θ
1+θ∥(I − JτB + SJτB)x− (I − JτB + SJτB)y∥2

+ 1
1+θ∥RτA((1 − θ)RτB + θ(JτB − I + SJτB))x−RτA((1 − θ)RτB + θ(JτB − I + SJτB))y∥2

≤ θ
1+θ∥(I − JτB + SJτB)x− (I − JτB + SJτB)y∥2

+ 1
1+θ∥((1 − θ)RτB + θ(JτB − I + SJτB))x− ((1 − θ)RτB + θ(JτB − I + SJτB))y∥2

where we have used that RτA is 1-Lipschitz. In addition,

∥((1 − θ)RτB + θ(JτB − I + SJτB))x− ((1 − θ)RτB + θ(JτB − I + SJτB))y∥2

≤ (1 − θ)∥RτBx−RτBy∥2 + θ∥(JτB − I + SJτB)x− (JτB − I + SJτB)y∥2

≤ (1 − θ)∥x− y∥2 + θ∥(JτB − I + SJτB)x− (JτB − I + SJτB)y∥2
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using now that RτB is 1-Lipschitz. In the end we obtain:

∥T̃ x− T̃ y∥2 ≤ θ
1+θ∥(I − JτB + SJτB)x− (I − JτB + SJτB)y∥2

+ θ
1+θ∥(JτB − I + SJτB)x− (JτB − I + SJτB)y∥2 + 1−θ

1+θ∥x− y∥2

We conclude with the parallelogram identity which shows that

∥(I − JτB + SJτB)x− (I − JτB + SJτB)y∥2

+ ∥(JτB − I + SJτB)x− (JτB − I + SJτB)y∥2

= 2
(
∥(I − JτB)x− (I − JτB)y∥2 + ∥SJτBx− SJτBy∥2

)
≤ 2

(
∥(I − JτB)x− (I − JτB)y∥2 + ∥JτBx− JτBy∥2

)
≤ 2∥x− y∥2

since S is 1-Lipschitz and since JτB is firmly non expansive. Hence,

∥T̃ x− T̃ y∥2 ≤ 2θ
1+θ∥x− y∥2 + 1−θ

1+θ∥x− y∥2 = ∥x− y∥2

showing that Tτ is (1 + θ)/2-averaged.

Remark 5.6. The averaging here is not as good as the one found in [12], which is 1/(2 − θ).

5.2 Descent algorithms, acceleration, “FISTA”

5.2.1 Forward-Backward descent

In case A = ∂g and B = ∇f , algorithm (38), which aims at finding a point x where ∂g(x) + ∇f(x) ∋ 0,
or equivalently a minimizer of

min
x∈X

F (x) := f(x) + g(x) (40)

where g is, a “simple” convex lsc function and f is a convex function with Lipschitz gradient. The basic
idea of the Forward-Backward splitting scheme (FBS) is to combine an explicit step of descent in the
smooth part f with a implicit step of descent in g. It iterates the operator:

x̄ 7→ x̂ = Tτ x̄ := proxτg(x̄− τ∇f(x̄)) = (I + τ∂g)−1(x̄− τ∇f(x̄)). (41)

Another name found in the literature [27] is the “composite gradient” descent, as one may see here
(x̂ − x̄)/τ as a generalised gradient for F at x̄. The essential reason why all this is reasonable is that
clearly, a fixed point x̂ = x̄ will satisfy the Euler Lagrange equations ∇f(x̄)+∂g(x̄) ∋ 0 of (40). Observe
that in the particular case where g = δC is the characteristic function of a closed, convex set C, then
proxτg(x) reduces to ΠC(x) (the orthogonal projection onto C) and the mapping Tτ defines a projected
gradient descent method.

Algorithm 1 Forward-Backward descent with fixed step

Choose x0 ∈ X
for all k ≥ 0 do

xk+1 = Tτx
k = proxτg(x

k − τ∇f(xk)). (42)

end for

The theoretical convergence rate of the plain FBS descent is not very good, as one can merely show the
same as for the gradient descent:
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Theorem 5.7. Let x0 ∈ X and xk be recursively defined by (42), with τ ≤ 1/L. Then not only xk

converges to a minimiser, but one has the rates

F (xk) − F (x∗) ≤ 1
2τk∥x

∗ − x0∥2 (43)

where x∗ is any minimiser of f . If in addition f of g are strongly convex with parameters µf , µg (with
µ = µf + µg > 0), one has

F (xk) − F (x∗) +
1+τµg

2τ ∥xk − x∗∥2 ≤ ωk
1+τµg

2τ ∥x0 − x∗∥2. (44)

where ω = (1 − τµf )/(1 + τµg).

However, its behaviour is improved if the objective is smoother than actually known, moreover, it is
quite robust to perturbations and can be overrelaxed, see in particular [10].

5.2.2 FISTA

An “optimal” accelerated version is also available for this method, cf Section 2.4.3. This is well described
in [29], [27], although a somewhat simpler proof is found in [3], where the algorithm, in the cases where
µ = µf + µg = 0, is called “FISTA”. The general iteration takes the form:

Algorithm 2 FISTA with fixed step

Choose x0 = x−1 ∈ X and t0 ≥ 0
for all k ≥ 0 do

yk = xk + βk(xk − xk−1) (45)

xk+1 = Tτy
k = proxτg(y

k − τ∇f(yk)) (46)

where, in case µ = 0,

tk+1 =
1+

√
1+4t2k
2 ≥ k+1

2 , (47)

βk = tk−1
tk+1

, (48)

and if µ = µf + µg > 0,

tk+1 =
1−qt2k+

√
(1−qt2k)2+4t2k
2 , (49)

βk = tk−1
tk+1

1+τµg−tk+1τµ
1−τµf

, (50)

where q = τµ/(1 + τµg) < 1.
end for

In the latter case, we assume L > µf , otherwise f is quadratic and the problem is trivial. The
following result is then true:

Theorem 5.8. Assume t0 = 0 and let xk be generated by the algorithm, in either case µ = 0 or µ > 0.
Then, one has the decay rate

F (xk) − F (x∗) ≤ min
{

(1 +
√
q)(1 −√

q)k, 4
(k+1)2

}
1+τµg

2τ ∥x0 − x∗∥2.
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It must be mentioned that in the case µ = 0, a classical choice for tk is also tk = (k+1)/2, which gives
essentially the same rate. An important issue is the stability of these rates when the proximal operators
can be only evaluated inexactly — the situation here is worse than for the nonaccelerated algorithm,
which has been addressed in several papers.

The proof of of both Theorems 5.7 and 5.8 rely on the following essential but straightforward descent
rule: let x̂ = Tτ x̄, then for all x ∈ X ,

F (x) + (1 − τµf )
∥x− x̄∥2

2τ
≥ 1 − τL

τ

∥x̂− x̄∥2

2
+ F (x̂) + (1 + τµg)

∥x− x̂∥2

2τ
. (51)

In particular, if τL ≤ 1,

F (x) + (1 − τµf )
∥x− x̄∥2

2τ
≥ F (x̂) + (1 + τµg)

∥x− x̂∥2

2τ
. (52)

The proof is elementary: by definition, x̂ is the minimiser of the (µg + (1/τ))-strongly convex function

x 7→ g(x) + f(x̄) + ⟨∇f(x̄), x− x̄⟩ +
∥x− x̄∥2

2τ
.

It follows that for all x (cf (20)):

F (x) + (1 − τµf )
∥x− x̄∥2

2τ

≥ g(x) + f(x̄) + ⟨∇f(x̄), x− x̄⟩ +
∥x− x̄∥2

2τ

≥ g(x̂) + f(x̄) + ⟨∇f(x̄), x̂− x̄⟩ +
∥x̂− x̄∥2

2τ
+ (1 + τµg)

∥x− x̂∥2

2τ
.

But since ∇f is L-Lipschitz, f(x̄)+⟨∇f(x̄), x̂− x̄⟩ ≥ f(x̂)−(L/2)∥x̂− x̄∥2 so that equation (51) follows.

Remark 5.9. One can more precisely deduce from this computation that

F (x) + (1 − τµf )
∥x− x̄∥2

2τ
≥ F (x̂) + (1 + τµg)

∥x− x̂∥2

2τ
+

(
∥x̂− x̄∥2

2τ
−Df (x̂, x̄)

)
. (53)

where Df (x, y) := f(x)− f(y)− ⟨∇f(y), x− y⟩ ≤ (L/2)∥x− y∥2 is the “Bregman f -distance” from y to
x [5]. In particular, (52) holds as soon as

Df (x̂, x̄) ≤ ∥x̂− x̄∥2

2τ

which is always true if τ ≤ 1/L but might also occur in other situations, and in particular, be tested “on
the fly” during the iterations. This allows to implement efficient backtracking strategies ‘à la’ Armijo
for the algorithms described in this section when the Lipschitz constant of f is not a priori known.

Remark 5.10. Observe that if X ⊂ X is a closed convex set containing the domain of F , and on which
the projection ΠX can be computed, then the same inequality (52) holds if x̂ = TτΠX x̄ (requiring only
that ∇f is Lipschitz on X). This means that the same rates are valid if one replaces (45) with

yk = ΠX(xk + βk(xk − xk−1))

which is feasible if X is the domain of F .
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5.2.3 Convergence rates

Unaccelerated scheme We start with the rates of the unaccelerated FB descent scheme and prove
Theorem 5.7.

First, if µf = µg = 0: we start from inequality (52), letting, for k ≥ 0, x̄ = xk and x̂ = xk+1. It
follows that for any x:

F (x) +
∥x− xk∥2

2τ
≥ F (xk+1) +

∥x− xk+1∥2

2τ
.

Choosing x = xk shows that F (xk) is nonincreasing. Summing then these inequalities from k = 0 to
n− 1, n ≥ 1 yields

n∑
k=1

(F (xk) − F (x)) +

n∑
k=1

1
2τ ∥x− xk∥2 ≤

n−1∑
k=0

1
2τ ∥x− xk∥2.

After cancellations and using F (xk) ≥ F (xn) for k = 0, . . . , n, it remains just

n(F (xn) − F (x)) + 1
2τ ∥x− xn∥2 ≤ 1

2τ ∥x− x0∥2

so that, in particular F (xn) − F (x∗) ≤ ∥x∗ − x0∥2/(2nτ).
Now, if µf > 0 or µg > 0 we can improve this computation: we now have for any x:

F (x) + (1 − τµf )
∥x− xk∥2

2τ
≥ F (xk+1) + (1 + τµg)

∥x− xk+1∥2

2τ
.

Choosing x = xk shows that F (xk) is nonincreasing. Letting

ω =
1 − τµf
1 + τµg

≤ 1, (54)

and summing these inequalities from k = 0 to n− 1, n ≥ 1, after multiplication by ω−k−1, yields

n∑
k=1

ω−k(F (xk) − F (x)) +

n∑
k=1

ω−k 1+τµg

2τ ∥x− xk∥2 ≤
n−1∑
k=0

ω−k−1 1−τµf

2τ ∥x− xk∥2.

After cancellations and using F (xk) ≥ F (xn) for k = 0, . . . , n, we get

ω−n

(
n−1∑
k=0

ωk

)
(F (xn) − F (x)) + ω−n 1+τµg

2τ ∥x− xn∥2 ≤ 1+τµg

2τ ∥x− x0∥2.

We deduce, in case µ = µf + µg > 0 so that ω < 1,

F (xk) − F (x∗) +
1+τµg

2τ ∥xk − x∗∥2 ≤ ωk
1+τµg

2τ ∥x0 − x∗∥2. (55)

which is a “linear convergence rate” (however we will see that one can do better).

Convergence rates for FISTA Now we show the accelerated convergence rates. The basic idea
consists in first choosing in (52) a generic point of the form ((t − 1)xk + x)/t, t ≥ 1, which is a convex
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combination of the iterate xk and another generic point (in practice a minimizer) x. We find after some
calculation (systematically using the strong convexity inequalities when possible)

t(t− 1)(F (xk) − F (x)) − µ
t− 1

2
∥x− xk∥2

+ (1 − τµf )
∥(t− 1)xk + x− tyk∥2

2τ

≥ t2(F (xk+1) − F (x)) + (1 + τµg)
∥(t− 1)xk + x− txk+1∥2

2τ
. (56)

Consider first the case where µ = µf + µg = 0. Then we have

t2(F (xk+1) − F (x)) +
∥(t− 1)xk + x− txk+1∥2

2τ

≤ t(t− 1)(F (xk) − F (x)) +
∥(t− 1)xk + x− tyk∥2

2τ
.

We see that the term F (xk) − F (x) is “shrunk” at each step by a factor (t − 1)/t < 1, while the other
term is not. How can we exploit this?

The basic idea in the proof is to use a variable parameter t = tk+1, and choose yk to ensure that the
term (tk+1−1)xk +x− tk+1y

k in the right hand side is the same as the term (tk+1−1)xk +x− tk+1x
k+1

of the left hand side at the previous iterate, that is,

(tk+1 − 1)xk + x− tk+1y
k = (tk − 1)xk−1 + x− tkx

k

so that if we sum the inequalities for k = 0, . . . , n the norms will cancel. Hence, we choose:

� tk+1(tk+1 − 1) = t2k ;

� yk = xk + βk(xk − xk−1) with βk = (tk − 1)/tk+1;

we obtain the recursion

t2k+1(F (xk+1) − F (x)) +
∥(tk+1 − 1)xk + x− tk+1x

k+1∥2

2τ

≤ t2k(F (xk) − F (x)) +
∥(tk − 1)xk−1 + x− tkx

k∥2

2τ
.

which we can sum from k = 0, . . . , n− 1 to obtain

F (xn) − F (x) +
1

2t2nτ
∥(tk+1 − 1)xk + x− tk+1x

k+1∥2 ≤ 1

2t2nτ
∥x0 − x∥2.

Observe that t2k+1 − tk+1 − t2k = 0 yields tk+1 = (1 +
√

1 + 4t2k)/2 (one can choose t0 = 0, t1 = 1), and
in particular tk+1 ≥ 1/2 + tk ≥ (k + 1)/2 for k ≥ 1, by induction. Therefore, choosing x = x∗,

F (xn) − F (x∗) ≤ 2

2(n+ 1)2τ
∥x0 − x∥2. (57)

An important remark is that, if one takes x = x∗, F (xk) − F (x∗) ≥ 0 so that in fact one can get the
same inequalities if one only ensures tk+1(tk+1 − 1) ≤ t2k, and not =. For instance, the sequence t0 = 0,
tk = (k + 1)/2 for k ≥ 1 is admissible and yields the same rate.
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It can be interesting to take slightly smaller tk, such as (k + 1)/α for α > 2. One can show in
particular the convergence of the iterates (xk) to a solution in this case, while it is still an open problem
for α = 2. It has been even observed by Charles Dossal (U. Bordeaux) that in that case, one can show
that

F (xn) − F (x∗) = o

(
1

n2

)
which does not contradict the lower bound (6).

Convergence rates for FISTA, strongly convex case We start again from (56) but now we assume
that µ = µf + µg > 0. Then, we observe that

−µt− 1

2
∥x− xk∥2 + (1 − τµf )

∥x− xk + t(xk − yk)∥2

2τ

= (1 − τµf − µτ(t− 1))
∥x− xk∥2

2τ
+

1 − τµf
τ

t
〈
x− xk, xk − yk

〉
+ t2(1 − τµf )

∥xk − yk∥2

2τ

=
(1 + τµg − tµτ)

2τ
∥x− xk + t

1−τµf

1+τµg−tµτ (xk − yk)∥2 + t2(1 − τµf )
(

1 − 1−τµf

1+τµg−tµτ

) ∥xk − yk∥2

2τ

=
(1 + τµg − tµτ)

2τ
∥x− xk + t

1−τµf

1+τµg−tµτ (xk − yk)∥2 − t2(t− 1)
τµ(1 − τµf )

1 + τµg − tµτ

∥xk − yk∥2

2τ
.

It follows that for any x ∈ X ,

t(t− 1)(F (xk) − F (x)) + (1 + τµg − tµτ)
∥x− xk − t

1−τµf

1+τµg−tµτ (yk − xk)∥2

2τ

≥ t2(F (xk+1) − F (x)) + (1 + τµg)
∥x− xk+1 − (t− 1)(xk+1 − xk)∥2

2τ

+ t2(t− 1)
τµ(1 − τµf )

1 + τµg − tµτ

∥xk − yk∥2

2τ
. (58)

We let t = tk+1 above, then we can get a useful recursion if we let

ωk =
1 + τµg − tk+1µτ

1 + τµg
= 1 − tk+1

µτ

1 + τµg
∈ [0, 1] (59)

tk+1(tk+1 − 1) ≤ ωkt
2
k, (60)

βk =
tk − 1

tk+1

1 + τµg − tk+1µτ

1 − τµf
= ωk

tk − 1

tk+1

1 + τµg
1 − τµf

, (61)

yk = xk + βk(xk − xk−1) (62)

Denoting αk = 1/tk and

q =
τµ

1 + τµg
=
τµf + τµg

1 + τµg
< 1, (63)

one finds the same rules as in formula (2.2.9), p. 80 in [29] (with the minor difference that here we may
chose t0 = 0, t1 = 1, and we have shifted the numbering of the sequences (xk), (yk)). In this case, we
find

t2k+1(F (xk+1) − F (x)) +
1 + τµg

2τ
∥x− xk+1 − (tk+1 − 1)(xk+1 − xk)∥2

≤ ωk

(
t2k(F (xk) − F (x)) +

1 + τµg
2τ

∥x− xk − (tk − 1)(xk − xk−1)∥2
)
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so that

t2k(F (xk) − F (x)) +
1 + τµg

2τ
∥x− xk − (t− 1)(xk − xk−1)∥2

≤

(
k−1∏
n=0

ωn

)[
t20(F (x0) − F (x)) +

1 + τµg
2τ

∥x− x0∥2
]

(64)

The update rule for tk reads
tk+1(tk+1 − 1) = (1 − qtk+1)t2k, (65)

so that,

tk+1 =
1 − qt2k +

√
(1 − qt2k)2 + 4t2k
2

. (66)

We need to make sure that qtk+1 ≤ 1 so that (59) holds. This is proved exactly as in the proof of
Lemma 2.2.4 in [29]. Assuming (as in [29]) that

√
qtk ≤ 1, we observe that (65) yields

qt2k+1 = qtk+1 + (1 − qtk+1)qt2k.

If qtk+1 ≥ 1, it yields qt2k+1 ≤ qtk+1 hence qtk+1 ≤ q < 1, a contradiction. Hence qtk+1 < 1 and we
obtain that qt2k+1 is a convex combination of 1 and qt2k, so that

√
qtk+1 ≤ 1. We have shown that as

soon as
√
qt0 ≤ 1 (which we will now assume),

√
qtk ≤ 1 for all k. Eventually, we also observe that

t2k+1 = (1 − qt2k)tk+1 + t2k

showing that tk is an increasing sequence. It remains to estimate the factor

θk = t−2
k

k−1∏
n=0

ωn (k ≥ 1).

From (60) (with an equality) we find

1 − 1

tk+1
= ωk

t2k
t2k+1

so that

t20θk =
t20
t2k

k−1∏
n=0

ωn =

k∏
n=1

(
1 − 1

tk

)
≤ (1 −√

q)k

since 1/tk ≥ √
q. If t0 ≥ 1 it shows θk ≤ (1 −√

q)k/t20. If t0 ∈ [0, 1[, we rather write

θk =
ω0

t2k

k−1∏
n=1

ωn =
ω0

t21

k∏
n=2

(
1 − 1

tk

)
and observe that (66) yields (using 2 − q ≥ 1 ≥ q)

t1 =
1 − qt20 +

√
1 + 2(2 − q)t20 + q2t40

2
≥ 1.

Also, ω0 ≤ 1 − q (from (59)), so that

θk ≤ (1 +
√
q)(1 −√

q)k.
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The next step is to bound also θk by O1/k2. We exactly follow Lemma 2.2.4 in [29]. In our notation, it
reads

1√
θk+1

− 1√
θk

=
θk − θk+1√

θkθk+1(
√
θk +

√
θk+1)

≥ θk(1 − (1 − 1/tk+1))

2θk
√
θk+1

since θk is nonincreasing. It follows

1√
θk+1

− 1√
θk

≥ 1

2tk+1

√
θk+1

=
1

2

1√∏k
n=0 ωn

≥ 1

2
,

showing that 1/
√
θk ≥ (k − 1)/2 + t1/

√
ω0 ≥ (k + 1)/2. Hence, provided

√
qt0 ≤ 1, we also find:

θk ≤ 4

(k + 1)2
. (67)

We have shown the following result, due to Nesterov and stated, with a different proof, in [29]:

Theorem 5.11. If
√
qt0 ≤ 1, t0 ≥ 0, then the sequence (xk) produced by iterations xk = Tτy

k with (66),
(59), (61), (62) satisfies

F (xk) − F (x∗) ≤ min

{
(1 −√

q)k

t20
,

4

(k + 1)2

}(
t20(F (x0) − F (x∗)) +

1 + τµg
2τ

∥x0 − x∗∥2
)

(68)

if t0 ≥ 1, and

F (xk) − F (x∗) ≤

min

{
(1 +

√
q)(1 −√

q)k,
4

(k + 1)2

}(
t20(F (x0) − F (x∗)) +

1 + τµg
2τ

∥x0 − x∗∥2
)

(69)

if t0 ∈ [0, 1], where x∗ is a minimiser of F .

Theorem 5.8 is a particular case of this result, for t0 = 0.

Remark 5.12. (Constant steps.) In case µ > 0 (which is q > 0), then an admissible choice which satisfies
(59),(60), (61), is to take t = 1/

√
q, ω = 1 −√

q,

β = ω2 1 + τµg
1 − τµf

=

√
1 + τµg −

√
τµ√

1 + τµg +
√
τµ
.

Then, (68) becomes

F (xk) − F (x∗) ≤ (1 −√
q)k
(
F (x0) − F (x∗) + µ

∥x0 − x∗∥2

2

)
.

Remark 5.13. (Monotone “FISTA”, monotone algorithms.) The algorithms studied here are not nec-
essarily “monotone” in the sense that the objective F is not always nonincreasing. A workaround
implemented in various papers [45, 3] consists in choosing for xk+1 any point with F (xk+1) ≤ F (Tτy

k)7,
which will not change much (56) except that in the last term, xk+1 should be replaced with Tτy

k. Then,
the same computations carry on, and it is enough to replace the update rule (62) for yk with

yk = xk + βk(xk − xk−1) + ωk
tk
tk+1

1+τµg

1−τµf
(Tτy

k−1 − xk)

= xk + βk

(
(xk − xk−1) + tk

tk−1 (Tτy
k−1 − xk)

) (62′)

to obtain the same rates of convergence. The most sensible choice for xk+1 is to take Tτy
k if F (Tτy

k) ≤
F (xk), and xk else, in which case one of the two terms (xk − xk−1 or Tτy

k−1 − xk) vanishes in (62’).
7this makes sense only if the evaluation of F is easy and does not take too much time.
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Conclusion: compare the geometric rate (54) with ω = 1−√
q for q given by (63), what do we observe?

5.3 Restarting

The last result, in the strongly convex case, is complicated to show and not very simple to implement.
In addition, it requires (i) the objective to be strongly convex (ii) the exact knowledge of the parameters.
In practice, it might be better to use a Restarting strategies (see [41] for a general and complete intro-
duction). Here, for simplicity, we still will assume that the parameters are known (very few strategies
are really able to “guess” these, see for instance [27, §5.3] or [35]), but we can relax the strong convexity
to:

For any x∗ ∈ X∗, F (x) − F (x∗) ≥ µ

2
dist (x,X∗)2. (70)

Here, X∗ is the set of minimizers of F .
Then, we observe that Theorem 5.8, with the choice of parameters for µ = 0 as in (47)-(48), ensures

that for any x∗ ∈ X∗,

µ

2
dist (xk, X∗)2 ≤ F (xk) − F (x∗) ≤ 2L

(k + 1)2
∥x0 − x∗∥2

provided we choose τ = 1/L. As a consequence,

dist (xk, X∗)2 ≤ 4
L

µ

1

(k + 1)2
dist (x0, X∗)2.

Assume we run the algorithm for kθ = [θ/
√
κ] iterations, where θ > 0 is a fixed number and κ = µ/L≪ 1

(and [·] is the integer part). Then, one has

dist (xk, X∗)2 ≤ 4

θ2
dist (x0, X∗)2.

We propose therefore the following method:

Algorithm 3 restarted FISTA

Choose θ > 2, z0, τ = 1/L.
for all n ≥ 0 do

Run kθ iterations of FISTA starting from x0 := zn,
Let zn+1 := xkθ .

end for

Then, after n outer iterations, one has:

dist (zn, X∗)2 ≤
(

4

θ2

)n
dist (z0, X∗)2.

Since we need Nn = nkθ iterations to reach zn, the rate of contraction of the squared distance to
optimality of the algorithm is

ρθ =

(
2

θ

) 2
[θ/

√
κ]

.

To get the best rate, we should pick θ which minimizes:

2

[θ/
√
κ]

ln
2

θ
≈

√
κ

2

θ
ln

2

θ
.
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when κ≪ 1. This is minimal for 2/θ = 1/e, that is, θ = 2e, with value −
√
κ/e. We obtain the following

rate:
dist (zn, X∗)2 ≲ e−

√
κNn
e ,

which is of similar order as the rate found in Theorem 5.8 (or (68)) — well, up to the factor e, but we
only need (70) and not the full strong convexity.

5.4 ADMM, Douglas-Rachford splitting

We now consider a class of method which solves another kind of problem, namely of the form

min
Ax+By=ζ

f(x) + g(y) (71)

where in practice one will ask that the convex, lsc functions f, g are “simple” (and even more than this).
Observe that if f∗ is continuous at some point A∗p and if g∗ is continuous at some point B∗q,

cf Section. 4.3.1 (or, in finite dimension, if A∗p ∈ ri dom f∗, B∗q ∈ ri dom g∗), we can define

f̃(ξ) = min
Ax=ξ

f(x), g̃(η) = min
By=η

g(y),

moreover the min is reached in both cases.
Then, one has f̃∗(p) = f(A∗p), g̃∗(q) = g(B∗q) and the problem reads

min
ξ
f̃(ξ) + g̃(ζ − ξ);

it can be seen as an inf-convolution problem. Moreover Corollary 4.21 shows that the value of (71) is
also

sup
p

⟨ζ, p⟩ − f∗(A∗p) − g∗(B∗p) (72)

which gives a dual form for (71).

An “augmented Lagrangian” approach for (71) consists in introducing the constraint in the form

min
x,y

sup
z
f(x) + g(y) − ⟨z,Ax+By − ζ⟩ +

γ

2
∥Ax+By − ζ∥2

which we observe is equivalent (as the sup is +∞ if Ax+By ̸= ζ).
If we introduce the function

D(z) = inf
x,y

f(x) + g(y) − ⟨z,Ax+By − ζ⟩ +
γ

2
∥Ax+By − ζ∥2

we find that, denoting x̄, ȳ the solution of the problem for z and x̄h, ȳh the solution for z + h (the min
is reached, why?),

D(z) = f(x̄) + g(ȳ) − ⟨z + h,Ax̄+Bȳ − ζ⟩ +
γ

2
∥Ax̄+Bȳ − ζ∥2 + ⟨h,Ax̄+Bȳ − ζ⟩

≥ f(x̄h) + g(ȳh) − ⟨z + h,Ax̄h +Bȳh − ζ⟩ +
γ

2
∥Ax̄h +Bȳh − ζ∥2

+
γ

2
∥A(x̄− x̄h) +B(ȳ − ȳh)∥2 + ⟨h,Ax̄+Bȳ − ζ⟩

where we have used the strong convexity of the norm with respect to Ax+By. We find

D(z) − ⟨h,Ax̄+Bȳ − ζ⟩ ≥ D(z + h) +
γ

2
∥(Ax̄+Bȳ − ζ) − (Ax̄h +Bȳh − ζ)∥2
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which shows that ζ − Ax̄− Bȳ ∈ ∂+D(z) (the super-gradient of the concave function D at z) and that
z 7→ Ax̄+Bȳ−ζ is γ-co-coercive, and (1/γ)-Lipschitz. Hence a natural algorithm, known as “augmented
Lagrangian”, consists in iteratively solving{

(xk+1, yk+1) = arg minx,y f(x) + g(y) −
〈
zk, Ax+By − ζ

〉
+ γ

2 ∥Ax+By − ζ∥2 ,
zk+1 = zk + γ(ζ −Axk+1 −Byk+1) :

(73)

it is precisely a gradient ascent with fixed step for the concave function D, and will converge (it should
be shown then that also xk, yk converge to a solution).

Unfortunately, this algorithm is usually not implementable, as the joint minimization step cannot in
general be performed. This is why it was proposed [20, 19] to perform these minimizations alternatively
instead than simultaneously, see Algorithm 4

Algorithm 4 ADMM

Choose γ > 0, y0, z0.
for all k ≥ 0 do

Find xk+1 by minimising x 7→ f(x) −
〈
zk, Ax

〉
+ γ

2 ∥ζ −Ax−Byk∥2,

Find yk+1 by minimising y 7→ g(y) −
〈
zk, By

〉
+ γ

2 ∥ζ −Axk+1 −By∥2,
Update zk+1 = zk + γ(ζ −Axk+1 −Byk+1).

end for

We will relate this approach to other known converging algorithms. Then in a next section, we will
show how we can derive rates of convergence for this approach. A classical reference for the convergence
is [14], see also http://stanford.edu/~boyd/admm.html.

Let us observe that in terms of the functions f̃ , g̃, the algorithm computes, letting ξk = Axk, ηk =
Byk:

ξk+1 = arg min
ξ
f̃(ξ) −

〈
zk, ξ

〉
+
γ

2
∥ζ − ξ − ηk∥2 = proxf̃/γ(ζ + 1

γ z
k − ηk); (74)

ηk+1 = arg min
η
g̃(η) −

〈
zk, η

〉
+
γ

2
∥ζ − ξk+1 − η∥2 = proxg̃/γ(ζ + 1

γ z
k − ξk+1). (75)

Thanks to Moreau’s identity (29),

proxγf̃∗(zk + γ(ζ − ηk)) = zk + γ(ζ − ηk) − γξk+1, (76)

proxγg̃∗(zk + γ(ζ − ξk+1)) = zk + γ(ζ − ξk+1) − γηk+1 = zk+1. (77)

Letting f̃∗ζ (p) := f̃∗(p) − ⟨ζ, p⟩ = f∗(A∗p) − ⟨ζ, p⟩, the first line can also be rewritten

γ(ξk+1 − ζ) = zk − γηk − proxγf̃∗
ζ
(zk − γηk). (78)

If we let uk = zk − γηk, vk+1 = zk + γ(ζ − ξk+1), we find that

γηk+1 = zk + γ(ζ − ξk+1) − proxγg̃∗(zk + γ(ζ − ξk+1)) = vk+1 − proxγg̃∗(vk+1).

and
uk+1 = zk+1 − γηk+1 = 2proxγg̃∗(vk+1) − vk+1.

On the other hand, (78) gives

proxγf̃∗
ζ
(uk) + γηk = zk + γ(ζ − ξk+1) = vk+1.
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Hence the iteration reads

vk+1 = proxγf̃∗
ζ
(2proxγg̃∗(vk) − vk) + vk − proxγg̃∗(vk),

which is precisely a Douglas-Rachford iteration for the problem

0 ∈ ∂g̃∗ + ∂f̃∗ζ

which is the equation for (72).
The theory seen up to now shows that vk ⇀ v a fixed point of the iteration, which is such that

proxγg̃∗(v) is a solution of the dual problem. In practice, zk will converge to a Lagrange Multiplier

for (73), and xk, yk to a solution, as soon as there is enough coercivity (in particular, in finite dimension).

5.5 Other saddle-point algorithms: Primal-dual algorithm

We remark that thanks to (77) and (74), one has

zk − zk−1

γ
= ζ − ξk − ηk

hence
ξk+1 = proxf̃/γ(ξk + 1

γ (2zk − zk−1))

while as before
zk+1 = proxγg̃∗(zk − γ(ξk+1 − ζ)).

This is the form of a primal-dual algorithm (of “Arrow-Hurwicz” type) which aims at solving a fixed
point problem of the form (letting τ = 1/γ):

ξ + τ∂f̃(ξ) ∋ ξ + τz, z + γ∂g̃∗(z) ∋ z − γ(ξ − ζ).

More generally, for a problem in the standard form

min
x
f(Kx) + g(x) = min

x
sup
y

⟨Kx, y⟩ + g(x) − f∗(y),

one can implement the Algorithm 5 described below.

Algorithm 5 PDHG

Input: initial pair of primal and dual points (x0, y0), steps τ, σ > 0.
for all k ≥ 0 do

find (xk+1, yk+1) by solving

xk+1 = proxτg(x
k − τK∗yk) (79)

yk+1 = proxσf∗(yk + σK(2xk+1 − xk)). (80)

end for

Let us write now the iterates as follows:{
xk+1−xk

τ + ∂g(xk+1) ∋ −K∗yk = K∗(yk+1 − yk) −K∗yk+1

yk+1−yk
σ + ∂f∗(yk+1) ∋ K(xk+1 − xk) +Kxk+1,
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that is (
1
τ I −K∗

−K 1
σ I

)(
xk+1 − xk

yk+1 − yk

)
+

(
∂g(xk+1)
∂f∗(yk+1)

)
+

(
0 K∗

−K 0

)(
xk+1

yk+1

)
∋ 0. (81)

We find that this algorithm is a proximal point algorithm for the variable zk = (xk, yk)T , the
monotone operator which is the sum of the subgradient of the convex function (x, y) 7→ (g(x) + f∗(y))

and the antisymmetric linear operator

(
0 K∗

−K 0

)
, in the metric

Mτ,σ :=

(
1
τ I −K∗

−K 1
σ I

)
if this metric is positive definite. To see this we observe that if A is a monotone operator and M a
symmetric positive definite operator, M−1A defines a monotone operator in the scalar product ⟨·, ·⟩M =
⟨M ·, ·⟩: if p ∈M−1Ax, q ∈M−1Ay,

⟨p− q, x− y⟩M = ⟨M(p− q), x− y⟩ ≥ 0

as Mp ∈ Ax, Mq ∈ Ay. Hence, in this metric, the resolvent JMA is given by y = (I +M−1A)−1x, which
satisfies the equation y +M−1Ay ∋ x, that is, M(y − x) +Ay ∋ 0.

When is the matrix Mτ,σ positive definite? We have〈
Mτ,σ

(
ξ
η

)
,

(
ξ
η

)〉
= 1

τ ∥ξ∥
2 + 1

σ∥η∥
2 − 2 ⟨Kξ, η⟩

which is positive if and only if for any X,Y ≥ 0

sup
∥ξ∥≤X,∥η∥≤Y

2 ⟨Kξ, η⟩ = 2∥K∥XY <
X2

τ
+
Y 2

σ

if and only if

2∥K∥ < min
X≥0,Y≥0

X

τY
+

Y

σX
=

2√
τσ

if and only if
τσ∥K∥2 < 1. (82)

We deduce:

Theorem 5.14. If (82) is satisfied, then zk = (xk, yk)T defined by Algorithm 5 converges to a fixed
point (x, y)T of the operator, that is, a solution of (33) (if one exists).

5.5.1 Rate

To find a rate, we do as follows. Taking the scalar product of (81) with zk+1 − z where z is an arbitrary
point, we find

〈
zk+1 − zk, zk+1 − z

〉
Mτ,σ

+

〈(
0 K∗

−K 0

)(
xk+1

yk+1

)
,

(
xk+1 − x
yk+1 − y

)〉
+ g(xk+1) + f∗(yk+1) ≤ g(x) + f∗(y)

The scalar product is
−
〈
K∗yk+1, x

〉
+
〈
Kxk+1, y

〉
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while 〈
zk+1 − zk, zk+1 − z

〉
Mτ,σ

= 1
2∥z

k+1 − zk∥2Mτ,σ
+ 1

2∥z
k+1 − z∥2Mτ,σ

− 1
2∥z

k − z∥2Mτ,σ
.

Therefore, introducing the Lagrangian of (31), as

L(xk+1, y) − L(x, yk+1) = g(xk+1) +
〈
y,Kxk+1

〉
− f∗(y) − g(x) −

〈
yk+1,Kx

〉
+ f∗(yk+1)

we obtain for any z = (x, y)T :

L(xk+1, y) − L(x, yk+1) + 1
2∥z

k+1 − zk∥2Mτ,σ
+ 1

2∥z
k+1 − z∥2Mτ,σ

≤ 1
2∥z

k − z∥2Mτ,σ
.

Summing from k = 0 to n − 1 and using the convexity of (ξ, η)T 7→ L(ξ, y) − L(x, η), we find if we let
Zn = (Xn, Y n)T = (

∑n
k=1 z

n)/n that

L(Xn, y) − L(x, Y n) ≤ 1

2n
∥z0 − z∥2Mτ,σ

. (83)

This is a weak form of a rate (as it depends on (x, y)), and there is still some work to convert it into
a true rate for the energy. The simplest case is when dom f∗,dom g are bounded, then one can take the
sup in x, y to find that

G(Xn, Y n) ≤ C

2n

where C = sup{∥z0 − z∥2Mτ,σ
: z = (x, y), x ∈ dom g, y ∈ dom f∗}.

5.5.2 Extensions

We present here an extension of Algorithm 5 due to Condat and in a generalized form to Vu (referred
usually as Condat-Vu’s primal-dual algorithm). A first observation (cf Vu, Bot) is that one can replace
∂g and ∂f∗ with monotone operators, and get similar results.

A second observation, due to Condat, is that one can iterate the operator with an explicit step of a
co-coercive operator. Typically, if h is a convex function with Lh-Lipschitz gradient, one can replace (81)
with (

1
τ I −K∗

−K 1
σ I

)(
xk+1 − xk

yk+1 − yk

)
+

(
∂g(xk+1)
∂f∗(yk+1)

)
+

(
0 K∗

−K 0

)(
xk+1

yk+1

)
∋
(
−∇h(xk)

0

)
.

This iteration is of the form (38) and will converge if the operator

C = M−1
τ,σ

(
∇h(x)

0

)
is µ-co-coercive with µ > 1/2, in the metric Mτ,σ. That is, if for all z, z′:

⟨Mτ,σ(z − z′), Cz − Cz′⟩ ≥ µ∥Cz − Cz′∥2Mτ,σ
.

Note that

∥Cz − Cz′∥2Mτ,σ
=

〈
M−1
τ,σ

(
∇h(x) −∇h(x′)

0

)
,

(
∇h(x) −∇h(x′)

0

)〉
and that

Mτ,σ

(
ξ
η

)
=

(
∇h(x) −∇h(x′)

0

)
⇒ ξ = (I − στK∗K)−1(τ(∇h(x) −∇h(x′))),
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hence (using also the 1/Lh-co-coercivity of ∇h):

∥Cz − Cz′∥2Mτ,σ
= ⟨ξ,∇h(x) −∇h(x′)⟩ ≤ τ

1 − στL2
∥∇h(x) −∇h(x′)∥2

≤ τLh
1 − στL2

⟨x− x′,∇h(x) −∇h(x′)⟩

=
τLh

1 − στL2
⟨Mτ,σ(z − z′), Cz − Cz′⟩ .

Here, L = ∥K∥ (the operator norm). Hence C is µ-co-coercive for µ = (1−στL2)/(τLh) and one deduces
the algorithm converges provided

1

σ

(
1

τ
− Lh

2

)
> L2.

In this case again we get the convergence of the Vu-Condat algorithm, which reads:

Algorithm 6 PDHG with explicit step

Input: initial pair of primal and dual points (x0, y0), steps τ, σ > 0.
for all k ≥ 0 do

find (xk+1, yk+1) by solving

xk+1 = proxτg(x
k − τ(K∗yk + ∇h(xk))) (84)

yk+1 = proxσf∗(yk + σK(2xk+1 − xk)). (85)

end for

Exercise: Show that a fixed point of these iterations solves

min
x
f(Kx) + g(x) + h(x) = min

x
sup
y

⟨y,Kx⟩ − f∗(y) + g(x) + h(x).

6 “Large scale” optimization

In this lecture, we only mention rapidly two techniques currently used to avoid computing full gradients.
Such approaches are useful for solving very large dimensional problems.

6.1 Coordinate descent and stochastic coordinate descent

6.1.1 Does coordinate descent / alternating minimization work?

Assume one wants to solve
min

x1,...,xn

f(x1, . . . , xn)

and one knows how to solve, for any i = 1, . . . , n and given (xj)j ̸=i

min
ξ
f(x1, . . . , xi−1, ξ, xi+1, . . . , xn).

Then, it is natural to consider the following algorithm: (x0) being given, one computes for k ≥ 0,
i = 1, . . . , n:

xk+1
i ∈ arg min

ξ
f(xk+1

1 , . . . , xk+1
i−1 , ξ, x

k
i+1, . . . , x

k
n). (86)

64



Denoting x = (x1, . . . , xn), does this converge? It depends. The following straightforward (classical)
example shows that it is easily not the case.

Consider, for x = (x1, x2) ∈ R2, f(x1, x2) = x21/2 + |x1 − x2|, which is minimal for (x1, x2) = (0, 0).
From (xk1 , x

k
2), the algorithm will first produce xk+1

1 = max{−1,min{xk2 , 1}} and then xk+1
2 = xk+1

1 .
Hence, one has xk1 = xk2 = x12 for any k ≥ 1 and unless x02 = 0, one never converges to the minimizer.

On the other hand, assume f is C1, bounded from below, coercive (infinite at infinity, so that the
sequence (xk) is bounded), and we are in finite dimension. A first remark is that by construction, f(xk)
is decreasing, and converges to some value f∗. In addition, one has (with obvious notation, and without
assuming particularly that the xi are one-dimensional scalars):

∂if(xk+1
1 , xk+1

i , xki+1, . . . , x
k
n)

∂xi
= 0.

If (xk)k converges, then one easily deduces that ∇f(xk) = 0, hence xk is a critical point with value
f(xk) = f∗. But (xk) could have subsequences converging to different limits.

In case f is convex, one can show that these limits are minimizers. Indeed, assume liml x
kl
i =

xi and let also x′i = liml x
kl+1
i (possibly passing to another subsequence). Clearly, one has f(x) =

f(x′) = f∗ = f(x′1, . . . , x
′
i−1, xi, . . . , xn) for any i, and one also easily finds that x′i is a minimizer of

f(x′1, . . . , x
′
i−1, •, xi+1, . . . , xn), as well as xi since f has the same value at all these points. In particular,

∂f(x′1, . . . , x
′
i, xi+1, . . . , xn)

∂xi
=
∂f(x′1, . . . , x

′
i−1, xi, . . . , xn)

∂xi
= 0. (87)

We show by induction that ∇f(x′) = 0. To start with, from (87) for i = 1, 2 we deduce that (x′1, x2) is
a minimizer the convex function f(•, •, x3, . . . , xn). But since f(x′1, x

′
2, x3, . . . , xn) = f(x′1, x2, . . . , xn) =

f∗, also (x′1, x
′
2) is a minimizer and in particular, the gradients of f with respect to x1 and x2 vanish at

this point. By induction, if we assume that the gradient of f with respect to xj , j = 1, . . . ,m vanishes in
(x′1, . . . , x

′
m, xm+1, . . . , xn), using (87) for i = m and i = m + 1 we find that (x′m, xm+1) is a minimizer

of the convex function f(x′1, . . . , x
′
m−1, •, •, xm+2, . . . , xn), and using the induction assumption, we have

that (x′1, . . . , x
′
m, xm+1) is a minimizer of the convex function f(•, . . . , •, xm+2, . . . , xn). As the value

is f∗, also (x′1, . . . , x
′
m+1) is a minimizer and the (m + 1) first gradients of f vanish at this point. By

induction we deduce that ∇f(x′) = 0 and that x′ (hence also x) is a minimizer. A similar proof in a
more complex situation (with a convex, separable nonsmooth term) is found in [44] (Tseng).

6.1.2 Block coordinate descent

Instead of finding the minimizer of f with respect to one variable, one could perform a step of gradient
descent. In particular, if f has Lipschitz gradients, one could rather replace (86) with

xk+1
i = xki − τi∇if(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n). (88)

Here, ∇i := ∂/∂xi. Assume that ∂if is Li-Lipschitz (uniformly). Then one has as usual (see (1))

f(xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n) ≤ f(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n)

− τi(1 − Liτi
2 )∥∇if(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n)∥2

Choosing for instance τi = 1
Li

, we deduce

f(xk+1
1 , . . . , xk+1

i , xki+1, . . . , x
k
n) +

1

2Li
∥∇if(xk+1

1 , . . . , xk+1
i−1 , x

k
i , . . . , x

k
n)∥2

≤ f(xk+1
1 , . . . , xk+1

i−1 , x
k
i , . . . , x

k
n)
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and in particular, one can reproduce the same proof as before in the convex case and show that any limit
point is a minimizer. One interesting point here is that in general, the Lipschitz constant with respect to
one variable is smaller than with respect to all the variables (think for instance to (x1, x2) 7→ (x1 +x2)2:
its gradient is

√
2-Lipschitz, while its partial gradients are 1-Lipschitz), so that the steps performed in

the coordinate descent method are longer than for a gradient descent.
Up to now, we have considered alternating minimizations or block coordinate descent with a cyclic

rule, where each coordinate is optimized in ascending order. This is a bit arbitrary. Let us now show
that (on average) one can obtain good performances with a random update. This is our first example of
a stochastic algorithm.

6.1.3 Random coordinate descent

We consider the following algorithm, with a notation slightly differing from the previous sections: we
pick x0. At iteration k ≥ 0, we consider xk. We pick randomly a coordinate i with some probability pi
(
∑n
i=1 pi = 1, pi > 0), and let ik := i. Then we let xk+1

j = xkj for j ̸= ik, and

xk+1
ik

= xkik − τik∇ikf(xk). (89)

As before, we have

f(xk+1) ≤ f(xk) − τik(1 − Lik
τik
2 )∥∇ikf(xk)∥2 (90)

As a consequence, knowing the point xk, the expectation E(f(xk+1)|xk) satisfies

E(f(xk+1)|xk) ≤ f(xk) −
n∑
i=1

piτi(1 − Liτi
2 )∥∇if(xk)∥2.

We can pick for instance τi = 1/Li and pi = Li/(
∑
j Lj), meaning that we pick more often the coordinates

with larger Lipschitz constants. In this case, the previous estimate becomes

E(f(xk+1)|xk) ≤ f(xk) − 1

2
∑
j Lj

n∑
i=1

∥∇if(xk)∥2 = f(xk) − 1

2
∑
j Lj

∥∇f(xk)∥2. (91)

Computing then the expectation with respect to xk, we obtain

E(f(xk+1)) ≤ E(f(xk)) − 1

2
∑
j Lj

E(∥∇f(xk)∥2). (92)

In particular, this is a decreasing sequence, and one has

1

2
∑
j Lj

∞∑
k=0

E(∥∇f(xk)∥2) ≤ f(x0) <∞

which shows that E(∥∇f(xk)∥2) → 0 (∇f(xk) → 0 almost surely, up to subsequences)).
More generally, we pick τi = θ/Li for θ ∈]0, 2[ and introduce the norm ∥g∥2M :=

∑n
i=1mi|gi|2, for

mi := pi/Li. Then the same computation as above yields

E(f(xk+1)|xk) ≤ f(xk) −
n∑
i=1

θ(2 − θ)pi
Li

∥∇if(xk)∥2 = f(xk) − θ(2 − θ)

2
∥∇f(xk)∥2M .

We assume that there exists a minimizer x∗ and let ∆k := f(xk) − f(x∗), and show the following
result:
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Lemma 6.1. Assume {f ≤ f(x0)} is bounded. Then

E(∆k) ≤ 2C2

θ(2 − θ)

1

k + 1
(93)

where C ≥ supf(x)≤f(x0) ∥x− x∗∥M−1 .

Proof. By convexity, we observe that

f(x) − f(x∗) ≤ ⟨∇f(x), x− x∗⟩ ≤ ∥∇f(x)∥M∥x∗ − x∥M−1 ,

which is ≤ C∥∇f(x)∥ if f(x) ≤ f(x0) and C is as in the statement. Hence using (91), we find that

E(f(xk+1) − f(x∗)|xk) ≤ f(xk) − f(x∗) − θ(2 − θ)

2

(f(xk) − f(x∗))2

C2
.

Now, by convexity (from Jensen’s inequality), we know that E(∆k)2 ≤ E(∆2
k) so that

E(∆k+1) ≤ E(∆k) − θ(2 − θ)

2C2
E(∆2

k) ≤ E(∆k) − θ(2 − θ)

2C2
E(∆k)2.

Inequality (93) follows then from Lemma 2.6.

One sees here that it might be interesting to use non-uniform probabilities to improve the pro-
cess, however it is not obvious how (one should minimize the “diameter” C, which is given by C2 =
supf(x)≤f(x0)

∑
i Li|xi − x∗i |2/pi).

To compare with a standard gradient descent, one can use the choice already mentioned above, θ = 1
and pi = Li/

∑
j Lj , for which mi = 1/

∑
j Lj . The rate becomes

E(∆nk) ≤

 2

n

n∑
j=1

Lj

 supf(x)≤f(x0) ∥x− x∗∥2

k + 1/n

after k “epochs” (i.e., passes over all the data, at least on average: we consider that it requires n iterations
to approximate one step of a full gradient descent). This is to be compared to the rate in Theorem 2.7:

∆k ≤ 2L
∥x0 − x∗∥2

k + 1

at the kth iteration of a gradient descent, where now L is the global Lipschitz constant of f .
So the relevant question here is: which is smallest of L and 1

n

∑
j Lj? One always have

max
j
Lj ≤ L ≤

√√√√ n∑
j=1

L2
j , (94)

hence
1

n

∑
j

Lj ≤ L,

whereas the upper bound in (94) satisfies

1

n

∑
j

Lj ≤
1√
n

√√√√ n∑
j=1

L2
j .

67



Hence, in the worst case, the complexity of the random coordinate descent is similar to the gradient
descent, while if L is closer to the upper bound in (94), the complexity is smaller by a factor 1/

√
n,

where n is the number of coordinates.

This approach has of course many extensions. It was first extended to the (separable) non-smooth
case in [36]: it is shown that for an objective of the form f(x) +

∑n
i=1 ψi(xi) one can replace the kth

iteration (89) with the proximal iteration

xk+1
ik

= (I + τik∂ψi)
−1(xik − τik∇ikf(xk))

with τik = 1/Lik , and obtain essentially the same rate. Acceleration has been proposed shortly after, for a
very complete variant (including non differentiable separable terms, parallel updates, and Nesterov-type
acceleration...) see in particular [18].

6.2 Stochastic gradient descent

6.3 SGD for learning problems

We now consider a different problem, arising for instance in statistical learning, when one has to minimize
(for large n ≥ 1) a sum of convex functions of the form

min
x

1

n

∑
i

fi(x) + ψ(x) (95)

Note that if ψ is strongly convex, one can derive a dual problem

max
y1,...,yn

− 1

n
f∗i (yi) − ψ∗(− 1

n

∑
i

yi)

where now ψ∗ has Lipschitz gradient, and tackle the problem by a proximal variant of the (random)
coordinate descent algorithm (such as in [44, 36, 18]), as mentioned in the last section. See also the
variant termed “stochastic dual coordinate ascent” [42, 43].

We will focus on a direct gradient descent approach for the objective function f(x) := (1/n)
∑
i fi(x)

(and hence the case ψ = 0, to simplify), considering however that if n is too large, it might not be a
good idea to evaluate ∇f at each iteration. We assume here that each fi is convex with Li-Lipschitz
gradient. We study the following “stochastic gradient” algorithm: starting from x0, for each k ≥ 1, we

� pick ik = i ∈ {1, . . . , n} with probability 1/n;

� let xk+1 = xk − τ∇fik(xk), for some τ > 0.

We observe immediately that E(xk+1|xk) = xk − τ
∑
i
1
n∇fi(x

k) = xk − τ∇f(xk), so that this
corresponds to a stochastic gradient descent where the gradient of f is replaced by a random variable
with expectation ∇f(x) (and one could indeed consider this more general situation).

As usual, one can write that for j = 1, . . . , n, if ik = i,

fj(x
k+1) ≤ fj(x

k) − τ
〈
∇fj(xk),∇fi(xk)

〉
+
Ljτ

2

2
∥∇fi(xk)∥2

and summing, we find that

f(xk+1) ≤ f(xk) − τ
〈
∇f(xk),∇fi(xk)

〉
+
τ2

2

 1
n

n∑
j=1

Lj

 ∥∇fi(xk)∥2.
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We denote L̄ := (
∑
j Lj)/n the average Lipschitz constant. Hence, knowing xk, one has (using that each

i appears with probability 1/n)

E(f(xk+1|xk) ≤ f(xk) − τ∥∇f(xk)∥2 +
τ2

2
L̄

(
1

n

n∑
i=1

∥∇fi(xk)∥2
)

≤ f(xk) − τ(1 − τL̄
2 )∥∇f(xk)∥2 +

τ2

2
L̄

(
1

n

n∑
i=1

∥∇fi(xk) −∇f(xk)∥2
)

One sees that now, there is a problem: for τ < 2/L̄, one can expect that E(f(xk)) will decrease, until
E(∥∇f(xk)∥2) (which is of the order of ∥xk − xk+1∥2) becomes comparable to E( 1

n

∑n
i=1 ∥∇fi(xk) −

∇f(xk)∥2), which is the variance of the random gradient ∇fi, averaged on the random point xk.
Hence, with constant step size, one cannot expect this to converge. The only hope is that the “bad”

variance term is of second order in τ . So that the standard solution is to replace τ in the iteration with
a variable τk, with τk → 0. To simplify, we make also the assumption that the “variance” is globally
bounded

1

n

n∑
i=1

∥∇fi(x) −∇f(x)∥2 ≤ σ2

for all x (or all x in some set, provided we can show that the iterates xk will remain not too far from x∗:
this is the case for instance if we assume that all the gradients −∇fi(x) point rougthly towards x∗ (or
the origin) for large |x|, in the sense ⟨−∇fi(x), x− x∗⟩ ≥ θ|∇fi(x)||x− x∗| for some θ ∈ (0, 1), for all i
and for |x| large enough). Assuming also τk ≤ 1/L̄, one has then for n ≥ 1(

n−1∑
k=0

τk

)
min

k=0,...,n−1
E(∥∇f(xk)∥2) ≤ f(x0) +

L̄

2
σ2

n−1∑
k=0

τ2k

so that

min
k=0,...,n−1

E(∥∇f(xk)∥2) ≤
f(x0) + L̄

2 σ
2
∑n−1
k=0 τ

2
k∑n−1

k=0 τk
.

One obtains a rate which is governed by the ratio∑n−1
k=0 τ

2
k∑n−1

k=0 τk
.

for instance for τk ∼ 1/k, this is like C/ log n, while for 1/
√
k, it is like log n/

√
n.

The latter choice is nearly optimal, indeed, if one knows all the parameters of the problem and fixes
the number of iterations in advance, one can use a fixed step τ : in this case, the best choice is to let
L̄σ2nτ2/2 = f(x0), yielding

min
k=0,...,n−1

E(∥∇f(xk)∥2) ≤
f(x0) + L̄

2 σ
2nτ2

nτ
=

√
2L̄f(x0)√

n
σ

This approach is originally due Robbins and Monro [37].

6.3.1 Improvements of SGD

We only refer here to some recent improvements developed in the machine learning literature. The basic
idea is to “reduce” along the iterations the variance of the gradient estimate, so that one does not have to
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send the step τ to zero to compensate. Starting from the early 2010’s, a few variants have been proposed,
called for instance “SVRG” (stochastic variances-reduced gradient algorithm) [47], “SAG” (stochastic
average gradient) [22], or “SAGA” [13].

For instance, the latter addresses problems of the form (95), where all fi are supposed to have L-
Lipschitz gradient, in the following way: assuming at iteration k one knows xk and the values ∇fi(yki ),
i = 1, . . . , n, at k + 1 one does:

1. pick randomly an index i ∈ {1, . . . , n} with uniform probability distribution;

2. let yk+1
i = xi, and for j ̸= i, let yk+1

j = ykj . Store ∇fi(yk+1
i ) = ∇fi(xk) in memory (points y need

not be recorded, only the gradients are needed);

3. set

zk+1 = zk − τ

∇fi(yk+1
i ) −∇fi(yki ) +

1

n

n∑
j=1

∇fj(ykj )


xk+1 = proxτψ(zk+1).

Then, the results reported in [13] show that:

� If the fi’s are µ-convex with L-Lipschitz gradient (L > µ > 0), then if τ = 1/(2µn+ L) one has

E(∥xk − x∗∥2) ≤
(

1 − µ

2(µn+ L)

)k [
∥x∗ − x0∥2 +

n

µn+ L
Df (x0, x∗)

]
while for τ = 1/(3L) (not depending on µ), one has:

E(∥xk − x∗∥2) ≤
(

1 − min

{
1

4n
,
µ

3L

})k [
∥x∗ − x0∥2 +

2n

3L
Df (x0, x∗)

]
� If the fi’s have L-Lipschitz gradient, then again for τ = 1/(3L) one has, introducing the averages

x̄k := (1/k)
∑k
t=1 x

t,

E(F (x̄k) − F (x∗)) ≤ 4n

k

[
2L

n
∥x0 − x∗∥2 +Df (x0, x∗)

]
where F is the global objective in (95). Here, Df (x, y) := f(x)−f(y)−⟨∇f(y), x− y⟩ is the f -“Bregman
distance” of x to y cf Remark 5.9 in Section 5.2.2.
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