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CFM

Machine Learning For Trading

Recent successes of Machine Learning (ML, and AI) in signal processing (voice recognition, image classification,
etc) and in sandboxes (Go game) pushe everyone to try it everywhere.

Financial markets are not spared from this overwhelming wave of attempts to apply Machine Learning to any
possible data...
Of course we can think about natural translations of existing applications, like:

I Recommendations to manage relationships with customers (including robot-advisory);
I Nowcasting to harvest a lot of data describing the real economy to know as soon as possible its health.

Moreover, ML is known to be efficient when you have access to a lot of data. Intraday trading has
a very large amount of data (one month of trading on one stock of the CAC 40 reads about 120,000 trades

and 130 millions of orders). It is expected ML could find applications there.

The main specific aspects of trading: À you automate the trading process; Á you will face a
“ closed loop effect ” (i.e. via the market impact).

We review here some known results about intraday trading optimization and try to foresee some applications of
machine learning in this area.

CA Lehalle 2 / 36



CFM

Machine Learning For Trading
Based On

This talk is based on few papers with co-authors:

À (Empirics + Theory) Simulating and analyzing order book data: The queue-reactive model, by W. Huang,
C.-A. L and M. Rosenbaum [Huang et al., 2015]

Á (Empirics + Theory) Market Impacts and the Life Cycle of Investors Orders, by E. Bacry, A. Iuga, M. Lasnier
and C.-A. L [Bacry et al., 2015]

Â (Theory) Limit Order Strategic Placement with Adverse Selection Risk and the Role of Latency, by C.-A. L
and O. Mounjid [L and Mounjid, 2016];

Ã (Theory + empirics) + Optimal High Frequency Interactions with Orderbooks, by O. Moundji, C.-A. L and M.
Rosenbaum [L et al., 2018].

Ä (Empirical) + The Behaviour of High-Frequency Traders Under Different Market Stress Scenarios, by N.
Megarbane, P. Saliba, C.-A. L and M. Rosenbaum [Megarbane et al., 2017];

Å (Theory + empirics) Optimal split of orders across liquidity pools: a stochastic algorithm approach, by G.
Pagès, S. Laruelle and C.-A. L [Pagès et al., 2011]
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Outline

1 What Do We Know About Intraday Dynamics?
Limit Orderbooks
Market Impact
Do Trading Practices Take All This Into Account?

2 Some Theory: Optimal Control and Stochastic Algorithms
A Small Order
Stochastic Algorithms: Machine Learning In Action

3 Examples Of Statistical Learning In Trading
Exploration-Exploitation Of Dark-Pools

4 Good Practices
Learning From HFT Around News
Mixing Learning and Control
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CFM

What Do We Know About Intraday Dynamics?
Limit Orderbooks: The Queue Reactive Model

The Queue Reactive Model introduced by Weibing Huang during his PhD thesis [Huang et al., 2015] shows that
I The flows providing liquidity (i.e. limit orders) and consuming liquidity (i.e. cancel and market orders) and a

queue of a limit orderbook can be modelled by Poisson processes
I There intensities are functions of the size of the considered queue and its nearest neighbours.

First Limit
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CFM

What Do We Know About Intraday Dynamics?
Limit Orderbooks

This means that:
I Given you know the state of the liquidity offer (i.e. size of queues in the book)
I You have a good estimate of the distribution of the sequence of next events.

I This is more than just a prediction of the price in S seconds, it is a model of the dynamics (it predicts the
next step, and can be iterated).

I Can this be used to pilot a limit order?
I In other terms: can market participants looking at orderbook state be more efficient in providing liquidity?
I Could Machine Learning help them?

This is an on-going research program.
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What Do We Know About Intraday Dynamics?
Market Impact

in [Moro et al., 2009]

Market Impact takes place in different phases
I the transient impact, concave in time,
I reaches its maximum, the temporary impact, at the end of the

metaorder,
I then it decays,
I up to a stationary level; the price moved by a permanent shift.

To be more than anecdotical, it is needed to make statistics, few papers document market impact at all scales:
[Bershova and Rakhlin, 2013] (intraday impact), [Waelbroeck and Gomes, 2013] (daily impact of cash trades),
[Brokmann et al., 2015] (daily impact of informed trades for a hedge fund), [Bacry et al., 2015] (intraday and daily
impact of informed trades for a bank).
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What Do We Know About Intraday Dynamics?
Market Impact : The Square Root EffectFigure 3: Trace of the duration Y = T on the residuals of the X = R daily participation regression. Top: using

an L2 metric, bottom: using a L1 metric.

Regression Parameter Coef. (log-log) Coef. (L2) Coef. (L1)
(R.1)

Daily participation 0.54 0.45 0.40
(R.2)

Daily participation 0.59 0.54 0.59
Duration �0.23 �0.35 �0.23

(R.3)
Daily participation 0.44 � �

Bid-ask spread 0.28 � �
(R.4)

Daily participation 0.53 � �
Volatility 0.96 � �

(R0.1)
Trading rate 0.43 0.33 0.43

(R0.2)
Trading rate 0.37 0.56 0.45

Duration 0.15 0.24 0.23
(R0.3)

Trading rate 0.32 � �
Bid-ask spread 0.57 � �

(R0.4)
Trading rate 0.32 � �

Volatility 0.88 � �

Table 2: Direct regression approach algorithm described in Section 2.4 of the temporary market impact for
various sets of explanatory variables. For each set, the power exponent estimations are given using L1 dis-
tance, L2 distance and regular log-log regressions. There is an horizontal line � when there is not significant
di↵erence between the three regressions.

To confirm the dependence in T , we fit a power law on the trading rate X = r instead of the daily partici-
pation R:

�PT (!) = a · r(!)� + ✏(!)�WT .

8

Source: [Bacry et al., 2015]

The Formula should be close to

MI ∝ σ ·

√
Traded volume
Daily volume

· T−0.2

The term in duration is very difficult to estimate because you
have a lot of conditioning everywhere:

I did you trading process reacted to market conditions?
I are you alone?
I etc.

We used different methods.
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CFM

What Do We Know About Intraday Dynamics?
Market Impact : From High Frequency to Low Frequencies

If someone trade at a given frequency 1/δt from 0, his price impact at Kδt will
be (for an exponential kernel)

P(Kδt)− P(0) =
∑
k≤K

η(1)λe−kδt λ ' η(1)(1− e−Kδt λ)/δt .

And for a power law

P(Kδt)− P(0) = η(1)
(

1− (1 + Kδt)−(γ−1)
)
/δt .

In both cases, if he stops trading at Kδt , the price will fully revert according to
an exponential (or a power lax).

I The concave increase of the impact with time and its reversion can be explained using propagator models.
I But if you fit your “price impact curves” on data over a month, and you look at metaorders over the same

month, the amplitude of the effects will not be compatible!
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What Do We Know About Intraday Dynamics?
Trading Practices Take All This Into Account
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À The current imbalance predicts future
price moves.

We just saw that the “market context” (i.e. expected news) could
influence liquidity provision by market participants taking care of
orderbooks (i.e. HFT).
À To see if they react to the state of the orderbook (and following
the Queue Reactive Model), we can simply try to summarize the
state of the book (i.e. queues sizes), by its Imbalance:
(QASK − QBID)/(QASK + QBID).

Á We used a dataset of trades on NASDAQ-OMX (Nordic
European Equity Markets), on which the identity of the buyer and a
seller are know for each transaction, and synchronizing them to
CFM’s orderbook data. Thanks to this we can compute the average
imbalance give each type of participant traded using a limit order.

Â It is efficient.
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Some Theory: Optimal Control and Stochastic Algorithms
A Small Order: Optimal Trading Tactics Under Orderbook Dynamics

|
Bid Ask

QBef ,µ
t

Qa,µ
t

QAft,µ
t

QOpp,µ
t

Pt

Price

λ1,+

λ1,−

λ2,+

λ2,−

In [L et al., 2018] and [L and Mounjid, 2016], we design a procedure
to control one limit order in an orderbook. Our model tracks the
position of our limit order (of size Qa) in the first queue. The flows
adding and removing liquidity are similar to the ones of the QR
Model (i.e. they are Poisson with intensities conditioned by the
sizes of the queues).
The different transitions are:

I if no queue goes to zero, nothing special;
I if a queue goes to zero: a new queue is “discovered” on the

same side and another queue is “inserted” on the opposite
side. The sizes of these new queues are conditioned by the
state of the orderbook.

Using the notation u for a state of the orderbook (including the
controlled order), we can show that the process Ut is ergodic under
reasonable conditions, and we can show the existence of a “price at
infinity”:

g(u) = IE (P∞|F0,U0 = u) .
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Some Theory: Optimal Control and Stochastic Algorithms
Orderbook Modelling For A Small Order: Comparing Empirics and Models

(a) Empirical QOpp after 20 events
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(b) Theoretical QOpp after 20 events
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(c) Empirical QSame after 20 events
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(d) Theoretical QSame after 20 events
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Some Theory: Optimal Control and Stochastic Algorithms
Definition of The Control Problem

The controls µ are taken from:
I Stay in the orderbook
I Cancel (and then reinsert at the top of the queue)
I Convert it in a market order.

You have two versions of the control problem: either the
decision can be taken every ∆ seconds, either it can be
taken at any orderbook move.

Once the order is executed at time TµExec at price P, we
value the strategy at

sup
µ

IE
[
f ◦ IE

(
Pµ∞ − P

∣∣∣FTµ
Exec

)
− c qaTµExec

]
.

Where c is a waiting cost, f can be any (Lipschitz)
function, and IE

(
Pµ∞

∣∣Ft
)

is the price at infinity given
the state of the orderbook at t

Dynamic Programming Equation (for the continuous time version)

Let u = (qbef , qa, qaft , qopp, p, pexec) an initial state . The value function V (t , u) satisfies:

(1) max

 g(.)− V (t , .)
AV (t , .)− cqa1
V c−l (t , .)− V (t , .)− cqa1

 = 0, when qa > 0.

And V (t , u) = u at execution and V (T , u) = g(u) at T .
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Using the DPP

We show how to make the numerics to solve (1), and we
obtain results like

Estimate of the cost of latency

Let VT (0, u; ∆1) the optimal fast agent gain and
VT (0, u; ∆2) the optimal slow agent gain.

|VT (0, u; ∆1)− VT (0, u; ∆2)| ≤

H1

⌈
T

∆2

⌉⌈
∆2

∆1

⌉
eC3T + H2∆2T ,

where H1,H2 and C3 are constants involving pa-
rameters of the problem.

We fit the model on data and we solve it numerically
providing different qualitative results.

With the parameters: ∆ = 1 second, T = 10∆
QDisc = 22,QIns = 3, q = 1, c = 0, and the tick is0.01.
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Difference between the value of a “join the bid” strategy
and the value of the optimal one.
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rameters of the problem.

We fit the model on data and we solve it numerically
providing different qualitative results.

With the parameters: ∆ = 1 second, T = 10∆,
λSame,+ = λOpp,+ = 0.06, λSame,− = λOpp,− =
0.12,QDisc = 5,QIns = 2, q = 1, c = 0.0085 and the
tick is 0.01. Moreover Qbef (0) = 1.
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An extreme simulation to compare the “join the bid”
strategy and the optimal one.
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Some Theory: Optimal Control and Stochastic Algorithms
Stochastic Algorithms 101

I The stationary solutions of the ODE: ẋ = h(x) contains the extremal values of F (x) =
∫ x

0 h(x) dx
I A discretized version of the ODE is (γ is a step):

(2) xn+1 = xn + γn+1 h(xn)

I A stochastic version of this being (ξn are i.i.d. realizations of a random variable, h(X) = IE(H(X , ξ1))):

(3) Xn+1 = Xn + γn+1 H(Xn, ξn+1)

I the stochastic algorithms theory is a set of results describing the relationship between these 3 formula and
the nature of γ, H, h and ξ [Hirsch and Smith, 2005], [Kushner and Yin, 2003], [Doukhan, 1994]
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Some Theory: Optimal Control and Stochastic Algorithms
Stochastic Algorithms: Machine Learning In Action

Stochastic algorithms theory can be used when you only have a sequential access to a functional you need to
minimize:

I to minimize a criteria IE(F (X , ξ1)) of a state variable X
I if it is possible to compute:

H(Xn, ξn+1) :=
∂F
∂X

(Xn, ξn+1)

I the results of the stochastic algorithms theory (like the Robbins-Monro theorem [Pagès et al., 1990]) can be
used to study the properties of the long term solutions of the recurrence equation:

Xn+1 = Xn + γn+1 H(Xn, ξn+1)
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Examples Of Statistical Learning In Trading
Exploration-Exploitation Of Dark-Pools: What is Dark Routing?

When more than one trading destination are available (ECNs in the US, Multilateral Trading Facilities -MTF- in
Europe):

I each of them provides a specific flow φ
(i)
t ,

I keeping ∆T constant over the trading destinations, each liquidity pool will be able to deliver a quantity Di

Dark Pools are specific trading destinations because:
I they do not provide pre trade transparency about their limit order books
I you ask for V and you have min(V ,Di ) back
I they allow “pegged” orders: you can specify δS rather than a limit price (“pinging” implies ∆T = 0):

Di =

∫ τ+∆T

t=τ
φ

(i)
t (δS) dt
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Examples Of Statistical Learning In Trading
Exploration-Exploitation Of Dark-Pools

I at high frequency, historical statistics are not so useful
I the limit price S and the quantity V are random variables,
I the executed quantity on dark pools has to be maximized (it is market impact free) and sometimes fees are

different; this effect is modelled by a discount factor θi ∈ (0, 1) (normalized with respect to a “reference” Lit
pool)

I the quantity V is split into N parts (one for each DP): ri × V is sent to the i th DP (
∑N

i=1 ri = 1)
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Examples Of Statistical Learning In Trading
Dark Routing: Cost of the executed order (Details in [Pagès et al., 2011])

The remaining quantity is to be executed on a reference Lit market, at price S.

The cost C of the whole executed order is given by

C = S
N∑

i=1

θi min (ri V ,Di ) + S

(
V −

N∑
i=1

min (ri V ,Di )

)

= S

(
V −

N∑
i=1

ρi min (ri V ,Di )

)

where
ρi = 1− θi ∈ (0, 1), i = 1, . . . ,N.
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Examples Of Statistical Learning In Trading
Dark Pools: Mean Execution Cost

Minimizing the mean execution cost, given the price S, amounts to:

Maximization problem to solve

(4) max

{ N∑
i=1

ρiE (S min (ri V ,Di )) , r ∈ PN

}

where PN :=
{

r = (ri )1≤i≤N ∈ RN
+ |
∑N

i=1 ri = 1
}

.

It is then convenient to include the price S into both random variables V and Di by considering Ṽ := V S and
D̃i := Di S instead of V and Di . Assume that the distribution function of D/V is continuous on R+. Let
ϕ(r) = ρE (min (rV ,D)) be the mean execution function of a single dark pool (Φ =

∑
i ϕi (ri )), and assume that

V > 0 P− a.s. and P(D > 0) > 0
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Using the representation of the derivatives ϕ′i yields that, if Assumption (C) is satisfied, then

Characterization of the solution

r∗ ∈ arg max
PN

Φ⇔ ∀i ∈ {1, . . . ,N} ,E

V

ρi 1{r∗i V<Di} −
1
N

N∑
j=1

ρj 1{
r∗j V<Dj

}
 = 0.

Consequently, this leads to the following recursive zero search procedure

(5) rn+1
i = rn

i + γn+1Hi (rn,Y n+1), r0 ∈ PN , i ∈ IN ,

where for i ∈ IN , every r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

The Stochastic Algorithm Version

Hi (r , (V ,D1, . . . ,VN )) = V

ρi 1{ri V<Di} −
1
N

N∑
j=1

ρj 1{rj V<Dj}
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Examples Of Statistical Learning In Trading
Dark Routing: Back to the Notation of Stochastic Algorithms

When we design a procedure using H(r , ξ1), we potentially converge to the extrema of F (r) :=
∫

h(r), where
h(r) := IEξ1 H(r , ξ1).
Here ξt := (V (t),D1(t), . . . ,DN (t)), hence we can use the follwing stochastic procedure:

ri (t + 1) = ri (t) + γ(t) · Hi (r(t), (V (t),D1(t), . . . ,VN (t)))

= ri (t) + γ(t) · V (t) ·

ρi 1{ri (t)V (t)<Di (t)} −
1
N

N∑
j=1

ρj 1{rj (t)V (t)<Dj (t)}


⇒ (r1(∞), · · · , rN (∞)) will be our solution, i.e. the optimal split between Dark Pools .

The underlying idea of the algorithm

Do reward the dark pools which outperform the mean of the N dark pools by increasing the allocated
volume sent at the next step (and conversely punish the underperforming dark pools).
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Examples Of Statistical Learning In Trading
Dark Routing: Stochastic Algorithms Provide Convergence Results

Theorem 1: Convergence

Assume that (V ,D) satisfy upper assumptions, that V ∈ L2(P) and that Assumption (C) holds. Let
γ := (γn)n≥1 be a step sequence satisfying the usual decreasing step assumption∑

n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞.

Let (V n,Dn
1 , . . . ,D

n
N

)n≥1 be an i.d.d. sequence defined on a probability space (Ω,A,P). Then, there
exists an argmaxPN

Φ-valued random variable r∗ such that

rn −→ r∗ a.s.
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Good Practices, From [Megarbane et al., 2017]
Learning From HFT Around News

The data and some descriptive statistics.
The database is provided by the French regulator
(AMF), all orders (and transactions) are labelled by the
name of the owner, which allows us to identify HFTs. It
covers the trades and orders on the most liquid French
securities (36 of the CAC 40 stock), from November
2015 to July 2016 (approximatively 40 millions of trades
and 1.2 billions of orders to be processed).

¸ Everyone trades with everyone
Cons./Prov. HFTs non-HFTs

HFTs 33.6% 31.2% 64.8%
non-HFTs 22.4% 12.8% 35.2%

56.0% 44.0%
But HFT are not providing that much liquidity to trades

¶ HFT are the main liquidity providers in the LOB
Presence in the LOB Market share in

(market depth)

At the best bid and offer 70.8 %
At the two best prices 77.3 %
At the three best prices 79.3 %

· And they are very diverse
A/P ratio A/P ratio

below 50% over 50%

Part in nbe 60% 40%
Part in amount 45% 55%

Avg ratio (std) 25% (18%) 67% (10%)
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Good Practices
Usual Intraday Behaviour of HFT

I TOP: pct of presence in the first 3 limits and the
bid-ask spread,

I BOTTOM: amount in Euro on the first 3 limits and
the implicit volatility.

I You can notice the macro news announcements
(2:30pm and 4:00pm)
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Good Practices
Does This Average Behaviour Changes When There Are News (1/2)

We selected the 10 most impacting News around 2:30pm.
Left: market share (ie pct), Right: Size of the limit orders (in Euros).
The charts are different: first there is a scaling, second the liquidity (in Euros) provided by HFT does not
come back after impacting news.
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Good Practices
Does This Average Behaviour Changes When There Are News (2/2)

We selected the 10 most impacting News around 2:30pm.
Left: market share (ie pct), Right: Size of the limit orders (in Euros).
The charts are different: first there is a scaling, second the liquidity (in Euros) provided by HFT does not
come back after impacting news.
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Good Practices
Presence in The Book Around 4:00p.m. Announcements

I We only consider news related to the U.S economy (Bloomberg news): 140 days with announcements, vs.
51 without announcements. Data are restricted between 3:40pm and 4:50pm and we consider 1min bins.

I We create 3 dummy variables: B (for Before), D (for During) and A (for After) 4:00pm.
I The empirical volatility during each 1min bin is renormalized by the avg volatility of the day.

I Methodology: Do a model using days without announcements only, work on the residuals of this model
and try to explain these residuals on announcement days.

Explaining the pct of HFT liquidity in the book
Variable Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.7866 0.003 302.564 0 [ 0.781, 0.792 ]
Const. 0.011 0.002 6.302 0 [ 0.008, 0.015 ]
σnorm −0.0045 0.002 −2.664 0.008 [ -0.008, -0.001 ]

B −0.0520 0.004 −14.404 0 [ -0.059, -0.045 ]
D −0.1507 0.005 −28.941 0 [ -0.161, -0.141 ]
A −0.0283 0.004 −7.797 0 [ -0.035, -0.021 ]
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Good Practices
HFT Agressive/Passive Ratio Around 4:00p.m. Announcements

I We only consider news related to the U.S economy (Bloomberg news): 140 days with announcements, vs.
51 without announcements. Data are restricted between 3:40pm and 4:50pm and we consider 1min bins.

I We create 3 dummy variables: B (for Before), D (for During) and A (for After) 4:00pm.
I The empirical volatility during each 1min bin is renormalized by the avg volatility of the day.

I Methodology: Do a model using days without announcements only, work on the residuals of this model
and try to explain these residuals on announcement days.

Explaining HFT Agressive/Passive Ratio
Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.5340 0.002 228.198 0 [ 0.529, 0.539 ]
σnorm 0.0111 0.002 5.023 0 [ 0.007, 0.015 ]
D 0.0169 0.007 2.494 0.013 [ 0.004, 0.03 ]
Const. 0.0113 0.001 9.029 0 [ 0.009, 0.014 ]
σnorm −0.0053 0.001 −4.475 0 [ -0.008, -0.003 ]
B 0.0184 0.003 7.116 0 [ 0.013, 0.023 ]
D 0.0268 0.004 7.237 0 [ 0.02, 0.034 ]
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Good Practices
HFT Market Share on Trades Around 4:00p.m. Announcements

I We only consider news related to the U.S economy (Bloomberg news): 140 days with announcements, vs.
51 without announcements. Data are restricted between 3:40pm and 4:50pm and we consider 1min bins.

I We create 3 dummy variables: B (for Before), D (for During) and A (for After) 4:00pm.
I The empirical volatility during each 1min bin is renormalized by the avg volatility of the day.

I Methodology: Do a model using days without announcements only, work on the residuals of this model
and try to explain these residuals on announcement days.

Explaining HFT market share on trades
Variables Coef. Std. err. t P > |t | 95% Conf. Int.

Const. 0.5557 0.003 208.543 0 [ 0.551, 0.561 ]
σnorm 0.0473 0.003 18.740 0 [ 0.042, 0.052 ]
Const. 0.0097 0.001 16.799 0 [ 0.009, 0.011 ]
B −0.0346 0.003 −10.228 0 [ -0.041, -0.028 ]
D −0.0469 0.005 −9.869 0 [ -0.057, -0.038 ]
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Good Practices
Summary of HFT Behaviour Around News

All these regressions point out in a quantitative way that the behaviour of HFTs around announcements
cannot be read as a simple reaction to associated variations of volatility.
Around a scheduled announcement, on top of usual reactions to volatility, HFTs:

I provide 15% less liquidity,
I are slightly more aggressive,
I trade less.

On the contrary, when no announcement is planned , their attitude towards an increase of volatility goes in the
opposite direction (trading more). We thus identify a “change of regime" in the presence of scheduled news.

For the purpose of this talk: It seems that HFT take exogenous information into account to avoid to focus too
much on high frequency data.
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Good Practices
Mixing Learning and Control: More References

Other papers to have ideas on ML for trading:

I Mean Field Game theory [Cardaliaguet and L, 2016]: to take into account the market impact of other
traders: If you know you are not the only one to trade, you can improve your strategy.
The difficult point is to learn what others are doing . It can be shown that in this case such a learning is
efficient (in the sense you learn the optimal strategy, as if you knew others’ inventories).

I Using a directly a price signal [L and Neuman, 2017]: if you have not a model, but a signal, it is possible
(but difficult) to include it your optimal strategy.

I Automated monitoring of hundreds of trading algorithms [Azencott et al., 2014], using real-time
(adaptive) modelling of performances, you can identify the potential causes of bad functioning of algos and
provide online decision support to traders.
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Good Practices
Mixing Learning and Control (1/2)

Predictive Models
I You can use ML to model future price changes or the future state of the offer and demand of liquidity,
I In such a case you will have an approximation error ε,
I What is the influence of not using ε in closed loop control? By construction IE(ε) = 0 but if your cost function

is not linear in the predictor, you may have some problems...
I Moreover how can you model interactions with others?

Direct Control
I If you automate a system, you end up with using the dynamic programming principle:

Vt (x) = min
c

∑
X(t+1)

P(x c→ X(t + 1)) ·
{

Vt+1(X(t + 1))− cost(x c→ X(t + 1))
}
.

This means you will implement a backward reasoning (at t = 0 you will use all your prediction from t = T to
now). As a consequence a small modelling error will have a huge influence on your strategy: do you want to
drive few hours of trading with few seconds ahead predictions?
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Good Practices
Mixing Learning and Control (2/2)

“Robust” Control
I It is probably better to implement two layers of control [Bouchard et al., 2011]

Á One slow “risk control” layer to bound your liquidity and market risks, it can include few slowly evolving
meta-parameters, or fast reaction to exogenous stimuli (like HFT reaction to news).

Â Inside such bounds, you can take fast decision exploiting stationarity of liquidity dynamics thanks to
statistical learning.

Other techniques

I Monitoring is very important,
I If you are a bilateral market maker, you can use recommandation-like methods to guess what kind of

client to accept, reject or call.
I In any case, more tasks are automated each month on trading floor, one of the biggest challenge is to

establish an efficient human-machine-interface: when to give back the control to humans? what
information to give them so that they can take enlightened decisions?
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Thank You For Your Attention

To submit papers:
Market Microstructure and Liquidity .

More on market microstructure:
Market Microstructure in Practice by C.-A.
L and Sophie Laruelle (World Scientific
Publisher, 1s ed. 2013, 2nd ed. 2018).
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