Partiel du 24 mars 2016

Durée 2h00

Documents et calculatrice non autorisés.

Questions de cours.

- (a) Soient $f: \mathbb{R} \to \mathbb{R}$ et $g: \mathbb{R} \to \mathbb{R}$ deux fonctions convexes. On suppose que g est croissante. Montrer que $g \circ f$ est convexe.
- (b) Soit I un intervalle ouvert de \mathbb{R} , $f: I \to \mathbb{R}$ une application, x_0 un point de I et $n \in \mathbb{N} \setminus \{0\}$. Enoncer la formule de Taylor-Young pour f à l'ordre n en x_0 et les conditions de dérivabilité sur f sous lesquelles cette formule est valide.
- (c) Pour $f(x) = \frac{1}{1+x}$, déduire de la question précédente le développement limité de la fonction f à l'ordre $n \in \mathbb{N} \setminus \{0\}$ en $x_0 = 0$.
- (d) Soit I un intervalle ouvert de \mathbb{R} contenant $0, f: I \to \mathbb{R}$ une application et $n \in \mathbb{N} \setminus \{0\}$. On suppose que f possède un développement limité d'ordre n en 0 de partie régulière $P(x) = \sum_{k=0}^{n} a_k x^k$. Montrer que, pour tout $m \in \mathbb{N}$, avec m < n, f possède également un développement limité d'ordre m en 0 dont on précisera la partie régulière.

Exercice 1

(a) Déterminer la limite lorsque $x \to 0$ de la fonction :

$$f(x) := \frac{\sin(x) - x}{x^3}$$

- (b) Rappeler (sans démonstration) les développements limités des fonctions $x \to \sqrt{1+x}$ et $x \to \cos(x)$ à l'ordre 2 en 0 et en déduire le développement limité à l'ordre 2 de la fonction $g(x) := \frac{\sqrt{1+x}}{\cos(x)}$ en 0.
- (c) Montrer que la fonction $f(x) := (x+1) \exp\left(\frac{1}{x}\right)$ admet une asymptote en $+\infty$ et déterminer la position de f par rapport à cette asymptote.
- (d) Donner un équivalent simple de $u_n := \frac{\ln(n^2+2) \ln(n^2+1)}{\ln(n+2) \ln(n+1)}$ lorsque $n \to +\infty$.

Tourner la page s.v.p.

Exercice 2

- (a) Soit I un intervalle ouvert de $\mathbb R$ contenant $0, f: I \to \mathbb R$ une application et $n \in \mathbb N \setminus \{0\}$. On suppose que f possède un développement limité d'ordre n en 0 de partie régulière le polynôme $P(x) := \sum_{k=0}^n a_k x^k$. Montrer que la fonction $g(x) := \frac{f(x) f(0)}{x}$ possède un développement limité en 0 d'ordre n-1 de partie régulière $Q(x) := \sum_{k=0}^{n-1} a_{k+1} x^k$.
- (b) En appliquant le résultat de la question précédente, donner le développement limité à l'ordre 2 en 0 de la fonction $h(x) := \left(\frac{e^x 1}{x}\right)^{1/3}.$

Barème indicatif : Questions de cours : 6 points, Exercice 1 : 10 points (questions (a) et (b), 2 points chacune, questions (c) et (d) 3 points chacune), Exercice 2 : 4 points.