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Context: How Big Data Interacts with Intermediation

Easy access to larger digitalized datasets, storage capacities, processing capabilities is changing a lot of
industries. The financial industry is largely impacted.

One of the features of the innovations brought by these technological improvements is disintermediation .
Examples: TV vs. youtube, taxis vs. Uber, stores vs. Amazon, newspapers vs. google news and blogs, etc.
The financial system is essentially an intermediary , A financial system provides [Merton, 1995]

I a payments system for the exchange of goods and
services;

I a mechanism for the pooling of funds to undertake
large-scale indivisible enterprise;

I a way to transfer economic resources through time
and across geographic regions and industries;

I a way to manage uncertainty and control risk;
I price information that helps coordinate

decentralized decision-making in various sectors of
the economy;

I provides a way to deal with the
asymmetric-information and incentive problems
when one party to a financial transaction has
information that the other party does not.
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It is Not Just One More Small Change

Because the financial system is no more than a large intermediary, we will focus on some examples in this talk,
but keep in mind it is a game changing transformation . To insist, just list some examples:

I Payments system
→ Payment by mobile phone [Poushter and Oates, 2015], (bitcoins) blockchain [Nakamoto, 2011], etc.

I Financing of firms
→ Crowdfunding [Belleflamme et al., 2010], improvement of credit risk metrics (new models), etc.

I Asset allocation
→ Robot-advisors, enhanced fundamental information [Froot et al., 2016].

I Uncertainty management and risk control
→ Automatic differentiation [Pages et al., 2015], new models, etc.

I Price information
→ High frequency trading, fragmentation [Lehalle et al., 2013], new models, etc.

I Information asymmetry
→ “Last look” trading mechanisms, automated market making [Fermanian et al., 2015], electronic brokers
[Almgren, 2012] [Brandes et al., 2007], etc.
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A (Very Narrow) Focus

I will give few examples of how math finance can play a role in this revolution. They are short chapters of a far
largest story:

I Fragmentation is at the root of disintermediation (think about booking.com).
There is no more one financial market place but a collection of electronic trading venues (compared to OTC
trades).
I will show how to optimally fragment and route an order to obtain the needed liquidity at the best price?
[Pagès et al., 2011]

I Human-Machine Interface will be more needed than ever.
Humans will need decision support tools in an automated environment, and machines will have to take profit
of humans’ understanding of the context.
I will present a decision-support system to allow few traders to monitor thousands of trading algorithms.
[Azencott et al., 2014]
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Fragmentation is at The Root of Disintermediation

Have you ever seen a mailbox in France?

On Berkeley’s Campus: This is competition (and fragmentation)
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A typical fragmented stock

The Fragmentation of Microsoft the last 20 days (Source: Fidessa’s fragulator)
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A typical fragmented stock

The Fragmentation of Microsoft the last 20 days (Source: Fidessa’s fragulator) more...
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The Stakes of Optimal Routing

When a human or robot trader wants to buy or sell few shares, he has to split his order and send it to available
venues in the hope to obtain the desired size.

I one the one hand you have to split according to information you have
I be sure to be kept updated when information changes...

It is a typical Exploration-Exploitation problem [Lamberton and Pagès, 2008], especially in Dark Pools. We

(joint work with S. Laruelle and G. Pagès [Pagès et al., 2011]) solved it using a stochastic algorithm .

Documented approaches:
I [Ganchev et al., 2010] estimates the liquidity in each pool and implements a deterministic optimization;
I [Agarwal et al., 2010] uses a minimum regret approach;
I We implement the stochastic version of an optimal trading scheme.

The first approach is goog for on opportunistic trading (hedge fund), the second for a rare and not really flexible
flow (investor), the last one is good for very large systematic flow (broker).
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Expected Execution Cost

Minimizing the expected execution cost, given the price S, amounts to:

Maximization problem to solve

max

{ N∑
i=1

ρiE (S (ri V ∧ Di )) , r ∈ PN

}

where PN :=
{

r = (ri )1≤i≤N ∈ RN
+ |
∑N

i=1 ri = 1
}

.

It is then convenient to include the price S into both random variables V and Di by considering Ṽ := V S and
D̃i := Di S instead of V and Di . Assume that the distribution function of D/V is continuous on R+. Let
ϕ(r) = ρE (min (rV ,D)) be the mean execution function of a single dark pool (Φ =

∑
i ϕi (ri )), and assume that

V > 0 P− a.s. and P(D > 0) > 0

C.-A. Lehalle (CFM) 8 / 26



A Generic Method to Perform Online Optimization

Let’s take 2 slides to understand a generic method to be applied to any online trading algorithm .
Few preliminary remarks:

I The stationary solutions of the ODE: ẋ = h(x) contains the extremal values of F (x) =
∫ x

0 h(x) dx
I A discretized version of the ODE is (γ is a step):

(1) xn+1 = xn + γn+1 h(xn)

I A stochastic version of this being (ξn are i.i.d. realizations of a random variable, h(X) = E(H(X , ξ1)),
F (x) =

∫ x
0 EH(X , ξ1) dx):

(2) Xn+1 = Xn + γn+1 H(Xn, ξn+1)

I the stochastic algorithms theory is a set of results describing the relationship between these 3 formula and
the nature of γ, H, h and ξ [Hirsch and Smith, 2005], [Kushner and Yin, 2003], [Doukhan, 1994]
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The Theory of Stochastic Algorithms

Now we can do the reverse. This theory can be used when you only have a sequential access to a functional you
need to minimize. It is clearly the case in trading.

I To minimize a criteria E(F (X , ξ1)) of a state variable X
I if it is possible to compute:

H(Xn, ξn+1) :=
∂F
∂X

(Xn, ξn+1)

I now you can implement the following sequencial algorithm (no more expectation in it):

Xn+1 = Xn + γn+1 H(Xn, ξn+1)

I the results of the stochastic algorithms theory (like the Robbins-Monro theorem [Robbins and Monro, 1951],
[Pagès et al., 1990]) gives conditions under which it converges (especially on the time steps γ).

I Moreover they give you central limit theorem like results, i.e. you can control the variance (i.e. the speed
at which it converges).
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Back to Dark Pool splitting

We aim at solving the following maximization problem:

max
r∈PN

Φ(r), Φ(r) :=
N∑

i=1

ρiE (S (ri V ∧ Di )) .

The Lagrangian associated to the sole affine constraint is

L(r , λ) = Φ(r)− λ
( N∑

i=1

ri − 1

)

So,

∀i ∈ IN ,
∂L
∂ri

= ϕ′i (ri )− λ.

This suggests that any r∗ ∈ arg maxPN Φ iff ϕ′i (r∗i ) is constant when i runs over IN or equivalently if

∀i ∈ IN , ϕ′i (r∗i ) =
1
N

N∑
j=1

ϕ′j (r∗j ).
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Existence of maximum

To ensure that the candidate provided by the Lagragian approach is the true one, we need an additional
assumption on ϕ to take into account the behaviour of Φ on the boundary of ∂PN .

Proposition 1
Assume that (V ,Di ) satisfies upper assumptions for every i ∈ IN . Assume that the functions ϕi satisfy the
following assumption

(3) (C) ≡ min
i∈IN

ϕ′i (0) > max
i∈IN

ϕ′i

(
1

N − 1

)
.

Then arg maxHN Φ = arg maxPN Φ ⊂ int(PN ) where

arg max
PN

Φ =
{

r ∈ PN |ϕ′i (ri ) = ϕ′1(r1), i = 1, . . . ,N
}
.
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Design of the stochastic algorithm

Characterization of the solution

r∗ ∈ arg max
PN

Φ⇔ ∀i ∈ {1, . . . ,N} , E

V

ρi 1{r∗i V<Di} −
1
N

N∑
j=1

ρj 1{r∗j V<Dj

}
 = 0.

Consequently, this leads to the following recursive zero search procedure

(4) rn+1
i = rn

i + γn+1Hi (rn,Y n+1), r0 ∈ PN , i ∈ IN ,

where for i ∈ IN , every r ∈ PN , every V > 0 and every D1, . . . ,DN ≥ 0,

Hi (r ,Y ) = V

ρi 1{ri V<Di} −
1
N

N∑
j=1

ρj 1{rj V<Dj}


with (Y n)n≥1 a sequence of random vectors with non negative components such that, for every n ≥ 1,

(V n,Dn
i , i = 1, . . . ,N)

d
= (V ,Di , i = 1, . . . ,N).
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And More...

The underlying idea of the algorithm
is to reward the dark pools which outperform the mean of the N dark pools by increasing the allocated volume
sent at the next step (and conversely).

Theorem 1: Convergence

Assume that (V ,D) satisfy upper assumptions, that V ∈ L2(P) and that Assumption (C) holds. Let γ := (γn)n≥1
be a step sequence satisfying the usual decreasing step assumption∑

n≥1

γn = +∞ and
∑
n≥1

γ2
n < +∞.

Let (V n,Dn
1 , . . . ,D

n
N

)n≥1 be an i.d.d. sequence defined on a probability space (Ω,A,P). Then, there exists an
argmaxPN

Φ-valued random variable r∗ such that

rn −→ r∗ a.s.
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Rate of convergence (Central Limit Theorem)

To establish a CLT , we need to ensure the existence of the Hessian of the objective function Φ. This needs further assumption
on a couple (V ,D) which is that its distribution function given {D > 0} is absolutely continuous with a density f defined on
(0,+∞)2. Furthermore , for every v > 0, u 7→ f (v , u) is cont. and pos. on R+, and
∀ ε∈ (0, 1), supεV≤u≤V/ε fD (V , u)V 2∈ L1(P). The conditional distribution function of D given {D > 0} and V is given by for
u ≥ 0, v > 0,

FD (u |V = v , 1{D>0}) := P(D ≤ u |V = v , 1{D>0}) =

∫ u

0
f (v , u′)du′

Theorem 2: Central Limit Theorem

Assume that argmax Φ = {r∗}, r∗∈ PN so that rn n→∞−→ r∗ P-a.s. and that Assumption (??) holds for every
(V ,Di ), i∈ IN and V ∈ L2+δ(P), δ > 0. Set γn = c

n , n ≥ 1 with c > 1/2<e(λmin) where λmin denotes the

eigenvalue of A∞ := −Dh(r∗)|1⊥ with the lowest real part. Then
√
γn
−1 (rn − r∗) L−→ N (0; Σ∞), where the

asymptotic covariance matrix Σ∞ is given by Σ∞ =
∫∞

0 eu(A∞− Id
2c )C∞eu(A∞− Id

2c )t
du where

C∞ = E
(
H(r∗,V ,D1, . . . ,DN )H(r∗,V ,D1, . . . ,DN )t)

|1⊥ and (A∞ − Id
2c )t stands for the transpose operator of

A∞ − Id
2c ∈ L(1⊥).
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In Practice

Some “backtests” using reconstructed data: we implemented an “Oracle” (it knows the future) and a simpler
“reinforcement” policy (at left). We tested different market impact functions κ = 0 means no impact (at right).
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Of course it is possible to do better, for instance by implementing a “smart reset”, etc.
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Decision Support For Thousands of Trading Algorithms

Each trader monitors 150 to 700 trading algorithms. Algorithms react:
I to realtime feeds,
I estimates,
I market state.

Algo have “meta parameters” that can be tuned by traders.

In real-time, we (joint work with R. Azencott, A. Beri, Y. Gadhyan, N.
Joseph and M. Rowley [Azencott et al., 2014]) will

I attempt to predict on the fly the quality of trading of the thousands of
algos using potential explanatory variables (i.e. “features”),

I that for we will need to extract features on price formation at high
frequency,

I if a feature explains successfully bad performance, we will
1. announce the feature is potentially at the root of the anomaly,
2. group algorithms using this feature to help traders to take decisions.
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How to monitor all this in real-time?

I We define some efficiency criteria Yt (like performance) and some potential explanatory variables
X 1

t , . . . ,X
N
t (like a sector, an increase of volatility, a change in liquidity).

I On the fly (for instance every five minutes), we will build predictors φ(X) = E(Y |X) of the current
performance of all the trading algorithms of a trader using the sector, the volatility level, the liquidity, etc.

I The variables succeeding to explain bad performances will be said to be the causes of bad performance.
That for, we will define the predicting power π(t) of each variable X i .
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Performances and explanatory variables

I We use the PnL (in bid ask spread) as a
performance criterion;

I We use market descriptors: volatility (risk), bid-ask
spread (liquidity), and momentum (directionality);

I We renormalize them using their scores (i.e. their
empirical likelihood);

I We add patterns: price trends, price jumps and
volume peaks.
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Scoring

Scoring increases the “contrast” of the figure.

It is performed using the past values of the
variable and using its empirical distribution
function (roughly: replace x by its quantile).
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Binary prediction

I To be fast and take into account the number of possible predictors given the number of data,
I at each t , we select the 5% worst performances (i.e. Y is now zero or one) and try to explain them
I using two-sided binary predictors:

φ(x) =

{
0 if x ∈ [θ−, θ+]

1 otherwise

I we choose the thresholds (θ−(i), θ+(i)) to obtain the best possible predictor for each X i .
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We have some guarantee

Generic Optimal Randomized Predictors
Fix a random vector X ∈ RN of explanatory factors and a target binary variable Y . Let 0 ≤ v(x) ≤ 1 be any Borel function of
x ∈ RN such that v(X) = IP(Y = 1 | X) almost surely.
For any Borel decision function φ ∈ Φ, define the predictive power of the randomized predictor Ŷφ by
π(φ) = Q(µ,P1(φ),P0(φ)), where Q is a fixed continuous and increasing function of the probabilities of correct decisions
P1,P0 . Then there exists ψ ∈ Φ such that the predictor Ŷφ has maximum predictive power

π(ψ) = max
φ∈Φ

π(φ)

Any such optimal Borel function 0 ≤ ψ(x) ≤ 1 must almost surely verify, for some suitably selected constant 0 ≤ c ≤ 1.

(5) ψ(X) = 1 for v(X) > c ; ψ(X) = 0 for v(X) < c.

Meaning that our two-sided predictors are not bad at all when it comes to do something simple. Moreover we
have confidence intervals too (see in the paper).
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Influence of a variable via a predictor

Influence of explanatory variables
We define the influence of X a subset of explanatory variables as the predictive power of the best predictor:

It (X,Y ) = π(ψ) = max
φ∈Φ

π(φ).

Remind we do not use the past of the variables X (except to build their score and for the pattern matching
detectors).

We just rely here on the joint distribution of (Y ,X) over all the instrument currently traded. It means we will use
the states of all algorithms to try to establish a relation, now, between bad performances and variables of interest.
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Simultaneous prediction as a clustering mechanism

At the end of this process:
I at each update,
I we build optimal predictors and combinations of predictors explaining at most current bad performances.

I Implicitly we selected hyperplanes in the space of combinations of our explanatory variables
separating trading algos with good perf. vs. bad ones.

I Some subsets of predictors are good (i.e. they allow hyperplanes to be efficiently positioned), others are not.
I This allows us to identify variables currently influencing the performances. They are said to be the

causes of bad performances.
I We present to the trader the summarized information: “sort by this variable if you want to understand what is

happening to your algos”.
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Monitoring results

Seen from one trading algo

I top: the explanatory variable.
I bottom: the performance.

I The performance quantile is in dotted red;
around update 40 this algo is 3 times among
the 5% worst performers;

I on update 41, the spread score is selected by
the good predictors to be used: θ− = 0,
θ+ ' 70%.

I around update 32, the volume score is
selected to predict bad perf. of other algos.

I the volatility score is selected at update 42,
but the associated predictors says it is ok for
this algo.

Now you can tell traders the volatility is a potential
source of bad performance of algos at time t = 42
(i.e. 12h30, Paris time) and point out the algorithms
affected by this anomaly.
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I the volatility score is selected at update 42,
but the associated predictors says it is ok for
this algo.

Now you can tell traders the volatility is a potential
source of bad performance of algos at time t = 42
(i.e. 12h30, Paris time) and point out the algorithms
affected by this anomaly.
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Perspectives

We have seen two examples of the use of machine learning methods on financial markets to answer the needs
created by disintermediation :

I Fragmentation demands exploration-exploitation solutions [Pagès et al., 2011],

I Automation demands decision support tools building on the fly a human-driven understanding of what is
going on [Azencott et al., 2014].

But the main message of this talk is an invitation to discuss the business changes in the financial industry. From
a quantitative perspective, it should go through

I using new data,
I Machine Learning as a Tool.

Thank you for your attention!

C.-A. Lehalle (CFM) 26 / 26



Perspectives

We have seen two examples of the use of machine learning methods on financial markets to answer the needs
created by disintermediation :

I Fragmentation demands exploration-exploitation solutions [Pagès et al., 2011],

I Automation demands decision support tools building on the fly a human-driven understanding of what is
going on [Azencott et al., 2014].

But the main message of this talk is an invitation to discuss the business changes in the financial industry. From
a quantitative perspective, it should go through

I using new data,
I Machine Learning as a Tool.

Thank you for your attention!

C.-A. Lehalle (CFM) 26 / 26



References I

Agarwal, A., Bartlett, P. L., and Dama, M. (2010).

Optimal Allocation Strategies for the Dark Pool Problem.
In Teh, Y. W. and Titterington, M., editors, Proceedings of The Thirteenth International Conference on Artificial Intelligence and Statistics (AISTATS), volume 9, pages 9–16.

Almgren, R. (2012).

High-Frequency Event Analysis in Eurex Interest Rate Futures.
Technical report.

Azencott, R., Beri, A., Gadhyan, Y., Joseph, N., Lehalle, C.-A., and Rowley, M. (2014).

Realtime market microstructure analysis: online Transaction Cost Analysis.
Quantitative Finance, pages 0–19.

Belleflamme, P., Lambert, T., and Schwienbacher, A. (2010).

Crowdfunding: an industrial organization perspective.
In Digital Business Models: Understanding Strategies, Paris, pages 25–26.

Brandes, Y., Domowitz, I., Jiu, B., and Yegerman, H. (2007).

Algorithms, Trading Costs, and Order Size.
Technical report, Investment Technology Group.

Doukhan, P. (1994).

Mixing: Properties and Examples (Lecture Notes in Statistics).
Springer, 1 edition.

Fermanian, J.-D., Guéant, O., and Rachez, A. (2015).

Agents’ Behavior on Multi-Dealer-to-Client Bond Trading Platforms.

C.-A. Lehalle (CFM) 27 / 26



References II

Froot, K., Kang, N., Ozik, G., and Sadka, R. (2016).

Private information and corporate earnings: Evidence from big data.

Ganchev, K., Nevmyvaka, Y., Kearns, M., and Vaughan, J. W. (2010).

Censored exploration and the dark pool problem.
Commun. ACM, 53(5):99–107.

Hirsch, M. W. and Smith, H. (2005).

Monotone dynamical systems, volume 2, pages 239–357.

Kushner, H. J. and Yin, G. G. (2003).

Stochastic Approximation and Recursive Algorithms and Applications (Stochastic Modelling and Applied Probability) (v. 35).
Springer, 2nd edition.

Lamberton, D. and Pagès, G. (2008).

A penalized bandit algorithm.
Electronic Journal of Probability, 13(0).

Lehalle, C.-A., Laruelle, S., Burgot, R., Pelin, S., and Lasnier, M. (2013).

Market Microstructure in Practice.
World Scientific publishing.

Merton, R. C. (1995).

A Functional Perspective of Financial Intermediation.
Financial Management, 24(2):23+.

C.-A. Lehalle (CFM) 28 / 26



References III

Nakamoto, S. (2011).

Bitcoin: A Peer-to-Peer Electronic Cash System [Illustrated].
Prequel Books.

Pagès, G., Lapeyre, B., and Sab, K. (1990).

Sequences with low discrepancy. Generalization and application to Robbins-Monro algorithm.
Statistics, 21(2):251–272.

Pagès, G., Laruelle, S., and Lehalle, C.-A. (2011).

Optimal split of orders across liquidity pools: a stochastic algorithm approach.
SIAM Journal on Financial Mathematics, 2:1042–1076.

Pages, G., Pironneau, O., and Sall, G. (2015).

Vibrato and Automatic Differentiation for High Order Derivatives and Sensitivities of Financial Options.
working paper or preprint.

Poushter, J. and Oates, R. (2015).

Cell Phones in Africa: Communication Lifeline.
Technical report, Pew Research.

Robbins, H. and Monro, S. (1951).

A Stochastic Approximation Method.
The Annals of Mathematical Statistics, 22(3):400–407.

C.-A. Lehalle (CFM) 29 / 26


	Context and Stakes
	Learning by Trading: Optimal Routing of Orders
	Decision Support For Thousands of Trading Algorithms
	Perspectives

